THS1408M [TI]

14 位、8MSPS ADC 单通道、差动输入、DSP/uP 接口、可编程增益放大器、内部 S&H;
THS1408M
型号: THS1408M
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14 位、8MSPS ADC 单通道、差动输入、DSP/uP 接口、可编程增益放大器、内部 S&H

放大器
文件: 总32页 (文件大小:1043K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢇꢈ ꢇꢉ ꢊꢋ ꢌꢋ ꢆ ꢍꢋ ꢌ ꢂꢎ ꢏ ꢊꢌꢐꢑꢒ ꢃꢓ ꢔ ꢐꢕ ꢐ ꢓꢏ ꢖꢂ ꢑꢏ ꢂ ꢍꢒ ꢖꢒ ꢑꢐ ꢓ  
ꢎ ꢏ ꢕꢗ ꢔꢘ ꢑꢔꢘ ꢋ ꢙꢒ ꢑꢚ ꢒ ꢕꢑꢔ ꢘ ꢕꢐꢓ ꢘꢔ ꢛꢔ ꢘꢔ ꢕꢎ ꢔ ꢐꢕ ꢍ ꢌ ꢖꢐ  
FEATURES  
DESCRIPTION  
D
D
D
D
D
D
D
D
D
D
D
D
14-Bit Resolution  
1, 3, and 8 MSPS Speed Grades Available  
The THS1401, THS1403, and THS1408 are 14-bit, 1/3/8  
MSPS, single supply analog-to-digital converters (ADCs)  
with an internal reference, differential inputs,  
Differential Nonlinearity (DNL) 0.6 LSB Typ  
Integral Nonlinearity (INL) 1.5 LSB Typ  
Internal Reference  
programmable  
input  
gain,  
and  
an  
on-chip  
sample-and-hold amplifier.  
Implemented with a CMOS process, the device has  
outstanding price/performance and power/speed ratios.  
The THS1401, THS1403, and THS1408 are designed for  
use with 3.3-V systems, and with a high-speed µP-  
compatible parallel interface, making them the first choice  
for solutions based on high-performance DSPs such as  
the TI TMS320C6000 series.  
Differential Inputs  
Programmable Gain Amplifier  
µP-Compatible Parallel Interface  
Timing Compatible With TMS320C6000 DSP  
3.3-V Single Supply  
The THS1401, THS1403, and THS1408 are available in a  
TQFP-48 package in standard commercial and industrial  
temperature ranges. The THS1401, THS1403, and  
THS1408 are also available in a PQFP-48 package in  
automotive temperature range, and the THS1408 is  
available in a PQFP-48 package in military temperature  
range.  
Power-Down Mode  
Monolithic CMOS Design  
APPLICATIONS  
D
D
D
D
D
xDSL Front Ends  
Communication  
Industrial Control  
Instrumentation  
Automotive  
VBG  
REF+  
REF−  
REF  
1.5 V  
BG  
IN+  
IN−  
14  
15  
PGA  
0..7 dB  
14-Bit  
ADC  
D[13:0] + OV bit  
Buffer  
6
A[1:0]  
CONTROL  
LOGIC  
CLK  
CS  
WR  
OE  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
Copyright 1999−2005, Texas Instruments Incorporated  
ꢌꢘ ꢏ ꢍꢝ ꢎ ꢑꢒ ꢏꢕ ꢍ ꢐꢑꢐ ꢄꢞ ꢟꢠ ꢡ ꢢꢣ ꢅꢄꢠꢞ ꢄꢤ ꢥꢦ ꢡ ꢡ ꢧꢞꢅ ꢣꢤ ꢠꢟ ꢨꢦꢩ ꢪꢄꢥ ꢣꢅꢄ ꢠꢞ ꢫꢣ ꢅꢧꢬ ꢌꢡ ꢠꢫꢦ ꢥꢅꢤ  
ꢌꢡ ꢠ ꢫꢦꢥ ꢅ ꢄꢠ ꢞ ꢨꢡ ꢠ ꢥ ꢧ ꢤ ꢤ ꢄꢞ ꢱ ꢫꢠ ꢧ ꢤ ꢞꢠꢅ ꢞꢧ ꢥꢧ ꢤꢤ ꢣꢡ ꢄꢪ ꢰ ꢄꢞꢥ ꢪꢦꢫ ꢧ ꢅꢧ ꢤꢅꢄ ꢞꢱ ꢠꢟ ꢣꢪ ꢪ ꢨꢣ ꢡ ꢣꢢ ꢧꢅꢧ ꢡ ꢤꢬ  
ꢧꢡ  
ꢧꢫ  
ꢅꢭ  
ꢠꢅ  
ꢠꢫ  
ꢅꢤ  
ꢥꢧ  
ꢪꢰ  
www.ti.com  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
ABSOLUTE MAXIMUM RATINGS  
Over operating free-air temperature range unless otherwise noted.  
(1)  
Supply voltage, (AV  
Supply voltage, (DV  
to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4V  
to DGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4V  
DD  
DD  
Reference input voltage range, VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to AV  
Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to AV  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to DV  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
Operating free-air temperature range, T : C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Q-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
M-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
stg  
(1)  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and  
functionaloperation of the device at these or any other conditions beyond those indicated under recommendedoperating conditions is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
A[1:0]  
AGND  
NO.  
40, 41  
I
Address input  
Analog ground  
Analog power supply  
Clock input  
7,8, 44, 45, 46  
AV  
DD  
2, 43, 47  
CLK  
32  
