THS1030_13 [TI]

3-V TO 5.5-V, 10-BIT, 30MSPS CMOS ANALOG-TO-DIGITAL CONVERTER; 3 V至5.5 V , 10位, 30MSPS CMOS模拟数字转换器
THS1030_13
型号: THS1030_13
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3-V TO 5.5-V, 10-BIT, 30MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
3 V至5.5 V , 10位, 30MSPS CMOS模拟数字转换器

转换器
文件: 总39页 (文件大小:1187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
28-PIN TSSOP/SOIC PACKAGE  
(TOP VIEW)  
D
D
D
D
D
D
D
D
D
10-Bit Resolution, 30 MSPS  
Analog-to-Digital Converter  
Configurable Input: Single-Ended or  
Differential  
AGND  
AV  
DD  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
DV  
AIN  
2
DD  
Differential Nonlinearity: 0.3 LSB  
Signal-to-Noise: 57 dB  
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O8  
VREF  
3
REFBS  
REFBF  
MODE  
REFTF  
REFTS  
876M  
4
5
Spurious Free Dynamic Range: 60 dB  
Adjustable Internal Voltage Reference  
Out-of-Range Indicator  
6
7
8
Power-Down Mode  
9
AGND  
REFSENSE  
10  
11  
Pin Compatible With TLC876  
description  
I/O9 12  
OVR 13  
17 STBY  
16 OE  
The THS1030 is a CMOS, low-power, 10-bit,  
DGND 14  
15 CLK  
30 MSPS analog-to-digital converter (ADC) that  
can operate with a supply range from 3 V to 5.5 V.  
The THS1030 has been designed to give circuit  
developers flexibility. The analog input to the THS1030 can be either single-ended or differential. The THS1030  
provides a wide selection of voltage references to match the user’s design requirements. For more design  
flexibility, the internal reference can be bypassed to use an external reference to suit the dc accuracy and  
temperature drift requirements of the application. The out-of-range output is used to monitor any out-of-range  
condition in THS1030’s input range.  
The speed, resolution, and single-supply operation of the THS1030 are suited for applications in STB, video,  
multimedia, imaging, high-speed acquisition, and communications. The speed and resolution ideally suit  
charge-couple device (CCD) input systems such as color scanners, digital copiers, digital cameras, and  
camcorders. A wide input voltage range between REFBS and REFTS allows the THS1030 to be applied in both  
imaging and communications systems.  
The THS1030C is characterized for operation from 0°C to 70°C, while the THS1030I is characterized for  
operation from 40°C to 85°C  
AVAILABLE OPTIONS  
SPECIFIED  
PACKAGE  
LEAD  
PACKAGE  
DESGIGNATOR  
PACKAGE  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
TEMPERATURE  
RANGE  
MARKINGS  
THS1030CPW  
THS1030CPWR  
THS1030IPW  
Tube, 50  
Tube and Reel, 2000  
Tube, 50  
THS1030C  
THS1030I  
THS1030C  
THS1030I  
0°C to 70°C  
−40°C to 85°C  
0°C to 70°C  
TH1030  
TJ1030  
TH1030  
TJ1030  
TSSOP−28  
SOP−28  
PW  
DW  
THS1030IPWR  
THS1030CDW  
THS1030CDWR  
THS1030IDW  
THS1030IDWR  
Tube and Reel, 2000  
Tube, 20  
Tube and Reel, 1000  
Tube, 20  
−40°C to 85°C  
Tube and Reel, 1000  
For the most current specification and package information, refer to the TI web site at www.ti.com.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢤ  
Copyright 1999 − 2003, Texas Instruments Incorporated  
ꢠ ꢤ ꢡ ꢠꢙ ꢚꢭ ꢜꢛ ꢟ ꢧꢧ ꢥꢟ ꢝ ꢟ ꢞ ꢤ ꢠ ꢤ ꢝ ꢡ ꢊ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
functional block diagram  
Core  
ADC  
10  
AIN  
Sample  
and  
Hold  
Output  
Buffer  
I/O(0−9)  
REFTS  
REFBS  
OVR  
OE  
Internal  
Reference  
Buffer  
A
B
MODE  
REFTF  
REFBF  
Timing  
Circuit  
VBG  
ORG  
GND  
REFSENSE  
VREF  
STBY  
CLK  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AGND  
AIN  
AV  
NO.  
1, 19  
27  
I
I
I
I
I
I
Analog ground  
Analog input  
28  
Analog supply  
Clock input  
DD  
CLK  
15  
DGND  
14  
Digital ground  
Digital driver supply  
DV  
2
DD  
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O8  
I/O9  
3
4
5
6
7
8
9
10  
11  
12  
Digital I/O bit 0 (LSB)  
Digital I/O bit 1  
Digital I/O bit 2  
Digital I/O bit 3  
Digital I/O bit 4  
Digital I/O bit 5  
Digital I/O bit 6  
Digital I/O bit 7  
Digital I/O bit 8  
Digital I/O bit 9 (MSB)  
O
MODE  
OE  
23  
16  
13  
25  
24  
18  
22  
21  
17  
26  
20  
I
Mode input  
I
High to 3-state the data bus, low to enable the data bus  
Out-of-range indicator  
OVR  
O
REFBS  
REFBF  
REFSENSE  
REFTF  
REFTS  
STBY  
I
Reference bottom sense  
I
Reference bottom decoupling  
Reference sense  
I
I
Reference top decoupling  
I
Reference top sense  
I
I/O  
I
High = power-down mode, low = normal operation mode  
Internal and external reference  
VREF  
876M  
High = THS1030 mode, low = TLC876 mode (see section 4 for TLC876 mode)  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range: AV  
to AGND, DV  
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6.5 V  
DD  
DD  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 0.3 V  
AV to DV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 V to 6.5 V  
DD  
DD  
Mode input voltage range, MODE to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Reference voltage input range, REFTF, REFTB, REFTS, REFBS to AGND . . . . . . . −0.3 V to AV  
Analog input voltage range, AIN to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Reference input voltage range, VREF to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Reference output voltage range, VREF to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Clock input voltage range, CLK to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Digital input voltage range, digital input to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DV  
Digital output voltage range, digital output to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DV  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
