TFP401A-Q1 [TI]

汽车类 Panelbus ™ DVI 接收器 165MHz、HSYNC 抗抖动;
TFP401A-Q1
型号: TFP401A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 Panelbus ™ DVI 接收器 165MHz、HSYNC 抗抖动

文件: 总36页 (文件大小:2469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
TFP401A-Q1 TI Panelbus汽车类数字接收器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
德州仪器 (TI) TFP401A-Q1 件是一款 TI  
Panelbus平板显示产品是全系列兼容端到端 DVI  
1.0 解决方案的一部分。主要针对的是台式机 LCD 显  
示器和数字投影仪TFP401A-Q1 器件可应用于任何  
需要高速数字接口的设计中。  
– 器件温度等3-40°C 85°C 环境工作温度  
范围  
– 器HBM ESD 分类等H2  
– 器CDM ESD 分类等C3B  
• 支持高165 MHz 的像素速率60Hz 时的  
1080p WUXGA)  
TFP401A-Q1 器件支持高达 1080p 的显示分辨率和 24  
位真彩色像素格式的 WUXGA它还具有设计灵活  
可在每个时钟内驱动 1 个或 2 个像素支持 TFT  
DSTN 面板并提供用时间触发的像素输出来减少接  
地反弹的选项。  
• 符合数字可视化接(DVI) 技术规1  
• 真彩色24 /像素1670 万种颜色每时钟驱动  
1 2 个像素)  
PowerPAD 先进的封装技术可获得业界最佳的功率耗  
散、封装尺寸和超低接地电感。  
• 通过激光修整内部端接电阻器实现出色的固定阻  
抗匹配  
• 高1 个像素时钟周期的偏移容限  
4 倍过采样  
• 降低功耗1.8V 内核运行3.3V I/O 和电2  
• 使用错时像素输出来减少接地反弹  
• 使TI PowerPAD封装实现低噪声和良好的功率  
耗散  
TFP401A-Q1 将创新的 Panelbus 电路与 TI 先进的  
0.18 µm EPIC-5CMOS 艺技术以及 TI 的  
PowerPAD 封装技术组合在一起用于实现可靠的低  
功耗、低噪声、高速数字接口解决方案。  
器件信息(1)  
• 采TI 0.18µm EPIC-5CMOS 工艺的先进技术  
TFP401A-Q1 HSYNC 抖动抗扰能3  
封装尺寸标称值)  
器件型号  
封装  
TFP401A-Q1  
PQFP (100)  
14.00mm × 14.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 高清电视  
• 高PC 显示器  
• 数字视频  
• 高清投影仪  
DVI/HDMI 接收4  
Copyright © 2017, Texas Instruments Incorporated  
TFP401A-Q1 框图  
1
TFP401A-Q1 器件包含可以DVI 发送器创建稳HSYNC 的附加电路这些发送器会在已发送HSYNC 信号上引入有害抖动。  
TFP401A-Q1 器件具有一个内部稳压器可通过外3.3V 电源提1.8V 内核电源。  
数字可视化接口规(DVI) 是数字显示工作(DDWG) 为了与数字显示屏建立高速数字连接而开发的一个行业标准。TFP401A-Q1 与  
DVI 技术规范修订版1.0 兼容。  
2
3
4
HDMI 视频  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLDS190  
 
 
 
 
 