I
I
CML  
CS  
4
Reference midpoint. This pin requires a 0.1-µF capacitor to AGND.  
Chip select input. Active low.  
Digital ground  
37  
DGND  
9, 15, 25, 33, 34  
14, 20, 26, 30, 31, 42  
DV  
DD  
Digital power supply  
D[13:0]  
11, 12, 13, 16, 17, 18,  
19, 21, 22, 23, 24, 27,  
28, 29  
I/O  
Data inputs/outputs  
NC  
IN+  
38, 39  
48  
1
No connection; do not use. Reserved.  
I
I
Positive differential analog input  
IN−  
Negative differential analog input  
OE  
35  
10  
5
I
Output enable. Active low.  
OV  
O
O
O
I
Out-of-range output  
REF+  
REF−  
VBG  
WR  
Positive reference output. This pin requires a 0.1-µF capacitor to AGND.  
Negative reference output. This pin requires a 0.1-µF capacitor to AGND.  
Reference input. This pin requires a 1-µF capacitor to AGND.  
Write signal. Active low.  
6
3
36  
I
2
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
PFB AND PHP PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
WR  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
IN−  
1
2
3
4
5
6
7
8
9
10  
OE  
AV  
DD  
DGND  
DGND  
CLK  
VBG  
CML  
REF+  
REF−  
AGND  
AGND  
DGND  
OV  
DV  
DD  
DV  
DD  
D0  
D1  
D2  
DV  
DD  
DGND  
D13 11  
D12 12  
13 14 15 16 17 18 19 20 21 22 23 24  
NC − No internal connection  
AVAILABLE OPTIONS  
PACKAGED DEVICE  
T
A
TQFP  
(PFB)  
PQFP (Power Pad)  
(PHP)  
THS1401CPFB,  
THS1403CPFB,  
THS1408CPFB  
0°C to 70°C  
THS1401IPFB,  
THS1403IPFB,  
THS1408IPFB  
−40°C to 85°C  
THS1401QPHP,  
THS1403QPHP,  
THS1408QPHP  
−40°C to 125°C  
−55°C to 125°C  
THS1408MPHP  
3
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
(1)  
THERMAL CHARACTERISTICS  
TYP  
85.9  
28.8  
19.6  
0.79  
UNIT  
PFB package  
PHP package  
PFB package  
PHP package  
Thermal resistance, junction-to-ambient, Θ  
JA  
°C/W  
°C/W  
Thermal resistance, junction-to-case, Θ  
JC  
(1)  
Thermal resistance is modeled data, is not production tested, and is given for informational purposes only.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
Supply voltage, AV , DV  
DD DD  
3
2
3.3  
3.3  
0
3.6  
High level digital input, V  
IH  
V
Low level digital input, V  
IL  
V
0.8  
15  
Load capacitance, C  
5
pF  
L
THS1401  
THS1403  
THS1408  
C- and I-suffix  
Q- and M-suffix  
C-suffix  
0.1  
0.1  
0.1  
40  
1
1
3
MHz  
MHz  
MHz  
3
Clock frequency, f  
CLK  
8
8
50  
50  
25  
25  
25  
25  
60  
55  
70  
85  
125  
125  
Clock duty cycle  
%
45  
0
I-suffix  
−40  
−40  
−55  
Operating free-air temperature  
°C  
Q-suffix  
M-suffix  
4
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS  
Over operating free-air temperature range, AVDD = DVDD = 3.3V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply  
I
I
Analog supply current  
Digital supply current  
Power  
AV  
DD  
= 3.6 V  
= 3.6 V  
81  
5
90  
10  
mA  
mA  
mW  
µA  
DDA  
DV  
DDD  
DD  
DD  
AV  
= DV  
DD  
= 3.6 V  
270  
20  
360  
Power down current  
DC Characteristics  
Resolution  
14  
0.6  
1.5  
1.5  
2
Bits  
DNL  
INL  
Differential nonlinearity  
1
2.5  
2.5  
3
LSB  
THS1401  
THS1403C/I  
THS1403Q  
THS1408C/I  
THS1408Q/M  
Integral nonlinearity  
Best fit  
LSB  
3
5
3.5  
7.5  
Offset error  
Gain error  
IN+ = IN−, PGA = 0 dB  
PGA = 0 dB  
0.3 %FSR  
%FSR  
C and I suffix  
1
Q and M suffix  
1.75 %FSR  
AC Characteristics  
ENOB  
Effective number of bits  
11.2  
11.5  
−81  
−78  
−77  
72  
Bits  
dB  
THS1401/3/8  
THS1403/8  
f = 100 kHz  
i
f = 1 MHz  
i
THD  
Total harmonic distortion  
THS1408  
f = 4 MHz  
i
THS1401/3/8  
THS1403/8  
f = 100 kHz  
i
f = 1 MHz  
i
70  
69  