digital inputs  
MIN NOM  
MAX  
UNIT  
Clock input  
0.8 × AV  
DD  
High-level input voltage, V  
IH  
V
All other inputs  
Clock input  
0.8 × DV  
DD  
0.2 × AV  
0.2 × DV  
DD  
Low-level input voltage, V  
V
IL  
All other inputs  
DD  
analog inputs  
MIN  
NOM  
MAX  
UNIT  
Analog input voltage, V  
I(AIN)  
REFBS  
REFTS  
2
V
V
V
V
V
V
V
1
1
0
I(VREF)  
AV  
Reference input voltage  
I(REFTS)  
I(REFBS)  
DD  
AV −1  
DD  
power supply  
MIN NOM  
MAX  
5.5  
UNIT  
AV  
DD  
3
3
3.3  
3.3  
Supply voltage  
Maximum sampling rate = 30 MSPS  
V
DV  
5.5  
DD  
REFTS, REFBS reference voltages (MODE = AV  
)
DD  
MIN NOM  
MAX  
AV  
UNIT  
V
Reference input voltage (top)  
REFTS  
REFBS  
1
DD  
Reference input voltage (bottom)  
Differential input voltage (REFTS − REFBS)  
0
AV −1  
DD  
V
1
2
V
Switched sampling input capacitance on REFTS or REFBS  
0.6  
pF  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
recommended operating conditions (continued)  
sampling rate and resolution  
PARAMETER  
MIN NOM  
MAX  
UNIT  
f
s
Sample frequency  
Resolution  
5
30 MSPS  
Bits  
10  
electrical characteristics over recommended operating conditions, AV  
= 3 V, DV  
= 3 V, f = 30  
DD  
DD s  
MSPS/50% duty cycle, MODE = AV , 2-V input span from 0.5 V to 2.5 V, external reference,  
DD  
T = T  
to T (unless otherwise noted)  
A
min  
max  
analog inputs  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
V
I(AIN)  
Analog input voltage  
REFBS  
REFTS  
C
Switched sampling input capacitance  
Full power bandwidth (−3 dB)  
DC leakage current (input = FS)  
1.2  
150  
60  
pF  
I
BW  
MHz  
µA  
I
lkg  
VREF reference voltages  
PARAMETER  
MIN  
TYP  
MAX  
1.05  
2.10  
2
UNIT  
V
Internal 1-V reference voltage (REFSENSE = VREF)  
Internal 2-V reference voltage (REFSENSE = AGND)  
0.95  
1.90  
1
1
2
V
External reference voltage (REFSENSE = AV  
)
V
DD  
Reference input resistance  
680  
REFTF, REFBF reference voltages  
PARAMETER  
TEST CONDITIONS  
MIN  
0.9  
1.9  
1.3  
2
TYP  
1
MAX  
1.1  
2.1  
1.7  
3
UNIT  
V
Differential input voltage (REFTF − REFBF) (REFSENSE = VREF)  
Differential input voltage (REFTF − REFBF) (REFSENSE = AGND)  
2
V
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
1.5  
2.5  
2
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Input common mode voltage (REFTF + REFBF)/2  
V
V
V
V
V
VREF = 1 V  
3
REFTF voltage (MODE = AV  
REFBF voltage (MODE = AV  
)
DD  
2.5  
3.5  
1
VREF = 2 V  
VREF = 1 V  
VREF = 2 V  
2
)
DD  
0.5  
1.5  
600  
1.2  
Input resistance between REFTF and REFBF  
Power up time for valid ADC conversions (t  
)
See Note 1  
µs  
PUconv  
NOTES: 1. Time from control register STBY pin returning low to the ADC conversion to be accurate within 0.1% of fullscale.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
electrical characteristics over recommended operating conditions, AV  
= 3 V, DV  
= 3 V, f = 30  
DD  
DD s  
MSPS/50% duty cycle, MODE = AV , 2-V input span from 0.5 V to 2.5 V, external reference,  
DD  
T = T  
to T (unless otherwise noted) (continued)  
A
min  
max  
dc accuracy  
PARAMETER  
MIN  
TYP  
1
MAX  
UNIT  
LSB  
LSB  
INL  
Integral nonlinearity (see Note 2)  
Differential nonlinearity (see Note 3)  
Offset error (see Note 4)  
Gain error (see Note 5)  
Missing code  
2
1
DNL  
0.3  
0.4  
1.4  
1.4 %FSR  
3.5 %FSR  
No missing code assured  
NOTES: 2. Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero to full scale. The point used as zero  
occurs 1/2 LSB before the first code transition. The full-scale point is defined as a level 1/2 LSB beyond the last code transition. The  
deviation is measured from the center of each particular code to the true straight line between these two endpoints.  
3. An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Therefore this measure  
indicates how uniform the transfer function step sizes are. The ideal step size is defined here as the step size for the device under  
n
test (i.e., (last transition level – first transition level) ÷ (2 – 2)). Using this definition for DNL separates the effects of gain and offset  
error. A minimum DNL better than –1 LSB ensures no missing codes.  
4. Offset error is defined as the difference in analog input voltage – between the ideal voltage and the actual voltage – that will switch  
the ADC output from code 0 to code 1. The ideal voltage level is determined by adding the voltage corresponding to 1/2 LSB to the  
bottom reference level. The voltage corresponding to 1 LSB is found from the difference of top and bottom references divided by  
the number of ADC output levels (1024).  
5. Gain error is defined as the difference in analog input voltage – between the ideal voltage and the actual voltage – that will switch  
the ADC output from code 1022 to code 1023. The ideal voltage level is determined by subtracting the voltage corresponding to 1.5  
LSB from the top reference level. The voltage corresponding to 1 LSB is found from the difference of top and bottom references  
divided by the number of ADC output levels (1024).  
dynamic performance (See Note 6)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
9
MAX  
UNIT  
f = 3.5 MHz  
8.4  
f = 3.5 MHz, AV  
f = 15 MHz, 3 V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
9
DD  
ENOB  
SFDR  
THD  
Effective number of bits  
Bits  
7.8  
f = 15 MHz, AV  
f = 3.5 MHz  
7.7  
DD  
56  
60.6  
64.6  
48.5  
53  
f = 3.5 MHz, AV  
f = 15 MHz  
DD  
dB  
dB  
dB  
Spurious free dynamic range  
Total harmonic distortion  
Signal-to-noise ratio  
f = 15 MHz, AV  
f = 3.5 MHz  
DD  
60  
66.9  
47.5  
53.1  
57  
56  
f = 3.5 MHz, AV  
