TDP158 [TI]

6Gbps DP++ 1.1 至 HDMI 2.0 转接驱动器;
TDP158
型号: TDP158
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

6Gbps DP++ 1.1 至 HDMI 2.0 转接驱动器

驱动 驱动器
文件: 总58页 (文件大小:2260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDP158  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
TDP158 6Gbps、交流耦合TMDSHDMI 电平转换器转接驱动器  
1 特性  
3 说明  
• 交流耦TMDS DisplayPort双模物理层输入  
HDMI2.0b TMDS 物理层输出支持高6Gbps  
的数据速率HDMI2.0b 电气参数  
• 支DisplayPort 双模标准版1.1  
• 支4k2k60p 和高WUXGA 16 位色深或  
1080p刷新率更高  
TDP158 器件是一款交流耦合型 HDMI 信号转最小化  
传输差分信号 (TMDS) 转接驱动器支持数字视频接  
(DVI) 1.0 和高清多媒体接口 (HDMI) 1.4b 2.0b  
输出信号。TDP158 支持四条 TMDS 通道和数字显示  
控制 (DDC) 接口。TDP158 支持高达 6Gbps 的信号传  
输速率可实现高4k2k60p 24 /像素的分辨率以及  
高达 WUXGA 16 位色深或 1080p同时具有较高的刷  
新率。TDP158 经配置可支HDMI2.0 标准。  
• 可编程固定接收器均衡器增益最高可达  
15.5dB  
• 全局或独立的高速通道控制、预加重和发送摆幅以  
及转换率控制  
TDP158 支持双电源轨  
I2C 或引脚搭接可编程  
VDD 1.1VVCC 3.3V),有助于降低功耗。该  
器件采用多种电源管理方法降低整体功耗。 TDP158  
I2C 或引脚搭接支持固定接收器 EQ 增益从而补  
偿长度不同的输入电缆或电路板引线。  
• 可通I2C 配置DisplayPort 转接驱动器  
• 主通道上全通道交换  
• 低功耗  
器件信息(1)  
6Gbps 时的工作功耗200mW关断状态下的  
功耗8mW  
• 采40 引脚、0.4mm 间距、5mm x 5mm WQFN  
封装SN75DP159RSB 重计时器引脚兼容  
封装尺寸标称值)  
器件型号  
TDP158  
封装  
WQFN (40)  
5.00mm × 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
笔记本电脑、台式机、一体机、平板电脑、游戏机  
和工PC  
音频或视频设备  
Blu-rayDVD  
游戏系统  
HDMI 适配器或软件狗  
集线站  
TDP158  
IN_D2p/n  
IN_D1p/n  
IN_D0p/n  
OUT_D2p/n  
OUT_D1p/n  
OUT_D0p/n  
OUT_CLKp/n  
DP++ TX  
Or  
AC Coupled  
HDMI TX  
8
5
1
P
D
T
IN_CLKp/n  
SCL_SRC  
SDA_SRC  
HDMI  
Connector  
5 V  
GPU  
显示  
SCL_SNK  
SDA_SNK  
HPD_SNK  
DDC  
HPD  
HPD_SRC  
3.3 V  
OE  
SCL_CTL  
SDA_CTL  
VSADJ  
I2C  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEX2  
 
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
Table of Contents  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................20  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................27  
8.5 Register Maps...........................................................28  
9 Application and Implementation..................................40  
9.1 Application Information............................................. 40  
9.2 Typical Application.................................................... 40  
10 Power Supply Recommendations..............................46  
10.1 Power Management................................................46  
10.2 Standby Power........................................................46  
11 Layout...........................................................................47  
11.1 Layout Guidelines................................................... 47  
11.2 Layout Example...................................................... 48  
12 Device and Documentation Support..........................49  
12.1 Documentation Support.......................................... 49  
12.2 接收文档更新通知................................................... 49  
12.3 支持资源..................................................................49  
12.4 Trademarks.............................................................49  
12.5 Electrostatic Discharge Caution..............................49  
12.6 术语表..................................................................... 49  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics, Power Supply.................... 8  
6.6 Electrical Characteristics, Differential Input................ 9  
6.7 Electrical Characteristics, TMDS Differential  
Output............................................................................9  
6.8 Electrical Characteristics, DDC, I2C, HPD, and  
ARC...............................................................................9  
6.9 Electrical Characteristics, TMDS Differential  
Output in DP-Mode......................................................10  
6.10 Switching Characteristics, TMDS............................10  
6.11 Switching Characteristics, HPD.............................. 10  
6.12 Switching Characteristics, DDC and I2C................. 11  
6.13 Typical Characteristics............................................12  
7 Parameter Measurement Information..........................13  
8 Detailed Description......................................................19  
Information.................................................................... 49  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (March 2020) to Revision E (July 2022)  
Page  
• 更新了整个文档中的表格、图和交叉引用的编号格式.........................................................................................1  
• 在整个数据表中添加了包容性术语......................................................................................................................1  
Updated the TDP158 in Source Side Application figure with ESD between device and receptacle.................40  
Updated the TDP158 Source Side Application with DDC Snoop figure with ESD between device and  
receptacle......................................................................................................................................................... 44  
Updated the TDP158 in Dual Role Source Side Application figure with ESD between device and receptacle....  
45  
Changes from Revision C (October 2019) to Revision D (March 2020)  
Page  
HDMI 2.0a 更改HDMI 2.0b........................................................................................................................1  
Changes from Revision B (June 2017) to Revision C (October 2019)  
Page  
• 删除了特性面向商业和工业应用的扩展温度器件选项..................................................................................... 1  
• 更改了特性从“SN65DP159RSB SN75DP159RSB 重计时器引脚兼容”更改为“SN75DP159RSB  
重计时器引脚兼容”........................................................................................................................................... 1  
• 从器件信表中删除TDP158I........................................................................................................................1  
Changed the TJ MIN value From: 40°C To: 0°C in the Recommended Operating Conditions table...............6  
Deleted TA for TDP158I in the Recommended Operating Conditions table....................................................... 6  
Changed the last sentence of the Overview section to remove the TDP158I device.......................................19  
Changes from Revision A (January 2017) to Revision B (June 2017)  
Page  
• 将标题从“HDMI™ 转接驱动器”更改为“HDMI™ 电平转换器转接驱动器”...................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TDP158  
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
• 更改了列表..................................................................................................................................................1  
• 更改了列表..................................................................................................................................................1  
Added text to pins 17, 23, 34, 16 in the Pin Functions table: "For pin control, Low = 1 kΩpulldown resistor to  
GND, High = 1 kΩpullup resistor to VCC, NC = Floating" ................................................................................4  
Added text to pin NC in the Pin Functions table: "Optionally connect 0.1 μF to GND to reduce noise"............4  
VSADJ: Added Note "Reducing resistor ..", and Changed values in the Recommended Operating Conditions  
table....................................................................................................................................................................6  
Changed Rvsdj max value to 8 kΩin 6-1 ...................................................................................................12  
Changed the paragraph in the Operation Timing section.................................................................................21  
Added column Pin Number to 8-2, Changed IN_CLK OUT_CLK To: IN_D2 OUT_D2 in the last row of  
the SWAP column.............................................................................................................................................22  
Changed Note 1 of 8-3 ................................................................................................................................23  
Changed the last two sentences of the paragraph in the pre-emphasis section.............................................. 26  
Changed the title of 8-6 From: 3.5 dB pre-emphasis in Normal Operation To: 6 dB pre-emphasis Setting in  
Normal Operation............................................................................................................................................. 26  
Changed From: Reg0Ch[1:0] = 01 To: Reg0Ch[1:0] = 10 in 8-7 .................................................................26  
Changed the Default setting in 8-9 From: TBD To: 00000001..................................................................... 30  
Added paragraph to the Application and Implementation section: "TDP158 is designed ..."........................... 40  
Changed the Application Information paragraph.............................................................................................. 40  
Changed From: 0 Ωresistors To: 1 kΩresistors, and a noise filter (capacitor) for the no connect in 9-1 ....  
40  
Added text "1 kΩpulldown resistor " to the Connect values in 9-1 ............................................................ 41  
Changed text in the second paragraph of the Source Side HDMI Application section From: "Control pins can  
be tied directly to VCC, GND or left floating." To: "Control pins should be tied to 1 kΩpullup to VCC, 1 kΩ  
pulldown to GND, or left floating.".....................................................................................................................44  
Changed From: 0 Ωresistors To: 1 kΩresistors, and a noise filter (capacitor) for the no connect in 9-5 ....  
44  
Changed From: 0 Ωresistors To: 1 kΩresistors, and a noise filter (capacitor) for the no connect in 9-6 ....  
45  
Changed From: 0 Ωresistors To: 1 kΩresistors, and a noise filter (capacitor) for the no connect in 11-2 ...  
48  
Changes from Revision * (December 2016) to Revision A (January 2017)  
Page  
• 将“预览”更改为量产数据.................................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
5 Pin Configuration and Functions  
IN_D2p/n  
IN_D2p/n  
HPD_SRC  
IN_D1p/n  
IN_D1p/n  
IN_D0p/n  
IN_D0p/n  
I2C_EN  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
OUT_D2n/p  
OUT_D2n/p  
HPD_SNK  
OUT_D1n/p  
OUT_D1n/p  
OUT_D0n/p  
OUT_D0n/p  
A1/EQ2  
GND  
IN_CLKp/n  
IN_CLKp/n  
OUT_CLKn/p  
OUT_CLKn/p  
Not to scale  
5-1. RSB Package, 40-Pin WQFN (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
SUPPLY AND GROUND PINS  
3.3 V Power Supply  
VCC  
VDD  
11, 37  
P
P
12,20,31,40  
1.1 V Power Supply  
15, 35  
Thermal Pad  
GND  
G
Ground  
MAIN LINK INPUT PINS  
Channel 2 Differential Input  
Channel 1 Differential Input  
Channel 0 Differential Input  
Clock Differential Input  
IN_D2p/n  
IN_D1p/n  
IN_D0p/n  
IN_CLKp/n  
1, 2  
4, 5  
I
I
I
I
6, 7  
9, 10  
MAIN LINK OUTPUT PINS (FAIL SAFE)  
TMDS Data 2 Differential Output  
TMDS Data 1 Differential Output  
TMDS Data 0 Differential Output  
TMDS Data Clock Differential Output  
OUT_D2n/p  
OUT_D1n/p  
OUT_D0n/p  
OUT_CLKn/p  
29, 30  
26, 27  
24, 25  
21, 22  
O
O
O
O
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
NAME  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
HOT PLUG DETECT AND DDC PINS  
HPD_SRC  
HPD_SNK  
SDA_SNK  
SCL_SNK  
SDA_SRC  
SCL_SRC  
3
O
I
Hot Plug Detect Output to source side  
Hot Plug Detect Input from sink side  
Sink Side Bidirectional DDC Data Line  
Sink Side Bidirectional DDC Clock Line  
Source Side Bidirectional DDC Data Line  
Source Side Bidirectional DDC Clock Line  
CONTROL PINS  
28  
33  
32  
39  
38  
I/O  
I/O  
I/O  
I/O  
Operation Enable/Reset Pin  
OE = L: Power Down Mode  
OE = H: Normal Operation  
Internal weak pullup: Resets device when transitions from H to L  
OE  
36  
8
I
I
I2C_EN = High; Puts Device into I2C Control Mode  
I2C_EN = Low; Puts Device into Pin Strap Mode  
I2C_EN  
I2C Data Signal: When I2C_EN = High;  
Pre-emphasis: When I2C_EN = Low: See 8.3.11  
DE = L: None 0 dB  
SDA_CTL/PRE  
14  
I/0  
DE = H: 3.5 dB  
I2C Clock Signal: When I2C_EN = High;  
Lane SWAP: When I2C_EN = Low: See 8.3.4 HDMI Mode Only  
SWAP = L: Normal Operation  
SCL_CTL/SWAP  
VSADJ  
13  
18  
17  
I
I
SWAP = H: Lane Swap  
TMDS Compliant Voltage Swing Control (Nominal 6 kfor HDMI and DP combination;  
6.49 kfor HDMI only)  
Address Bit 1 for I2C Programming when I2C_EN = High  
I
EQ1 Pin Setting when I2C_EN = Low; Works in conjunction with A1/EQ2; See 8.3.5  
for settings. For pin control, Low = 1 kΩpulldown resistor to GND, High = 1 kΩpullup  
resistor to VCC, NC = Floating.  
A0/EQ1  
3 Level  
Address Bit 2 for I2C Programming when I2C_EN = High  
I
EQ2 Pin Setting when I2C_EN = Low; Works in conjunction with A0/EQ1; See 8.3.5  
for settings. For pin control, Low = 1 kΩpulldown resistor to GND, High = 1 kΩpullup  
resistor to VCC, NC = Floating.  
A1/EQ2  
SLEW  
23  
34  
3 Level  
Clock Slew Rate Control: See 8.3.10  
SLEW = L: Slowest 203 ps  
SLEW = NC (Default): Mid-range 1 180 ps  
SLEW = H: Fastest 122 ps  
I
3 Level  
For pin control, L = 1 kΩpulldown resistor to GND, H = 1 kΩpullup resistor to VCC, NC  
= Floating.  