72  
SNR  
Signal-to-noise ratio  
dB  
dB  
THS1408  
f = 4 MHz  
i
71  
THS1401/3/8  
THS1403/8  
f = 100 kHz  
i
70  
f = 1 MHz  
i
70  
SINAD Signal-to-noise ratio + distortion  
THS1408  
f = 4 MHz  
i
70  
THS1401/3/8  
THS1403C/I, THS1408C/I  
THS1403Q, THS1408Q/M  
THS1408  
f = 100 kHz  
80  
i
73  
71  
80  
SFDR  
Spurious-free dynamic range  
Analog input bandwidth  
f = 1 MHz  
i
dB  
80  
f = 4 MHz  
i
80  
140  
MHz  
5
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS (Cont.)  
Over operating free-air temperature range, AVDD = DVDD = 3.3V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Reference Voltage  
Bandgap voltage, internal mode  
Input impedance  
1.425  
1.5 1.575  
V
kΩ  
V
40  
2.5  
0.5  
2
Positive reference voltage, REF+  
Negative reference voltage, REF−  
Reference difference, REF, REF+ − REF−  
Accuracy, internal reference  
Temperature coefficient  
V
V
5%  
40  
ppm/°C  
Voltage coefficient  
200  
ppm/V  
Analog Inputs  
Positive analog input, IN+  
Negative analog input, IN−  
Analog input voltage difference  
Input impedance  
0
0
AV  
AV  
V
V
DD  
DD  
A = IN+ − IN−, V  
IN REF  
= REF+ − REF− −V  
V
REF  
V
REF  
25  
1
kΩ  
dB  
dB  
dB  
PGA range  
0
7
PGA step size  
PGA gain error  
0.25  
Digital Inputs  
V
V
High-level digital input  
Low-level digital input  
Input capacitance  
Input current  
2
V
V
IH  
0.8  
1
IL  
5
pF  
µA  
Digital Outputs  
V
V
High-level digital output  
I
I
= 50 µA  
= 50 µA  
2.6  
V
V
OH  
OH  
Low-level digital output  
0.4  
10  
OL  
OL  
I
Output current, high impedance  
µA  
OZ  
Clock Timing (CS low)  
THS1401  
THS1403  
THS1408  
0.1  
1
3
8
1
3
MHz  
MHz  
MHz  
ns  
0.1  
f
t
Clock frequency  
CLK  
0.1  
8
Output delay time  
Latency  
25  
d
9.5  
Cycles  
This parameter is not production tested for Q- and M-suffix devices.  
6
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION  
sample timing  
The THS1401/3/8 core is based on a pipeline architecture with a latency of 9.5 samples. The conversion results  
appear on the digital output 9.5 clock cycles after the input signal was sampled.  
S11  
S12  
S9  
S10  
Analog  
Input  
t
t
w(CLK)  
w(CLK)  
CLK  
t
d
Data  
Out  
C3  
C1  
C2  
Figure 1. Sample Timing  
The parallel interface of the THS1401/3/8 ADC features 3-state buffers, making it possible to directly connect  
it to a data bus. The output buffers are enabled by driving the OE input low.  
Besides the sample results, it is also possible to read back the values of the control register, the PGA register,  
and the offset register. Which register is read is determined by the address inputs A[1,0]. The ADC results are  
available at address 0.  
The timing of the control signals is described in the following sections.  
7
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION  
read timing (15-pF load)  
PARAMETER  
Address and chip select setup time  
MIN  
TYP  
MAX  
UNIT  
t
t
t
t
t
4
ns  
ns  
ns  
ns  
ns  
su(OE−ACS)  
Output enable  
15  
en  
Output disable  
10  
dis  
Address hold time  
Chip select hold time  
1
0
h(A)  
h(CS)  
NOTE: All timing parameters refer to a 50% level.  
CS  
t
h(CS)  
OE  
t
t
en  
t
su(OE−ACS)  
dis  
DATA  
D[13:0]  
O V  
t
h(A)  
A[1:0]  
X
ADDRESS  
X
Figure 2. Read Timing  
8
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION  
write timing (15-pF load)  
PARAMETER  
MIN  
4
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
Chip select setup time  
su(WE−CS)  
Data and address setup time  
Data and address hold time  
Chip select hold time  
29  
0
ns  
su(DA)  