 
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................17  
8.1 Application Information............................................. 17  
8.2 Power Supply Recommendations.............................21  
8.3 Layout....................................................................... 21  
9 Device and Documentation Support............................27  
9.1 接收文档更新通知..................................................... 27  
9.2 支持资源....................................................................27  
9.3 Trademarks...............................................................27  
9.4 Electrostatic Discharge Caution................................27  
9.5 术语表....................................................................... 27  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 DC Digital I/O Electrical Characteristics......................7  
6.6 DC Electrical Characteristics...................................... 7  
6.7 AC Electrical Characteristics ......................................7  
6.8 Timing Requirements..................................................8  
6.9 Switching Characteristics..........................................10  
6.10 Typical Characteristics............................................ 11  
7 Detailed Description......................................................12  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (January 2017) to Revision B (March 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Added the Thermal Package information to the Pin Functions table..................................................................3  
Added TFP401A-Q1 to the Imax vs Input Frequency figure............................................................................. 11  
Added sentence to end of first paragraph that recommends soldering package thermal pad to PCB in order to  
minimize stress on peripheral pins................................................................................................................... 26  
Changes from Revision * (November 2012) to Revision A (January 2017)  
Page  
• 添加了器件信表、引脚配置和功部分、ESD 表、应用和实部分、电源相关建部分、部  
分、器件和文档支部分以及机械、封装和可订购信部分............................................................................ 1  
• 将部分中的“器HBM ESD 分类等C3B”更改为“器CDM ESD 分类等C3...........................1  
Changed the Operating free-air temperature MIN value From: 0°C To: 40°C and the MAX value From: 70°C  
To: 85°C in the Recommended Operating Conditions .......................................................................................6  
Changed the Thermal Information table values..................................................................................................6  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
76  
OGND  
QO23  
OVDD  
AGND  
Rx2+  
Rx2−  
AVDD  
AGND  
AVDD  
Rx1+  
Rx1−  
AGND  
AVDD  
AGND  
Rx0+  
Rx0−  
QO1  
QO0  
HSYNC  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
77  
78  
79  
VSYNC  
DE  
80  
81  
OGND  
ODCK  
OVDD  
CTL3  
CTL2  
CTL1  
GND  
DVDD  
QE23  
QE22  
QE21  
QE20  
QE19  
QE18  
QE17  
QE16  
OVDD  
OGND  
QE15  
QE14  
82  
83  
84  
85  
86  
87  
88  
Thermal Pad  
89  
90  
91  
92  
AGND  
RxC+  
RxC−  
AVDD  
93  
94  
95  
96  
EXT_RES  
97  
PVDD  
98  
PGND  
RSVD  
OCK_INV  
99  
100  
5-1. PZP Package, 100-Pin PQFP PowerPAD Package (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
AGND  
AVDD  
NO.  
79, 83, 87, 89,  
92  
GND  
VDD  
DO  
Analog ground Ground reference and current return for analog circuitry  
Analog VDD Power supply for analog circuitry. Nominally 3.3 V  
82, 84, 88, 95  
42, 41, 40  
General-purpose control signals Used for user-defined control. CTL1 is not powered down  
through PDO.  
CTL[3:1]  
Output data enable Used to indicate time of active video display versus non-active display or  
blank time. During blank, the device transmits only HSYNC, VSYNC, and CTL[3:1]. During times  
of active display, or non-blank, the device transmits only pixel data, QE[23:0], and QO[23:0].  
High: Active display time  
DE  
46  
1
DO  
DI  
Low: Blank time  
Output clock data format Controls the output clock (ODCK) format for either TFT or DSTN  
panel support. For TFT support, the ODCK clock runs continuously. For DSTN support, ODCK  
only clocks when DE is high; otherwise, ODCK remains low when DE is low.  
High: DSTN support ODCK held low when DE = low  
DFO  
Low: TFT support ODCK runs continuously.  
GND  
5, 39, 68  
6, 38, 67  
GND  
VDD  
Digital ground Ground reference and current return for digital core  
Digital VDD Power supply for digital core. Nominally 3.3 V.  
DVDD  
Internal impedance matching The TFP401A-Q1 device has internal optimization for impedance  
matching at 50 Ω. An external resistor tied to this pin has no effect on device performance.  
EXT_RES  
96  
AI  
HSYNC  
RSVD  
48  
99  
DO  
DI  
Horizontal sync output  
Reserved. Tie this pin high for normal operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TFP401A-Q1  
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
18, 29, 43, 57,  
78  
OVDD  
VDD  
DO  
Output driver VDD Power supply for output drivers. Nominally 3.3 V  
Output data clock Pixel clock. The device synchronizes all pixel outputs QE[23:0] and QO[23:0]  
(if in 2-pixels-per-clock mode), along with DE, HSYNC, VSYNC and CTL[3:1], to this clock.  
ODCK  
OGND  
44  
19, 28, 45, 58,  
76  
GND  
Output driver ground Ground reference and current return for digital output drivers  
ODCK polarity Selects ODCK edge to which pixel data (QE[23:0] and QO[23:0]) and control  
signals (HSYNC, VSYNC, DE, CTL[3:1]) latch.  
Normal mode:  
High: Latches output data on rising ODCK edge  
Low: Latches output data on falling ODCK edge  
OCK_INV  
100  
DI  
DI  
Power down An active-low signal that controls the TFP401A-Q1 power-down state. During  
power down, all output buffers switch to a high-impedance state. The device powers down all  
analog circuits and disables all inputs, except for PD.  
If leaving PD unconnected, an internal pullup defaults the TFP401A-Q1 device to normal  
operation.  
PD  
2
High : Normal operation  
Low: Power down  
Output drive power down An active-low signal that controls the power-down state of the output  