Source Termination Cotnrol: See 8.3.8  
TERM = H, 75 Ω ≅ 150 Ω  
TERM = L, Transmit Termination impedance in 150 Ω ≅ 300 Ω  
TERM = NC, No transmit Termination  
I
TERM  
NC  
16  
19  
3 Level  
Note: When TMDS_CLOCK_RATIO_STATUS bit = 1 the TDP158 sets source termination  
to 75 Ω ≅ 150 Automatically  
For pin control, L = 1 kΩpulldown resistor to GND, H = 1 kΩpullup resistor to VCC, NC  
= Floating.  
NA  
No Connect. Optionally connect 0.1 μF to GND to reduce noise.  
(1) I= Input, O = Output, P = Power, G = Ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TDP158  
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
0
MAX  
4
UNIT  
VCC  
V
V
V
V
V
Supply Voltage Range(3)  
VDD  
1.4  
1.56  
1.4  
4
Main Link Input Differential Voltage (IN_Dx)  
Main Link Input Single Ended on Pin  
TMDS Output ( OUT_Dx)  
0.3  
0.3  
Voltage Range  
HPD_SRC, VSADJ, SDA_CTL/PRE, OE, A1/  
EQ2, A0/EQ1, TERM, I2C_EN, SLEW,  
SCL_CTL/SWAP, SDA_SRC, SCL_SRC  
4
V
V
0.3  
0.3  
HDP_SNK, SDA_SNK, SCL_SNK  
6
Continuous power dissipation  
Storage temperature, Tstg  
See 6.4  
150  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-B.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.6  
UNIT  
V
VCC  
Supply Voltage Nominal Value 3.3 V for DP mode  
Supply Voltage Nominal Value 3.3 V for HDMI mode  
Supply Voltage Nominal Value 1.1 V  
3.13  
1
3.47  
1.27  
105  
85  
V
VDD  
TJ  
V
Junction temperature  
0
°C  
°C  
TA  
Operating free-air temperature (TDP158)  
0
MAIN LINK DIFFERENTIAL PINS  
VID(EYE)  
1200  
1200  
0.9  
mV  
mV  
V
75  
200  
0.5  
Peak-to-peak input differential voltage See 7-14  
VID(DC)  
VIC  
The input differential voltage Peak-to peak DC level, See 7-14  
Input Common Mode Voltage (Internally Biased)  
Data rate  
dR  
0.25  
4.5  
6
Gbps  
VSADJ  
TMDS compliant swing voltage bias resistor (Nominal 6 kΩfor HDMI and  
DP combination; 6.49 kΩfor HDMI only)(1)  
8
kΩ  
DDC, I2C, HPD, AND CONTROL PINS  
VI(DC)  
DC Input Voltage  
HDP_SNK, SDA_SNK, SCL_SNK,  
5.5  
3.6  
V
V
0.3  
0.3  
SDA_SRC, SCL_SRC; All other Local I2C, and  
control pins  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
 
 
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
0.3 x VCC  
0.8  
UNIT  
VIL  
Low-level input voltage at DDC  
Low-level input voltage at HPD  
V
V
V
Low-level input voltage at SDA_CTL/PRE, OE, A1/EQ2, A0/EQ1, TERM,  
I2C_EN, SLEW, SCL_CTL/SWAP pins only  
0.3  
VIM  
VIH  
Mid-Level input voltage at A1/EQ2, A0/EQ1, TERM, SLEW pins only  
1.2  
1.6  
V
V
High-level input voltage at OE, A1/EQ2, A0/EQ1, TERM, I2C_EN, SLEW  
pins only  
0.7 x VCC  
High-level input voltage at SDA_SRC, SCL_SRC, SDA_CTL/PRE,  
SCL_CTL/SWAP  
V
0.7 x VCC  
High-level input voltage at SDA_SNK, SCL_SNK  
High-level input voltage at HPD  
3.2  
2
V
V
VOL  
Low-level output voltage  
0.4  
V
VOH  
High-level output voltage  
2.4  
V
fSCL  
SCL clock frequency fast I2C mode for local I2C control  
Total capacitive load for each bus line supporting 400 kHz (DDC terminals)  
Total capacitive load for each bus line (local I2C terminals)  
DDC Data rate  
400  
400  
100  
400  
30  
kHz  
pF  
pF  
Kbps  
µA  
µA  
µA  
µA  
kΩ  
C(bus,DDC)  
C(bus,I2C)  
dR(DDC)  
IIH  
High level input current  
30  
20  
10  
IIM  
Mid level input current  
20  
IIL  
Low level input current  
10  
IOZ  
High impedance outpupt current  
10  
R(OEPU)  
Pull up resistance on OE pin  
250  
150  
(1) Reducing resistor in VSADJ will increase VOD, care should be taking since resistors below 6 kΩmay lead to compliance failures.  
6.4 Thermal Information  
TDP158  
THERMAL METRIC(1)  
RSB (WQFN)  
UNIT  
40 PINS  
3.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
23.1  
9.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
3.8  
ψJB  
RθJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TDP158  
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
6.5 Electrical Characteristics, Power Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(2)  
200  
MAX(1)  
UNIT  
mW  
OE = H,VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
V
PD1  
Device power Dissipation  
IN_Dx: VID_PP = 1200 mV, 6 Gbps TMDS  
pattern, VI = 3.3 V, I2C_EN = L,  
SDA_CTL/PRE = L, EQ1/EQ2 = H  
350  
680  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
330  
mW  
V
Device power Dissipation in DP-  
Mode  
PD2  
IN_Dx: VID_PP = 400 mV, 5.4 Gbps DP  
pattern, I2C_EN = H, VOD = 400 mV PRE =  
0 dB  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
V , HPD = H, No input Signal: Stage 1 See  
10.2  
34  
60  
mW  
mW  
Stage 1: Standby Power  
P(STBY1)  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/  
1.27 V , HPD = H, Noise on input Signal:  
Stage 2 See 10.2  
Stage 2: Standby Power  
OE = L, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
V
8
8
8
34  
34  
20  
mW  
mW  
mA  
P(SD1)  
P(SD2)  
Device power in PowerDown  
Device power in PowerDown in DP- OE = L, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
Mode  
V
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
V
IN_Dx: VID_PP = 1200 mV, 6 Gbps TMDS  
pattern  
I2C_EN = L, SDA_CTL/PRE = L, EQ1/EQ2  
= H,  
ICC1  
ICC2  
IDD1  
IDD2  
VCC Supply current  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
V
IN_Dx: VID_PP = 400 mV, 5.4 Gbps DP  
pattern, I2C_EN = H, VOD = 400 mV PRE =  
0 dB  
45  
110  
220  
mA  
mA  
VCC Supply current in DP-Mode  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
V
IN_Dx: VID_PP = 1200 mV, 6 Gbps TMDS  
pattern  
I2C_EN = L, SDA_CTL/PRE = L, EQ1/EQ2  
= H  
160  
VDD Supply current  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27  
V
IN_Dx: VID_PP = 400 mV, 5.4 Gbps DP  
pattern, I2C_EN = H, VOD = 40 mV PRE =  
dB  
160  
220  
mA  
VDD Supply current DP-Mode  
OE = H, VCC = 3.3 V/3.6 V,  
VDD = 1.1 V/1.27 V , HPD =  
H: No signal on IN_CLK  
3.3 V Rail  
1.1 V Rail  
3.3 V Rail  
7
7
mA  
mA  
Stage 1: Standby current See 节  
10.2  
I(STBY1)  
OE = H, VCC = 3.3 V/3.6 V,  
VDD = 1.1 V/1.27 V , HPD =  
H: No valid signal on  
IN_CLK  
7
mA  
mA  
Stage 2: Standby current See 节  
10.2  
27  
1.1 V Rail  
OE = L, VCC = 3.3 V/3.6 V,  
VDD = 1.1 V/1.27 V , or OE =  
H, HPD = L  
3.3 V Rail  
1.1 V Rail  
1
4
7
7
mA  
mA  
I(SD11)  
PowerDown current HDMI Mode  
3.3 V Rail  
1.1 V Rail  
1
4
7
7
mA  
mA  
OE = L, VCC = 3.3 V/3.6 V,  
VDD = 1.1 V/1.27 V  
I(SD2)  
PowerDown current in DP-Mode  
(1) The maximum rating is simulated at 3.6 V VCC and 1.27 V VDD and at 85°C temperature unless otherwise noted.  
(2) The typical rating is simulated at 3.3 V VCC and 1.1 V VDD and at 27°C temperature unless otherwise noted.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
6.6 Electrical Characteristics, Differential Input  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.25  
25  
TYP(2)  
MAX(1)  
6
UNIT  
Gbps  
Mhz  
DR(RX_DATA)  
DR(RX_CLK)  
tRX_DUTY  
TMDS data lanes data rate  
TMDS clock lanes clock rate  
Input clock duty circle  
340  
60%  
120  
40%  
80  
50%  
100  
Input differential termination  
impedance  
R(INT)  
V(TERM)  
Input Common Mode Voltage  
OE = H  
0.7  
V
(1) The maximum rating is simulated at 3.6 V VCC and 1.27 V VDD and at 85°C temperature unless otherwise noted.  
(2) The typical rating is simulated at 3.3 V VCC and 1.1 V VDD and at 27°C temperature unless otherwise noted.  
6.7 Electrical Characteristics, TMDS Differential Output  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(2)  
MAX(1)  
UNIT  
600  
1400  
mV  
Output differential voltage before pre-  
emphasis; See 8.3.11  
VSADJ = 6 kΩ; SDA_CTL/PRE = H:  
See 7-4  
VOD(PP)  
350  
350  
720  
mV  
mV  
VSADJ = 6 kΩ; SDA_CTL/PRE = H,  
See 7-4  
Steady state output differential voltage  
See 8.3.11  
VOD(SS)  
1000  
VSADJ = 5.5 kΩ; SDA_CTL/PRE = L,  
See 7-3  
IOS  
Short circuit current limit  
Main link output shorted to GND  
50  
mA  
Source Termination resistance for HDMI  
2.0  
75  
150  
R(TERM)  
6.8 Electrical Characteristics, DDC, I2C, HPD, and ARC  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(2)  
MAX(1)  
UNIT  
DDC and I2C  
SCL/SDA_CTL, SCL/SDA_SRC low  
level input voltage  
0.3 x VCC  
V
VIL  
VIH  
SCL/SDA_CTL, input voltage  
0.7 x VCC  
VCC + 0.5  
0.4  
V
V
V
IO = 3 mA and VCC > 2 V  
IO = 3 mA and VCC > 2 V  
SCL/SDA_CTL, SCL/SDA_SRC low  
level output voltage  
VOL  
0.2 x VCC  
HPD  
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
HPD_SNK  
2.1  
V
V
VIL  
HPD_SNK  
0.8  
3.6  
0.4  
40  
2.4  
0
V
VOH  
VOL  
IOH = 500 µA; HPD_SRC,  
IOL = 500 µA; HPD_SRC,  
V
VCC = 0 V; VDD = 0 V;  
HPD_SNK = 5 V;  
μA  
ILKG  
Failsafe condition leakage current  
Device powered; VIH = 5 V; IH(HPD)  
includes R(pdHPD) resistor current  
40  
30  
μA  
μA  
kΩ  
IH(HPD)  
High level input current  
Device powered; VIL = 0.8 V; IL(HPD)  
includes R(pdHPD) resistor current  
150  
190  
220  
R(pdHPD)  
HPD input termination to GND  
VCC = 0 V  
(1) The maximum rating is simulated at 3.6 V VCC and 1.27 V VDD and at 85°C temperature unless otherwise noted.  
(2) The typical rating is simulated at 3.3 V VCC and 1.1 V VDD and at 27°C temperature unless otherwise noted.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TDP158  
 
 
 
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
6.9 Electrical Characteristics, TMDS Differential Output in DP-Mode  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX(1)  
UNIT  
Differential peak-to-peak output  
voltage level 0  
Based on default state of  
V0_P0_VOD register  
415  
V
V(TX_DIFFPP_LVL0)  
V(TX_DIFFPP_LVL1)  
V(TX_DIFFPP_LVL2)  
Differential peak-to-peak output  
voltage level 1  
Based on default state of  
V1_P0_VOD register  
660  
880  
V
V
Differential peak-to-peak output  
voltage level 2  
Based on default state of  
V2_P0_VOD register  
1
1
6
5
dB  
dB  
ΔVOD(L0L1)  
ΔVOD(L1L2)  
ΔVODn = 20×log(VODL(n+1) /  
VODL(n)) measured in compliance  
with latest PHY CTS 1.2  
Output peak-to-peak differential  
voltage delta  
V(TX_PRE_RATIO_0)  
V(TX_PRE_RATIO_1)  
V(TX_PRE_RATIO_2)  
ΔVPRE(L1L0)  
Pre-emphasis level 0  
Pre-emphasis level 1  
Pre-emphasis level 2  
Pre-emphasis delta  
RBR, HBR and HBR2  
RBR, HBR and HBR2  
RBR, HBR and HBR2  
0
dB  
dB  
dB  
dB  
dB  
2
5
4.2  
7.2  
Measured in compliance with  
latest PHY CTS 1.2  
2
1.6  
ΔVPRE(L2L1)  
(1) Does not support Level 3 swing or pre-emphasis.  