f = 15 MHz  
DD  
f = 15 MHz, AV  
f = 3.5 MHz  
DD  
53  
f = 3.5 MHz, AV  
f = 15 MHz  
56  
DD  
SNR  
53.1  
49.4  
56  
f = 15 MHz, AV  
f = 3.5 MHz  
DD  
52.5  
f = 3.5 MHz, AV  
f = 15 MHz  
56  
DD  
SINAD Signal-to-noise and distortion  
dB  
48.6  
48.1  
f = 15 MHz, AV  
DD  
NOTES: 6. Input amplitude of single tone sine wave for dynamic tests is −0.5 dBFS.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
electrical characteristics over recommended operating conditions, AV  
= 3 V, DV  
= 3 V, f = 30  
DD  
DD s  
MSPS/50% duty cycle, MODE = AV , 2-V input span from 0.5 V to 2.5 V, external reference,  
DD  
T = T  
to T  
(unless otherwise noted) (continued)  
A
min  
max  
clock  
PARAMETER  
MIN  
33  
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Clock cycle  
c
Pulse duration, clock high  
Pulse duration, clock low  
Clock to data valid, delay time  
Output disable to Hi-Z output, disable time  
Output enable to output valid, enable time  
Pipeline latency  
15  
16.5  
16.5  
110  
110  
25  
ns  
w(CKH)  
w(CKL)  
d(o)  
15  
ns  
ns  
20  
ns  
d(DZ)  
20  
ns  
d(DEN)  
3
4
2
Cycles  
ns  
t
Aperture delay time  
d(AP)  
Aperture uncertainty (jitter)  
ps  
power supply (See Note 7)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
29  
MAX  
40  
UNIT  
I
Operating supply current  
AV  
AV  
AV  
AV  
= DV  
= DV  
= DV  
= DV  
= 3 V, MODE = AVDD  
= 3 V  
mA  
CC  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
87  
120  
P
D
Power dissipation  
Standby power  
mW  
mW  
= 5 V  
150  
3
P
= 3 V, MODE = AVDD  
5
D(STBY)  
NOTES: 7. Mode and REFSENSE are set to AV . The internal reference buffer is powered up to buffer the externally applied 0.5 V REFBS  
DD  
and 2.5 V REFTS. 1.5 VDC is applied at AIN while converting data at 30 MSPS.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PARAMETER MEASUREMENT INFORMATION  
Sample 2  
Sample 3  
Sample 1  
Sample 5  
Sample 4  
Analog Input  
t
c
t
w(CKL)  
t
w(CKH)  
Input Clock  
See  
Note A  
t
d(o)  
Pipeline Latency  
Digital Output  
Sample 1  
Sample 2  
NOTE A: All timing measurements are based on 50% of edge transition.  
Figure 1. Digital Output Timing Diagram  
OE  
See Note A  
t
d(DZ)  
t
d(DEN)  
Hi-Z  
Output  
Output  
I/O  
NOTE A: All timing measurements are based on 50% of edge transition.  
Figure 2. Output Enable Timing Diagram  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
POWER  
vs  
SAMPLING FREQUENCY  
90  
88  
86  
84  
82  
80  
78  
76  
AV  
= DV  
= 3 V  
f = 3.5 MHz, −0.5 dBFS  
DD  
DD  
i
T
= 25°C  
A
5
10  
15  
20  
25  
30  
f
− Sampling Frequency − MHz  
s
Figure 3  
EFFECTIVE NUMBER OF BITS  
vs  
TEMPERATURE  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
AV  
= DV  
= 3 V  
f = 3.5 MHz, −0.5 dBFS  
DD  
DD  
i
f
= 30 MSPS  
s
−40  
−15  
10  
35  
60  
85  
T
A
− Temperature − °C  
Figure 4  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
vs  
SAMPLING FREQUENCY  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
AV  
= DV  
= 3 V  
f = 3.5 MHz, −0.5 dBFS  
DD  
DD  
i
T
= 25°C  
A
5
10  
15  
20  
25  
30  
f
− Sampling Frequency − MSPS  
s
Figure 5  
EFFECTIVE NUMBER OF BITS  
vs  
SAMPLING FREQUENCY  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
AV  
DD  
= 5 V  
= 3 V  
DV  
DD  
f = 3.5 MHz, −0.5 dBFS  
i
A
T
= 25°C  
5
10  
15  
20  
25  
30  
f
− Sampling Frequency − MSPS  
s
Figure 6  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
vs  
SAMPLING FREQUENCY  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
AV  
= DV  
= 5 V  
f = 3.5 MHz, −0.5 dBFS  
DD  
DD  
i
T
= 25°C  
A
5
10  
15  
20  
25  
30  
f
− Sampling Frequency − MSPS  
s
Figure 7  
DIFFERENTIAL NONLINEARITY  
vs  
INPUT CODE  
1.0  
0.8  
AV  
DD  
= 3 V  
= 3 V  
DV  
DD  
0.6  
f
= 30 MSPS  
s
0.4  
0.2  
−0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
0
128  
256  
384  
512  
640  
768  
896  
1024  
Input Code  
Figure 8  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
vs  
INPUT CODE  
2.0  
1.5  
AV  
DD  
= 3 V  
= 3 V  
DV  
DD  
f
= 30 MSPS  
1.0  
s
0.5  
0.0  
−0.5  
−1.0  
−1.5  
−2.0  
0
128  
256  
384  
512  
640  
768  
896  
1024  
Input Code  
Figure 9  
FFT  
vs  
FREQUENCY  
0
−20  
AV  
DD  
= 3 V  
= 3 V  
DV  
DD  
f = 3.5 MHz,  
i
−40  
−0.5dBFS  
−60  
−80  
−100  
−120  
−140  
0
2
4
6
8
10  
12  
14  
f − Frequency − MHz  
Figure 10  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
The analog input AIN is sampled in the sample and hold unit, the output of which feeds the ADC core, where  
the process of analog to digital conversion is performed against ADC reference voltages, REFTF and REFBF.  
Connecting the MODE pin to one of three voltages, AGND, AV  
or AV /2 sets up operating configurations.  
DD  
DD  
The three settings open or close internal switches to select one of the three basic methods of ADC reference  
generation.  
Depending on the user’s choice of operating configuration, the ADC reference voltages may come from the  
internal reference buffer or may be fed from completely external sources. Where the reference buffer is  
employed, the user can choose to drive it from the onboard reference generator (ORG), or may use an external  
voltage source. A specific configuration is selected by connections to the REFSENSE, VREF, REFTS and  
REFBS, and REFTF and REFBF pins, along with any external voltage sources selected by the user.  
The ADC core drives out through output buffers to the data pins D0 to D9. The output buffers can be disabled  
by the OE pin.  
A single, sample-rate clock (30 MHz maximum) is required at pin CLK. The analog input signal is sampled on  
