THS1040CDWR [TI]

3-V, 10-BIT , 40-MSPS CMOS ANALOG TO DIGITAL CONVERTER; 3 -V , 10位, 40 - MSPS CMOS模数转换器
THS1040CDWR
型号: THS1040CDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3-V, 10-BIT , 40-MSPS CMOS ANALOG TO DIGITAL CONVERTER
3 -V , 10位, 40 - MSPS CMOS模数转换器

转换器 模数转换器 光电二极管
文件: 总32页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
ꢆ ꢇꢈꢉ ꢃ ꢄ ꢇꢊꢋ ꢌꢉ ꢅ ꢄ ꢇꢍꢂ ꢎꢂ  
ꢏꢍ ꢐꢂ ꢑꢒ ꢑꢓ ꢐ ꢔꢇꢀꢐ ꢇꢕꢖꢔ ꢖ ꢀꢑꢓ ꢏꢐ ꢒꢈꢗ ꢘꢀ ꢗꢘ  
bypassed to use an external reference to suit the dc  
accuracy and temperature drift requirements of the  
application. The out-of-range output indicates any  
out-of-range condition in THS1040’s input signal.  
FEATURES  
D
D
D
Analog Supply 3 V  
Digital Supply 3 V  
Configurable Input Functions:  
− Single Ended  
− Differential  
The speed, resolution, and single-supply operation of  
the THS1040 are suited to applications in set-top-box  
(STB), video, multimedia, imaging, high-speed  
acquisition, and communications. The speed and  
resolution ideally suit charge-couple device (CCD) input  
systems such as color scanners, digital copiers, digital  
cameras, and camcorders. A wide input voltage range  
allows the THS1040 to be applied in both imaging and  
communications systems.  
D
D
D
D
D
D
D
D
Differential Nonlinearity: 0.45 LSB  
Signal-to-Noise: 60 dB Typ f at 4.8 MHz  
(IN)  
Spurious Free Dynamic Range: 72 dB  
Adjustable Internal Voltage Reference  
On-Chip Voltage Reference Generator  
Unsigned Binary Data Output  
Out-of-Range Indicator  
The THS1040C is characterized for operation from 0°C  
to 70°C, while the THS1040I is characterized for  
operation from −40°C to 85°C.  
Power-Down Mode  
APPLICATIONS  
28-PIN TSSOP/SOIC PACKAGE  
(TOP VIEW)  
D
D
D
D
Video/CCD Imaging  
Communications  
Set-Top Box  
AGND  
AV  
DD  
AIN+  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
DV  
2
DD  
Medical  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
VREF  
3
AIN−  
4
DESCRIPTION  
REFB  
5
MODE  
REFT  
6
The THS1040 is a CMOS, low power, 10-bit, 40-MSPS  
analog-to-digital converter (ADC) that operates from a  
single 3-V supply. The THS1040 has been designed to  
give circuit developers flexibility. The analog input to the  
THS1040 can be either single-ended or differential. The  
THS1040 provides a wide selection of voltage  
references to match the user’s design requirements.  
For more design flexibility, the internal reference can be  
7
BIASREF  
TEST  
8
9
AGND  
REFSENSE  
10  
11  
D9 12  
OVR 13  
17 STBY  
16 OE  
DGND 14  
15 CLK  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢣ  
Copyright 2001 − 2004, Texas Instruments Incorporated  
ꢌ ꢣ ꢠ ꢌꢋ ꢚꢭ ꢜꢛ ꢟ ꢦꢦ ꢤꢟ ꢝ ꢟ ꢞ ꢣ ꢌ ꢣ ꢝ ꢠ ꢨ  
1
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
AVAILABLE OPTIONS  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
LEAD  
PACKAGE  
DESGIGNATOR  
PACKAGE  
MARKINGS  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
THS1040CPW  
THS1040CPWR  
THS1040IPW  
Tube, 50  
Tube and Reel, 2000  
Tube, 50  
THS1040C  
THS1040I  
THS1040C  
THS1040I  
0°C to 70°C  
−40°C to 85°C  
0°C to 70°C  
TH1040  
TJ1040  
TH1040  
TJ1040  
TSSOP−28  
SOP−28  
PW  
DW  
THS1040IPWR  
THS1040CDW  
THS1040CDWR  
THS1040IDW  
THS1040IDWR  
Tube and Reel, 2000  
Tube, 20  
Tube and Reel, 1000  
Tube, 20  
−40°C to 85°C  
Tube and Reel, 1000  
For the most current specification and package information, refer to the TI web site at www.ti.com.  
functional block diagram  
Digital  
Control  
STBY  
BIASREF  
AIN+  
AIN−  
3-State  
Output  
Buffers  
10-Bit  
ADC  
SHA  
D (0−9)  
OVR  
OE  
ADC  
DV  
DD  
Mode  
MODE  
Reference  
Resistor  
DGND  
CLK  
Detection  
Timing  
Circuit  
VREF  
+
A2  
A1  
0.5 V  
AV  
DD  
AGND  
VREF  
REFB REFT  
REFSENSE  
NOTE: A1 − Internal bandgap reference  
A2 − Internal ADC reference generator  
2
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
Terminal Functions  
TERMINAL  
NAME  
AGND  
I/O  
DESCRIPTION  
NO.  
1, 19  
27  
I
I
I
I
Analog ground  
AIN+  
AIN−  
Positive analog input  
Negative analog input  
Analog supply  
25  
AV  
DD  
28  
When the MODE pin is at AV , a buffered AV /2 is present at this pin that can be used by external input  
DD  
DD  
BIASREF  
21  
O
biasing circuits. The output is high impedance when MODE is AGND or AV /2.  
DD  
CLK  
15  
14  
2
I
I
I
Clock input  
DGND  
Digital ground  
Digital supply  
DV  
DD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
3
4
5
6
7
8
9
10  
11  
12  
Digital data bit 0 (LSB)  
Digital data bit 1  
Digital data bit 2  
Digital data bit 3  
Digital data bit 4  
Digital data bit 5  
Digital data bit 6  
Digital data bit 7  
Digital data bit 8  
Digital data bit 9 (MSB)  
O
MODE  
OE  
23  
16  
13  
24  
18  
22  
17  
20  
26  
I
I
Operating mode select (AGND, AV /2, or AV )  
DD DD  
High to 3-state the data bus, low to enable the data bus  
Out-of-range indicator  
OVR  
O
REFB  
REFSENSE  
REFT  
STBY  
TEST  
VREF  
I/O Bottom ADC reference voltage  
VREF mode control  
I/O Top ADC reference voltage  
I
I
I
Drive high to power-down the THS1040  
Production test pin. Tie to DV or DGND  
DD  
I/O Internal or external reference  
3
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range: AV  
to AGND, DV  
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V  
DD  
DD  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 0.3 V  
AV to DV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V to 4 V  
DD  
DD  