6.10 Switching Characteristics, TMDS  
PARAMETER  
TEST CONDITIONS  
MIN  
250  
TYP(2)  
MAX(1)  
UNIT  
Mbps  
ps  
dR  
Data rate  
6000  
Reg0Ah[1:0] = 11 (default)  
Reg0Ah[1:0] = 10  
60  
80  
ps  
tT(DATA)  
Transition time (rise and fall time);  
measured at 20% and 80%.  
SDA_CTL = L, OE = H, All Data  
Rates  
Note: Data lane control by I2C only:  
See 8.3.10  
Reg0Ah[1:0] = 01  
95  
ps  
Reg0Ah[1:0] = 00  
110  
122  
150  
180  
203  
ps  
TERM = H; Reg0Bh[7:6] = 11  
Reg0Bh[7:6] = 10  
ps  
ps  
tT(CLOCK)  
TERM = L; Reg0Bh[7:6] = 00  
TERM = NC; Reg0Bh[7:6] = 01  
ps  
ps  
(1) The maximum rating is simulated at 3.6 V VCC and 1.27 V VDD and at 85°C temperature unless otherwise noted.  
(2) The typical rating is simulated at 3.3 V VCC and 1.1 V VDD and at 27°C temperature unless otherwise noted.  
6.11 Switching Characteristics, HPD  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(2)  
MAX(1)  
UNIT  
ns  
Propagation delay from HPD_SNK to  
HPD_SRC; rising edge and falling  
edge  
see 7-8; not valid during switching  
time  
tPD(HPD)  
tT(HPD)  
40  
120  
HPD logical disconnected timeout  
2
ms  
see 7-9  
(1) The Maximum rating is simulated at 3.6 V VCC and 1.27 V VDD and at 85°C temperature unless otherwise noted  
(2) The Typical rating is simulated at 3.3 V VCC and 1.1 V VDD and at 27°C temperature unless otherwise noted  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
 
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
6.12 Switching Characteristics, DDC and I2C  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tr  
tf  
Rise time of both SDA and SCL  
signals  
300  
ns  
VCC = 3.3 V; See 7-12  
Fall time of both SDA and SCL  
signals  
300  
ns  
See 7-12  
tHIGH  
Pulse duration , SCL high  
Pulse duration , SCL low  
Setup time, SDA to SCL  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Data Hold Time  
0.6  
1.3  
100  
0.6  
0.6  
0
See 7-11  
See 7-11  
See 7-11  
See 7-11  
See 7-10  
μs  
μs  
ns  
tLOW  
tSU1  
tST, STA  
tHD,STA  
tHD,DAT  
tVD,DAT  
tVD,ACK  
tST,STO  
μs  
μs  
ns  
Data valid time  
0.9  
0.9  
0.6  
µs  
Data valid acknowledge time  
Setup time, SCL to stop condition  
µs  
See 7-10  
See 7-10  
μs  
Bus free time between stop and start  
condition  
t(BUF)  
1.3  
μs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TDP158  
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
6.13 Typical Characteristics  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
180  
160  
140  
120  
100  
80  
1.1 V (mA)  
3.3 V (mA)  
60  
40  
20  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Date Rate (Gbps)  
4
4.5  
5
5.5  
6
4
5
6
7
8
Rvsadj (kW)  
D002  
D001  
6-2. HDMI Current vs Data Rate  
6-1. VOD Swing vs VASDJ Resistor Value  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
1.4  
2
2.6  
3.2 3.8  
Data Rate (Gbps)  
4.4  
5
5.4  
D003  
6-3. DisplayPort Current vs Data Rate  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
7 Parameter Measurement Information  
VTERM  
3.3 V  
50  
50 Ω  
50 Ω  
75-200 nF  
50 Ω  
0.5 pF  
D+  
D-  
Y
Z
Receiver  
Driver  
VID  
VD+  
VY  
75-200 nF  
VID = VD+ - VD-  
VOD = VY - VZ  
VD-  
VZ  
VICM = (VD+ + VD-  
2
)
VOC = (VY + VZ)  
2
Copyright © 2016, Texas Instruments Incorporated  
7-1. TMDS Main Link Test Circuit  
4.0 V  
2.6 V  
Vcc  
VID+  
VID  
VID(pp)  
0 V  
VID-  
tPHL  
tPLH  
80%  
80%  
VOD(pp)  
VOD  
0 V  
20%  
20%  
tr  
tf  
7-2. Input or Output Timing Measurements  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TDP158  
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
VOD(SS)  
PRE = L  
7-3. Output Differential Waveform  
PRE = L  
PRE = H  
VOD(PP)  
VOD(SS)  
7-4. Output Differential Waveform with De-Emphasis  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
Avcc(4)  
(5)  
RT  
RT  
SMA  
SMA  
SMA  
SMA  
REF  
Cable  
EQ  
Coax  
Coax  
Coax  
Coax  
Data +  
RX  
+EQ  
OUT  
Data -  
Parallel (6)  
BERT  
Jitter Test  
Instrument (2,3)  
FR4 PCB trace(1)  
AC coupling Caps  
&
Device  
FR4 PCB trace  
AVcc  
RT  
[No Pre-  
emphasis]  
RT  
REF  
Cable  
EQ  
SMA  
SMA  
SMA  
SMA  
Coax  
Coax  
Coax  
Coax  
Clk+  
Clk-  
RX  
+EQ  
OUT  
Jitter Test  
Instrument (2,3)  
TTP4_EQ  
Copyright © 2016, Texas Instruments Incorporated  
TTP4  
TTP1  
TTP2  
TTP3  
TTP2_EQ  
A. The FR4 trace between TTP1 and TTP2 is designed to emulate 1-8of FR4, AC coupling cap, connector and another 1-8of FR4.  
Trace width 4 mils. 100 Ωdifferential impedance.  
B. All Jitter is measured at a BER of 109  
C. Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP  
D. AVCC = 3.3 V  
E. RT = 50 Ω  
F. The input signal from parallel Bert does not have any pre-emphasis. Refer to Recommended Operating Conditions.  
7-5. HDMI Output Jitter Measurement  
V
0
H
0
0.5  
7-6. Output Eye Mask at TTP4_EQ for HDMI 2.0  
TMDS Data Rate (Gbps)  
3.4 < DR < 3.712  
H (Tbit)  
V (mV)  
0.6  
335  
0.0332Rbit2 + 0.2312 Rbit + 0.1998  
19.66Rbit2 + 106.74Rbit + 209.58  
3.712 < DR < 5.94  
0.4  
150  
5.94 DR 6.0  
HPD Input  
HPD Output  
190 k  
100 k  
7-7. HPD Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
HPD_SNK  
VCC  
50%  
0 V  
tPD(HPD)  
HPD_SRC  
VCC  
50%  
0 V  
7-8. HPD Timing Diagram No. 1  
HPD_SNK  
Vcc  
50%  
0V  
HPD Logical disconnect  
Timeout  
tT(HPD)  
HPD_SRC  
Vcc  
0V  
Logically  
Disconnected  
Device Logically  
Connected  
7-9. HPD Logic Disconnect Timeout  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
tHD,STA  
tf  
tr  
SCL  
tST,STO  
SDA  
t(BUF)  
START  
STOP  
7-10. Start and Stop Condition Timing  
tHIGH  
tLOW  
SCL  
tST,STA  
SDA  
tSU1  
7-11. SCL and SDA Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
SDA_SRC/SCL_SRC  
INPUT  
½ VCC  
tPLH1  
tPHL1  
SDA_SNK/SCL_SNK  
OUTPUT  
80%  
½ VCC  
20  
%
tf  
tr  
7-12. DDC Propagation Delay Source to Sink  
SDA_SNK/SCL_SNK  
INPUT  
½ Vcc  
tPHL2  
tPLH2  
80%  
SDA_SRC/SCL_SRC  
OUTPUT  
20%  
½ Vcc  
tf  
tr  
7-13. DDC Propagation Delay Sink to Source  
VID(DC)  
VID(EYE)  
7-14. VID(DC) and VID(EYE)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8 Detailed Description  
8.1 Overview  
The TDP158 is an AC-coupled digital video interface (DVI) or high-definition multimedia interface (HDMI) signal  
input to Transition Minimized Differential Signal (TMDS) level shifting Redriver. The TDP158 supports four TMDS  
channels, Hot Plug Detect, and a Digital Display Control (DDC) interfaces. The TDP158 supports signaling rates  
up to 6 Gbps to allow for the highest resolutions of 4k2k60p 24 bits per pixel and up to WUXGA 16-bit color  
depth or 1080p with higher refresh rates. For passing compliance and reducing system level design issues,  
several features have been included such as TMDS output amplitude adjust using an external resistor on the  
VSADJ pin, source termination selection, pre-emphasis, and output slew rate control. Device operation and  
configuration can be programmed by pin strapping or I2C. Four TDP158 devices can be used on one I2C bus  
when I2C_EN is high with device address set by A0/A1.  
To reduce active power the TDP158 supports dual power supply rails of 1.1 V on VDD and 3.3 V on VCC. There  
are several methods of power management such as going into power down mode using three methods:  
1. HPD is low  
2. Writing a 1 to register 09h[3]  
3. De-asserting OE  
De-asserting OE clears the I2C registers, thus once re-asserted, the device must be reprogrammed if I2C was  
used for device setup. The TDP158 requires the source to write a 1 to the TMDS_CLOCK_RATIO_STATUS  
register for the TDP158 to resume 75 to 150 source termination upon return to normal active operation from  
re-asserted, OE, or re-asserted HPD. If this bit is already set as a one during the source to sink read, then the  
TDP158 automatically sets this bit to 1. The SIG_EN register enables the signal detect circuit that provides an  
automatic power-management feature during normal operation. When no valid signal is present on the clock  
input, the device enters Standby mode. DDC link supports the HDMI 2.0b SCDC communication, 100 Kbps data  
rate default and 400 Kbps adjustable by software.  
TDP158 supports fixed EQ gain control to compensate for different lengths of input cables or board traces. The  
EQ gain can be software adjusted by I2C control or pin strapping EQ1 and EQ2 pins. Customers can use the  
TERM to change to one of three source termination impedances for better output performance when working in  
HDMI 1.4b or HDMI 2.0b. When the TMDS_CLOCK_RATIO_STATUS bit is set to 1, the TDP158 automatically  
switches in 75 to 150 source termination. To assist in ease of implementation, the TDP158 supports lanes  
swapping, see 8.3.3. The device's available extended commercial temperature range is 0°C to 85°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TDP158  
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8.2 Functional Block Diagram  
HPD_SRC  
HPD_SNK  
190 k  
SIGNAL  
DETECT  
VBIAS  
SIG_DET_  
OUT  
VSADJ  
50  
50  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
TMDS  
EQ  
VBIAS  
50  
50  
IN_D[2:0]p  
IN_D[2:0]n  
OUT_D[2:0]p  
OUT_D[2:0]n  
EQ  
TMDS  
Enable  
MODE_TERM  
SLEW  
Control Block, I2C Registers  
EQ_CTL  
EQ1  
I2C_EN  
A0/EQ1  
A1/EQ2  
DE  
Enable  
EQ2  
A0  
SIG_DET_OUT  
A1  
OE  
Local  
I2C  
Control  
SLEW  
TERM  
SDA  
SDA_CTL/PRE  
SCL  
PRE  
DDC Snoop Block  
SCL_CTL/SWAP  
SWAP  
SDA_SRC  
SCL_SRC  
SDA_SNK  
SCL_SNK  
VDD  
ACTIVE DDC BLOCK  
1.1 V  
3.3 V  
VREG  
VCC  
GND  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Reset Implementation  
When OE is low, control signal inputs are ignored; the HDMI inputs and outputs are high impedance. It is critical  
to transition the OE from a low level to high after the VCC supply has reached the minimum recommended  
operating voltage. This is achieved by a control signal to the OE input, or by an external capacitor connected  
between OE and GND. To ensure the TDP158 is properly reset, the OE pin must be de-asserted for at least 100  
μs before being asserted. When OE is re-asserted the TDP158 must be reprogrammed if it was programmed by  
I2C and not pin strapping. When implementing the external capacitor, the size of the external capacitor depends  
on the power up ramp of the VCC supply, where a slower ramp-up results in a larger value external capacitor.  
Refer to the latest reference schematic for TDP158; consider approximately 0.1 µF capacitor as a reasonable  
first estimate for the size of the external capacitor. Both OE implementations are shown in 8-1 and 8-2.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
OE  
RRST = 200 k  
C
Copyright © 2016, Texas Instruments Incorporated  
8-1. External Capacitor Controlled OE  
GPO  
OE  
C
Copyright © 2016, Texas Instruments Incorporated  
8-2. OE Input from Active Controller  
8.3.2 Operation Timing  
TDP158 starts to operate after the OE signal is properly set after power up timing is complete. See 8-3 and 表  
8-1. Keeping OE low until VDD and VCC becomes stable avoids any timing requirements as shown in 8-3.  