the rising edge of CLK, and corresponding data is output after following third rising edge.  
The STBY pin controls the THS1030 power down.  
The user-chosen operating configuration and reference voltages determine what input signal voltage range the  
THS1030 can handle.  
The following sections explain:  
D
D
D
The internal signal flow of the device, and how the input signal span is related to the ADC reference voltages  
The ways in which the ADC reference voltages can be buffered internally, or externally applied  
How to set the onboard reference generator output, if required, and several examples of complete  
configurations  
signal processing chain (sample and hold, ADC)  
Figure 11 shows the signal flow through the sample and hold unit to the ADC core.  
REFTF  
VP+  
1
AIN  
REFTS  
REFBS  
Sample  
and  
Hold  
ADC  
Core  
−1/2  
−1/2  
VP−  
REFBF  
Figure 11. Analog Input Signal Flow  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
sample and hold  
The analog input signal A is applied to the AIN pin, either dc-coupled or ac-coupled.  
IN  
The differential sample and hold processes A with respect to the voltages applied to the REFTS and REFBS  
IN  
+
pins, to give a differential output VP − VP = VP given by:  
VP + A * VM  
IN  
Where:  
(REFTS ) REFBS)  
VM +  
2
(1)  
For single-ended input signals, VM is a constant voltage; usually the AIN mid-scale input voltage. However if  
MODE = AV /2 then REFTS and REFBS can be connected together to operate with AIN as a complementary  
DD  
pair of differential inputs (see Figures 16 and 17).  
analog-to-digital converter  
In all operating configurations, VP is digitized against ADC reference voltages REFTF and REFBF, full-scale  
values of VP being given by:  
) (REFTF * REFBF)  
VPFS )+  
2
(2)  
* (REFTF * REFBF)  
VPFS *+  
2
VP voltages outside the range VPFS− to VPFS+ lie outside the conversion range of the ADC. Attempts to  
convert out-of-range inputs are signaled to the application by driving the OVR output pin high. VP voltages less  
than VPFS− give ADC output code 0. VP voltages greater than VPFS+ give output code 1023.  
complete system  
Combining the above equations, the analog full scale input voltages at AIN which give VPFS+ and VPFS− at  
the sample and hold output are:  
(REFTF * REFBF)  
A
+ FS )+ VM )  
IN  
2
(3)  
and  
(REFTF * REFBF)  
A
+ FS *+ VM *  
IN  
2
(4)  
(5)  
The analog input span (voltage range) that lies within the ADC conversion range is:  
[
]
Input span + (FS )) * (FS *) + (REFTF * REFBF)  
The REFTF and REFBF voltage difference sets the device input range. The next sections describe in detail the  
various methods available for setting voltages REFTF and REFBF to obtain the desired input span and ADC  
performance.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
ADC reference generation  
The THS1030 has three primary modes of ADC reference generation, selected by the voltage level applied to  
the MODE pin.  
Connecting the MODE pin to AGND gives full external reference mode. In this mode, the user supplies the ADC  
reference voltages directly to pins REFTF and REFBF. This mode is used where there is need for minimum  
power drain or where there are very tight tolerances on the ADC reference voltages. This mode also offers the  
possibility of Kelvin connection of the reference inputs to the THS1030 to eliminate any voltage drops from  
remote references that may occur in the system. Only single-ended input is possible in this mode.  
Connecting the MODE pin to AV /2 gives differential mode. In this mode, the ADC reference voltages REFTF  
DD  
and REFBF are generated by the internal reference buffer from the voltage applied to the VREF pin. This mode  
is suitable for handling differentially presented inputs, which are applied to the AIN and REFTS/REFBS pins.  
A special case of differential mode is center span mode, in which the user applies a single-ended signal to AIN  
and applies the mid-scale input voltage (VM) to the REFTS and REFBS pins.  
Connecting the MODE pin to AV  
gives top/bottom mode. In this mode, the ADC reference voltages REFTF  
DD  
and REFBF are generated by the internal reference buffer from the voltages applied to the REFTS and REFBS  
pins. Only single-ended input is possible in top/bottom mode.  
When MODE is connected to AGND, the internal reference buffer is powered down, its inputs and outputs  
disconnected, and REFTS and REFBS internally connected to REFTF and REFBF respectively. These nodes  
are connected by the user to external sources to provide the ADC reference voltages. The internal connections  
are designed for use in kelvin connection mode (Figure 14). When using external reference mode as shown  
in Figure 13, REFTS must be shorted to REFTF and REFBS must be shorted to REFBF externally. The mean  
of REFTF and REFBF must be equal to AV /2. See Figure 13.  
DD  
Table 1. Typical Set of Reference Connections  
VREF  
VOLTAGE  
REFERENCE MODE  
MODE  
REFSENSE  
REFTS, REFBS  
ANALOG INPUT FIGURES  
Reference buffer powered  
down, reference voltage  
provided directly by REFT  
and REFB  
External  
AGND  
AV  
DD  
Disabled  
Single-ended  
12, 13, 14  
15, 16, 17  
VREF  
AGND  
1 V  
2 V  
Externally connect REFTS to  
REFBS. This pair then forms  
AIN− to the ADC.  
Differential or  
center span  
Internal  
AV /2  
DD  
External  
divider  
1 + Ra/Rb  
(see Figure 22)  
External (through internal  
reference buffer)  
AV  
DD  
Disabled  
Single-ended  
(top-bottom  
mode)  
VREF  
AGND  
1 V  
2 V  
REFTS = V  
REFBS = V  
FS+  
FS−  
Output of VREF can be  
externally tied to REFTS or  
REFBS to provide one of the  