drivers. During output drive power down, the output drivers (except SCDT and CTL1) are driven to  
a high-impedance state. When PDO is left unconnected, an internal pullup defaults the TFP401A-  
Q1 device to normal operation.  
PDO  
9
DI  
High: Normal operation; output drivers on  
Low: Output drive powered down  
PGND  
98  
GND  
PLL GND Ground reference and current return for internal PLL.  
Pixel select Selects between 1- and 2-pixels-per-clock output modes. During the 2-pixels-per-  
clock mode, the device outputs both even pixels, QE[23:0], and odd pixels, QO[23:0], in tandem  
on a given clock cycle. During 1-pixel-per-clock mode, the device outputs even and odd pixels  
sequentially, one at a time, with the even pixel first, on the even-pixel bus, QE[23:0]. (The first  
pixel per line is pixel-0, the even pixel. The second pixel per line is pixel-1, the odd pixel).  
High: 2 pixels per clock  
PIXS  
4
DI  
Low: 1 pixel per clock  
PVDD  
97  
VDD  
DO  
PLL VDD Power supply for internal PLL  
Even green-pixel output Output for even and odd green pixels when in 1-pixel-per-clock mode.  
Output for even-only green pixel when in 2-pixels-per-clock mode. Output data synchronizes to the  
output data clock, ODCK.  
LSB: QE8, pin 20  
QE[8:15]  
2027  
MSB: QE15, pin 27  
Even red-pixel output Output for even and odd red pixels when in 1-pixel-per-clock mode.  
Output for even-only red pixel when in 2-pixels-per-clock mode. Output data synchronizes to the  
QE[16:23]  
QO[0:7]  
DO  
DO  
DO  
3037  
4956  
5966  
output data clock, ODCK.  
LSB: QE16, pin 30  
MSB: QE23, pin 37  
Odd blue-pixel output Output for odd-only blue pixel when in 2-pixels-per-clock mode. Not  
used, and held low, when in 1-pixel-per-clock mode. Output data synchronizes to the output data  
clock, ODCK.  
LSB: QO0, pin 49  
MSB: QO7, pin 56  
Odd green-pixel output Output for odd-only green pixel when in 2-pixels-per-clock mode. Not  
used, and held low, when in 1-pixel-per-clock mode. Output data synchronizes to the output data  
clock, ODCK.  
QO[8:15]  
LSB: QO8, pin 59  
MSB: QO15, pin 66  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Odd red-pixel output Output for odd-only red pixel when in 2-pixels-per-clock mode. Not used,  
and held low, when in 1-pixel-per-clock mode. Output data synchronizes to the output data clock,  
QO[16:23]  
DO  
6975, 77  
ODCK.  
LSB: QO16, pin 69  
MSB: QO23, pin 77  
Even blue-pixel output Output for even and odd blue pixels when in 1-pixel-per-clock mode.  
Output for even-only blue pixel when in 2-pixels-per-clock mode. Output data synchronizes to the  
QE[0:7]  
DO  
1017  
output data clock, ODCK.  
LSB: QE0, pin 10  
MSB: QE7, pin 17  
Clock positive receiver input Positive side of reference clock. TMDS low-voltage signal  
differential-input pair.  
RxC+  
93  
94  
AI  
AI  
Clock negative receiver input Negative side of reference clock. TMDS low-voltage signal  
differential-input pair.  
RxC–  
Channel-0 positive receiver input Positive side of channel-0. TMDS low-voltage signal  
differential-input pair.  
Channel-0 receives blue pixel data in active display and HSYNC, VSYNC control signals in blank.  
Rx0+  
Rx0–  
Rx1+  
Rx1–  
Rx2+  
Rx2–  
90  
91  
85  
86  
80  
81  
AI  
AI  
AI  
AI  
AI  
AI  
Channel-0 negative receiver input Negative side of channel-0. TMDS low-voltage signal  
differential-input pair.  
Channel-1 positive receiver input Positive side of channel-1 TMDS low-voltage signal  
differential-input pair.  
Channel-1 receives green-pixel data in active display and CTL1 control signals in blank.  
Channel-1 negative receiver input Negative side of channel-1 TMDS low-voltage signal  
differential-input pair.  
Channel-2 positive receiver input Positive side of channel-2 TMDS low-voltage signal  
differential-input pair.  
Channel-2 receives red-pixel data in active display and CTL2, CTL3 control signals in blank.  
Channel-2 negative receiver input Negative side of channel-2 TMDS low-voltage signal  
differential-input pair  
Sync detect - Output to signal when the link is active or inactive. The link is active when DE is  
actively switching. The TFP401A-Q1 device monitors the state of DE to determine link activity.  
SCDT can be tied externally to PDO to power down the output drivers when the link is inactive.  
High: Active link  
SCDT  
ST  
8
3
DO  
DI  
Low: Inactive link  
Output drive strength select Selects output drive strength for high- or low-current drive. (See dc  
specifications for IOH and IOL versus the ST state).  
High: High drive strength  
Low: Low drive strength  
Staggered pixel select An active-low signal used in the 2-pixels-per-clock pixel mode (PIXS =  
high). Time-staggers the even and odd pixel outputs to reduce ground bounce. Normal operation  
outputs the odd and even pixels simultaneously.  
STAG  
7
DI  
High: Normal simultaneous even-and-odd pixel output  
Low: Time-staggered even-and-odd pixel output  
VSYNC  
47  
DO  
Vertical sync output  
Thermal pad. Recommend soldering the package thermal pad to thermal pad on PCB. Soldering  
the thermal pad will help to release stress through the solder, otherwise the stress will be  
absorbed by the peripheral pins.  
Thermal Pad  
(1) DI = Digital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TFP401A-Q1  
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
40  
65  
MAX  
4
UNIT  
V
Supply-voltage range  
DVDD, AVDD, OVDD, PVDD  
Input-voltage range, logic and analog signals  
Operating ambient temperature range, TA  
Storage temperature, Tstg  
4
V
85  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 25. 26. 50.  
51, 75, 76, and 100)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
VDD  
Rt  
Supply voltage (DVDD, AVDD, PVDD, OVDD  
)
3
45  
3.3  
50  
25  
3.6  
55  
85  
V
Single-ended analog-input termination resistance  
Operating free-air temperature  
TA  
°C  
40  
6.4 Thermal Information  
TFP401A-Q1  
PZP (PQFP)  
100 PINS  
24.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
13.2  
8.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
8.5  
ψJB  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semicondictor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
 