Control Signal  
Td2  
OE  
Td1  
Vdd  
Vcc  
8-3. Power Up Timing for TDP158  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TDP158  
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-1. Power Up and Operation Timing Requirements  
PARAMETER  
td1  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
µs  
VCC stable before VDD  
0
200  
td1  
VDD and VCC stable before OE de-assertion  
VDD supply ramp up requirements  
VCC supply ramp up requirements  
100  
0.2  
0.2  
µs  
VDD(ramp)  
VCC(ramp)  
100  
100  
ms  
ms  
8.3.3 Lane Control  
The TDP158 has various lane control features. By default the high speed lanes are globally controlled. Pin  
strapping can globally control features like receiver equalization, VOD swing and pre-emphasis. I2C programming  
performs the same global programming using default configurations. Through I2C a method to control receive  
equalization, transmitter swing (VOD) and pre-emphasis on each individual lane. Setting reg09h[5] = 1 puts the  
device into independent lane configuration mode.  
Reg31h[7:3] controls the clock lane, reg32h[7:3] controls lane D0, reg33h[7:3] controls lane D1 and reg34h[7:3]  
controls lane D2 while Reg4E and Reg4F control the individual lane EQ control.  
备注  
If the swap function is enabled and individual lane control has been implemented, then it is  
recommended to reprogram the lanes to make sure they match the expected results. Registers are  
mapped to the pin name convention.  
8.3.4 Swap  
TDP158 incorporates a swap function which can swap the lanes, see 8-4. The EQ, Pre-emphasis,  
termination, and slew setup will follow the new mapping. This function can be used with the SCL_CTL/SWAP pin  
13 when I2C_EN pin 8 is low or can be implemented using control the register 0x09h bit 7 and is only valid for  
HDMI mode.  
8-2. Swap Functions  
Normal Operation  
IN_D2 OUT_D2  
IN_D1 OUT_D1  
IN_D0 OUT_D0  
IN_CLK OUT_CLK  
Pin Numbers  
[1, 2] [30, 29]  
[4, 5] [27, 26]  
[6, 7] [25, 24]  
[9, 10] [22, 21]  
SWAP = L or CSR 0x09h bit 7 is 1b1  
IN_CLK OUT_CLK  
IN_D0 OUT_D0  
IN_D1 OUT_D1  
IN_D2 OUT_D2  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
IN_D2p  
IN_D2n  
1
2
3
4
5
6
7
8
30  
29  
28  
27  
26  
25  
24  
OUT_D2p  
OUT_D2n  
HPD_SNK  
IN_D2p  
IN_D2n  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
OUT_D2p  
OUT_D2n  
HPD_SNK  
DATA LANE2  
CLOCK LANE  
HPD_SRC  
HPD_SRC  
3
IN_D1p  
IN_D1n  
OUT_D1p  
IN_D1p  
IN_D1n  
4
DATA LANE1  
DATA LANE0  
OUT_D1p  
DATA LANE0  
DATA LANE1  
OUT_D1n  
OUT_D0p  
5
OUT_D1n  
OUT_D0p  
IN_D0p  
IN_D0p  
6
IN_D0n  
I2C_EN  
OUT_D0n  
IN_D0n  
I2C_EN  
7
OUT_D0n  
A1/EQ2  
A1/EQ2  
23  
22  
8
IN_CLKp  
IN_CLKn  
OUT_CLKp  
OUT_CLKn  
9
IN_CLKp  
IN_CLKn  
9
22  
21  
OUT_CLKp  
OUT_CLKn  
CLOCK LANE  
DATA LANE2  
10  
21  
10  
In Normal Working  
Lane Swap  
8-4. TDP158 Swap Function  
8.3.5 Main Link Inputs  
Standard Dual Mode DisplayPort terminations are integrated on all inputs with expected AC coupling capacitors  
on board prior to input pins. External terminations are not required. Each input data channel contains an  
equalizer to compensate for cable or board losses. The voltage at the input pins must be limited under the  
absolute maximum ratings.  
8.3.6 Receiver Equalizer  
The equalizer is used to clean up inter-symbol interference (ISI) jitter/loss from the bandwidth-limited board  
traces or cables. TDP158 supports fixed receiver equalizer by setting the A0/EQ1 and A1/EQ2 pins or through  
I2C. 8-3 shows the pin strap settings and EQ values.  
8-3. Receiver EQ Programming and Values  
Global  
Independent Lane Control  
Pin Control (1)  
{EQ2,EQ1}  
I2C Control  
I2C Control (2)  
RX EQ  
(dB)  
D2  
D1  
D3  
CLK(2) (3)  
P0_Reg4F[7:4]  
P0_Reg0D[6:3]  
P0_Reg4E[3:0]  
P0_Reg4E[7:4]  
P0_Reg4F[3:0]  
4b0000  
4b0001  
4b0010  
4b0011  
4b0100  
4b0101  
4b0110  
4b0111  
4b1000  
4b1001  
4b1010  
4b1011  
4b1100  
2
3
2b00  
2b0Z  
4b0000  
4b0001  
4b0010  
4b0011  
4b0100  
4b0101  
4b0110  
4b0111  
4b1000  
4b1001  
4b1010  
4b1011  
4b1100  
4b0000  
4b0001  
4b0010  
4b0011  
4b0100  
4b0101  
4b0110  
4b0111  
4b1000  
4b1001  
4b1010  
4b1011  
4b1100  
4b0000  
4b0001  
4b0010  
4b0011  
4b0100  
4b0101  
4b0110  
4b0111  
4b1000  
4b1001  
4b1010  
4b1011  
4b1100  
4b0000  
4b0001  
4b0010  
4b0011  
4b0100  
4b0101  
4b0110  
4b0111  
4b1000  
4b1001  
4b1010  
4b1011  
4b1100  
4
5
2b01  
2bZ0  
6.5  
7.5  
8.5  
9
2bZZ  
10  
11  
12  
13  
14  
2bZ1  
2b10  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TDP158  
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-3. Receiver EQ Programming and Values (continued)  
Global  
Independent Lane Control  
Pin Control (1)  
{EQ2,EQ1}  
2b1Z  
I2C Control  
I2C Control (2)  
RX EQ  
(dB)  
D2  
D1  
D3  
CLK(2) (3)  
P0_Reg4F[7:4]  
P0_Reg0D[6:3]  
P0_Reg4E[3:0]  
P0_Reg4E[7:4]  
P0_Reg4F[3:0]  
14.5  
15  
4b1101  
4b1110  
4b1111  
4b1101  
4b1110  
4b1111  
4b1101  
4b1110  
4b1111  
4b1101  
4b1101  
4b1110  
4b1111  
4b1110  
15.5  
2b11  
4b1111  
(1) For Pin Control 0 = 1 kΩpulldown resistor to GND, 1 = 1 kΩpullup resistor to VCC, Z = Floating (No Connect)  
(2) Individual Lane control is based upon the pin names with no swap  
(3) The CLK EQ in HDMI mode is controlled by register P0_Reg0D[2:1]  
8.3.7 Input Signal Detect Block  
When SIG_EN is enabled through I2C the receiver looks for a valid HDMI clock signal input and is fully functional  
when a valid signal is detected. If no valid HDMI clock signal is detected, then the device enters standby mode  
waiting for a valid signal at the clock input. All of the TMDS outputs and IN_D[0:2] are in high-Z status. HDMI  
signal detect circuit is default enabled. If there is a loss of signal, then reg20h[5] can be read to determine if the  
TDP158 has detected a valid signal or not.  
8.3.8 Transmitter Impedance Control  
HDMI 2.0 standard requires a source termination impedance in the 75 to 150 range for data rates > 3.4  
Gbps. HDMI 1.4b requires no source termination but has a provision for using 150 to 300 for higher data  
rates. The TDP158 has three termination levels that are selectable using pin 16 when programming through pin  
strapping or when using I2C programming through reg0Bh[4:3]. When the TMDS_CLOCK_RATIO_STATUS bit,  
reg0Bh[1] = 1 the TDP158 automatically turns on the 75 to 150 source termination otherwise the termination  
must be selected. See 8-4.  
8-4. Source Termination Control Table  
Pin 16  
Reg0Bh[4:3]  
Source Termination  
TERM = L  
TERM = NC  
00  
01  
10  
11  
150 Ω300 Ω  
None  
Automatic set based upon TMDS_CLOCK_RATIO_STATUS bit  
75 Ω150 Ω  
TERM = H  
备注  
If the TMDS_CLOCK_RATIO_STATUS bit = 1, then the TDP158 automatically switches in 75 Ω ≅ 150  
termination.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8.3.9 TMDS Outputs  
A 1% precision resistor, connected from VSADJ pin to ground is recommended to allow the differential output  
swing to comply with TMDS signal levels. The differential output driver provides a typical 10-mA current sink  
capability, which provides a typical 500-mV voltage drop across a 50-Ωtermination resistor.  
VCC  
AVCC  
TDP158  
Zo = RT  
Zo = RT  
8-5. TMDS Driver and Termination Circuit  
Referring to 8-5, if VCC (TDP158 supply) and AVCC (sink termination supply) are both powered, the TMDS  
output signals are high impedance when OE = low. Both supplies being active is the normal operating condition.  
A total of approximately 33-mW of power is consumed by the terminations independent of the OE logical  
selection. When AVCC is powered on, normal operation (OE controls output impedance) is resumed. When the  
power source of the device is off and the power source to termination is on, the IO(off), output leakage current,  
specification ensures the leakage current is limited 45-μA or less. The clock and data lanes VOD can be  
changed through I2C reg0Ch[7:2], VSWING_DATA and VSWING_CLK.  
8.3.10 Slew Rate Control  
As the clock signal tends to be a primary source of EMI, the TDP158 provides the ability to slow down the TMDS  
output edge rates. There are two ways of changing the slew rate, Pin strapping for clock lane and I2C for both  
clock and data lanes. Refer to 6.10  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8.3.11 Pre-Emphasis  
The TDP158 provides pre-emphasis on the data lanes allowing the output signal pre-conditioning to offset  
interconnect losses between the TDP158 outputs and a TMDS receiver. Pre-emphasis is not implemented on  
the clock lane unless the TDP158 is in DP mode; at which time, it becomes a data lane. The default value for  
pre-emphasis is 0 dB. There are two methods to implement pre-emphasis, pin strapping or through I2C  
programming. When using pin strapping, the SDA_CTL/PRE pin controls global pre-emphasis values of 0 dB or  
3.5 dB. Through I2C, reg0Ch[1:0] pre-emphasis values are 0 dB, 3.5 dB, and 6 dB. The 6 dB value has different  
meanings when the device is in normal operational mode (reg09h[5] = 0) or when the TDP158 has been put into  
DP-mode (reg09h[5] = 1). As 8-6 shows, the 6 dB pre-emphasis setting will result in an output of 3 dB of pre-  
emphasis with 3 dB of de-emphasis when device is in normal HDMI operation. As 8-7 shows, the output will  
be about 5 dB pre-emphasis with a 1 db de-emphasis when selecting 6 dB pre-emphasis setting for DP-mode.  
VOD(PP) value will not go above 1 V.  
Reg0Ch[1:0] = 00  
Reg0Ch[1:0] = 10  
VOD(PP)  
VOD(SS)  
8-6. 6 dB Pre-Emphasis Setting in Normal Operation  
Reg0Ch[1:0] = 00  
Reg0Ch[1:0] = 10  
VOD(PP)  
VOD(SS)  
8-7. 6 dB Pre-Emphasis in DP-Mode  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
TDP158  
www.ti.com.cn  
Mode  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-5. Swing and Pre-Emphasis Programming Based Upon 6 kΩVSADJ Resistor  
Global Control  
Independent Lane Control  
Reg09h[6]  
Lane CTL  
Reg09[5]  
Mode CTL  
Reg09h[6]  
Lane CTL  
Reg09[5]  
Mode CTL  
P0_Reg0C[7:0]  
P0_Reg0C[7:0]  
HDMI  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
8h00  
8h80  
8hC1  
8h42  
8hC0  
8hF1  
8h52  
8h20  
8h51  
8h00  
8h80  
8hC1  
8h42  
8hA0  
8h21  
8h62  
8h00  
8h61  
DP SWG0, PRE0  
DP SWG0, PRE1  
DP SWG0, PRE2  
DP SWG1, PRE0  
DP SWG1, PRE1  
DP SWG1, PRE2  
DP SWG2, PRE0  
DP SWG2, PRE1  
8.3.12 DP-Mode Description  
The TDP158 has the ability to perform as a DisplayPort redriver under the right conditions. The TDP158 is put  
into this mode by setting reg09h[5] to 1. The device is now programmable through I2C only. As the transmitter is  
a DC coupled transmitter supporting TMDS some external circuits are required to level shift the signal to an AC-  
coupled DisplayPort signal, see 9-6. Note that the AUX lines bypass the TDP158. To set the device up  
correctly during link training, the TDP158 must be programmed using I2C. When this bit is set, the TDP158 does  
the following:  
Ignore SWAP function  
Ignore SIG_EN function  
Enable all four lanes and set to support 5.4 Gbps data rate  
Sets VOD swing to the lowest level based on a 6 kVSADJ resistor value  
Sets pre-emphasis to 0 dB  
Defaults to global lane control  
Can be set to independent lane control by setting P0_Reg09[6] to a 1. This should be done after  
implementing DP mode. Individual Lane control starts on P0_Reg30 through P0_Reg34 and also P0_Reg4E  
and 4F  
For the system implementer to configure the TDP158 output to the properly requested levels during link training,  
the following registers are used.  