reference voltages  
AV  
DD  
18, 19  
External  
divider  
1 + Ra/Rb  
(see Figure 22)  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
full external reference mode (mode = AGND)  
REFTF  
1
AIN+  
REFTS  
REFBS  
Sample  
and  
Hold  
ADC  
Core  
−1/2  
−1/2  
REFBF  
Internal  
Reference  
Buffer  
Figure 12. ADC Reference Generation, Full External Reference Mode (MODE = AGND)  
It is also possible to use REFTS and REFBS as sense lines to drive the REFTF and REFBF lines (Kelvin mode)  
to overcome any voltage drops within the system. See Figure 14.  
AV  
DD  
+FS  
DD  
AV  
AIN  
REFSENSE  
2
−FS  
REFTS  
REFBS  
DC SOURCE = + FS  
DC SOURCE = −FS  
0.1 µF  
REFTF  
REFBF  
10 µF  
0.1 µF  
0.1 µF  
MODE  
Figure 13. Full External Reference Mode  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
full external reference mode (mode = AGND) (continued)  
AV  
DD  
+FS  
AV  
DD  
AIN  
2
REFSENSE  
−FS  
REFTS  
REFBS  
_
+
REFTF  
REFT = +FS  
REFB = −FS  
0.1 µF  
0.1 µF  
10 µF  
0.1 µF  
_
+
REFBF  
MODE  
Figure 14. Full External Reference With Kelvin Connections  
differential input mode (MODE = AV /2)  
DD  
AV  
DD  
+ VREF  
2
REFTF =  
1
AIN+  
REFTS  
REFBS  
Sample  
and  
Hold  
ADC  
Core  
−1/2  
−1/2  
AIN−  
AV  
DD  
− VREF  
2
Internal  
Reference  
Buffer  
VREF  
REFBF =  
AGND  
Figure 15. ADC Reference Generation, MODE = AV /2  
DD  
When MODE = AV /2, the internal reference buffer is enabled, its outputs internally switched to REFTF and  
DD  
REFBF and inputs internally switched to VREF and AGND as shown in Figure 15. The REFTF and REFBF  
voltages are centered on AV /2 by the internal reference buffer and the voltage difference between REFTF  
DD  
and REFBF equals the voltage at VREF. The internal REFTS to REFBS and REFTF to REFBF switches are  
open in this mode, allowing REFTS and REFBS to form the AIN− to the sample and hold.  
Depending on the connection of the REFSENSE pin, the voltage on VREF may be externally driven, or set to  
an internally generated voltage of 1 V, 2 V, or an intermediate voltage (see the section on onboard reference  
generator configuration).  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
differential input mode (MODE = AV /2) (continued)  
DD  
AV  
DD  
+FS  
AIN+  
2
AIN  
MODE  
−FS  
+FS  
REFTS  
AIN−  
−FS  
REFBS REFSENSE  
0.1 µF  
REFTF  
REFBF  
VREF  
10 µF  
0.1 µF  
0.1 µF  
Figure 16. Differential Input Mode, 1-V Reference Span  
AV  
DD  
+FS  
2
VM  
−FS  
AIN  
MODE  
REFTS  
DC SOURCE = VM  
+
_
VM  
REFBS  
REFTF  
0.1 µF  
0.1 µF  
10 µF  
0.1 µF  
REFBF  
REFSENSE  
Figure 17. Center Span Mode, 2-V Reference Span  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
top/bottom mode (MODE = AV  
)
DD  
REFTF = AV  
DD  
+ (REFTS − REFBS)  
2
1
AIN+  
REFTS  
REFBS  
Sample  
and  
Hold  
ADC  
Core  
−1/2  
−1/2  
REFBF = AV  
DD  
− (REFTS + REFBS)  
2
Internal  
Reference  
Buffer  
Figure 18. ADC Reference Generation Mode = AV  
DD  
Connecting MODE to AV enables the internal reference buffer. Its inputs are internally switched to the REFTS  
DD  
and REFBS pins and its outputs internally switched to pins REFTF and REFBF. The internal connections  
(REFTS to REFTF) and (REFBS to REFBF) are broken.  
The REFTS and REFBS voltages set the analog input span limits FS+ and FS− respectively. Any voltages at  
AIN greater than REFTS or less than REFBS will cause ADC over-range, which is signaled by OVR going high  
when the conversion result is output.  
Typically, REFSENSE is tied to AV  
choose to use the ORG output to VREF as either REFTS or REFBS.  
to disable the ORG output to VREF (as in Figure 19), but the user can  
DD  
AV  
DD  
+FS  
AIN  
MODE  
−FS  
DC SOURCE = FS+  
REFSENSE  
REFTS  
REFBS  
DC SOURCE = FS−  
0.1 µF  
REFTF  
REFBF  
10 µF  
0.1 µF  
0.1 µF  
Figure 19. Top/Bottom Reference Mode  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
onboard reference generator configuration  
The onboard reference generator (ORG) can provide a supply-voltage-independent and temperature-  
independent voltage on pin VREF.  
External connections to REFSENSE control the ORG’s output to the VREF pin as shown in Table 2.  
Table 2. Effect of REFSENSE Connection on VREF Value  
REFSENSE CONNECTION  
VREF pin  
ORG OUTPUT TO VREF  
REFER TO:  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
1 V  
2 V  
AGND  
External divider junction  
(1 + R /R )  
A B  
AV  
DD  
Open circuit  
REFSENSE = AV  
powers the ORG down, saving power when the ORG function is not required.  
DD  
If MODE = AV /2, the voltage on VREF determines the ADC reference voltages:  
DD  
AV  
DD  
VREF  
2
REFTF +  
REFBF +  
)
2
(6)  
AV  
DD VREF  
*
2
2
REFTF * REFBF + VREF  
Internal  
Reference  
Buffer  
Mode =  
AV  
DD  
2
+
_
VREF = 1 V  
REFSENSE  
+
VBG  
_
0.1 µF 1 µF  
Tantalum  
AGND  
Figure 20. 1-V VREF Using ORG  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
onboard reference generator configuration (continued)  
Internal  
Reference  
Buffer  
Mode =  
AV  
DD  
2
+
_
VREF = 2 V  
REFSENSE  
+
VBG  
_
0.1 µF 1 µF  
Tantalum  
10 kΩ  
10 kΩ  
AGND  
Figure 21. 2-V VREF Using ORG  
Internal  
Reference  
Buffer  
Mode =  
AV  
DD  
2
+
_
VREF = 1 + (Ra/Rb)  
+
VBG  
_
0.1 µF 1 µF  
Tantalum  
Ra  
REFSENSE  
Rb  
AGND  
Figure 22. External Divider Mode  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
onboard reference generator configuration (continued)  
Internal  
Reference  
Buffer  
Mode =  
AV  
DD  
2
VREF = External  
REFSENSE  
+
_
+
VBG  
_
AV  
DD  
AGND  
Figure 23. Drive VREF Mode  
operating configuration examples  
This section provides examples of operating configurations.  
Figure 24 shows the operating configuration in top/bottom mode for a 2-V span single-ended input, using VREF  
to drive REFTS. Connecting the mode pin to AV puts the THS1030 in top/bottom mode. Connecting pin  
DD  
REFSENSE to AGND sets the output of the ORG to 2 V. REFTS and REFBS are user-connected to VREF and  
AGND respectively to match the AIN pin input range to the voltage range of the input signal.  
AV  
DD  
2 V  
1 V  
0 V  
AIN  
MODE  
VREF = 2 V  
REFTS  
0.1 µF  
0.1 µF  
REFTF  
REFBF  
REFSENSE  
REFBS  
10 µF  
0.1 µF  
Figure 24. Operation Configuration in Top/Bottom Mode  
In Figure 25 the input signal is differential, so mode = AV /2 (differential mode) is set to allow the inverse signal  
DD  
to be applied to REFTS and REFBS. The differential input goes from −0.8 V to 0.8 V, giving a total input signal  
span of 1.6 V, REFTFREFBF should therefore equal 1.6 V. REFSENSE is connected to resistors RA and RB  
(external divider mode) to make VREF = 1.6 V, that is R /R = 0.6 (see Figure 22).  
A
B
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
operating configuration examples (continued)  
AV  
DD  
2
1.4 V  
1 V  
AIN+  
AIN−  
AIN  
MODE  
0.6 V  
1.4 V  
1 V  
REFTS  
VREF = 1.6 V  
REFSENSE  
0.6 V  
REFBS  
REFTF  
R
A
B
0.1 µF  
0.1 µF  
R
10 µF  
0.1 µF  
REFBF  
Figure 25. Differential Operation  
Figure 26 shows a center span configuration for an input waveform swinging between 0.2 V and 1.9 V. Pins  
REFTS and REFBS are connected to a voltage source of 1.05 V, equal to the mid-scale of the input waveform.  
REFTF−REFBF should be set equal to the span of the input waveform, 1.7 V, so VREF is connected to an  
external source of 1.7 V. REFSENSE must be connected to AV  
Figure 23) to allow this external source to be applied.  
to disable the ORG output to VREF (see  
DD  
AV  
DD  
AV  
DD  
2
1.9 V  
1.05 V  
0.2 V  
AIN  
MODE  
REFSENSE  
REFTS  
DC SOURCE = 1.05 V  
REFBS  
REFTF  
0.1 µF  
VREF  
DC SOURCE = 1.7 V  
10 µF  
0.1 µF  
0.1 µF  
REFBF  
Figure 26. Center Span Operation  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
power management  
In power-sensitive applications (such as battery-powered systems) where the THS1030 ADC is not required  
to convert continuously, power can be saved between conversion intervals by placing the THS1030 into  
power-down mode. This is achieved by setting pin 17 (STBY) to 1. In power-down mode, the device typically  
consumes less than 1 mW of power (from AV  
and DV ) in either top/bottom mode or center-span mode.  
DD  
DD  
On power up, the THS1030 typically requires 5 ms of wake-up time before valid conversion results are available  
in either top/bottom or center span modes.  
Disabling the ORG in applications where the ORG output is not required can also reduce power dissipation by  
1 mA analog I . This is achieved by connecting the REFSENSE pin to AV  
.
DD  
DD  
output format and digital I/O  
While the OE pin is held low, ADC conversion results are output at pins D0 (LSB) to D9 (MSB). The ADC input  
over-range indicator is output at pin OVR. OVR is also disabled when OE is held high.  
The ADC output data format is unsigned binary (output codes 0 to 1023).  
driving the THS1030 analog inputs  
driving AIN  
Figure 26 shows an equivalent circuit for the THS1030 AIN pin. The load presented to the system at the AIN  
pin comprises the switched input sampling capacitor, C  
, and various stray capacitances, C and C  
.
SAMPLE  
P1  
P2  
AV  
DD  
CLK  
1.2 pF  
AIN  
C
C1  
8 pF  
C2  
1.2 pF  
(Sample)  
AGND  
CLK  
+
_
V
LAST  
Figure 27. Equivalent Circuit of Analog Input AIN  
In any single-ended input mode, V = the average of the previously sampled voltage at AIN and the average  
LAST  
of the voltages on pins REFTS and REFBS. In any differential mode, V  
= the common mode input voltage.  
LAST  
The external source driving AIN must be able to charge and settle into C  
to within 0.5 LSB error while sampling (CLK pin low) to achieve full ADC resolution.  
and the C and C strays  
P1 P2  
SAMPLE  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
AIN input current and input load modeling  
When CLK goes low, the source driving AIN must charge the total switched capacitance C = C  
S
The total charge transferred depends on the voltage at AIN and is given by:  
+ C  
.
SAMPLE  
P2  
Q
+ (AIN * V  
)   C .  
CHARGING  
LAST  
S
(7)  
do not change between samples, the maximum amount of  
For a fixed voltage at AIN, so that AIN and V  
LAST  
charge transfer occurs at AIN = FS− (charging current flows out of THS1030) and AIN = FS+ (current flows into  
THS1030). If AIN is held at the voltage FS+, V = [(FS+) + VM]/2, giving a maximum transferred charge:  
LAST  
[
]
(FS )) * VM   C  
[
]
(FS )) * (FS )) ) VM  
S
Q(FS) +  
  C  
+
S
2
2
(8)  
+ (1ń4 of the input voltage span)   C  
S
If the input voltage changes between samples, then the maximum possible charge transfer is  
Q(max) + 3   Q(FS)  
(9)  
which occurs for a full-scale input change (FS+ to FS− or FS− to FS+) between samples.  
The charging current pulses can make the AIN source jump or ring, especially if the source is slightly inductive  
at high frequencies. Inserting a small series resistor of 20 or less in the input path can damp source ringing  
(see Figure 31). This resistor can be made larger than 20 if reduced input bandwidth or distortion performance  
is acceptable.  
R < 20 Ω  
AIN  
V
S
Figure 28. Damping Source Ringing Using a Small Resistor  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
equivalent input resistance at AIN and ac-coupling to AIN  
Some applications may require ac-coupling of the input signal to the AIN pin. Such applications can use an  
ac-coupling network such as shown in Figure 29.  
AV  
DD  
R
(Bias1)  
C
in  
AIN  
R
(Bias2)  
Figure 29. AC-Coupling the Input Signal to the AIN Pin  
Note that if the bias voltage is derived from the supplies, as shown in Figure 29, then additional filtering should  
be used to ensure that noise from the supplies does not reach AIN.  
Working with the input current pulse equations given in the previous section is awkward when designing  
ac-coupling input networks. For such design, it is much simpler to model the AIN input as an equivalent  
resistance, R  
, from the AIN pin to a voltage source VM where  
AIN  
VM = (REFTS + REFBS)/2 and R  
= 1 / (C x f  
)
AIN  
S
clk  
where f is the CLK frequency.  
clk  
The high-pass −3 dB cutoff frequency for the circuit shown in Figure 29 is:  
1
f
+
(*3 dB)  
ǒ
Ǔ
2   p   R tot  
IN  
(10)  
where R tot is the parallel combination of Rbias1, Rbias2, and R . This approximation is good provided that  
IN  
AIN  
the clock frequency, f , is much higher than f(−3 dB).  
clk  
Note also that the effect of the equivalent R  
bias network dc level.  
and VM at the AIN pin must be allowed for when designing the  
AIN  
details  
The above value for R  
is derived by noting that the average AIN voltage must equal the bias voltage supplied  
AIN  
by the ac coupling network. The average value of V  
in equation 8 is thus a constant voltage  
LAST  
V
= V(AIN bias) – VM  
LAST  
For an input voltage Vin at the AIN pin,  
Qin = (Vin – V ) x Cs  
LAST  
Provided that f (−3 dB) is much lower than f , a constant current flowing over the clock period can approximate  
clk  
the input charging pulse  
Iin = Qin / t  
clk  
clk  
LAST  
= Qin x f  
= (Vin – V  
) x C x f  
S clk  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
details (continued)  
The ac input resistance R  
is then  
AIN  
R
= dIin / dVin  
AIN  
= 1 / (dVin / dIin)  
= 1 / (C x f  
)
clk  
S
driving the VREF pin (differential mode)  
Figure 30 shows the equivalent load on the VREF pin when driving the internal reference buffer via this pin  
(MODE = AV /2 and REFSENSE = AV ).  
DD  
DD  
AV  
DD  
R
IN  
VREF  
REFSENSE = AV  
DD  
,
14 kΩ  
Mode = AV  
DD  
2
AGND  
+
AV  
DD  
+ VREF  
4
_
Figure 30. Equivalent Circuit of VREF  
The current flowing into I is given by  
IN  
ǒ
DDǓ  
3   VREF * AV  
I
+
IN  
ǒ
INǓ  
4   R  
(11)  
Note that the actual I may differ from this value by up to 50% due to device-to-device processing variations  
IN  
and allowing for operating temperature variations.  
The user should ensure that VREF is driven from a low noise, low drift source, well-decoupled to analog ground  
and capable of driving I .  
IN  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
driving the internal reference buffer (top/bottom mode)  
Figure 31 shows the load present on the REFTS and REFBS pins in top/bottom mode due to the internal  
reference buffer only. The sample and hold must also be driven via these pins, which adds additional load.  
AV  
DD  
R
IN  
REFTS  
REFBS  
14 kΩ  
Mode = AV  
DD  
AGND  
+
AV  
DD  
+ REFTS + REFBS  
4
_
Figure 31. Equivalent Circuit of Inputs to Internal Reference Buffer  
Equations for the currents flowing into REFTS and REFBS are:  
ǒ
Ǔ
3   REFTS * AV  
* REFBS  
DD  
I
I
TS +  
IN  
IN  
ǒ
INǓ  
4   R  
(12)  
(13)  
ǒ
Ǔ
3   REFBS * AV  
* REFTS  
DD  
BS +  
ǒ
INǓ  
4   R  
These currents must be provided by the sources on REFTS and REFBS in addition to the requirements of driving  
the sample and hold. Tolerance on these currents are 50%.  
driving REFTS and REFBS  
AV  
DD  
CLK  
0.6 pF  
REFTS  
REFBS  
C
C1  
7 pF  
C2  
0.6 pF  
SAMPLE  
AGND  
Mode = AV  
DD  
CLK  
+
_
V
LAST  
Internal  
Reference  
Buffer  
Figure 32. Equivalent Circuit of REFTS and REFBS Inputs  
This is essentially a combination of driving the ADC internal reference buffer (if in top/bottom mode) and also  
driving a switched capacitor load like AIN, but with the sampling capacitor and C on each pin now being 0.6 pF  
P2  
and about 0.6 pF respectively.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢅꢆ ꢇ ꢀꢈ ꢉ ꢊ ꢉꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅ ꢄ ꢎꢂ ꢏ ꢂ  
ꢐ ꢎ ꢈꢂ ꢑ ꢒꢑ ꢓ ꢈꢔꢆꢀꢈ ꢆꢕꢍ ꢔ ꢍꢀꢑꢓ ꢐꢈ ꢒꢇ ꢖ ꢗꢀ ꢖꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
driving REFTF and REFBF (full external reference mode)  
AV  
DD  
REFTF  
To REFBS  
(For Kelvin Connection)  
AGND  
680 R  
AV  
DD  
REFBF  
To REFTS  
(For Kelvin Connection)  
AGND  
Figure 33. Equivalent Circuit of REFTF and REFBF Inputs  
Note the need for off-chip decoupling.  
driving the clock input  
Obtaining good performance from the THS1030 requires care when driving the clock input.  
Different sections of the sample-and-hold and ADC operate while the clock is low or high. The user should  
ensure that the clock duty cycle remains near 50% to ensure that all internal circuits have as much time as  
possible in which to operate.  
The CLK pin should be driven from a low jitter source for best dynamic performance. To maintain low jitter at  
the CLK input, any clock buffers external to the THS1030 should have fast rising edges. Use a fast logic family  
such as AC or ACT to drive the CLK pin, and consider powering any clock buffers separately from any other  
logic on the PCB to prevent digital supply noise appearing on the buffered clock edges as jitter.  
The CLK input threshold is nominally around AV /2—ensure that any clock buffers have an appropriate supply  
DD  
voltage to drive above and below this level.  
digital output loading and circuit board layout  
The THS1030 outputs are capable of driving rail-to-rail with up to 20 pF of load per pin at 30-MHz clock and 3-V  
digital supply. Minimizing the load on the outputs will improve THS1030 signal-to-noise performance by  
reducing the switching noise coupling from the THS1030 output buffers to the internal analog circuits. The  
output load capacitance can be minimized by buffering the THS1030 digital outputs with a low input capacitance  
buffer placed as close to the output pins as physically possible, and by using the shortest possible tracks  
between the THS1030 and this buffer.  
Noise levels at the output buffers, and hence coupling to the analog circuits within THS1030, becomes worse  
as the THS1030 digital supply voltage is increased. Where possible, consider using the lowest DV  
application can tolerate.  
that the  
DD  
Use good layout practices when designing the application PCB to ensure that any off-chip return currents from  
the THS1030 digital outputs (and any other digital circuits on the PCB) do not return via the supplies to any  
sensitive analog circuits. The THS1030 should be soldered directly to the PCB for best performance. Socketing  
the device will degrade performance by adding parasitic socket inductance and capacitance to all pins.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
ꢅ ꢆꢇ ꢀ ꢈ ꢉ ꢊꢉ ꢆꢇꢋ ꢃ ꢄ ꢆꢌꢍ ꢀꢋ ꢅꢄ ꢎ ꢂꢏ ꢂ  
ꢐꢎ ꢈ ꢂ ꢑꢒꢑ ꢓꢈ ꢔ ꢆꢀꢈ ꢆꢕꢍꢔ ꢍ ꢀꢑꢓ ꢐꢈ ꢒ ꢇꢖ ꢗꢀ ꢖ ꢗ  
SLAS243E − NOVEMBER 1999 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
user tips for obtaining best performance from the THS1030  
D
D
D
D
D
D
Voltages on AIN, REFTF and REFBF and REFTS and REFBS must all be inside the supply rails.  
ORG modes offer the simplest configurations for ADC reference generation.  
Choose differential input mode for best distortion performance.  
Choose a 2-V ADC input span for best noise performance.  
Choose a 1-V ADC input span for best distortion performance.  
If the ORG is not used to provide ADC reference voltages, its output may be used for other purposes in the  
system. Care should be taken to ensure noise is not injected into the THS1030.  
D
D
Use external voltage sources for ADC reference generation where there are stringent requirements on  
accuracy and drift.  
Drive clock input CLK from a low-jitter, fast logic stage, with a well-decoupled power supply and short PCB  
traces.  
TLC876 mode  
The THS1030 is pin compatible with the TI TLC876 and thus enables users of TLC876 to upgrade to higher  
speed by dropping the THS1030 into their sockets. Grounding the 1876M pin effectively puts the THS1030 into  
876 mode using the external ADC reference. The MODE pin should either be grounded or left floating.  
The REFSENSE pin is connected to DV  
when the THS1030 is dropped into a TLC876 socket. For  
DD  
DV  
= 5-V applications, this will disable the ORG. For TLC876 applications using DV = 3.3 V, the VREF pin  
DD  
DD  
will be driven to AV . In TLC876/AD876 mode, the pipeline latency is increased to 3.5 clock cycles to match  
SS  
the TLC876 latency.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
THS1030CDW  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
DW  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
20  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TH1030  
THS1030CDWG4  
THS1030CDWR  
THS1030CDWRG4  
THS1030CPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DW  
DW  
DW  
PW  
PW  
PW  
PW  
DW  
DW  
PW  
PW  
PW  
PW  
20  
1000  
1000  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TH1030  
TH1030  
TH1030  
TH1030  
TH1030  
TH1030  
TH1030  
TJ1030  
TJ1030  
TJ1030  
TJ1030  
TJ1030  
TJ1030  
SOIC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
SOIC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
THS1030CPWG4  
THS1030CPWR  
THS1030CPWRG4  
THS1030IDW  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
2000  
2000  
20  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
THS1030IDWG4  
THS1030IPW  
SOIC  
20  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
50  
Green (RoHS  
& no Sb/Br)  
THS1030IPWG4  
THS1030IPWR  
THS1030IPWRG4  
50  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THS1030CDWR  
THS1030CPWR  
THS1030IPWR  
SOIC  
DW  
PW  
PW  
28  
28  
28  
1000  
2000  
2000  
330.0  
330.0  
330.0  
32.4  
16.4  
16.4  
11.35 18.67  
3.1  
1.8  
1.8  
16.0  
12.0  
12.0  
32.0  
16.0  
16.0  
Q1  
Q1  
Q1  
TSSOP  
TSSOP  
6.9  
6.9  
10.2  
10.2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THS1030CDWR  
THS1030CPWR  
THS1030IPWR  
SOIC  
DW  
PW  
PW  
28  
28  
28  
1000  
2000  
2000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
55.0  
38.0  
38.0  
TSSOP  
TSSOP  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

THS1031

2.7 V . 5.5 V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI

THS1031CDW

3-V TO 5.5-V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI

THS1031CDWG4

3-V TO 5.5-V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI

THS1031CDWR

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, SOIC-28
TI

THS1031CDWRG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, SOIC-28
TI

THS1031CPW

3-V TO 5.5-V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI

THS1031CPWG4

3-V TO 5.5-V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI

THS1031CPWLE

暂无描述
TI

THS1031CPWR

3-V TO 5.5-V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI

THS1031CPWRG4

3-V TO 5.5-V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI

THS1031IDW

3-V TO 5.5-V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI

THS1031IDWG4

3-V TO 5.5-V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER
TI