 
 
 
 
 
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
6.5 DC Digital I/O Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
High-level digital input voltage  
Low-level digital input voltage  
TEST CONDITIONS  
MIN  
2
TYP MAX UNIT  
VIH  
VIL  
DVDD  
0.8  
16.3  
10.3  
19  
V
V
0
ST = high, VOH = 2.4 V  
ST = low, VOH = 2.4 V  
ST = high, VOL = 0.8 V  
ST = low, VOL = 0.8 V  
PD = low or PDO = low  
5
10  
6
IOH  
High-level output drive current  
mA  
3
8
13  
7
IOL  
IOZ  
Low-level output drive current  
Hi-Z output leakage current  
mA  
4
11  
1
1  
μA  
6.6 DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
75  
TYP  
MAX  
UNIT  
mV  
VID  
Analog-input differential voltage(1)  
Analog-input common-mode voltage(1)  
Open-circuit analog input voltage  
1200  
VIC  
mV  
AVDD 300  
AVDD 10  
AVDD 37  
VI(OC)  
AVDD + 10  
mV  
mA  
Normal 2-pixels-per-clock power-supply  
current(2)  
ODCK = 82.5 MHz, 2 pixels per  
clock  
IDD(2PIX)  
370  
10  
IPD  
Power-down current(3)  
PD = low  
mA  
mA  
IPDO  
Output-drive power-down current(3)  
PDO = low  
35  
(1) Specified as dc characteristic with no overshoot or undershoot.  
(2) Alternating 2-pixel black and 2-pixel white patterns. ST = high, STAG = high, QE[23:0] and QO[23:0] CL = 10 pF.  
(3) Analog inputs are open-circuit (transmitter disconnected from the TFP401A-Q1 device).  
6.7 AC Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
150  
25  
TYP MAX  
1560  
UNIT  
VID(2)  
fODCK  
Differential input sensitivity(1)  
mVp-p  
PIXS = low (1-PIX/CLK)  
PIXS = high (2-PIX/CLK)  
165  
ODCK frequency  
ODCK duty-cycle  
MHz  
12.5  
45%  
82.5  
60% 75%  
(1) Specified as ac parameter to include sensitivity to overshoot, undershoot, and reflection.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TFP401A-Q1  
 
 
 
 
 
 
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
6.8 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
(1)  
Analog input intra-pair (+ to ) differential skew (2)  
Analog input inter-pair or channel-to-channel skew (2)  
Worst-case differential input-clock jitter tolerance(2) (4)  
tps  
tccs  
tijit  
0.4  
1
tbit  
(3)  
tpix  
50  
ps  
ns  
ST = low, CL = 5 pF  
2.4  
1.9  
2.4  
1.9  
2.4  
1.9  
2.4  
1.9  
tf1  
tr1  
tr2  
tf2  
Fall time of data and control signals(5) (6)  
Rise time of data and control signals(5) (6)  
Rise time of ODCK clock(5)  
ST = high, CL = 10 pF  
ST = low, CL = 5 pF  
ST = high, CL = 10 pF  
ST = low, CL = 5 pF  
ST = high, CL = 10 pF  
ST = low, CL = 5 pF  
ST = high, CL = 10 pF  
ns  
ns  
ns  
Fall time of ODCK clock(5)  
1 pixel per clock, PIXS = low,  
OCK_INV = low  
1.8  
3.8  
0.6  
0.6  
2.5  
2.9  
2.1  
4
Setup time, data and control signal to falling edge of  
ODCK  
2 pixels per clock, PIXS = high,  
STAG = high, OCK_INV = low  
tsu1  
ns  
ns  
ns  
2 pixels and STAG, PIXS = high,  
STAG = low, OCK_INV = low  
1 pixel per clock, PIXS = low,  
OCK_INV = low  
Hold time, data and control signal to falling edge of  
ODCK  
2 pixels and STAG, PIXS = high,  
STAG = low, OCK_INV = low  
th1  
2 pixels per clock, PIXS = high,  
STAG = high, OCK_INV = low  
1 pixels per clock, PIXS = low,  
OCK_INV = high  
Setup time, data and control signal to rising edge of  
ODCK  
2 pixels per clock, PIXS = high,  
STAG = high, OCK_INV = high  
tsu2  
2 pixels and STAG, PIXS = high,  
STAG = low, OCK_INV = high  
1.5  
0.3  
2.4  
1 pixel per clock, PIXS = low,  
OCK_INV = high  
Hold time, data and control signal to rising edge of  
ODCK  
2 pixels and STAG, PIXS = high,  
STAG = low, OCK_INV = high  
th2  
ns  
ns  
2 pixels per clock, PIXS = high,  
STAG = high, OCK_INV = high  
2.1  
tpix  
Pixel time(3)  
6.06  
40  
(1) tbit is 1/10 the pixel time, tpix  
.
(2) Specified by characterization.  
(3) tpix is the pixel time defined as the period of the RxC clock input. The period of the output clock, ODCK, is equal to tpix when in 1-pixel-  
per-clock mode or 2 tpix when in 2-pixels-per-clock mode.  
(4) Measured differentially at 50% crossing using ODCK output clock as trigger.  
(5) Rise and fall times measured as time between 20% and 80% of signal amplitude.  
(6) Data and control signals are QE[23:0], QO[23:0], DE, HSYNC, VSYNC. and CTL[3:1].  
(7) Amount of time detected between DE transitions determines whether link is active or inactive. SCDT indicates link activity.  
tr1  
tf1  
80%  
QE[23:0], QO[23:0], DE,  
CTK[3:1], HSYNC, VSYNC  
80%  
20%  
20%  
6-1. Rise and Fall Times of Data and Control Signals  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
 
 
 
 
 
 
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
t
r2  
t
f2  
80%  
20%  
80%  
20%  
ODCK  
6-2. Rise and Fall Times of ODCK  
1/fODCK  
ODCK  
6-3. ODCK Frequency  
t(su1)  
t(su2)  
t(h1)  
t(h2)  
VOH  
VOL  
VOH  
VOL  
ODCK  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
QE[23:0], QO[23:0] DE,  
CTL[3:1], HSYNC, VSYNC  
OCK_INV  
6-4. Data Setup and Hold Times to Rising and Falling Edges of ODCK  
VOH  
ODCK  
td(st)  
QE[23:0]  
50%  
6-5. ODCK High to QE[23:0] Staggered Data Output  
PD  
VIL  
tpd(PDL)  
QE[23:0], QO[23:0],  
ODCK, DE, CTL[3:1],  
HSYNC, VSYNC, SCDT  
6-6. Delay From PD Low to Hi-Z Outputs  
PDO  
VIL  
tpd(PDOL)  
QE[23:0], QO[23:0],  
ODCK, DE, CTL[3:2],  
HSYNC, VSYNC  
6-7. Delay From PDO Low to Hi-Z Outputs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
VIH  
PD  
tp(PDH-V)  
DFO, ST, PIXS, STAG,  
Rx[2:0]+, Rx[2:0]–,  
OCK_INV  
6-8. Delay From PD Low to High Until Inputs Are Active  
t
t
t(FSC)  
t(HSC)  
DE  
SCDT  
6-9. Time From DE Transitions to SCDT Low and SCDT High  
6.9 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tpd(PDL)  
Propagation delay time from PD low  
to Hi-Z outputs  
9
ns  
Propagation delay time from PDO  
low to Hi-Z outputs  
tpd(PDOL)  
tt(HSC)  
9
ns  
tpix  
tpix  
tpix  
Delay time from DE transition to  
SCDT low(7)  
1e6  
1600  
0.25  
Delay time from DE transition to  
SCDT high(7)  
tt(FSC)  
td(st)  
Delay time, ODCK latching edge to  
QE[23:0] data output  
STAG = low, PIXS = high  
tps  
Rx+  
50%  
Rx–  
6-10. Analog Input Intra-Pair Differential Skew  
t
wL(PDL_MIN)  
V
IL  
PD  
6-11. Minimum Time PD Low  
TX2  
TX1  
50%  
t
ccs  
50%  
TX0  
6-12. Analog Input Channel-to-Channel Skew  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
t
t
DEH  
DEL  
DE  
6-13. Minimum DE Low and Maximum DE High  
6.10 Typical Characteristics  
180  
160  
140  
120  
100  
80  
60  
40  
20  
TFP401A-Q1  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Clock (MHz)  
D001  
6-14. Imax vs Input Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TFP401A-Q1  
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TFP401A-Q1 device is a digital visual interface (DVI)-compliant TMDS digital receiver used in digital flat-  
panel display systems to receive and decode TMDS-encoded RGB pixel data streams. In a digital display  
system, a host (usually a PC or workstation) contains a TMDS-compatible transmitter that receives 24-bit pixel  
data along with appropriate control signals. The host encodes the data and control signals into a high-speed low-  
voltage differential serial bit stream (fit for transmission over a twisted-pair cable) to a display device. The display  
device (usually a flat-panel monitor) requires a TMDS-compatible receiver like the TI TFP401A-Q1 device to  
decode the serial bit stream back to the same 24-bit pixel data and control signals that originated at the host.  
This decoded data is then suitable for application directly to the flat-panel drive circuitry to produce an image on  
the display. Host and display separation distances can be up to 5 meters or more, making serial transmission of  
the pixel data preferable. Support of modern display resolutions up to UXGA requires a high-bandwidth receiver  
with good jitter and skew tolerance.  
7.2 Functional Block Diagram  
3.3 V  
3.3 V  
1.8 V  
Regulator  
Internal 50-W  
Termination  
3.3 V  
RED(0-7)  
QE(0-23)  
QO(0-23)  
Channel 2  
CH2(0-9)  
CH1(0-9)  
CTL3  
CTL2  
Rx2+  
Rx2-  
+
_
Latch  
Latch  
ODCK  
DE  
GRN(0-7)  
CTL1  
Channel 1  
Channel 0  
Data Recovery  
and  
Rx1+  
Rx1-  
+
_
TMDS  
Panel  
SCDT  
Decoder  
Interface  
CTL3  
CTL2  
Synchronization  
BLU(0-7)  
VSYNC  
HSYNC  
CH0(0-9)  
CTL1  
Rx0+  
Rx0-  
+
_
Latch  
PLL  
VSYNC  
HSYNC  
RxC+  
RxC-  
+
_
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 TMDS Pixel Data and Control Signal Encoding  
The device transmits only one of two possible transition-minimized differential signaling (TMDS) characters for a  
given pixel at a given time. The transmitter keeps a running count of the number of ones and zeros previously  
sent, and transmits the character that minimizes the number of transitions to approximate a dc balance of the  
transmission line.  
Reception of RGB pixel data during active display time uses three TMDS channels, DE = high. The same three  
channels also receive control signals, HSYNC, VSYNC, and user-defined control signals CTL[3:1]. Reception of  
these control signals occurs during inactive display or blanking-time. Blanking-time is when DE = low. The  
following table maps the received input data to the appropriate TMDS input channel in a DVI-compliant system.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
 
 
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
7-1. TMDS Pixel Data and Control Signal Encoding  
RECEIVED PIXEL DATA  
ACTIVE DISPLAY DE = HIGH  
OUTPUT PINS  
(VALID FOR DE = HIGH)  
INPUT CHANNEL  
Channel-2 (Rx2 ±)  
Red[7:0]  
QE[23:16] QO[23:16]  
Green[7:0]  
Blue[7:0]  
Channel-1 (Rx1 ±)  
Channel-0 (Rx0 ±)  
QE[15:8] QO[15:8]  
QE[7:0] QO[7:0]  
RECEIVED CONTROL DATA  
BLANKING DE = LOW  
OUTPUT PINS  
(VALID FOR DE = LOW)  
INPUT CHANNEL  
CTL[3:2]  
Channel-2 (Rx2 ±)  
Channel-1 (Rx1 ±)  
Channel-0 (Rx0 ±)  
CTL[3:2]  
CTL1  
CTL[1: 0](1)  
HSYNC, VSYNC  
HSYNC, VSYNC  
(1) Some TMDS transmitters transmit a CTL0 signal. The TFP401A-Q1 device decodes and transfers CTL[3:1] and ignores CTL0  
characters. CTL0 is not available as a TFP401A-Q1 output.  
The TFP401A-Q1 device discriminates between valid pixel TMDS characters and control TMDS characters to  
determine the state of active display versus blanking, in effect, the state of DE.  
7.3.2 TFP401A-Q1 Clocking and Data Synchronization  
The TFP401A-Q1 device receives a clock reference from the DVI transmitter that has a period equal to the pixel  
time, tpix. Another name for the frequency of this clock is the pixel rate. Because the TMDS encoded data on  
Rx[2:0] contains 10 bits per 8-bit pixel, it follows that the Rx[2:0] serial bit rate is 10 times the pixel rate. For  
example, the required pixel rate to support a UXGA resolution with 60-Hz refresh rate is 165 MHz. The TMDS  
serial bit rate is 10× the pixel rate, or 1.65 Gb/s. Due to the transmission of this high-speed digital bit stream, on  
three separate channels (or twisted-pair wires) of long distances (35 meters), there is no assurance of phase  
synchronization between the data steams and the input reference clock. In addition, skew between the three  
data channels is common. The TFP401A-Q1 device uses a 4× oversampling scheme of the input data streams  
to achieve reliable synchronization with up to 1-tpix channel-to-channel skew tolerance. Accumulated jitter on the  
clock and data lines due to reflections and external noise sources is also typical of high-speed serial data  
transmission; hence, the TFP401A-Q1 design for high jitter tolerance.  
A phase-locked loop (PLL) conditions the input clock of the TFP401A-Q1 device to remove high-frequency jitter  
from the clock. The PLL provides four 10× clock outputs of different phase to locate and sync the TMDS data  
streams (4× oversampling). During active display, the pixel data encoding is for transition minimization, whereas  
in blank, the control data encoding is for transition maximization. Transmitting in blank for a minimum period of  
time, 128 tpix, requires a DVI-compliant transmitter to ensure sufficient time for data synchronization when the  
receiver sees a transition-maximized code. Synchronization during blank, when the data is transition-maximized,  
ensures reliable data-bit boundary detection. Phase synchronization to the data streams, maintained as long as  
the link remains active, is unique for each of the three input channels.  
7.3.3 TFP401A-Q1 TMDS Input Levels and Input Impedance Matching  
The TMDS inputs to the TFP401A-Q1 receiver have a fixed single-ended termination to AVDD. A laser trim  
process internally optimizes the TFP401A-Q1 device to fix the impedance precisely at 50 Ω. The device  
functions normally with or without a resistor on the EXT_RES pin, so it remains drop-in compatible with current  
sockets. The fixed impedance eliminates the need for an external resistor while providing optimum impedance  
matching to standard 50-ΩDVI cables.  
7-1 shows a conceptual schematic of a DVI transmitter and TFP401A-Q1 receiver connection. A transmitter  
drives the twisted-pair cable through a current source, usually using an open-drain type of output driver. The  
internal resistor, matched to the cable impedance at the TFP401A-Q1 input, provides a pullup to AVDD. Naturally,  
with the transmitter disconnected and the TFP401A-Q1 DVI inputs left unconnected, the TFP401A-Q1 receiver  
inputs pull up to AVDD. 7-2 shows the single-ended differential signal and full-differential signal. The design of  
the TFP401A-Q1 device is for response to differential signal swings ranging from 150 mV to 1.56 V, with  
common-mode voltages ranging from (AVDD 300 mV) to (AVDD 37 mV).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TFP401A-Q1  
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
DVI  
TI TFP401/401A  
Receiver  
Transmitter  
AVDD  
DVI Compliant Cable  
Internal Termination  
at 50 W  
DATA  
DATA  
+
_
Current  
Source  
Copyright © 2017, Texas Instruments Incorporated  
7-1. TMDS Differential Input and Transmitter Connection  
VIDIFF  
+1/2 VIDIFF  
–1/2 VIDIFF  
1/2 VIDIFF  
AVCC  
AVCC – 1/2 VIDIFF  
a) Single-Ended Input Signal  
b) Differential Input Signal  
7-2. TMDS Inputs  
7.3.4 TFP401A-Q1 Device Incorporates HSYNC Jitter Immunity  
Several DVI transmitters available in the market introduce jitter on the transmitted HSYNC and VSYNC signals  
during the TMDS encryption process. The HSYNC signal can shift by one pixel position (one clock) from nominal  
in either direction, resulting in up to two cycles of HSYNC shift. This jitter carries through to the DVI receiver, and  
if the position of HSYNC shifts continuously, the receiver can lose track of the input timing, causing pixel noise to  
occur on the display. For this reason, one should use a DVI-compliant receiver with HSYNC jitter immunity in all  
displays that could be connected to host PCs with transmitters that have this HSYNC jitter problem.  
The TFP401A-Q1 integrates HSYNC regeneration circuitry that provides a seamless interface to these  
noncompliant transmitters. The regeneration circuitry always fixes the position of the data enable (DE) signal in  
relation to data, irrespective of the location of HSYNC. The TFP401A-Q1 receiver uses the DE and clock signals  
to recreate stable vertical and horizontal sync signals. The circuit filters the HSYNC output of the receiver and  
shifts HSYNC to the nearest eighth bit boundary, producing a stable output with respect to the data, as shown in  
7-3. This ensures accurate data synchronization at the input of the display timing controller.  
This HSYNC regeneration circuit is transparent to the monitor, and removal is unnecessary even if the  
transmitted HSYNC is stable. For example, the PanelBus line of DVI 1.0-compliant transmitters, such as the  
TFP6422 and TFP420, do not have the HSYNC jitter problem. The TFP401A-Q1 device operates correctly with  
either compliant or noncompliant transmitters. In contrast, the TFP401A-Q1 device is ideal for customers who  
have control over the transmit portion of the design, such as bundled-system manufacturers and for internal  
monitor use (the DVI connection between monitor and panel modules).  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
ODCK  
HSYNC Shift by 1 Clock  
HSYNC IN  
DE  
HSYNC OUT  
7-3. HSYNC Regeneration Timing Diagram  
7.4 Device Functional Modes  
7.4.1 TFP401A-Q1 Modes of Operation  
The TFP401A-Q1 device provides system design flexibility and value by providing the system designer with  
configurable options or modes of operation to support varying system architectures. 7-2 outlines the various  
supportable panel modes, along with appropriate external control pin settings.  
7-2. Supported Panel Modes  
PANEL  
TFT or 16-bit DSTN  
TFT or 16-bit DSTN  
TFT  
PIXEL RATE  
1 pixel per clock  
1 pixel per clock  
2 pixels per clock  
2 pixels per clock  
1 pixel per clock  
1 pixel per clock  
2 pixels per clock  
2 pixels per clock  
ODCK LATCH EDGE  
ODCK  
Free run  
Free run  
Free run  
Free run  
Gated low  
Gated low  
Gated low  
Gated low  
DFO  
PIXS  
OCK_INV  
Falling  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Rising  
Falling  
TFT  
Rising  
24-bit DSTN  
None  
Falling  
Rising  
24-bit DSTN  
24-bit DSTN  
Falling  
Rising  
7.4.2 TFP401A-Q1 Output Driver Configurations  
The TFP401A-Q1 device provides flexibility by offering various output driver features for use to optimize power  
consumption, ground bounce, and power-supply noise. The following sections outline the output driver features  
and their effects.  
Output Driver Power Down (PDO = low): Pulling PDO low places all the output drivers, except CTL1 and  
SCDT, into a high-impedance state. One can tie the SCDT output, which indicates link-disabled or link-inactive,  
directly to the PDO input to disable the output drivers when the link is inactive or when the cable is disconnected.  
An internal pullup on the PDO pin defaults the TFP401A-Q1 device to the normal nonpower-down output-drive  
mode if left unconnected.  
Drive Strength (ST = high for high drive strength, ST = low for low drive strength): The TFP401A-Q1 device  
allows for selectable output drive strength on the data, control, and ODCK outputs. See the DC Electrical  
Characteristics table for the values of IOH and IOL current drives for a given ST state. The high output-drive  
strength offers approximately two times the drive as the low output-drive strength.  
Time-Staggered Pixel Output: This option works only in conjunction with the 2-pixels-per-clock mode (PIXS =  
high). Setting STAG = low time-staggers the even- and odd-pixel outputs so as to reduce the amount of  
instantaneous current surge from the power supply. Depending on the PCB layout and design, this can help  
reduce the amount of system ground bounce and power-supply noise. The time stagger is such that in 2-pixels-  
per-clock mode, the even pixel is delayed from the latching edge of ODCK by 0.25 tcip. (tcip is the period of  
ODCK. The ODCK period is 2 tpix when in 2-pixels-per-clock mode.)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TFP401A-Q1  
 