Reg0Ch[7:5] is a global VOD swing control for all four lanes, see 8-5  
Reg0Ch[1:0] is a global Pre-emphasis control for all four lanes, see 8-5. This register works with  
Reg30h[7:6]  
Reg0D[6:3] is a global EQ control for all four lanes  
Reg30h[7:6] is to let the TDP158 know what the data rate is. This is used for the delay component for pre-  
emphasis signal.  
Reg30h[5:2] is used to turn on or off individual lanes  
Power down states while in DP-Mode are implemented the same as if in normal operation. See the 6.7 for the  
outputs based upon the VSADJ 6 kΩVSADJ resistor.  
8.4 Device Functional Modes  
8.4.1 DDC Training for HDMI 2.0 Data Rate Monitor  
As part of discovery, the source reads the sink E-EDID information to understand the sinks capabilities. The  
supported data rate comes from the HDMI Forum Vendor Specific Data Block (HF-VSDB)  
MAX_TMDS_Character_Rate byte. Depending upon the value, the source will write to target address 0xA8  
offset 0x20 bit1, TMDS_CLOCK_RATIO_STATUS. The TDP158 snoops the DDC link to determine the TMDS  
clock ratio status and thus sets its own TMDS_CLOCK_RATIO_STATUS bit accordingly. If a 1is written by  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TDP158  
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
the source the TMDS clock is 1/40 of TMDS bit period. If a 0is written, then the TMDS clock is 1/10 of  
TMDS bit period.  
The TDP158 will always default to 1/10 of TMDS bit period unless a 1is written to address 0xA8 offset 0x20  
bit 1 or during a read by the source this bit is set. This helps determine source termination when automatic  
source termination select is enabled. Otherwise this bit has no other impact on the TDP158. When HPD_SNK is  
de-asserted this bit is reset to default values of 0 if this feature is enabled. If the source does not write this bit to  
the sink or during the read the bit is not set the TDP158 will not set the output termination to 75 to 150 in  
support of HDMI 2.0. If the TDP158 has entered a power down state using HDP_SNK = low or OE = low this bit  
is cleared and will be set on a read or write where this bit is set. When DDC_TRAIN_SETDISABLE is 1b0 the  
TMDS_CLOCK_RATIO_STATUS bit will reflect the value of the DDC snoop. When DDC_TRAIN_SETDISABLE  
is 1b1 the TMDS_CLOCK_RATIO_STATUS bit is set by I2C and DDC snoop is ignored and thus automatic  
TERM control is ignored and must be manually set. To go back to snoop and automatic TERM control the  
DDC_TRAIN_SETDISABLE bit has to be cleared and TERM set back to automatic control.  
8.4.2 DDC Functional Description  
The TDP158 solves sink/source level issues by implementing a controller/target control mode for the DDC bus.  
When the TDP158 detects the start condition on the DDC bus from the SDA_SRC/SCL_SRC it transfers the  
data or clock signal to the SDA_SNK/SCL_SNK with little propagation delay. When SDA_SNK detects the  
feedback from the downstream device, the TDP158 pulls up or pulls down the SDA_SRC bus and delivers the  
signal to the source.  
The DDC link defaults to 100 Kbps but can be set to various values including 400 Kbps by setting the correct  
value to address 22h through the I2C interface. The HPD goes to high impedance when VCC is under low power  
conditions, < 1.5 V.  
备注  
The TDP158 uses clock stretching for DDC transactions. As there are sources and sinks that do not  
perform this function correctly, a system may not work correctly as DDC transactions are incorrectly  
transmitted/received. To overcome this, a snoop configuration can be implemented where the  
SDA/SCL from the source is connected directly to the SDA/SCL pins. The TDP158 needs the  
SDA_SNK and SCL_SNK pins connected to the sink DDC pins so that the  
TMDS_CLOCK_RATIO_STATUS bit can be automatically set; otherwise, it will have to be set through  
I2C. For best noise immunity, the SDA_SRC and SCL_SRC pins should be connected to GND. Care  
must be taken when this configuration is being implemented as the voltage level for DDC between the  
source and sink may be different, 3.3 V versus 5 V.  
8.5 Register Maps  
The TDP158 local I2C interface is enabled when I2C_EN is high. The SCL_CTL and SDA_CTL terminals are  
used for I2C clock and data respectively. The TDP158 I2C interface conforms to the two-wire serial interface  
defined by the I2C Bus Specification, Version 2.1 (January 2000), and supports the fast mode transfer up to 400  
Kbps. The device address byte is the first byte received following the START condition from the controller  
device. The 7 bit device address for TDP158 decides by the combination of A0/EQ1 and A1/EQ2. 8-6 clarifies  
the TDP158 target address.  
8-6. TDP158 I2C Device Address Description  
A1/A0  
00  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
HEX  
BC/BD  
BA/BB  
B8/B9  
B6/B7  
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
01  
10  
11  
The local I2C is 5-V tolerant, and no additional circuitry required. Local I2C buses run at 400 kHz supporting fast-  
mode I2C operation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
The following procedure is followed to write to the TDP158 I2C registers:  
1. The controller initiates a write operation by generating a start condition (S), followed by the TDP158 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TDP158 acknowledges the address cycle.  
3. The controller presents the sub-address (I2C register within TDP158) to be written, consisting of one byte of  
data, MSB-first.  
4. The TDP158 acknowledges the sub-address cycle.  
5. The controller presents the first byte of data to be written to the I2C register.  
6. The TDP158 acknowledges the byte transfer.  
7. The controller may continue presenting additional bytes of data to be written, with each byte transfer  
completing with an acknowledge from the TDP158.  
8. The controller terminates the write operation by generating a stop condition (P).  
The following procedure is followed to read the TDP158 I2C registers:  
1. The controller initiates a read operation by generating a start condition (S), followed by the TDP158 7-bit  
address and a one-value W/Rbit to indicate a read cycle.  
2. The TDP158 acknowledges the address cycle.  
3. The TDP158 transmit the contents of the memory registers MSB-first starting at register 00h.  
4. The TDP158 will wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the controller  
after each byte transfer; the I2C controller acknowledges reception of each data byte transfer.  
5. If an ACK is received, the TDP158 transmits the next byte of data.  
6. The controller terminates the read operation by generating a stop condition (P).  
备注  
Upon reset, the TDP158 sub-address will always be set to 0x00. When no sub-address is included in  
a read operation, the TDP158 sub-address will increment from previous acknowledged read or write  
data byte. If it is required to read from a sub-address that is different from the TDP158 internal sub-  
address, a write operation with only a sub-address specified is needed before performing the read  
operation.  
Refer to 8.5.1 for TDP158 local I2C register descriptions. Reads from reserved fields or addresses that are  
not specified return zeros. The value written to reserved fields must match the value read from the reserved field  
to not impact device features or performance.  
8.5.1 Local I2C Control BIT Access TAG Convention  
Reads from reserved fields shall return zero, and writes to read-only reserved registers shall be ignored. Writes  
to reserved register which are marked with Wwill produce unexpected behavior. All addresses not defined  
by this specification shall be considered reserved. Reads from these addresses shall return zero and writes shall  
be ignored.  
8.5.2 BIT Access Tag Conventions  
A table of bit descriptions is typically included for each register description that indicates the bit field name, field  
description, and the field access tags. The field access tags are described in 8-7.  
8-7. Field Access Tags  
Access Tag  
Name  
Read  
DESCRIPTION  
R
W
S
The field shall be read by software  
The field shall be written by software  
Write  
Set  
The field shall be set by a write of one. Writes of Zero to the field have no effect  
The field shall be cleared by a write of one. Writes of Zero to the field have no effect  
Hardware may autonomously update this field  
C
Clear  
U
Update  
No Access  
NA  
Not accessible or not applicable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8.5.3 CSR Bit Field Definitions, DEVICE_ID (address = 00h07h)  
8-8. DEVICE_ID  
7
6
5
4
3
2
1
0
DEVICE_ID  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-8. DEVICE_ID Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
These fields return a string of ASCII characters TDP158”  
followed by one space characters  
7:0  
R
TDP158: Address 0x00 0x07 = {- 0x54T, 0x44D,  
0x50P, 0x311, 0x355, 0x388, 0x20, 0x20  
8.5.4 CSR Bit Field Definitions, REV_ID (address = 08h )  
8-9. REV_ID Field Descriptions  
7
6
5
4
3
2
1
0
REV_ID  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-9. REV_ID  
Bit  
Field  
Type  
Default  
Description  
This field identifies the device revision.  
7:0  
REV_ID  
R
00000001  
00000001 TDP158 Revision  
8.5.5 CSR Bit Field Definitions MISC CONTROL 09h (address = 09h)  
8-10. MISC CONTROL 09h Field Descriptions  
7
6
5
4
3
2
1
0
LANE_SWAP  
Lane Control  
DP-Mode  
SIG_EN  
PD_EN  
HPD_AUTO_P  
WRDWN_DISA  
BLE  
I2C_DR_CTL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-10. MISC CONTROL 09h  
Bit  
Field  
Type  
Default  
Description  
This field Swaps the input lanes as per 8-4 and 8.3.4 and  
valid when in HDMI mode only.  
7
LANE_SWAP  
R/W  
1b0  
0 Disable (default) No Lane Swap  
1 Enable: Swaps both Input and Output Lanes  
See 8.3.3  
0 Global (Default)  
1 Independent  
6
Lane Control  
R/W  
1b0  
Note: In default mode reg0C and reg0D control all lanes. When  
set to 1 each lane can be individually controlled for Swing, EQ,  
Pre-emphasis.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-10. MISC CONTROL 09h (continued)  
Bit  
Field  
Type  
Default  
Description  
See 8.3.12  
0 Normal DP158 Operation (Default)  
1 All lanes behave as data lanes and full control through I2C  
5
DP-Mode  
R/W  
1b0  
only  
This field enables the clock lane activity detect circuitry. See 节  
8.3.7  
0 Disable Clock detector circuit closed and receiver always  
works in normal operation.  
4
SIG_EN  
R/W  
1b1  
1 Enable (default), Clock detector circuit will make the  
receiver automatically enter the standby state when no valid  
data detect.  
0 Normal working (default)  
1 Forced Power down by I2C, Lowest Power state  
3
2
PD_EN  
R/W  
R/W  
1b0  
1b0  
0 Automatically enters Power Down mode based on  
HPD_SNK (default)  
HPD_AUTO_PWRDWN_DISABL  
1 Will not automatically enter Power Down mode  
I2C data rate supported for configuring device.  
00 5 Kbps  
1:0  
I2C_DR_CTL  
R/W  
01 10 Kbps  
2b10  
10 100 Kbps( Default )  
11 400 Kbps  
8.5.6 CSR Bit Field Definitions MISC CONTROL 0Ah (address = 0Ah)  
8-11. MISC CONTROL 0Ah Field Descriptions  
7
6
5
4
3
2
1
0
Reserved  
HPDSNK_GAT  
E_EN  
Reserved  
R
SLEW_CTL_DATA  
R
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-11. MISC CONTROL 0Ah  
Bit  
Field  
Type  
Default  
Description  
7
Reserved  
R
Reserved  
1b0  
The field set the HPD_SNK signal pass through to HPD_SRC or  
not and HPD_SRC whether held in the de-asserted state.  