ns  
h(DA)  
0
ns  
h(CS)  
Write pulse duration high  
15  
ns  
wH(WE)  
NOTE: All timing parameters refer to a 50% level.  
CS  
t
h(CS)  
WE  
t
su(WE−CS)  
t
su(DA)  
X
X
X
DATA  
D[13:0]  
t
h(DA)  
A
ADDRESS  
X
Figure 3. Write Timing  
9
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
POWER  
vs  
SUPPLY CURRENT  
vs  
FREQUENCY  
TIME  
90  
80  
70  
60  
50  
40  
30  
20  
284  
282  
280  
278  
276  
274  
272  
270  
268  
10  
0
0
50  
100  
150  
200  
250  
300  
0.1  
1
10  
f − Frequency − MHz  
t − Time − ns  
Figure 4  
Figure 5  
FAST FOURIER TRANSFORM  
0
−20  
f
= 1 MSPS,  
s
f = 100 kHz,  
I
−1 dB  
−40  
−60  
−80  
−100  
−120  
−140  
0
100  
200  
300  
400  
500  
f − Frequency − kHz  
Figure 6  
10  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
FAST FOURIER TRANSFORM  
0
−20  
−40  
f
= 3 MSPS,  
s
f = 1 MHz,  
I
−1 dB  
−60  
−80  
−100  
−120  
−140  
0.1  
0.4  
0.7  
1
1.3  
f − Frequency − MHz  
Figure 7  
FAST FOURIER TRANSFORM  
0
f
= 8 MSPS,  
s
−20  
f = 1 MHz,  
I
−1 dB  
−40  
−60  
−80  
−100  
−120  
−140  
2.2  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.5  
2.8  
3.1  
3.4  
3.7  
4
f − Frequency − MHz  
Figure 8  
INTEGRAL NONLINEARITY  
2
f
s
= 1 MSPS  
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
−2  
0
2048  
4096  
6144  
8192  
10240  
12288  
14336  
16384  
Samples  
Figure 9  
11  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
2
f
s
= 3 MSPS  
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
−2  
0
2048  
4096  
6144  
8192  
10240  
12288  
14336  
16384  
Samples  
Figure 10  
INTEGRAL NONLINEARITY  
4
3
f
s
= 8 MSPS  
2
1
0
−1  
−2  
−3  
−4  
0
2048  
4096  
6144  
8192  
10240  
12288  
14336  
16384  
Samples  
Figure 11  
DIFFERENTIAL NONLINEARITY  
1
0.8  
0.6  
f
s
= 1 MSPS  
0.4  
0.2  
0
−0.2  
−0.4  
−0.6  
−0.8  
−1  
0
2048  
4096  
6144  
8192  
10240  
12288  
14336  
16384  
Samples  
Figure 12  
12  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
1
0.8  
0.6  
0.4  
0.2  
f
s
= 3 MSPS  
0
−0.2  
−0.4  
−0.6  
−0.8  
−1  
0
2048  
4096  
6144  
8192  
10240  
12288  
14336  
16384  
Samples  
Figure 13  
DIFFERENTIAL NONLINEARITY  
1
f
s
= 8 MSPS  
0.8  
0.6  
0.4  
0.2  
0
−0.2  
−0.4  
−0.6  
−0.8  
−1  
0
2048  
4096  
6144  
8192  
10240  
12288  
14336  
16384  
Samples  
Figure 14  
13  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
−70  
−72  
−74  
−76  
−78  
−80  
−82  
−84  
−86  
−88  
−90  
−70  
−72  
−74  
−76  
−78  
−80  
−82  
−84  
−86  
−88  
−90  
f
= 8 MSPS,  
f
= 3 MSPS,  
s
s
f at −1 dB  
I
f at −1 dB  
I
10  
100  
1000  
4000  
10  
100  
1000 1500  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 15  
Figure 16  
SIGNAL-TO-NOISE RATIO  
SIGNAL-TO-NOISE RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
f
= 8 MSPS,  
f
= 3 MSPS,  
s
s
f at −1 dB  
I
f at −1 dB  
I
100  
10  
1000 1500  
100  
10  
1000  
4000  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 18  
Figure 17  
14  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
PRINCIPLES OF OPERATION  
registers  
The device contains several registers. The A register is selected by the values of bits A1 and A0:  
A1  
0
A0  
0
Register  
Conversion result  
PGA  
0
1
1
0
Offset  
1
1
Control  
Tables 1 and 2 describe how to read the conversion results and how to configure the data converter. The default  
values (were applicable) show the state after a power-on reset.  
Table 1. Conversion Result Register, Address 0, Read  
BIT  
D13  
D12  
...  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