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
Depending on system constraints of output load, pixel rate, panel input architecture, and board cost, the  
TFP401A-Q1 drive-strength and staggered-pixel options allow flexibility to reduce system power-supply noise,  
ground bounce, and EMI.  
Power Management: The TFP401A-Q1 device offers several system power-management features.  
The output-driver power down (PDO = low) is an intermediate mode which offers several uses. During this  
mode, all output drivers except SCDT and CTL1 go into a high-impedance state while the rest of the device  
circuitry remains active.  
Power down (PD = low) of the TFP401A-Q1 device is a complete power down in that it powers down the digital  
core, the analog circuitry, and output drivers. All output drivers go into a Hi-Z state. Of all the inputs, only PD  
remains active. The TFP401A-Q1 device does not respond to any digital or analog inputs until PD is pulled high.  
Both PDO and PD have internal pullups, so if left unconnected they default the TFP401A-Q1 device to normal  
operating modes.  
Sync Detect: The TFP401A-Q1 device offers an output, SCDT, to indicate link activity. The TFP401A-Q1 device  
monitors activity on DE to determine if the link is active. When 1 million (1e6) pixel clock periods pass without a  
transition on DE, the TFP401A-Q1 device considers the link inactive, and drives SCDT low. While SCDT is low, if  
two DE transitions are detected within 1600 pixel clock periods, the device considers the link active and pulls  
SCDT high.  
A use of SCDT is to signal a system power management circuit to initiate a system power down when the device  
considers the link inactive. The SCDT can also be tied directly to the TFP401A-Q1 PDO input to power down the  
output drivers when the link is inactive. It is not recommended to use SCDT to drive the PD input, because once  
in complete power-down, the analog inputs are ignored and the SCDT state does not change. An external  
system power-management circuit to drive PD is preferred.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TFP401A-Q1 is a DVI (Digital Visual Interface) compliant digital receiver that is used in digital flat panel  
display systems to receive and decode T.M.D.S. encoded RGB pixel data streams. In a digital display system a  
host, usually a PC or workstation, contains a DVI compliant transmitter that receives 24 bit pixel data along with  
appropriate control signals and encodes them into a high speed low voltage differential serial bit stream fit for  
transmission over a twisted-pair cable to a display device. The display device, usually a flat-panel monitor, will  
require a DVI compliant receiver like the TI TFP401A-Q1 to decode the serial bit stream back to the same 24 bit  
pixel data and control signals that originated at the host. This decoded data can then be applied directly to the  
flat panel drive circuitry to produce an image on the display. Since the host and display can be separated by  
distances up to 5 meters or more, serial transmission of the pixel data is preferred. The TFP401A-Q1 will support  
resolutions up to UXGA.  
8.1.1 Typical Application  
8-1. Typical Application  
8.1.1.1 Design Requirements  
8-1. Design Parameters  
PARAMETER  
Power supply  
VALUE  
3.3 V-DC at 1 A  
Single-ended  
25 MHz to 165 MHz  
24 bits/pixel  
Rising edge  
No  
Input clock  
Input clock frequency range  
Output format  
Input clock latching  
I2C EEPROM support  
De-skew  
No  
8.1.1.2 Detailed Design Procedure  
8.1.1.2.1 Data and Control Signals  
The trace length of data and control signals out of the receiver should be kept as close to equal as possible.  
Trace separation should be 5X Height. As a general rule, traces also should be less than 2.8 inches if possible  
(longer traces can be acceptable).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TFP401A-Q1  
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
Calculation:  
Delay = 85 × SQRT er  
(1)  
(2)  
(3)  
er = 4.35; relative permitivity of 50% resin FR-4 at 1 GHz  
Delay = 177 pS/inch  
space  
Length of rising edge = Tr(picoseconds)/Delay; Tr = 3 nS  
= 3000 ps/177 ps per inch  
(4)  
(5)  
(6)  
= 16.9 inches  
space  
Length of rising edge / 6 = Maximum length of trace for lumped circuit  
16.9 / 6 = 2.8 inches  
(7)  
(8)  
8-2. TFP401A-Q1 App Info Data and Control Signals  
8.1.1.2.2 Configuration Options  
The TFP401A-Q1 can be configured in several modes depending on the required output format, for example 1-  
byte/clock, 2-bytes/clock, falling/rising clock edge.  
You can leave place holders for future configuration changes.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
Copyright © 2017, Texas Instruments Incorporated  
8-3. TFP401A-Q1 App Info Config Options  
8.1.1.2.3 Power Supplies Decoupling  
Digital, analog and PLL supplies must be decoupled from each other to avoid electrical noise on the PLL and the  
core.  
Copyright © 2017, Texas Instruments Incorporated  
8-4. TFP401A-Q1 App Info Power Decoupling  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
8.1.1.3 Application Curves  
Sometimes the panel does not support the same format as the GPU (graphics processor unit). In these cases  
the user must decide how to connect the unused bits.  
The below plots show the mismatches between the 18-bit GPU and a 24-bit LCD where x and y represent the 2  
LSB of the panel.  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
x=GND, y=1  
x=B7, y=B6  
B2 B1 = GND, B0 =1  
B2 B1 B0 = B7 B6 B5  
0
0
1
4
7
10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64  
Pixel Samples  
1
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31  
Pixel Samples  
8-6. 18B GPU to 24b LCD  
8-5. 16b GPU to 24b LCD  
8.1.1.4 DVDD  
Place one 0.01-µF capacitor as close as possible between each DVDD device pin (Pins 6, 38, and 67) and  
ground.  
8.1.1.5 OVDD  
Place one 0.01-µF capacitor as close as possible between each OVDD device pin (Pins 18, 29, 43, 57, and 78)  
and ground.  
A 22-µF tantalum capacitor should be placed between the supply and 0.01-µF capacitors.  
A ferrite bead should be used between the source and the 22-µF capacitor.  
8.1.1.6 AVDD  
Place one 0.01-µF capacitor as close as possible between each AVDD device pin (Pins 82, 84, 88, and 95) and  
ground.  
A 22-µF tantalum capacitor should be placed between the supply and 0.01-µF capacitors.  
A ferrite bead should be used between the source and the 22-µF capacitor.  
8.1.1.7 PVDD  
Place three 0.01-µF capacitors in parallel as close as possible between the PVDD device pin (Pin 97) and  
ground. A 22-µF tantalum capacitor should be placed between the supply and 0.01-µF capacitors. A ferrite bead  
should be used between the source and the 22-µF capacitor.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
8.2 Power Supply Recommendations  
Use solid ground planes, tie ground planes together with as many vias as is practical. This will provide a  
desirable return path for current. Each supply should be on separate split power planes, where each power  
plane should be as large an area as possible. Connect PanelBus receiver power and ground pins and all bypass  
caps to appropriate power or ground plane with via. Vias should be as fat and short as practical, the goal is to  
minimize the inductance.  
8.3 Layout  
8.3.1 Layout Guidelines  
8.3.1.1 Layer Stack  
The pinout of Texas Instruments High Speed Interface (HSI) devices features differential signal pairs and the  
remaining signals comprise the supply rails, VCC and ground, and lower speed signals such as control pins. As  
an example, consider a device X which is a repeater/re-driver, so both its inputs and outputs are high-speed  
differential signals. These guidelines can be applied to other high-speed devices such as drivers, receivers,  
multiplexers, and so on.  
A minimum of four layers is required to accomplish a low EMI PCB design. Layer stacking should be in the  
following order (top-to-bottom): high-speed differential signal layer, ground plane, power plane and control signal  
layer.  
8-7. Layer Stack  
8.3.1.2 Routing High-Speed Differential Signal Traces (RxC-, RxC+, Rx0-, Rx0+, Rx1-, Rx1+, Rx2-, Rx2+)  
Trace impedance should be controlled for optimal performance. Each differential pair should be equal in length  
and symmetrical and should have equal impedance to ground with a trace separation of 2X to 4X Height. A  
differential trace separation of 4X Height yields about 6% cross-talk (6% effect on impedance). TI recommends  
that differential trace routing should be side by side, though it is not important that the differential traces be tightly  
coupled together because tight coupling is not achievable on PCB traces. Typical ratios on PCBs are only  
20-50%, 99.9% is the value of a well-balanced twisted pair cable. Each differential trace should be as short as  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TFP401A-Q1  
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
possible (< 2 inches preferably) with no 90° angles. These high-speed transmission traces hould be on layer 1  
(top layer).  
RxC-, RxC+, Rx0-, Rx0+, Rx1-, Rx1+, Rx2-, Rx2+ signals all route directly from the DVI connector pins to the  
device, no external components are needed.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
8.3.2 Layout Example  
DVI connector trace matching  
8-8. DVI Connector  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
Keep data lines as far as possible from each other  
8-9. Data Route  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
Connect the thermal pad to ground  
8-10. GND Route  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TFP401A-Q1  
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
8.3.3 TI PowerPAD 100-TQFP Package  
The TFP401A-Q1 device comes in TI's thermally enhanced PowerPAD 100-TQFP package. The PowerPAD  
package is a 14-mm × 14-mm × 1-mm TQFP outline with 0.5-mm lead pitch. The PowerPAD package has a  
specially designed die mount pad that offers improved thermal capability over typical TQFP packages of the  
same outline. The TI 100-TQFP PowerPAD package offers a back-side solder plane that connects directly to the  
die mount pad for enhanced thermal conduction. There is no thermal requirement for soldering the back side of  
the TFP401A-Q1 device to the application board, because the device power dissipation is well within the  
package capability when not soldered. However, to minimize stress on peripheral pins, it is highly recommended  
to solder the thermal pad to PCB.  
Soldering the back side of the device to the PCB ground plane is recommended for electrical considerations.  
Because the die pad is electrically connected to the chip substrate and hence to chip ground, connection of the  
PowerPAD's back side to a PCB ground plane helps to improve EMI, ground bounce, and power-supply noise  
performance.  
8-2 outlines the thermal properties of the TI 100-TQFP PowerPAD package. The 100-TQFP non-PowerPAD  
package is included only for reference.  
8-2. TI 100-TQFP (14 mm × 14 mm × 1 mm) With 0.5-mm Lead Pitch  
WITHOUT  
PowerPAD™  
PACKAGE  
PowerPAD™ PACKAGE,  
NOT CONNECTED TO PCB  
THERMAL PLANE  
PowerPAD™ PACKAGE,  
CONNECTED TO PCB  
THERMAL PLANE(1)  
PARAMETER  
Theta-JA(1) (2)  
45°C/W  
3.11°C/W  
1.6 W  
27.3°C/W  
0.12°C/W  
2.7 W  
17.3°C/W  
0.12°C/W  
4.3 W  
Theta-JC(1) (2)  
Maximum power dissipation(1) (2) (3)  
(1) Specified with 2-oz. (0.071 mm thick) Cu PCB plating.  
(2) Airflow is at 0 LFM (0 m/s) (no airflow).  
(3) Measured at ambient temperature, TA = 70°C.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TFP401A-Q1  
 
 
 
 
 
TFP401A-Q1  
ZHCSAH8B NOVEMBER 2012 REVISED MARCH 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
Panelbus, PowerPAD, and EPIC-5are trademarks of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TFP401A-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TFP401AIPZPRQ1  
ACTIVE  
HTQFP  
PZP  
100  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
TFP401AI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TFP401A-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2022  
Catalog : TFP401A  
Enhanced Product : TFP401A-EP  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TFP401AIPZPRQ1  
HTQFP  
PZP  
100  
1000  
330.0  
24.4  
17.0  
17.0  
1.5  
20.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PZP 100  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TFP401AIPZPRQ1  
1000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PZP 100  
14 x 14, 0.5 mm pitch  
PowerPAD TM TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224739/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TFP401ACPZP

SPECIALTY CONSUMER CIRCUIT, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, POWER, THERMALLY ENHANCED, PLASTIC, TQFP-100
TI

TFP401AIPZPRQ1

汽车类 Panelbus ™ DVI 接收器 165MHz、HSYNC 抗抖动 | PZP | 100 | -40 to 85
TI

TFP401AMPZPEP

TI PanelBus™ DIGITAL RECEIVER
TI

TFP401APZP

TI PanelBus DIGITAL RECEIVER
TI

TFP401APZPG4

具有 HSYNC & Panelbus™ 集成电路的 165MHz TMDS DVI 接收器/解串器 | PZP | 100 | 0 to 70
TI

TFP401APZPR

具有 HSYNC & Panelbus™ 集成电路的 165MHz TMDS DVI 接收器/解串器 | PZP | 100 | 0 to 70
TI

TFP401PZP

TI PanelBus DIGITAL RECEIVER
TI

TFP401PZP

SLDS120B - MARCH 2000 – REVISED JUNE 2003
QUANTUM

TFP401_07

PanelBus DIGITAL RECEIVER
ETC

TFP403

TI PANEBUS DIGITAL RECEIVER
TI

TFP403PZP

SLDS125A – DECEMBER 2000 – REVISED OCTOBER 2002
TI

TFP403PZPG4

PanelBus DVI 接收器 | PZP | 100 | 0 to 70
TI