0 HPD_SNK passed through to the HPD_SRC (default)  
1 HPD_SNK will not pass through to the HPD_SRC.  
6
HPDSNK_GATE_EN  
Reserved  
R/W  
R
1b0  
Reserved  
5:2  
4b0000  
See 8.3.10  
00 Slowest 110  
01 Mid-Range 1 95  
10 Mid-Range 2 80 ps  
11 Fastest (Default) 60 ps  
Values are typical  
1:0  
SLEW_CTL_DATA  
R/W  
2b11  
8.5.7 CSR Bit Field Definitions MISC CONTROL 0Bh (address = 0Bh)  
8-12. MISC CONTROL 0Bh Field Descriptions  
7
6
5
4
3
2
1
0
SLEW_CTL_CLK  
Reserved  
TERM  
DDC_DR_SEL TMDS_CLOCK DDC_TRAIN_S  
_RATIO_STATU ETDISABLE  
S
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-12. MISC CONTROL 0Bh Field Descriptions (continued)  
R/W  
R
R/W  
R/W  
R/W/U  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-12. MISC CONTROL 0Bh  
Bit  
7:6  
5
Field  
Type  
R/W  
R
Reset  
2b01  
1b0  
Description  
See 8.3.10  
00 Slowest 215 ps  
01 Mid-Range 1 (Default) 185 ps  
10 Mid-Range 2 155 ps  
11 Fastest 125 ps  
SLEW_CTL_CLK  
Reserved  
Values are typical  
Reserved  
Controls termination for HDMI TX. See 8.3.8  
00 150 to 300 Ω  
01 No termination  
10 Follows TMDS_CLOCK_RATIO_STATUS bit (default).  
When = 1 termination value is 75 to 150 :  
When = 0 No termination  
4:3  
TERM  
R/W  
R/W  
2b10  
11 75 to 150 :  
Note: When TMDS_CLOCK_RATIO_STATUS bit reg0Bh[1] = 1  
this register will automatically be set to 11 for 75 to 150 but  
can be overwritten using this address  
Defines the DDC output speed for DDC bridge  
0 100 Kbps (default)  
2
DDC_DR_SEL  
1b0  
1 400 Kbps  
This field is updated from snoop of I2C write to target address  
0xA8 offset 0x20 bit 1 that occurred on the SDA_SRC/  
SCL_SRC interface. When bit 1 of address 0xA8 offset 0x20 is  
written to a 1b1 or read as a 1b1, then this field will be set  
to a 1b1. When bit 1 of address 0xA8 offset 0x20 is written to  
a 1b0, then this field will be set to a 1b0. This field is reset  
to default value whenever HPD_SNK is de-asserted for greater  
than 2 ms. The main function of this bit is to automatically set  
the proper TX termination when value = 1.  
1
TMDS_CLOCK_RATIO_STATUS  
R/W/U  
1b0  
0 HDMI 1.4b (default)  
1 HDMI 2.0  
Note 1. When DDC_TRAIN_SETDISABLE is 1b0 this bit will  
reflect the value of the DDC snoop.  
Note 2. When DDC_TRAIN_SETDISABLE is 1b1 this bit is set  
by I2C and DDC snoop is ignored. If this bit was set to 1 during  
snoop prior to the DDC_TRAIN_SETDISABLE being set to 1 it  
will be cleared to 0.  
This field indicate the DDC training block function status.  
0 DDC training enable (default)  
1 DDC training disable DDC snoop disabled  
Note 1. When DDC_TRAIN_SETDISABLE is 1b0 the  
TMDS_CLOCK_RATIO_STUATU bit will reflect the value of the  
DDC snoop.  
Note 2. When DDC_TRAIN_SETDISABLE is 1b1, this bit is  
set by I2C and DDC snoop is ignored and thus automatic TERM  
control is ignored and must be manually set and  
TMDS_CLOCK_RATIO_STATUS bit will be cleared.  
Note 3. To go back to snoop and automatic TERM control this bit  
has to be cleared and TERM set back to automatic control.  
0
DDC_TRAIN_SETDISABLE  
R/W  
1b0  
8.5.8 CSR Bit Field Definitions MISC CONTROL 0Ch (address = 0Ch)  
8-13. MISC CONTROL 0Ch Field Descriptions  
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-13. MISC CONTROL 0Ch Field Descriptions (continued)  
VSWING_DATA  
VSWING_CLK  
HDMI _TWPST1[1:0]  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-13. MISC CONTROL 0Ch  
Bit  
Field  
Type  
Reset  
Description  
Data Output Swing Control  
000 Vsadj set (default)  
001 Increase by 7%  
010 Increase by 14%  
011 Increase by 21%  
100 Decrease by 30%  
101 Decrease by 21%  
110 Decrease by 14%  
111 Decrease by 7%  
7:5  
VSWING_DATA  
R/W  
3b000  
Clock Output Swing Control: Default is set by Vsadj resistor  
value and the value of reg0Dh[0].  
000 Vsadj set (default)  
001 Increase by 7%  
010 Increase by 14% 011 Increase by 21%  
100 Decrease by 30%  
101 Decrease by 21%  
110 Decrease by 14%  
111 Decrease by 7%  
4:2  
1:0  
VSWING_CLK  
R/W  
R/W  
3b000  
HDMI Pre-emphasis  
00 No Pre-emphasis (default)  
01 3.5 dB 10 6 dB  
HDMI _TWPST1[1:0]  
2b00  
11 Reserved  
NOTE: See Pre-emphasis Section for 6 dB explanation during  
normal operation supporting HDMI  
8.5.9 CSR Bit Field Definitions, Equalization Control Register (address = 0Dh)  
8-14. Equalization Control Register  
7
6
5
4
3
2
1
0
Reserved  
Data Lane Fixed EQ Values  
R/W  
Clock EQ Values  
DIS_HDMI  
2_SWG  
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-14. Equalization Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7
Reserved  
R
1b0  
(Section 8.3.6 and 8-3 for values)  
0000 0 dB (default)  
6:3  
2:1  
Data Lane Fixed EQ Values  
Clock EQ Values  
R/W  
R/W  
4b0000  
2b00  
00 0 dB (default)  
01 1.5 dB  
10 3 dB  
11 4.5 dB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-14. Equalization Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Disables halving the clock output swing when entering HDMI 2.0  
mode from TMDS_CLOCK_RATIO_STATUS.  
0 Disables TMDS_CLOCK_RATIO_STATUS control of the  
clock VOD so output swing is at full swing (default)  
1 Clock VOD is half of set values when  
0
DIS_HDMI 2_SWG  
R/W  
1b0  
TMDS_CLOCK_RATIO_STATUS states in HDMI 2.0 mode  
8.5.10 CSR Bit Field Definitions, POWER MODE STATUS (address = 20h)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-15. POWER MODE STATUS  
7
6
5
4
3
2
1
0
Power Down  
Status Bit  
Standby Status Loss of Signal  
Reserved  
Bit  
Status Bit –  
LOS  
R/U  
R/U  
R/U  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-15. POWER MODE STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0 Normal Operation  
1 Device in Power Down Mode.  
7
Power Down Status Bit  
R/U  
1b0  
0 Normal Operation  
1 Device in Standby Mode  
6
Standby Status Bit  
R/U  
1b0  
0 Clock present  
1 No Clock present  
5
R/U  
R
Loss of Signal Status Bit LOS  
1b0  
Reserved  
4:0  
Reserved  
5b00000  
8.5.11 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 30h)  
See 8.3.12 and 8.3.3. Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to one.  
8-16. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
5
4
3
2
1
0
Data Rate Select  
Clock Lane  
R/W  
Lane D0  
R/W  
Lane D1  
R/W  
Lane D2  
R/W  
Reserved  
R
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-16. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
00 5.4 Gbps (default)  
01 2.7 Gbps  
10 1.62 Gbps  
11 - Reserved  
7:6  
Data Rate Select  
R/W  
2b00  
0 Disabled  
1 Enabled (default)  
5
4
3
Clock Lane  
Lane D0  
R/W  
R/W  
R/W  
1b1  
1b1  
1b1  
0 Disabled  
1 Enabled (default)  
0 Disabled  
1 Enabled (default)  
Lane D1  
0 Disabled  
1 Enabled (default)  
2
Lane D2  
R/W  
R
1b1  
Reserved  
1:0  
Reserved  
2b00  
8.5.12 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 31h)  
See Section 8.3.12 and 8.3.3 Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to  
one.  
8-17. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
5
4
3
2
1
0
VOD Swing Adjust for CLK Lane  
Pre-emphasis Adjust for CLK  
Lane  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-17. DP-Mode and INDIVIDUAL LANE CONTROL (continued)  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-17. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
000 Vsadj set (default)  
001 Increase by 7%  
010 Increase by 14%  
011 Increase by 21%  
100 Decrease by 30%  
101 Decrease by 21%  
110 Decrease by 14%  
111 Decrease by 7%  
7:5  
VOD Swing Adjust for CLK Lane  
R/W  
3b000  
Note: reg09h[6] = 1 otherwise all lanes are global control.  
00 No Pre-emphasis (default)  
01 3.5 dB Pre-emphasis.  
10 6 dB Pre-emphasis  
11 Reserved  
Note 1. reg09h[6] = 1 otherwise all lanes are global control.  
Note 2. If in HDMI mode writes will be ignored and reg09h[7]  
SWAP = 0. No pre-emphasis on clock.  
4:3  
2:0  
Pre-emphasis Adjust for CLK Lane  
Reserved  
R/W  
R/W  
2b00  
Reserved  
3b000  
8.5.13 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 32h)  
See Section 8.3.12 and 8.3.3 Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to  
one  
8-18. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
VOD Swing Adjust for D0 Lane  
R/W  
5
4
3
2
1
0
Pre-emphasis Adjust for D0 Lane  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-18. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
000 Vsadj set (default)  
001 Increase by 7%  
010 Increase by 14%  
011 Increase by 21%  
100 Decrease by 30%  
101 Decrease by 21%  
110 Decrease by 14%  
11 Decrease by 7%  
7:5  
VOD Swing Adjust for D0 Lane  
R/W  
3b000  
Note: reg09h[6] = 1 otherwise all lanes are global control.  
00 No Pre-emphasis (default)  
01 3.5 dB Pre-emphasis.  
4:3  
2:0  
Pre-emphasis Adjust for D0 Lane  
Reserved  
R/W  
R/W  
2b00  
10 6 dB Pre-emphasis  
11 Reserved  
Note: reg09h[6] = 1 otherwise all lanes are global control.  
Reserved  
3b000  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8.5.14 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 33h)  
See Section 8.3.12 and 8.3.3 Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to  
one  
8-19. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
VOD Swing Adjust for D1 Lane  
R/W  
5
4
3
2
1
0
Pre-emphasis Adjust for D1 Lane  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-19. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
000 Vsadj set (default)  
001 Increase by 7%  
010 Increase by 14%  
011 Increase by 21%  
100 Decrease by 30%  
101 Decrease by 21%  
110 Decrease by 14%  
11 Decrease by 7%  
7:5  
VOD Swing Adjust for D1 Lane  
R/W  
3b000  
Note: reg09h[6] = 1 otherwise all lanes are global control.  
00 No Pre-emphasis (default)  
01 3.5 dB Pre-emphasis.  
4:3  
2:0  
Pre-emphasis Adjust for D1 Lane  
Reserved  
R/W  
R/W  
2b00  
10 6 dB Pre-emphasis  
11 Reserved  
Note: reg09h[6] = 1 otherwise all lanes are global control.  
Reserved  
3b000  
8.5.15 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 34h)  
See Section 8.3.12 and 8.3.3 Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to  
one  
8-20. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
VOD Swing Adjust for D2 Lane  
R/W  
5
4
3
2
1
0
Pre-emphasis Adjust for D2 Lane  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-20. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
000 Vsadj set (default)  
001 Increase by 7%  
010 Increase by 14%  
011 Increase by 21%  
100 Decrease by 30%  
101 Decrease by 21%  
110 Decrease by 14%  
11 Decrease by 7%  
7:5  
VOD Swing Adjust for D2 Lane  
R/W  
3b000  
Note: reg09h[6] = 1 otherwise all lanes are global control.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-20. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions (continued)  
Bit  
4:3  
2:0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
00 No pre-emphasis (default)  
01 3.5 dB pre-emphasis  
10 6 dB pre-emphasis  
11 Reserved  
Note 1. reg09h[6] = 1 otherwise all lanes are global control.  
Note 2. If in HDMI mode writes will be ignored and reg09h[7]  
SWAP = 1. No pre-emphasis on clock.  
Pre-emphasis Adjust for D2 Lane  
Reserved  
2b00  
3b000  
Reserved  
8.5.16 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 35h)  
See Section 8.3.12 and 8.3.3 Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to  
one  
8-21. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-21. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:0  
Reserved  
R
h00  
8.5.17 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 4Dh)  
See Section 8.3.12 and 8.3.3 Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to  
one  
8-22. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-22. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:0  
Reserved  
R
h00  
8.5.18 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 4Eh)  
See Section 8.3.12 and 8.3.3 Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to  
one  
8-23. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
5
4
3
2
1
0
Data Lane 1 Fixed EQ Values  
R/W  
Data Lane 2 Fixed EQ Values  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
8-23. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Section 8.3.6 and Table 8 2 for values  
0000 0 dB (default)  
7:4  
Data Lane 1 Fixed EQ Values  
Data Lane 2 Fixed EQ Values  
R/W  
4b0000  
Section 8.3.6 and Table 8 2 for values  
0000 0 dB (default)  
3:0  
R/W  
4b0000  
8.5.19 CSR Bit Field Definitions, DP-Mode and INDIVIDUAL LANE CONTROL (address = 4Fh)  
See 8.3.12 and 8.3.3. Note: DP-Mode is valid only when DP-Mode Register P0_Reg09[5] is set to one  
8-24. DP-Mode and INDIVIDUAL LANE CONTROL  
7
6
5
4
3
2
1
0
CLK Lane Fixed EQ Values  
R/W  
Data Lane 0 Fixed EQ Values  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-24. DP-Mode and INDIVIDUAL LANE CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Section 8.3.6 and Table 8 2 for values  
0000 0 dB (default)  
7:4  
CLK Lane Fixed EQ Values  
R/W  
4b0000  
Section 8.3.6 and Table 8 2 for values  
0000 0 dB (default)  
3:0  
Data Lane 0 Fixed EQ Values  
R/W  
4b0000  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TDP158 was designed to work mainly in source applications such as Blu-Ray DVD players, gaming  
systems, desktops, notebooks, or AVRs. The following sections provide design consideration for various types of  
applications.  