MODE input voltage range, MODE to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Reference voltage input range, REFT, REFB, to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Analog input voltage range, AIN to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Reference input voltage range, VREF to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Reference output voltage range, VREF to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Clock input voltage range, CLK to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
Digital input voltage range, digital input to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DV  
Digital output voltage range, digital output to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DV  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
over operating free-air temperature range T , (unless otherwise noted)  
A
PARAMETER  
Power Supply  
CONDITION  
MIN  
NOM  
MAX  
UNIT  
Supply voltage  
AV , DV  
DD DD  
3
3
3.6  
V
Analog and Reference Inputs  
VREF input voltage  
V
V
V
V
(V  
REFSENSE = AV  
MODE = AGND  
MODE = AGND  
MODE = AGND  
0.5  
1.75  
1
1
2
V
V
I(VREF)  
I(REFT)  
I(REFB)  
DD  
REFT input voltage  
REFB input voltage  
1.25  
1
V
Reference input voltage  
Reference common mode voltage  
V
0.5  
V
I(REFT) − I(REFB)  
V
)/2 MODE = AGND  
(AV /2) − 0.05 (AV /2) + 0.05  
DD DD  
V
I(REFT+) I(REFB)  
REFSENSE = AGND  
REFSENSE = VREF  
−1  
1
0.5  
10  
V
Analog input voltage differential (see Note 1)  
V
I(AIN)  
−0.5  
0
V
Analog input capacitance, C  
Clock input (see Note 2)  
Digital Outputs  
pF  
V
I
AV  
DD  
Maximum digital output load resistance  
Maximum digital output load capacitance  
Digital Inputs  
R
C
100  
kΩ  
L
L
10  
pF  
High-level input voltage, V  
IH  
2.4  
DV  
V
V
DD  
0.8  
Low-level input voltage, V  
IL  
DGND  
Clock frequency (see Note 3)  
Clock pulse duration  
t
t
f
f
= 5 MHz to 40 MHz 25  
200  
13.75  
70  
nS  
nS  
c
(CLK)  
t
= 40 MHz  
11.25  
0
12.5  
w(CKL), w(CKH)  
(CLK)  
THS1040C  
Operating free-air temperature, T  
°C  
A
THS1040I  
−40  
85  
NOTE 1:  
V
is AIN+ − AIN− range, based on V  
V
=1V.Varies proportional to the V  
V
value. Input common mode  
I(AIN)  
I(REFT)− I(REFB)  
I(REFT)− I(REFB)  
voltage is recommended to be AV /2.  
DD  
NOTE 2: The clock pin is referenced to AV  
NOTE 3: Clock frequency can be extended to this range without degradation of performance.  
and powered by AV  
.
SS  
DD  
4
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
electrical characteristics  
over recommended operating conditions, AV  
= 3 V, DV  
= 3 V, f = 40 MSPS/50% duty cycle, MODE = AV  
(internal reference),  
DD  
A
DD  
s
DD  
differential input range = 1 V  
and 2 V , T = T  
PP min  
to T (unless otherwise noted)  
max  
PP  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
3
TYP  
MAX  
3.6  
UNIT  
AV  
DD  
Supply voltage  
V
DV  
3
3.6  
DD  
I
Operating supply current  
Power dissipation  
Standby power  
See Note 4  
See Note 4  
33  
100  
75  
40  
mA  
mW  
µW  
CC  
P
P
120  
D
D(STBY)  
Power up time for all references from standby, t  
Wake-up time  
10 µF bypass  
770  
45  
µs  
µs  
(PU)  
t
See Note 5  
(WU)  
REFT, REFB internal ADC reference voltages outputs (MODE = AV  
or AV /2) (See Note 6)  
DD  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.75  
2
MAX  
UNIT  
VREF = 0.5 V  
VREF = 1 V  
VREF = 0.5 V  
VREF = 1 V  
Reference voltage top, REFT  
AV  
= 3 V  
= 3 V  
V
DD  
DD  
1.25  
1
Reference voltage bottom, REFB  
AV  
V
Input resistance between REFT and REFB  
1.4  
1.9  
2.5  
kΩ  
VREF (on-chip voltage reference generator)  
PARAMETER  
MIN  
0.45  
0.95  
7
TYP  
0.5  
1
MAX  
0.55  
1.05  
21  
UNIT  
V
Internal 0.5-V reference voltage (REFSENSE = VREF)  
Internal 1-V reference voltage (REFSENSE = AGND)  
V
Reference input resistance (REFSENSE = AV , MODE = AV /2 or AV )  
DD  
14  
kΩ  
DD  
DD  
dc accuracy  
PARAMETER  
MIN  
TYP  
10  
MAX  
UNIT  
Bits  
Resolution  
Integral nonlinearity (see definitions)  
INL  
−1.5  
−0.9  
−1.5  
−3  
0.75  
0.45  
0.7  
1.5  
0.9  
LSB  
LSB  
DNL  
Differential nonlinearity (see definitions)  
Zero error (see definitions)  
Full-scale error (see definitions)  
Missing code  
1.5 %FSR  
%FSR  
2.2  
3
No missing code assured  
NOTE 4: Apply a −1 dBFS 10-KHz triangle wave at AIN+ and AIN− with an internal bandgap reference and ADC reference enabled, and BIASREF  
enabled at AV /2. Any additional load at BIASREF or VREF may require additional current.  
DD  
NOTE 5: Wake-up time is from the power-down state to accurate ADC samples being taken and is specified for MODE = AGND with external  
reference sources applied to the device at the time of release of power-down, and an applied 40-MHz clock. Circuits that need to power  
up are the bandgap, bias generator, ADC, and SHA.  
NOTE 6: External reference values are listed in the Recommended Operating Conditions Table.  
5
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
electrical characteristics  
over recommended operating conditions, AV  
= 3 V, DV  
= 3 V, f = 40 MSPS/50% duty cycle, MODE = AV  
(unless otherwise noted) (continued)  
(internal reference),  
DD  
and 2 V , T = T  
DD  
s
DD  
differential input range = 1 V  
PP  
to T  
max  
PP  
A
min  
dynamic performance (ADC)  
PARAMETER  
TEST CONDITIONS  
f = 4.8 MHz, −0.5 dBFS  
f = 20 MHz, −0.5 dBFS  
f = 4.8 MHz, −0.5 dBFS  