MSB  
LSB  
The output can be configured for 2s complement or straight binary format (see D11/control register).  
The output code is given by:  
2s complement:  
Straight binary:  
−8192 at IN = −REF  
0
at IN = −REF  
0
at IN = 0  
8192 at IN = 0  
8191 IN = +REF − 1 LSB  
16383 at IN = + REF − 1 LSB  
2DREF  
16384  
1 LSB +  
Table 2. PGA Gain Register, Address 1, Read/Write  
BIT  
D13  
X
D12  
X
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
G2  
0
D1  
G1  
0
D0  
G0  
0
Function  
Default  
0
0
0
0
0
0
0
0
0
0
0
The PGA gain is determined by writing to G2−0.  
Gain (dB) = 1dB × G2−0. max = 7dB. The range of G2−0 is 0 to 7.  
Table 3. Offset Register, Address 2, Read/Write  
BIT  
D13  
X
D12  
X
D11  
X
D10  
X
D9  
X
D8  
X
D7  
MSB  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
LSB  
0
Function  
Default  
0
0
0
0
0
0
The offset correction range is from –128 to 127 LSB. This value is added to the conversion results from the ADC.  
15  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
PRINCIPLES OF OPERATION  
Table 4. Control Register, Address 3, Read  
BIT  
D13  
D12  
REF  
D11  
D10  
TM2  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
PWD  
FOR  
TM1  
TM0  
OFF  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Table 5. Control Register, Address 3, Write  
BIT  
D13  
PWD  
0
D12  
REF  
0
D11  
FOR  
0
D10  
TM2  
0
D9  
TM1  
0
D8  
TM0  
0
D7  
OFF  
0
D6  
RES  
0
D5  
RES  
0
D4  
RES  
0
D3  
RES  
0
D2  
RES  
0
D1  
RES  
0
D0  
RES  
0
Function  
Default  
PWD:  
REF:  
FOR:  
Power down  
0 = normal operation  
0 = internal reference  
0 = straight binary  
1 = power down  
Reference select  
Output format  
1 = external reference  
1 = 2s complement  
TM2−0: Test mode  
000 = normal operation  
001 = both inputs = REF−  
010 = IN+ at V  
(Voltage at CML pin), IN− at REF−  
CM  
011 = IN+ at REF+, IN− at REF−  
100 = normal operation  
101 = both inputs = REF+  
110 = IN+ at REF−, IN− at V  
(Voltage at CML pin)  
CM  
111 = IN+ at REF−, IN− at REF+  
OF:  
Offset correction  
Reserved  
0 = enable  
1 = disable  
RES  
Must be set to 0.  
APPLICATION INFORMATION  
driving the analog input  
The THS1401/3/8 ADCs have a fully differential input. A differential input is advantageous with respect to SNR,  
SFDR, and THD performance because the signal peak-to-peak level is 50% of a comparable single-ended  
input.  
There are three basic input configurations:  
Fully differential  
D
D
D
Transformer coupled single-ended to differential  
Single-ended  
fully differential configuration  
In this configuration, the ADC converts the difference (IN) of the two input signals on IN+ and IN−.  
22 Ω  
IN+  
100 pF  
THS1401/3/8  
22 Ω  
IN−  
100 pF  
Figure 19. Differential Input  
16  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
The resistors and capacitors on the inputs decouple the driving source output from the ADC input and also serve  
as first order low pass filters to attenuate out of band noise.  
The input range on both inputs is 0 V to AV . The full-scale value is determined by the voltage reference. The  
DD  
positive full-scale output is reached, if IN equals REF, the negative full-scale output is reached, if IN equals  
REF.  
IN [V]  
REF  
0
OUTPUT  
− full scale  
0
REF  
+ full scale  
APPLICATION INFORMATION  
transformer coupled single-ended to differential configuration  
If the application requires the best SNR, SFDR, and THD performance, the input should be transformer  
coupled.  
The signal amplitude on both inputs of the ADC is one half as high as in a single-ended configuration thus  
increasing the ADC ac performance.  
22 Ω  
IN+  
100 pF  
R
THS1401/3/8  
22 Ω  
IN−  
CML  
100 pF  
+
1 µF  
0.1 µF  
Figure 20. Transformer Coupled  
The following table shows the input voltages for negative full-scale output, zero output, and positive full-scale  
output:  
IN [V  
]
OUTPUT [  
]
PEAK  
PEAK  
REF  
− full scale  
0
0
REF  
n = 1 (winding ratio)  
+ full scale  
The resistor R of the transformer coupled input configuration must be set to match the signal source impedance  
2
R = n Rs, where Rs is the source impedance and n is the transformer winding ratio.  
APPLICATION INFORMATION  
single-ended configuration  
In this configuration, the input signal is level shifted by REF/2.  
17  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
10 kΩ + 10 kΩ  
REF+  
IN+  
10 k10 kΩ  
100 pF  
THS1401/3/8  
22 Ω  
+
IN−  
REF−  
100 pF  
10 kΩ  
10 kΩ  
Figure 21. Single-Ended With Level Shift  
The following table shows the input voltages for negative full-scale output, zero output, and positive full-scale  
output:  
IN+ [V]  
REF  
0
OUTPUT  
− full scale  
0
REF  
+ full scale  
Note that the resistors of the op-amp and the op-amp all introduce gain and offset errors. Those errors can be  
trimmed by varying the values of the resistors.  
Because of the added offset, the op-amp does not necessarily operate in the best region of its transfer curve  
(best linearity around zero) and therefore may introduce unacceptable distortion. For ac signals, an alternative  
is described in the following section.  
APPLICATION INFORMATION  
AC-coupled single-ended configuration  
If the application does not require the signal bandwidth to include dc, the level shift shown in Figure 21 is not  
necessary.  
10 kΩ  
10 kΩ  
REF+  
IN+  
10 kΩ  
10 kΩ  
100 pF  
100 pF  
THS1401/3/8  
10 nF  
+
IN−  
REF−  
22 Ω  
10 kΩ  
10 kΩ  
Figure 22. Single-Ended With Level Shift  
Because the signal swing on the op-amp is centered around ground, it is more likely that the signal stays within  
the linear region of the op-amp transfer function, thus increasing the overall ac performance.  
IN [V  
]
OUTPUT [ ]  
PEAK  
PEAK  
REF  
− full scale  
0
0
REF  
+ full scale  
Compared to the transformer-coupled configuration, the swing on IN− is twice as big, which can decrease the  
ac performance (SNR, SFD, and THD).  
18  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
APPLICATION INFORMATION  
conditioning circuitry. If the offset compensation is  
enabled (D7 (OFF) in the control register), the  
value in the offset register (address 2) is  
automatically added to the output of the ADC.  
internal/external reference operation  
The THS1401/3/8 ADC can either be operated  
using the built-in band gap reference or using an  
external precision reference in case very high dc  
accuracy is needed.  
In order to set the correct value of the offset  
compensation register, the ADC result when the  
input signal is 0 must be read by the host  
processor and written to the offset register  
(address 2).  
The REF+ and REF+ outputs are given by:  
2
3
REF )+ VBG 1 )  
and REF–  
test modes  
The ADC core operation can be tested by  
selecting one of the available test modes (see  
control register description). The test modes  
apply various voltages to the differential input  
depending on the setting in the control register.  
If the built-in reference is used, VBG equals 1.5 V  
which results in REF+ = 2.5 V, REF− = 0.5 V and  
REF = 2 V.  
The internal reference can be disabled by writing  
1 to D12 (REF) in the control register (address 3).  
The band gap reference is then disconnected and  
can be substituted by a voltage on the VBG pin.  
digital I/O  
The digital inputs and outputs of the THS1401/3/8  
ADC are 3-V CMOS compatible. In order to avoid  
current feed back errors, the capacitive load on  
the digital outputs should be as low as possible (50  
pF max). Series resistors (100 ) on the digital  
outputs can improve the performance by limiting  
the current during output transitions.  
programmable gain amplifier  
The on-chip programmable gain amplifier (PGA)  
has eight gain settings. The gain can be changed  
by writing to the PGA gain register (address 1).  
The range is 0 to 7dB in steps of one dB.  
The parallel interface of the THS1401/3/8 ADC  
features 3-state buffers, making it possible to  
directly connect it to a data bus. The output buffers  
are enabled by driving the OE input low.  
out of range indication  
The OV output of the ADC indicates an out of  
range condition. Every time the difference on the  
analog inputs exceeds the differential reference,  
this signal is asserted. This signal is updated the  
same way as the digital data outputs and therefore  
subject to the same pipeline delay.  
Refer to the read and write timing diagrams in the  
parameter measurement information section for  
information on read and write access.  
offset compensation  
With the offset register it is possible to  
automatically compensate system offset errors,  
including errors caused by additional signal  
19  
www.ti.com  
SLAS248D − DECEMBER 1999 − REVISED SEPTEMBER 2005  
Revision History  
DATE  
REV  
PAGE  
SECTION  
DESCRIPTION  
1
1
2
2
3
3
Updated page 1 format and layout.  
Moved funtional block diagram from page 2.  
Moved Terminal Function table from page 3.  
Moved Absolute Maximum table from page 4.  
Moved package pinout from page 1.  
Moved Ordering Options table from page 2.  
9/05  
D
Table 1. In section 2s complement: 8191 DIN = − DREF − 1 LSB changed to  
8191 DIN = +DREF − 1 LSB. In section Straight Binary: 16383 at DIN = − DREF  
− 1 LSB should be changed to 16383 DIN = +DREF − 1 LSB  
15  
16  
Principles of Operation  
Principles of Operation  
Table 5. In section TM2−0: Test Mode: 010 = IN+ at V  
REF  
/2, IN− at REF−,  
(Voltage at CML pin), IN− at REF−. Same section:  
changed to, 010 = IN+ at V  
CM  
110 = IN+ at REF−, IN− at V  
/2, changed to, 110 = IN+ at REF−, IN− at V  
REF  
CM  
(Voltage at CML pin)  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
20  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962-0051101NXD  
ACTIVE  
HTQFP  
PHP  
48  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-55 to 125  
0051101  
NXD  
THS1401IPFB  
THS1403IPFB  
THS1408IPFB  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
TQFP  
PFB  
PFB  
PFB  
48  
48  
48  
250  
250  
250  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
TJ1401  
TJ1403  
TJ1408  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF THS1408, THS1408M :  
Catalog: THS1408  
Enhanced Product: THS1408-EP, THS1408-EP  
Military: THS1408M  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
5962-0051101NXD  
THS1401IPFB  
THS1403IPFB  
THS1408IPFB  
PHP  
PFB  
PFB  
PFB  
HTQFP  
TQFP  
TQFP  
TQFP  
48  
48  
48  
48  
250  
250  
250  
250  
10 x 25  
10 x 25  
10 x 25  
10 x 25  
150  
150  
150  
150  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
11.1 11.25  
11.1 11.25  
11.1 11.25  
11.1 11.25  
Pack Materials-Page 1  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

THS1408MPHP

14-Bit, 1/3/8 MSPS, DSP-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE AND PGA
TI

THS1408MPHPEP

14-BIT, 1/3/8 MSPS DSP COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE AND PGA
TI

THS1408PFB

14-BIT, 1/3/8 MSPS DSP COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE AND PGA
TI

THS1408QPHP

14-Bit, 1/3/8 MSPS, DSP-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE AND PGA
TI

THS14F01

14-BIT, 1 MSPS/ 3 MSPS, DSP COMPATIBLE, ANALOG-TO-DIGITAL CONVERTERS WITH FIFO INTERNAL REFERENCE AND PGA
TI

THS14F01CPFB

1-CH 14-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, PLASTIC, TQFP-48
TI

THS14F01IPFB

1-CH 14-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48
TI

THS14F01IPFBG4

1-CH 14-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48
TI

THS14F03

14-BIT, 1 MSPS/ 3 MSPS, DSP COMPATIBLE, ANALOG-TO-DIGITAL CONVERTERS WITH FIFO INTERNAL REFERENCE AND PGA
TI

THS14F03CPFB

1-CH 14-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, PLASTIC, TQFP-48
TI

THS14F03IPFB

14-bit, 3 MSPS ADC with 32-word FIFO 48-TQFP -40 to 85
TI

THS15

EURO TERMINAL BLOCKS
ETC