9.2 Typical Application  
9-1 provides a schematic representation of what is considered a standard implementation.  
HDMI/DVI Receptacle  
0.1 µF  
0.1 µF  
1
2
4
5
6
7
9
1
3
30  
29  
27  
26  
25  
2
5
ML0p  
ML0n  
IN_D2p  
OUT_D2p  
TMDS_D2p  
TMDS_D2n  
TMDS_D1p  
TMDS_D1n  
TMDS_D0p  
TMDS_D0n  
TMDS_CLKp  
GND1  
GND2  
IN_D2n  
IN_D1p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
8
4
0.1 µF  
GND3  
GND4  
GND5  
GND6  
ML1p  
ML1n  
ML2p  
ML2n  
ML3p  
11  
14  
17  
6
0.1 µF  
0.1 µF  
IN_D1n  
IN_D0p  
7
9
24  
22  
21  
0.1 µF  
0.1 µF  
0.1 µF  
IN_D0n  
10  
12  
13  
IN_CLKp  
TMDS_CLKn  
CEC  
5 V  
10  
3
ML3n  
HPD  
IN_CLKn  
CEC  
20  
21  
22  
23  
2 k  
2 k  
CASE_GND1  
CASE_GND2  
CASE_GND3  
CASE_GND4  
HPD_SRC  
32  
33  
28  
15  
16  
19  
38  
39  
DDC_SCL  
DDC_SDA  
HPD  
SCL_SNK  
SDA_SNK  
HPD_SNK  
SCL_SRC  
SDA_SRC  
DDC_SCL  
DDC_SCA  
DDC_SCL  
DDC_SDA  
DDC_SCL  
DDC_SCA  
VCC_3.3 V  
VCC_3.3 V  
1 M  
0.01 µF  
0 kΩ  
100 k  
0
0 kΩ  
0
NOTE: Connector side DDC is 5 V  
while GPU may require 3.3 V DDC so  
a level shifter may need here  
CAD_DET  
2 k  
2 k  
13  
14  
8
SCL_CTL/SWAP  
SDA_CTL/PRE  
I2C_EN  
TERM  
I2C_SCL  
I2C_SDA  
16  
17  
23  
Optional  
EQ1/A0  
EQ2/A1  
SLEW  
VCC_3.3 V  
36  
18  
34  
OE  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0
0
VSADJ  
CEC  
CEC  
6 k  
1%  
VDD_1.1 V  
10 µF  
15  
35  
GND  
THERMAL PAD  
GND  
19 NC  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF 0.01 µF 0.01 µF  
Populated only when using I2C  
Populated only when using Pin Strapping  
12 20  
31 40  
11 37  
VCC_3.3 V  
VDD_1.1 V  
9-1. TDP158 in Source Side Application  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
9.2.1 Design Requirements  
The TDP158 can be designed into many different applications. In all the applications there are certain  
requirements for the system to work properly. Two voltage rails are required to support the lowest power  
consumption possible. The OE pin must have a 0.1-µF capacitor to ground. This pin can be driven by a  
processor but the pin needs to change states after the voltage rails have stabilized. Using the I2C is the best way  
to configure the device, but pin strapping is also provided as I2C, which is not available in all cases. As sources  
may have many different naming conventions, it is necessary to confirm that the link between the source and the  
TDP158 are correctly mapped. A swap function is provided for the input pins in case signaling is reversed  
between source and the device. The following control pin values are based upon driving pins with a  
microcontroller; otherwise, the shown pullup/down configuration meets the device levels. The following table  
provides information on the expected values to perform properly.  
For this design, use the parameters shown in 9-1.  
9-1. Design Parameters  
Design Parameter  
Value  
3.3 V  
VCC  
VDD  
1.1 V  
Main Link Input Voltage  
Control Pin Max Voltage for Low  
Control Pin Voltage Range Mid  
Control Pin Min Voltage for High  
R(VSADJ) Resistor  
VID = 0.15 to 1.4 Vpp  
Connect to 1 kΩpulldown resistor to GND  
Connect to 1 kΩpulldown resistor to GND  
Connect to 1 kΩpullup resistor to VCC  
6.49 k1%  
9.2.2 Detailed Design Procedure  
9.2.2.1 Source Side  
The TDP158 is a signal conditioning device that provides several forms of signal conditioning to support  
compliance for HDMI or DVI at a source connector. These forms of signal conditioning are accomplished using  
receive equalization, retiming, and output driver configurability. The transmitter will drive 12of board trace  
and connector when compliance is required at the connector.  
To design in the TDP158 the following need to be understood for a source side application:  
Determine the loss profile between the GPU/chipset and the HDMI /DVI connector.  
Based upon this loss profile and signal swing determine optimal location for the TDP158, to pass source  
electrical compliance. Usually within 12of the connector.  
Use the typical application 9-1 for information on control pin resistors.  
The TDP158 has a receiver equalizer but can also be configured using EQ1 and EQ2 control pins.  
Set the VOD, pre-emphasis, termination, and edge rate levels appropriately to support compliance by using  
the appropriate VSADJ resistor value and setting SDA_CTL/PRE, TERM and SLEW control pins.  
The thermal pad must be connected to ground.  
See schematics in 9-1 on recommended decouple caps from VCC pins to ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
9.2.2.2 DDC Pull Up Resistors  
This section is for information only and subject to change depending upon system implementation. The pull-up  
resistor value is determined by two requirements:  
1. The maximum sink current of the I2C buffer:  
The maximum sink current is 3 mA or slightly higher for an I2C driver supporting standard-mode I2C  
operation.  
VCC  
RUP(min)  
=
Isink  
(1)  
2. The maximum transition time on the bus:  
The maximum transition time, T, of an I2C bus is set by an RC time constant, where R is the pull-up resistor  
value, and C is the total load capacitance. The parameter, k, can be calculated from 方程3 by solving for t,  
the times at which certain voltage thresholds are reached. Different input threshold combinations introduce  
different values of t. 9-2 summarizes the possible values of k under different threshold combinations.  
T = k ì RC  
(2)  
-t  
V(t)=VDD ì (1 - e RC  
)
(3)  
9-2. Value k upon Different Input Threshold Voltages  
Vth-\Vth+  
0.1 VCC  
0.15 VCC  
0.2 VCC  
0.25 VCC  
0.3 VCC  
0.7 VCC  
1.0986  
1.0415  
0.9808  
0.9163  
0.8473  
0.65 VCC  
0.9445  
0.8873  
0.8267  
0.7621  
0.6931  
0.6 VCC  
0.8109  
0.7538  
0.6931  
0.6286  
0.5596  
0.55 VCC  
0.6931  
0.6360  
0.5754  
0.5108  
0.4418  
0.5 VCC  
0.5878  
0.5306  
0.4700  
0.4055  
0.3365  
0.45 VCC  
0.4925  
0.4353  
0.3747  
0.3102  
0.2412  
0.4 VCC  
0.4055  
0.3483  
0.2877  
0.2231  
0.1542  
0.35 VCC  
0.3254  
0.2683  
0.2076  
0.1431  
0.0741  
0.3 VCC  
0.2513  
0.1942  
0.1335  
0.0690  
From 方程式 1, Rup(min) = 5.5 V/3 mA = 1.83 kΩ to operate the bus under a 5-V pull-up voltage and provide  
less than 3 mA when the I2C device is driving the bus to a low state. If a higher sink current, for example 4 mA,  
is allowed, Rup(min) can be as low as 1.375 kΩ.  
If DDC working at standard mode of 100 Kbps, the maximum transition time T is fixed, 1 μs, and using the k  
values from 9-2, the recommended maximum total resistance of the pull-up resistors on an I2C bus can be  
calculated for different system setups. If DDC working in fast mode of 400 Kbps, the transition time should be set  
at 300 ns according to I2C specification.  
To support the maximum load capacitance specified in the HDMI spec, C(cable)(max) = 700 pF, C(source) = 50 pF,  
CI = 50 pF, R(max) can be calculated as shown in 9-3.  
9-3. Pull-Up Resistor Upon Different Threshold Voltages and 800-pF Loads  
Vth-\Vth+  
0.1 VCC  
0.15 VCC  
0.2 VCC  
0.25 VCC  
0.3 VCC  
0.7 VCC  
1.14  
1.2  
0.65 VCC  
0.6 VCC  
1.54  
1.66  
1.8  
0.55 VCC  
0.5 VCC  
0.45 VCC  
0.4 VCC  
3.08  
3.59  
4.35  
5.6  
0.35 VCC  
0.3 VCC  
UNIT  
kΩ  
1.32  
1.8  
2.13  
2.54  
3.84  
4.97  
1.41  
1.97  
2.36  
2.87  
4.66  
6.44  
kΩ  
1.27  
1.36  
1.48  
1.51  
2.17  
2.66  
3.34  
6.02  
9.36  
kΩ  
1.64  
1.99  
2.23  
2.45  
3.08  
4.03  
8.74  
18.12  
kΩ  
1.8  
2.83  
3.72  
5.18  
8.11  
16.87  
kΩ  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
To accommodate the 3-mA drive current specification, a narrower threshold voltage range is required to support  
a maximum 800-pF load capacitance for a standard-mode I2C bus.  
9.2.3 Application Curves  
9-3. Output Eye from High Loss Input Eye at  
9-2. High Loss Input Eye 204 mil Trace at  
TDP158 Pin  
TDP158 Pin  
9-4. HDMI 2 Compliance Eye from High Loss Input Eye  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TDP158  
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
9.2.4 Application with DDC Snoop  
9.2.4.1 Source Side HDMI Application  
In source side applications, the TDP158 takes an AC-coupled HDMI signal and provides signal conditioning and  
level shifting to support TMDS signaling. 9-5 provides an example of a DDC snoop version. Notes in both  
schematics provide important system design considerations. To help reduce overall EMI in a system the VCC  
and VDD decoupling caps need to be as close to the pins as possible. The drawings shown one set but multiple  
sets may be needed for each pin.  
Control pins should be tied to 1 kΩ pullup to VCC, 1 kΩ pulldown to GND, or left floating. Drawings show 0-Ω  
resistors as this provides flexibility. In noisy systems a 0.1-µF capacitor to GND may reduce glitches on these  
pins and are not shown in the drawings. As 9-5 shows, connect the DDC source and sink pins to GND as the  
SCL/SDA_SRC if an application requires the DDC source and sink pins to be completely bypassed. If this is  
done, then the TX termination must be controlled by the TERM pin or through I2C.  
HDMI/DVI Receptacle  
0.1 µF  
0.1 µF  
1
2
4
5
6
7
9
1
3
30  
29  
27  
26  
25  
2
5
ML0p  
ML0n  
IN_D2p  
OUT_D2p  
TMDS_D2p  
TMDS_D2n  
TMDS_D1p  
TMDS_D1n  
TMDS_D0p  
TMDS_D0n  
TMDS_CLKp  
GND1  
GND2  
IN_D2n  
IN_D1p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
8
4
0.1 µF  
GND3  
GND4  
GND5  
GND6  
ML1p  
ML1n  
ML2p  
ML2n  
ML3p  
11  
14  
17  
6
0.1 µF  
0.1 µF  
IN_D1n  
IN_D0p  
7
9
24  
22  
21  
0.1 µF  
0.1 µF  
0.1 µF  
IN_D0n  
10  
12  
13  
IN_CLKp  
TMDS_CLKn  
CEC  
5 V  
10  
3
ML3n  
HPD  
IN_CLKn  
CEC  
20  
21  
22  
23  
2 k  
2 k  
CASE_GND1  
CASE_GND2  
CASE_GND3  
CASE_GND4  
HPD_SRC  
32  
33  
28  
15  
16  
19  
DDC_SCL  
DDC_SDA  
HPD  
SCL_SNK  
SDA_SNK  
HPD_SNK  
VCC_3.3 V  
2 k  
2 k  
38  
39  
DDC_SCL  
DDC_SDA  
SCL_SRC  
SDA_SRC  
VCC_3.3 V  
VCC_3.3 V  
1 M  
0.01 µF  
0 kΩ  
100 k  
0
0 kΩ  
0
CAD_DET  
2 k  
2 k  
13  
14  
8
VCC_3.3 V  
SCL_CTL/SWAP  
SDA_CTL/PRE  
I2C_EN  
TERM  
I2C_SCL  
I2C_SDA  
16  
17  
23  
10 µF  
0.1 µF  
0.1 µF  
Optional  
EQ1/A0  
EQ2/A1  
SLEW  
36  
18  
34  
OE  
0.1 µF  
0
0
VSADJ  
CEC  
CEC  
6 k  
1%  
AUXp  
VDD_1.1 V  
10 µF  
15  
35  
GND  
THERMAL PAD  
GND  
19 NC  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF 0.01 µF 0.01 µF  
Populated only when using I2C  
Populated only when using Pin Strapping  
12 20  
31 40  
11 37  
VCC_3.3 V  
VDD_1.1 V  
9-5. TDP158 Source Side Application with DDC Snoop  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
9.2.5 9.1.2 Source Side HDMI /DP Application Using DP-Mode  
The TDP158 has a special mode that will allow the device to support either HDMI or DP applications. The device  
is put into this mode by setting reg09h[5] to 1. The device will self-configure with the following settings and  
become I2C programmable only. The TDP158 does not support automatic Link Training for DisplayPort. AUX  
channel bypasses device.  