f = 20 MHz, −0.5 dBFS  
f = 4.8 MHz, −0.5 dBFS  
f = 20 MHz, −0.5 dBFS  
f = 4.8 MHz, −0.5 dBFS  
f = 20 MHz, −0.5 dBFS  
f = 4.8 MHz, −0.5 dBFS  
f = 20 MHz, −0.5 dBFS  
MIN  
TYP  
9.6  
9.5  
72  
MAX  
UNIT  
8.8  
ENOB  
SFDR  
THD  
Effective number of bits  
Bits  
60.5  
Spurious free dynamic range  
Total harmonic distortion  
Signal-to-noise ratio  
dB  
dB  
dB  
70  
72.5 61.3  
71.6  
60  
55.7  
55.6  
SNR  
57  
59.7  
59.6  
900  
SINAD Signal-to-noise and distortion  
BW Full power bandwidth (−3 dB)  
dB  
MHz  
digital specifications  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
Digital Inputs  
Clock input  
0.8 × AV  
0.8 × DV  
DD  
V
High-level input voltage  
Low-level input voltage  
V
V
IH  
IL  
All other inputs  
Clock input  
DD  
0.2 × AV  
0.2 × DV  
DD  
V
All other inputs  
DD  
1
I
I
High-level input current  
Low-level input current  
Input capacitance  
µA  
µA  
pF  
IH  
|−1|  
IL  
C
5
i
Digital Outputs  
V
High-level output voltage  
Low-level output voltage  
I
I
= 50 µA  
DV −0.4  
DD  
V
V
OH  
OL  
load  
V
= −50 µA  
0.4  
1
load  
High-impedance output current  
Rise/fall time  
µA  
ns  
C
= 15 pF  
3.5  
load  
Clock Input  
t
t
t
Clock cycle time  
25  
11.25  
11.25  
45%  
200  
110  
110  
55%  
16  
ns  
ns  
ns  
c
Pulse duration, clock high  
Pulse duration, clock low  
Clock duty cycle  
w(CKH)  
w(CKL)  
50%  
9.5  
4
t
Clock to data valid, delay time  
Pipeline latency  
ns  
Cycles  
ns  
d(o)  
t
Aperture delay time  
0.1  
1
d(AP)  
Aperture uncertainty (jitter)  
ps  
timing  
PARAMETER  
MIN  
0
TYP  
MAX  
10  
UNIT  
ns  
t
t
Output disable to Hi-Z output, delay time  
Output enable to output valid, delay time  
d(DZ)  
0
10  
ns  
d(DEN)  
V
Output voltage  
MODE = AV  
(AV /2) − 0.1  
DD  
(AV /2) + 0.1  
DD  
V
O(BIASREF)  
DD  
6
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PARAMETER MEASUREMENT INFORMATION  
Sample 2  
Sample 3  
Sample 6  
Sample 7  
Sample 1  
Sample 5  
Sample 4  
Analog  
Input  
t
c
t
w(CKL)  
t
w(CKH)  
Input Clock  
See  
Note A  
t
d(o)  
(I/O Pad Delay or  
Pipeline Latency  
Propagation Delay)  
Digital  
Output  
Sample 1  
Sample 2  
t
t
d(DZ)  
d(DEN)  
OE  
NOTE A: All timing measurements are based on 50% of edge transition.  
Figure 1. Digital Output Timing Diagram  
7
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
vs  
INPUT CODE  
1.0  
0.5  
AV  
DD  
= 3 V  
= 3 V  
DV  
DD  
f
V
= 40 MSPS  
s
= 1 V  
ref  
0.0  
−0.5  
−1.0  
0
128  
256  
384  
512  
640  
768  
768  
768  
896  
896  
896  
1024  
1024  
1024  
Input Code  
Figure 2  
INTEGRAL NONLINEARITY  
vs  
INPUT CODE  
1.0  
0.5  
0.0  
AV  
DD  
= 3 V  
= 3 V  
= 40 MSPS  
= 1 V  
128  
−0.5  
−1.0  
DV  
DD  
f
V
s
ref  
0
256  
384  
512  
640  
Input Code  
Figure 3  
INTEGRAL NONLINEARITY  
vs  
INPUT CODE  
1.0  
0.5  
AV  
DD  
DD  
= 40 MSPS  
= 3 V  
= 3 V  
DV  
f
V
s
= 0.5 V  
ref  
0.0  
−0.5  
−1.0  
0
128  
256  
384  
512  
640  
Input Code  
Figure 4  
8
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
−80  
−75  
−70  
−85  
−80  
1-V FS Differential Input Range  
2-V FS Differential Input Range  
−0.5 dBFS  
−75  
−70  
−65  
−0.5 dBFS  
−6 dBFS  
−65  
−6 dBFS  
−60  
−55  
−60  
−55  
−20 dBFS  
−20 dBFS  
−50  
−45  
−40  
−50  
−45  
−40  
See Note  
See Note  
0
10 20 30 40 50 60 70 80 90 100110 120  
0
10 20 30 40 50 60 70 80 90 100 110 120  
f − Input Frequency − MHz  
i
f − Input Frequency − MHz  
i
Figure 5  
Figure 6  
SIGNAL-TO-NOISE RATIO  
vs  
SPURIOUS FREE DYNAMIC RANGE  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
61  
59  
57  
55  
53  
51  
Diff Input = 2 V  
SE Input = 2 V  
82  
72  
62  
52  
42  
32  
Diff Input = 2 V  
Diff Input = 1 V  
Diff Input = 1 V  
SE Input = 1 V  
49  
47  
SE Input = 1 V  
See Note  
See Note  
SE Input = 2 V  
0
10 20 30 40 50 60 70 80 90 100 110 120  
0
10 20 30 40 50 60 70 80 90 100 110 120  
f − Input Frequency − MHz  
i
f − Input Frequency − MHz  
i
Figure 7  
Figure 8  
NOTE: AV  
= DV  
DD  
= 3 V,  
f = 40 MSPS, 20-pF capacitors AIN+ to AGND and AIN− to AGND,  
S
DD  
Input series resistor = 25 ,  
2-V Input: Ext Ref, REFT = 2 V, REFB = 1 V, −0.5 dBFS  
1-V Input: Ext Ref, REFT = 1.75 V, REFB = 1.25 V, −0.5 dBFS  
9
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
SIGNAL-TO-NOISE PLUS DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
Diff Input = 2 V  
Diff Input = 1 V  
−82  
−72  
−62  
−52  
−42  
−32  
Diff Input = 2 V  
Diff Input = 1 V  
57  
52  
47  
42  
37  
32  
SE Input = 1 V  
SE Input = 2 V  
SE Input = 1 V  
SE Input = 2 V  
See Note  
See Note  
0
10 20 30 40 50 60 70 80 90 100 110 120  
0
10 20 30 40 50 60 70 80 90 100 110 120  
f − Input Frequency − MHz  
i
f − Input Frequency − MHz  
i
Figure 9  
Figure 10  
NOTE: AV  
= DV = 3 V, f = 40 MSPS, 20-pF capacitors AIN+ to AGND and AIN− to AGND,  
DD  
DD S  
Input series resistor = 25 ,  
2-V Input: Ext Ref, REFT = 2 V, REFB = 1 V, −0.5 dBFS  
1-V Input: Ext Ref, REFT = 1.75 V, REFB = 1.25 V, −0.5 dBFS  
TOTAL HARMONIC DISTORTION  
SIGNAL-TO-NOISE RATIO  
vs  
vs  
SAMPLE RATE  
SAMPLE RATE  
−75  
75  
70  
65  
60  
55  
50  
−70  
−65  
−60  
−55  
−50  
−45  
−40  
45  
40  
Diff Input = 2 V  
f = 20 MHz, −0.5 dBFS  
i
Diff Input = 2 V  
f = 20 MHz, −0.5 dBFS  
i
0
5
10 15 20 25 30 35 40 45 50 55  
Sample Rate − MSPS  
0
5
10 15 20 25 30 35 40 45 50 55  
Sample Rate − MSPS  
Figure 12  
Figure 11  
10  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
TOTAL CURRENT  
vs  
CLOCK FREQUENCY  
POWER DISSIPATION  
vs  
SAMPLE RATE  
AV  
= 3 V  
= 1 V  
DD  
AV  
= 3 V,  
= 1 V  
DD  
36  
V
ref  
V
ref  
34  
32  
110  
90  
Int. Ref  
Int. Ref  
T
= 25°C  
A
T
= 25°C  
A
Ext. Ref  
= 25°C  
30  
28  
T
A
Ext. Ref  
= 25°C  
T
A
26  
24  
70  
4
8
12 16 20 24 28 32 36 40 44  
0
5
10 15 20 25 30 35 40 45  
f
− Sample Rate − MSPS  
f
− Clock Frequency − MHz  
s
clk  
Figure 13  
Figure 14  
INPUT BANDWIDTH  
4
AV  
DD  
= 3 V  
= 3 V  
DV  
DD  
= 40 MSPS  
f
2
s
0
−2  
−4  
−6  
−8  
See Note  
100  
10  
300  
500  
700  
900  
1100  
f − Input Frequency − MHz  
i
Figure 15  
NOTE: No series resistors and no bypass capacitors at AIN+ and AIN− inputs.  
11  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
ADC CODES  
vs  
WAKE-UP SETTLING TIME  
POWER-UP TIME FOR INTERNAL  
REFERENCE VOLTAGE FROM STANDBY  
125  
120  
115  
110  
105  
100  
2.4  
V
= 1 V, Reft = 10 µF,  
ref  
Refb = 10 µF, AV  
MODE = AGND,  
= 3 V  
DD  
f
= 40 MSPS,  
S
Ext. REF = 1 V and 2 V,  
AV = 3 V  
2
DD  
V
reft  
1.6  
1.2  
0.8  
0.4  
0
V
refb  
95  
90  
See Note  
80 95  
−10  
5
20  
35  
50  
65  
110  
Wake-Up Settling Time − µs  
Power-Up Time − µs  
Figure 16  
Figure 17  
12  
www.ti.com  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
FFT  
20  
f = 10 MHz, −0.5 dBFS  
i
0
f
= 40 MSPS,  
S
−20  
Diff Input = 2 V  
−40  
−60  
−80  
−100  
−120  
−140  
5
10  
15  
20  
0
f − Frequency − MHz  
Figure 18  
FFT  
20  
f = 4.5 MHz, −0.5 dBFS  
i
0
−20  
−40  
f
= 40 MSPS,  
S
Diff Inpt = 2 V  
−60  
−80  
−100  
−120  
−140  
5
10  
15  
20  
0
f − Frequency − MHz  
Figure 19  
13  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
functional overview  
See the functional block diagram. A single-ended, sample rate clock is required at pin CLK for device operation.  
Analog inputs AIN+ and AIN− are sampled on each rising edge of CLK in a switched capacitor sample and hold  
unit, the output of which feeds the ADC core, where analog-to-digital conversion is performed against the ADC  
reference voltages REFT and REFB.  
Internal or external ADC reference voltage configurations are selected by connecting the MODE pin  
appropriately. When MODE = AGND, the user must provide external sources at pins REFB and REFT. When  
MODE =AV  
or MODE = AV /2, an internal ADC references generator(A2) is enabled which drives the REFT  
DD  
DD  
and REFB pins using the voltage at pin VREF as its input. The user can choose to drive VREF from the internal  
bandgap reference, or disable A1 and provide their own reference voltage at pin VREF.  
On the fourth rising CLK edge following the edge that sampled AIN+ and AIN−, the conversion result is output  
via data pins D0 to D9. The output buffers can be disabled by pulling pin OE high.  
The following sections explain further:  
D
D
D
How signals flow from AIN+ and AIN− to the ADC core, and how the reference voltages at REFT and REFB  
set the ADC input range and hence the input range at AIN+ and AIN−.  
How to set the ADC references REFT and REFB using external sources or the internal reference buffer (A2)  
to match the device input range to the input signal.  
How to set the output of the internal bandgap reference (A1) if required.  
signal processing chain (sample and hold, ADC)  
Figure 20 shows the signal flow through the sample and hold unit to the ADC core.  
REFT  
VQ+  
Sample  
and  
Hold  
ADC  
Core  
X1  
AIN+  
AIN−  
X−1  
VQ−  
REFB  
Figure 20. Analog Input Signal Flow  
14  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
sample-and-hold  
Differential input signal sources can be connected directly to the AIN+ and AIN− pins using either dc- or  
ac-coupling.  
For single-ended sources, the signal can be dc- or ac-coupled to one of AIN+ or AIN−, and a suitable reference  
voltage (usually the midscale voltage, see operating configuration examples) must be applied to the other pin.  
Note that connecting the signal to AIN− results in it being inverted during sampling.  
The sample and hold differential output voltage VQ = (VQ+) − (VQ−) is given by:  
VQ = (AIN+) − (AIN−)  
(1)  
analog-to-digital converter  
VQ is digitized by the ADC, using the voltages at pins REFT and REFB to set the ADC zero-scale (code 0) and  
full-scale (code 1023) input voltages.  
(2)  
(3)  
VQ(ZS) + * (REFT * REFB)  
VQ(FS) + (REFT * REFB)  
Any inputs at AIN+ and AIN− that give VQ voltages less than VQ(ZS) or greater than VQ(FS) lie outside the  
ADC’s conversion range and attempts to convert such voltages are signalled by driving pin OVR high when the  
conversion result is output. VQ voltages less than VQ(ZS) digitize to give ADC output code 0 and VQ voltages  
greater than VQ(FS) give ADC output code 1023.  
complete system and system input range  
Combining the above equations to find the input voltages [(AIN+) − (AIN−)] that correspond to the limits of the  
ADC’s valid input range gives:  
(4)  
[(  
)
(
)]  
(REFB * REFT) v AIN) * AIN* v (REFT * REFB)  
For both single-ended and differential inputs, the ADC can thus handle signals with a peak-to-peak input range  
[(AIN+) − (AIN−)] of:  
[(AIN+) − (AIN−)] pk-pk input range = 2 x (REFT − REFB)  
(5)  
The REFT and REFB voltage difference and the gain sets the device input range. The next sections describe  
in detail the various methods available for setting voltages REFT and REFB to obtain the desired input span  
and device performance.  
15  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
ADC reference generation  
The THS1040 ADC references REFT and REFB can be driven from external (off-chip) sources or from the  
internal (on-chip) reference buffer A2. The voltage at the MODE pin determines the ADC references source.  
Connecting MODE to AGND enables external ADC references mode. In this mode the internal buffer A2 is  
powered down and the user must provide the REFT and REFB voltages by connecting external sources directly  
to these pins. This mode is useful where several THS1040 devices must share common references for best  
matching of their ADC input ranges, or when the application requires better accuracy and temperature stability  
than the on-chip reference source can provide.  
Connecting MODE to AV  
or AV /2 enables internal ADC references mode. In this mode the buffer A2 is  
DD  
DD  
powered up and drives the REFT and REFB pins. External reference sources should not be connected in this  
mode. Using internal ADC references mode when possible helps to reduce the component count and hence  
the system cost.  
When MODE is connected to AV , a buffered AV /2 voltage is available at the BIASREF pin. This voltage  
DD  
DD  
can be used as a dc bias level for any ac-coupling networks connecting the input signal sources to the AIN+  
and AIN− pins.  
MODE PIN  
REFERENCE SELECTION  
BIASREF PIN FUNCTION  
High impedance  
AGND  
External  
Internal  
Internal  
AV /2  
DD  
High impedance  
AV  
DD  
AV /2 for AIN bias  
DD  
external reference mode (MODE = AGND)  
Sample  
and  
Hold  
ADC  
Core  
X1  
AIN+  
AIN−  
X−1  
Internal  
Reference  
Buffer  
VREF  
REFT  
REFB  
Figure 21. ADC Reference Generation, MODE = AGND  
Connecting pin MODE to AGND powers down the internal references buffer A2 and disconnects its outputs from  
the REFT and REFB pins. The user must connect REFT and REFB to external sources to provide the ADC  
reference voltages required to match the THS1040 input range to their application requirements. The  
common-mode reference voltage must be AV /2 for correct THS1040 operation:  
DD  
(6)  
AV  
(REFT ) REFB)  
DD  
+
2
2
16  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
internal reference mode (MODE = AV or AV /2)  
DD  
DD  
AV  
DD  
+ VREF  
2
Sample  
and  
Hold  
ADC  
Core  
X1  
AIN+  
AIN−  
X−1  
AV  
DD  
− VREF  
2
Internal  
Reference  
Buffer  
VREF  
AGND  
Figure 22. ADC Reference Generation, MODE = AV /2  
DD  
Connecting MODE to AV  
or AV /2 enables the internal ADC references buffer A2. The outputs of A2 are  
DD  
DD  
connected to the REFT and REFB pins and its inputs are connected to pins VREF and AGND. The resulting  
voltages at REFT and REFB are:  
(7)  
ǒ
Ǔ
AV  
) VREF  
DD  
DD  
REFT +  
2
(8)  
ǒ
Ǔ
AV  
* VREF  
REFB +  
2
Depending on the connection of the REFSENSE pin, the voltage on VREF may be driven by an off-chip source  
or by the internal bandgap reference A1 (see onboard reference generator) to match the THS1040 input range  
to their application requirements.  
When MODE = AV  
the BIASREF pin provides a buffered, stabilized AV /2 output voltage that can be used  
DD  
DD  
as a bias reference for ac coupling networks connecting the signal sources to the AIN+ or AIN− inputs. This  
removes the need for the user to provide a stabilized external bias reference.  
17  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
internal reference mode (MODE = AV  
or AV /2) (continued)  
DD  
DD  
AV  
DD  
2
AV  
DD  
or  
+FS  
AIN+  
AIN+  
AIN−  
MODE  
−FS  
+FS  
AIN−  
−FS  
REFSENSE  
0.1 µF  
1 V (Output)  
REFT  
REFB  
VREF  
V
if MODE = AV  
DD  
MID  
10 µF  
0.1 µF  
BIASREF  
AV  
DD  
2
0.1 µF  
High-Impedance if MODE =  
Figure 23. Internal Reference Mode, 1-V Reference Span  
AV  
DD  
2
or AV  
DD  
+FS  
VM  
−FS  
AIN+  
AIN−  
MODE  
DC SOURCE = VM  
VM  
+
_
0.1 µF  
REFT  
REFB  
0.5 V (Output)  
VREF  
10 µF  
0.1 µF  
0.1 µF  
REFSENSE  
Figure 24. Internal Reference Mode, 0.5-V Reference Span, Single-Ended Input  
18  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
onboard reference generator configuration  
The internal bandgap reference A1 can provide a supply-voltage-independent and temperature-independent  
voltage on pin VREF.  
External connections to REFSENSE control A1’s output to the VREF pin as shown in Table 1.  
Table 1. Effect of REFSENSE Connection on VREF Value  
REFSENSE CONNECTION  
VREF pin  
A1 OUTPUT TO VREF  
SEE:  
0.5 V  
1 V  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
AGND  
External divider junction  
(1 + R /R )/2 V  
a b  
AV  
DD  
Open circuit  
REFSENSE = AV  
If MODE is connected to AV  
powers the internal bandgap reference A1 down, saving power when A1 is not required.  
DD  
or AV /2, then the voltage at VREF determines the ADC reference voltages:  
DD  
DD  
AV  
(9)  
DD VREF  
REFT +  
REFB +  
)
2
2
(10)  
AV  
DD VREF  
*
2
2
(11)  
REFT–REFB + VREF  
ADC  
References  
Buffer A2  
MODE =  
AV  
DD  
or AV  
DD  
2
+
_
VREF = 0.5 V  
REFSENSE  
+
VBG  
_
0.1 µF 1 µF  
AGND  
Figure 25. 0.5-V VREF Using the Internal Bandgap Reference A1  
19  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
onboard reference generator configuration (continued)  
ADC  
References  
Buffer A2  
MODE =  
AV  
DD  
2
or AV  
DD  
+
_
VREF = 1 V  
REFSENSE  
+
VBG  
_
0.1 µF 1 µF  
10 kΩ  
10 kΩ  
AGND  
Figure 26. 1-V VREF Using the Internal Bandgap Reference A1  
ADC  
References  
Buffer A2  
MODE =  
AV  
DD  
or AV  
DD  
2
VREF = (1 + R /R )/2  
+
_
a
b
+
VBG  
_
0.1 µF 1 µF  
Ra  
REFSENSE  
Rb  
AGND  
Figure 27. External Divider Mode  
20  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
onboard reference generator configuration (continued)  
ADC  
References  
Buffer A2  
MODE =  
AV  
DD  
2
or AV  
DD  
VREF = External  
REFSENSE  
+
_
+
VBG  
_
AV  
DD  
AGND  
Figure 28. Drive VREF Mode  
operating configuration examples  
Figure 29 shows a configuration using the internal ADC references for digitizing a single-ended signal with span  
0 V to 2 V. Tying REFSENSE to ground gives 1 V at pin VREF. Tying MODE to AV /2 then sets the REFT and  
DD  
REFB voltages via the internal reference generator for a 2-V  
ADC input range. The VREF pin provides the  
p-p  
1-V mid-scale bias voltage required at AIN−. VREF should be well decoupled to AGND to prevent  
sample-and-hold switching at AIN− from corrupting the VREF voltage.  
AV /2  
DD  
2 V  
20 Ω  
AIN+  
AIN−  
1 V  
0 V  
MODE  
20 pF  
20 Ω  
20 pF  
10 µF  
VREF = 1 V  
REFT  
0.1 µF  
10 µF  
0.1 µF  
REFSENSE  
REFB  
0.1 µF  
Figure 29. Operating Configuration: 2-V Single-Ended Input, Internal ADC References  
21  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
operating configuration examples (continued)  
Figure 30 shows a configuration using the internal ADC references for digitizing a dc-coupled differential input  
with 1.5-V  
span and 1.5-V common-mode voltage. External resistors are used to set the internal bandgap  
p-p  
reference output at VREF to 0.75 V. Tying MODE to AV  
reference generator for a 1.5-V  
then sets the REFT and REFB voltages via the internal  
DD  
ADC input range.  
p-p  
If a transformer is used to generate the differential ADC input from a single-ended signal, then the BIASREF  
pin provides a suitable bias voltage for the secondary windings center tap when MODE = AV  
.
DD  
AV  
DD  
1.875 V  
20 Ω  
20 Ω  
AIN+  
AIN−  
MODE  
1.5 V  
1.125 V  
20 pF  
20 pF  
1.875 V  
1.5 V  
1.125 V  
VREF = 0.75 V  
REFSENSE  
5 kΩ  
0.1 µF  
10 µF  
REFT  
10 kΩ  
10 µF  
0.1 µF  
REFB  
0.1 µF  
Figure 30. Operating Configuration: 1.5-V Differential Input, Internal ADC References  
Figure 31 shows a configuration using the internal ADC references and an external VREF source for digitizing  
a dc-coupled single-ended input with span 0.5 V to 2 V. A 1.25-V external source provides the bias voltage for  
the AIN− pin and also, via a buffered potential divider, the 0.75 VREF voltage required to set the input range  
to 1.5 V  
MODE is tied to AV  
to set internal ADC references configuration.  
p-p  
DD  
AV  
DD  
2 V  
20 Ω  
AIN+  
MODE  
1.25 V  
0.5 V  
20 pF  
20 pF  
0.1 µF  
20 Ω  
1.25  
Source  
AIN−  
REFT  
REFB  
10 µF  
0.1 µF  
10 kΩ  
_
VREF  
10 µF  
+
(0.75 V)  
0.1 µF  
15 kΩ  
AV  
REFSENSE  
DD  
Figure 31. Operating Configuration: 1.5-V Single-Ended Input, External VREF Source  
22  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
PRINCIPLES OF OPERATION  
power management  
In power-sensitive applications (such as battery-powered systems) where the THS1040 is not required to  
convert continuously, power can be saved between conversion intervals by placing the THS1040 into  
power-down mode. This is achieved by pulling the STBY pin high. In power-down mode, the device typically  
consumes less than 0.1 mW of power.  
If the internal VREF generator (A1) is not required, it can be powered down by tying pin REFSENSE to AV  
saving approximately 1.2 mA of supply current.  
,
DD  
If the BIASREF function is not required when using internal references then tying MODE to AV /2 powers the  
DD  
BIASREF buffer down, saving approximately 1.2 mA.  
digital I/O  
While the OE pin is held low, ADC conversion results are output at pins D0 (LSB) to D9 (MSB). The ADC input  
over-range indicator is output at pin OVR. OVR is also disabled when OE is held high.  
The only ADC output data format supported is unsigned binary (output codes 0 to 1023). Twos complement  
output (output codes −512 to 511) can be obtained by using an external inverter to invert the D9 output.  
23  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
driving the THS1040 analog inputs  
driving the clock input  
Obtaining good performance from the THS1040 requires care when driving the clock input.  
Different sections of the sample-and-hold and ADC operate while the clock is low or high. The user should  
ensure that the clock duty cycle remains near 50% to ensure that all internal circuits have as much time as  
possible in which to operate.  
The CLK pin should also be driven from a low jitter source for best dynamic performance. To maintain low jitter  
at the CLK input, any clock buffers external to the THS1040 should have fast rising edges. Use a fast logic family  
such as AC or ACT to drive the CLK pin, and consider powering any clock buffers separately from any other  
logic on the PCB to prevent digital supply noise appearing on the buffered clock edges as jitter.  
As the CLK input threshold is nominally around AV /2, any clock buffers need to have an appropriate supply  
DD  
voltage to drive above and below this level.  
driving the sample and hold inputs  
driving the AIN+ and AIN− pins  
Figure 32 shows an equivalent circuit for the THS1040 AIN+ and AIN− pins. The load presented to the system  
at the AIN pins comprises the switched input sampling capacitor, C  
, and various stray capacitances, C  
Sample  
1
and C .  
2
AV  
DD  
CLK  
1.2 pF  
C
AIN  
C1  
8 pF  
C2  
1.2 pF  
Sample  
AGND  
CLK  
+
_
VCM = AIN+/AIN− Common Mode Voltage  
Figure 32. Equivalent Circuit for Analog Input Pins AIN+ and AIN−  
The input current pulses required to charge C  
circuit modelled as an equivalent resistor:  
and C can be time averaged and the switched capacitor  
2
Sample  
(12)  
1
  f  
R
+
IN2  
C
S
CLK  
where C is the sum of C  
resistance for high impedance sources.  
and C . This model can be used to approximate the input loading versus source  
2
S
Sample  
24  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
AV  
DD  
R2 = 1/C  
f
S CLK  
AIN  
I
IN  
C1  
8 pF  
+
_
VCM = AIN+/AIN− Common Mode Voltage  
AGND  
Figure 33. Equivalent Circuit for the AIN Switched Capacitor Input  
AIN input damping  
The charging current pulses into AIN+ and AIN− can make the signal sources jump or ring, especially if the  
sources are slightly inductive at high frequencies. Inserting a small series resistor of 20 or less and a small  
capacitor to ground of 20 pF or less in the input path can damp source ringing (see Figure 34). The resistor and  
capacitor values can be made larger than 20 and 20 pF if reduced input bandwidth and a slight gain error (due  
to potential division between the external resistors and the AIN equivalent resistors) are acceptable.  
Note that the capacitors should be soldered to a clean analog ground with a common ground point to prevent  
any voltage drops in the ground plane appearing as a differential voltage at the ADC inputs.  
R < 20 Ω  
AIN  
V
S
C < 20 pF  
Figure 34. Damping Source Ringing Using a Small Resistor and Capacitor  
driving the VREF pin  
Figure 35 shows the equivalent load on the VREF pin when driving the ADC internal references buffer via this  
pin (MODE = AV /2 or AV  
and REFSENSE = AV ).  
DD  
DD  
DD  
AV  
DD  
R
IN  
VREF  
10 kΩ  
MODE = AV  
REFSENSE = AV  
MODE = AV /2 or AV  
DD DD  
,
DD  
DD  
AGND  
+
(AV  
DD  
+ VREF) /4  
_
Figure 35. Equivalent Circuit of VREF  
The nominal input current I  
3 V  
is given by:  
REF  
(13)  
* AV  
REF  
DD  
I
+
REF  
4   R  
IN  
25  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
driving the VREF pin (continued)  
Note that the maximum current may be up to 30% higher. The user should ensure that VREF is driven from a  
low noise, low drift source, well decoupled to analog ground and capable of driving the maximum I  
.
REF  
driving REFT and REFB (external ADC references, MODE = AGND)  
AV  
DD  
To ADC Core  
REFT  
AGND  
2 kΩ  
AV  
DD  
REFB  
To ADC Core  
AGND  
Figure 36. Equivalent Circuit of REFT and REFB Inputs  
reference decoupling  
VREF pin  
When the on-chip reference generator is enabled, the VREF pin should be decoupled to the circuit board’s  
analog ground plane close to the THS1040 AGND pin via a 1-µF capacitor and a 0.1-µF ceramic capacitor.  
REFT and REFB pins  
In any mode of operation, the REFT and REFB pins should be decoupled as shown in Figure 37. Use short  
board traces between the THS1040 and the capacitors to minimize parasitic inductance.  
0.1 µF  
REFT  
THS1040  
0.1 µF  
10 µF  
REFB  
0.1 µF  
Figure 37. Recommended Decoupling for the ADC Reference Pins REFT and REFB  
BIASREF pin  
When using the on-chip BIASREF source, the BIASREF pin should be decoupled to the circuit board’s analog  
ground plane close to the THS1040 AGND pin via a 1-µF capacitor and a 0.1-µF ceramic capacitor.  
26  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
supply decoupling  
The analog (AV , AGND) and digital (DV , DGND) power supplies to the THS1040 must be separately  
DD  
DD  
decoupled for best performance. Each supply needs at least a 10-µF electrolytic or tantalum capacitor (as a  
charge reservoir) and a 100-nF ceramic type capacitor placed as close as possible to the respective pins (to  
suppress spikes and supply noise).  
digital output loading and circuit board layout  
The THS1040 outputs are capable of driving rail-to-rail with up to 10 pF of load per pin at 40-MHz clock frequency  
and 3-V digital supply. Minimizing the load on the outputs improves THS1040 signal-to-noise performance by  
reducing the switching noise coupling from the THS1040 output buffers to the internal analog circuits. The  
output load capacitance can be minimized by buffering the THS1040 digital outputs with a low input capacitance  
buffer placed as close to the output pins as physically possible, and by using the shortest possible tracks  
between the THS1040 and this buffer. Inserting small resistors in the range 100 to 300 between the  
THS1040 I/O outputs and their loads can help minimize the output-related noise in noise-critical applications.  
Noise levels at the output buffers, which may affect the analog circuits within THS1040, increase with the digital  
supply voltage. Where possible, consider using the lowest DV  
that the application can tolerate.  
DD  
Use good layout practices when designing the application PCB to ensure that any off-chip return currents from  
the THS1040 digital outputs (and any other digital circuits on the PCB) do not return via the supplies to any  
sensitive analog circuits. The THS1040 should be soldered directly to the PCB for best performance. Socketing  
the device degrades performance by adding parasitic socket inductance and capacitance to all pins.  
user tips for obtaining best performance from the THS1040  
D
D
D
D
Choose differential input mode for best distortion performance.  
Choose a 2-V ADC input span for best noise performance.  
Choose a 1-V ADC input span for best distortion performance.  
Drive the clock input CLK from a low-jitter, fast logic stage, with a well-decoupled power supply and short  
PCB traces.  
D
Use a small RC filter (typically 20 and 20 pF) between the signal source(s) the AIN+ (and AIN−) input(s)  
when the systems bandwidth requirements allow this.  
27  
www.ti.com  
SLAS290C − OCTOBER 2001 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
definitions  
D
Integral nonlinearity (INL)—Integral nonlinearity refers to the deviation of each individual code from a line  
drawn from zero to full scale. The point used as zero occurs 1/2 LSB before the first code transition. The  
full-scale point is defined as a level 1/2 LSB beyond the last code transition. The deviation is measured from  
the center of each particular code to the true straight line between these two endpoints.  
D
Differential nonlinearity (DNL)—An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL  
is the deviation from this ideal value. Therefore this measure indicates how uniform the transfer function  
step sizes are. The ideal step size is defined here as the step size for the device under test (i.e., (last  
transition level – first transition level) ÷ (2 – 2)). Using this definition for DNL separates the effects of gain  
and offset error. A minimum DNL better than –1 LSB ensures no missing codes.  
n
D
D
Zero-error—Zero-error is defined as the difference in analog input voltage—between the ideal voltage and  
the actual voltage—that switches the ADC output from code 0 to code 1. The ideal voltage level is  
determined by adding the voltage corresponding to 1/2 LSB to the bottom reference level. The voltage  
corresponding to 1 LSB is found from the difference of top and bottom references divided by the number  
of ADC output levels (1024).  
Full-scale error—Full-scale error is defined as the difference in analog input voltage—between the ideal  
voltage and the actual voltage—that switches the ADC output from code 1022 to code 1023. The ideal  
voltage level is determined by subtracting the voltage corresponding to 1.5 LSB from the top reference level.  
The voltage corresponding to 1 LSB is found from the difference of top and bottom references divided by  
the number of ADC output levels (1024).  
D
D
Wake-up time—Wake-up time is from the power-down state to accurate ADC samples being taken and is  
specified for MODE = AGND with external reference sources applied to the device at the time of release  
of power-down, and an applied 40-MHz clock. Circuits that need to power up are the bandgap, bias  
generator, ADC, and SHA.  
Power-up time—Power-up time is from the power-down state to accurate ADC samples being taken and  
is specified for MODE = AV /2 or AV  
and an applied 40-MHz clock. Circuits that need to power up  
DD  
DD  
include VREF reference generation (A1), bias generator, ADC, the SHA, and the on-chip ADC reference  
generator (A2).  
D
D
Aperture delay—The delay between the 50% point of the rising edge of the clock and the instant at which  
the analog input is sampled.  
Aperture uncertainty (Jitter)—The sample-to-sample variation in aperture delay.  
28  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
THS1040CDW  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
28  
20  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1YEAR/  
Level-1-220C-UNLIM  
THS1040CDWR  
SOIC  
DW  
28  
1000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1YEAR/  
Level-1-220C-UNLIM  
THS1040CPW  
THS1040CPWR  
THS1040IDW  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
DW  
28  
28  
28  
50  
2000  
20  
None  
None  
CU NIPDAU Level-2-220C-1 YEAR  
CU NIPDAU Level-2-220C-1 YEAR  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1YEAR/  
Level-1-220C-UNLIM  
THS1040IDWR  
ACTIVE  
SOIC  
DW  
28  
1000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1YEAR/  
Level-1-220C-UNLIM  
THS1040IPW  
THS1040IPWR  
THS1040IPWRG4  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
28  
28  
28  
50  
None  
None  
CU NIPDAU Level-2-220C-1 YEAR  
CU NIPDAU Level-2-220C-1 YEAR  
2000  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

THS1040CDWRG4

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, SOIC-28, Analog to Digital Converter
TI

THS1040CPW

3-V, 10-BIT , 40-MSPS CMOS ANALOG TO DIGITAL CONVERTER
TI

THS1040CPWG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, TSSOP-28
TI

THS1040CPWR

3-V, 10-BIT , 40-MSPS CMOS ANALOG TO DIGITAL CONVERTER
TI

THS1040CPWRG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, TSSOP-28
TI

THS1040IDW

3-V, 10-BIT , 40-MSPS CMOS ANALOG TO DIGITAL CONVERTER
TI

THS1040IDWG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, SOIC-28
TI

THS1040IDWR

3-V, 10-BIT , 40-MSPS CMOS ANALOG TO DIGITAL CONVERTER
TI

THS1040IDWRG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, SOIC-28
TI

THS1040IPW

3-V, 10-BIT , 40-MSPS CMOS ANALOG TO DIGITAL CONVERTER
TI

THS1040IPWG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, TSSOP-28
TI

THS1040IPWR

3-V, 10-BIT , 40-MSPS CMOS ANALOG TO DIGITAL CONVERTER
TI