All four lanes are turned on and configured for 5.4 Gbps data rate.  
Sets VOD swing to 410 mV (This value is based upon a VSADJ value of 6 kΩ).  
Reg0Ch[7:5] is used to control VOD swing for all lanes.  
Reg0Ch[1:0] is used to control pre-emphasis for all lanes.  
Reg30h[7:2] is used to turn on or off individual lanes as well as informing the TDP158 what the data rate is.  
This is used for the delay component for pre-emphasis signal.  
For DisplayPort the link is AC coupled. This shows  
one way of doing this otherwise the capacitors  
could be moved to a dongle or the end equipment.  
30  
IN_D2p  
HDMI/DVI Receptacle or  
DP Receptacle  
0.1 µF  
0.1 µF  
1
2
4
5
6
7
9
1
3
2
5
ML0p  
ML0n  
OUT_D2p  
TMDS_D2p  
TMDS_D2n  
TMDS_D1p  
TMDS_D1n  
TMDS_D0p  
TMDS_D0n  
TMDS_CLKp  
GND1  
GND2  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
29  
27  
26  
25  
IN_D2n  
IN_D1p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
8
4
0.1 µF  
GND3  
GND4  
GND5  
GND6  
ML1p  
ML1n  
ML2p  
ML2n  
ML3p  
11  
14  
17  
6
0.1 µF  
0.1 µF  
IN_D1n  
IN_D0p  
7
9
24  
22  
21  
0.1 µF  
0.1 µF  
0.1 µF  
IN_D0n  
10  
12  
13  
IN_CLKp  
TMDS_CLKn  
CEC  
5 V  
10  
3
ML3n  
HPD  
IN_CLKn  
0.1 µF  
CEC  
20  
21  
22  
23  
2 k  
2 k  
CASE_GND1  
CASE_GND2  
CASE_GND3  
CASE_GND4  
HPD_SRC  
32  
33  
28  
15  
16  
19  
DDC_SCL  
DDC_SDA  
HPD  
SCL_SNK  
SDA_SNK  
HPD_SNK  
VCC_3.3 V  
2 k  
2 k  
38  
39  
DDC_SCL  
DDC_SDA  
SCL_SRC  
SDA_SRC  
VCC_3.3 V  
VCC_3.3 V  
1 M  
0.01 µF  
AUXp  
AUXp  
AUXn  
100 k  
AUXn  
0
0
CAD_DET  
2 k  
2 k  
13  
14  
8
VCC_3.3 V  
SCL_CTL/SWAP  
SDA_CTL/PRE  
I2C_EN  
TERM  
I2C_SCL  
I2C_SDA  
16  
17  
23  
10 µF  
0.1 µF  
0.1 µF  
Optional  
0.1 µF  
36  
18  
EQ1/A0  
EQ2/A1  
SLEW  
OE  
34  
VSADJ  
CEC  
CEC  
6 k  
1%  
0
0
AUXp  
AUXn  
AUXp  
AUXn  
I2C Programming  
only so these can  
be left floating  
15  
35  
GND  
VDD_1.1 V  
10 µF  
GND  
THERMAL PAD  
19 NC  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF 0.01 µF 0.01 µF  
12 20  
31 40  
11 37  
VCC_3.3 V  
VDD_1.1 V  
9-6. TDP158 in Dual Role Source Side Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
10 Power Supply Recommendations  
10.1 Power Management  
To minimize the power consumption of customer application, TDP158 used the dual power supply. VCC is 3.3 V  
with 10% range to support the I/O voltage. The VDD is 1.1 V with 5% range to supply the internal digital control  
circuit. TDP158 operates in 3 different working states.  
Power Down mode:  
When OE = Low, the device will put itself into the lowest power state by shutting down all function blocks.  
OE re-asserted means the pin transitions from low to high. Transitioning the OE pin from L H  
creates a reset. If the device is programmed through I2C, then it must be reprogrammed.  
Writing a 1 to register 09h[3].  
OE = High, HPD_SNK = Low for > 2 ms  
Standby mode:  
HPD_SNK = High but no valid clock signal detect on clock lane.  
Normal operation:  
When HPD assert, the device output will enable based on the signal detector circuit result.  
HPD_SRC = HPD_SNK in all conditions. The HPD channel operational when VCC over 3 V.  
备注  
When the TDP158 is put into a power down state the I2C registers are cleared. This is important as  
the TMDS_CLOCK_RATIO_STATUS bit will be cleared. If cleared and HDMI 2.0 resolutions are to be  
supported the TDP158 expects the source to write a 1 to this bit location. If the read has the bit set,  
the TDP158 will set this bit; otherwise, the source termination must be set manually.  
10.2 Standby Power  
The TDP158/I implement a two stage standby power process.  
Stage 1: If there is no signal on the clock line, then the maximum IVCC 7 mA and maximum IVDD 7 mA.  
Stage 2: If a signal (like a noise or clock signal) is on the clock line, then the TDP158 investigates the clock line  
for 3 μs to 5 μs and detects if a signal is present.  
If a clock is detected, then the TDP158 will go into normal operation.  
If it is determined that no clock is present, then the TDP158 will re-enter stage 1.  
In stage 2; maximum IVCC 7 mA and maximum IVDD 27 mA.  
10-1. Power Modes  
INPUTS  
STATUS  
OUT_Dx  
OUT_CLK  
OE  
L
HPD_SNK  
Reg09[2]  
IN_CLK  
HPD_SRC  
H
IN_Dx  
High-Z  
SDA/SCL_CTL  
DDC  
Disabled  
Active  
Mode  
Power Down  
Mode  
X
X
X
1
X
X
Disable  
Active  
High-Z  
Normal  
operation  
H
HPD_SNK  
RX Active  
TX Active  
Standby Mode  
(Squelch  
waiting)  
No Valid TMDS  
Clock  
D0-D2 Disabled  
IN_CLK Active  
H
H
H
H
X
X
H
H
1
1
0
0
HPD_SNK  
HPD_SNK  
HPD_SNK  
HPD_SNK  
Active  
Active  
Active  
Active  
High-Z  
TX Active  
High-Z  
Active  
Active  
Active  
Active  
Valid TMDS  
Clock  
Normal  
operation  
RX Active  
Standby Mode  
(Squelch  
waiting)  
No Valid TMDS  
Clock  
D0-D2 Disabled  
IN_CLK Active  
Valid TMDS  
Clock  
Normal  
operation  
RX Active  
TX Active  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
11 Layout  
11.1 Layout Guidelines  
For the TDP158 on a high-K board, it is required to solder the PowerPADonto the thermal land to ground. A  
thermal land is the area of solder-tinned-copper underneath the PowerPAD™ package. On a high-K board the  
TDP158 can operate over the full temperature range by soldering the PowerPAD™ onto the thermal land. On a  
low-K board, for the device to operate across the temperature range on a low-K board, a 1-oz Cu trace  
connecting the GND pins to the thermal land must be used. A simulation shows RθJA = 100.84°C/W allowing  
545 mW power dissipation at 70°C ambient temperature. A general PCB design guide for PowerPAD packages  
is provided in the document SLMA002. TI recommends using a four layer stack up at a minimum to accomplish a  
low-EMI PCB design. TI recommends six layers as the TDP158 is a two voltage rail device.  
Routing the high-speed TMDS traces on the top layer avoids the use of vias, avoids the introduction of their  
inductances, and allows for clean interconnects from the HDMI connectors to the Redriver inputs and  
outputs. It is important to match the electrical length of these high speed traces to minimize both inter-pair  
and intra-pair skew.  
Placing a solid ground plane next to the high-speed single layer establishes controlled impedance for  
transmission link interconnects and provides an excellent low inductance path for the return current flow.  
Placing a power plane next to the ground plane creates and additional high-frequency bypass capacitance.  
Routing slower seed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power/ground plane system to  
the stack to keep symmetry. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be place closer together, thus increasing the high  
frequency bypass capacitance significantly.  
Layer 1: TMDS signal layer  
Layer 1: TMDS signal layer  
5 to 10  
mils  
Layer 2: Ground Plane  
Layer 2: Ground Plane  
Layer 3: VCC Power Plane  
20 to 40  
mils  
Layer 4: VDD Power Plane  
Layer 5: Ground Plane  
Layer 3: Power Plane  
5 to 10  
mils  
Layer 4: Control signal layer  
Layer 6: Control signal layer  
11-1. Recommended 4 or 6 Layer PCB Stack  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TDP158  
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
11.2 Layout Example  
SLEW  
SCL_SRC  
SDA_SNK  
SCL_SNK  
2kQ  
VCC  
2kQ  
2kQ  
5V  
5V  
2kQ  
VCC  
SDA_SRC  
Match High Speed traces  
length as close as possible to  
minimize Ske  
100nF  
IN_D2p/n  
100nF  
Match High Speed traces  
length as close as possible to  
minimize Ske  
1
OUT_D2p/n  
HPD_SRC  
HPD_SNK  
100nF  
IN_D1p/n  
OUT_D1p/n  
100nF  
100nF  
GND  
IN_D0p/n  
OUT_D0p/n  
VCC  
100nF  
1lQ  
1lQ  
1lQ  
VCC  
A1/EQ2  
I2C_EN  
GND  
1lQ  
GND  
OUT_CLKp/n  
100nF  
IN_CLKp/n  
100nF  
Place VCC and VDD decoupling  
caps as close to VCC and VDD  
pins as possible  
1lQ  
GND  
SWAP  
SCL_CTL  
2kO/1lQ  
VCC  
For I2C only Pop pull up and  
use 2 lQ  
2kO/1lQ  
VCC  
DE  
VSADJ  
SDA_CTL  
For DE and SWAP only Pop pull up  
or pull down and use 65 lQ  
TERM  
A0/EQ1  
The differential input lanes and differential output lanes should be separated as close to the TDP158 as feasible to minimize crosstalk.  
Adding a ground flood plain between each differential lane further reduces crosstalk and thus improves signal integrity at high speed  
data rates.  
11-2. Example Layout for Source Side Application  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TDP158  
 
 
 
TDP158  
www.ti.com.cn  
ZHCSFY1E DECEMBER 2016 REVISED JULY 2022  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, PowerPAD Thermally Enhanced Package  
[HDMI ] High-definition Multimedia Interface CTS Version 1.4b October, 2011  
[HDMI ] High-definition Multimedia Interface CTS Version 2.0o June 2016  
[HDMI ] High-definition Multimedia Interface Specification Version 1.4b October, 2011  
[HDMI ] High-definition Multimedia Interface Specification Version 2.0 September 4, 2013  
[I2C] The I2C-Bus specification version 2.1 January 2000  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TMDSis a trademark of Wabtec Holding Corp.  
HDMI is a trademark of HDMI Licensing Administrator, Inc.  
DisplayPortis a trademark of Video Electronics Standards Association.  
Blu-rayis a trademark of Blu-ray Disc Accociation.  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TDP158  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TDP158RSBR  
TDP158RSBT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
0 to 85  
0 to 85  
TDP158  
TDP158  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Mar-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TDP158RSBR  
TDP158RSBT  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TDP158RSBR  
TDP158RSBT  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSB0040E  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.6  
(0.2) TYP  
EXPOSED  
11  
20  
THERMAL PAD  
36X 0.4  
10  
21  
2X  
41  
SYMM  
3.6  
3.15 0.1  
1
30  
0.25  
0.15  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.5  
0.3  
0.05  
40X  
4219096/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.15)  
SYMM  
40  
31  
40X (0.6)  
40X (0.2)  
1
30  
36X (0.4)  
41  
SYMM  
(4.8)  
(1.325)  
(
0.2) TYP  
VIA  
10  
21  
(R0.05)  
TYP  
11  
20  
(1.325)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219096/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.785)  
4X ( 1.37)  
40  
31  
40X (0.6)  
1
30  
40X (0.2)  
36X (0.4)  
SYMM  
(0.785)  
(4.8)  
41  
(R0.05) TYP  
10  
21  
METAL  
TYP  
20  
11  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 41  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219096/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TDP158RSBR

6Gbps DP++ 1.1 至 HDMI 2.0 转接驱动器 | RSB | 40 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP158RSBT

6Gbps DP++ 1.1 至 HDMI 2.0 转接驱动器 | RSB | 40 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP16011001AUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011001BUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011001CUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011001DUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011001EUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011001FUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011002AUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011002BUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011002CUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP16011002DUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY