THS2630 [TI]

35V、180MHz 高速、低噪声、全差分放大器;
THS2630
型号: THS2630
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

35V、180MHz 高速、低噪声、全差分放大器

放大器
文件: 总37页 (文件大小:2070K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS2630  
ZHCSQB3 JANUARY 2023  
THS2630 高速、低噪声、全差I/O 放大器  
1 特性  
3 说明  
• 高性能  
THS2630 器件属于全差分输入/差分输出器件系列该  
系列器件使用德州仪器 (TI) 先进的高压互补双极工艺  
制造。  
– 带宽187MHzVCC = ±15VG = 1V/V)  
– 压摆率75V/µs  
– 增益带宽积245MHz  
– 失真-108dBc THD2VPP250kHz )  
THS2630 具有从输入到输出的真正全差分信号路径和  
高达 ±17.5V 的高电源电压。这种设计带来了出色的共  
模噪声抑制性能800kHz 时为 95dB和总谐波失真  
2VPP250kHz 时为 108dBc。高电压差分信号  
链可通过宽电源电压范围提高裕量和动态范围而无需  
为差分信号的每个极性添加单独的放大器。  
• 电压噪声  
1/f 电压噪声拐角频率85Hz  
– 输入基准噪1.1nV/Hz  
• 单电源电压范围5V 35V  
• 静态电流关断):770µA (THS2630S)  
THS2630 40°C +85°C 的宽温度范围内运行。  
2 应用  
封装信息(1)  
• 单端至差分转换  
• 差ADC 驱动器  
• 差分抗混叠  
• 差分发送器和接收器  
• 输出电平转换器  
医疗超声波  
封装尺寸标称值)  
器件型号  
封装  
DSOIC8)  
4.90mm × 3.91mm  
THS2630  
DGNHVSSOP83.00mm × 3.00mm  
DGKVSSOP83.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
-50  
± 15 V  
VCC = 2.5 V  
VCC = 5 V  
VCC = 15 V  
-60  
THS4032  
-70  
+5 V  
± 15 V  
-80  
-90  
CH_A  
To TGC VCNTL  
DAC8802  
THS2630  
-100  
-110  
-120  
AFE58JD18  
CH_B  
100k  
1M  
10M  
Frequency (Hz)  
VOUT = 2VPP  
Filtering and  
Attenuation  
Low-Noise Current to  
Voltage Converter  
总谐波失真与频率间的关系  
适用于超声波的时间增益控DAC  
参考设计  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLOSE96  
 
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 18  
8.3 Power Supply Recommendations.............................20  
8.4 Layout....................................................................... 20  
9 Device and Documentation Support............................23  
9.1 Documentation Support............................................ 23  
9.2 接收文档更新通知..................................................... 23  
9.3 支持资源....................................................................23  
9.4 Trademarks...............................................................23  
9.5 静电放电警告............................................................ 23  
9.6 术语表....................................................................... 23  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics: THS2630D............................ 8  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................14  
Information.................................................................... 23  
10.1 Mechanical Data..................................................... 24  
10.2 Tape and Reel Information......................................28  
4 Revision History  
DATE  
REVISION  
NOTES  
January 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: THS2630  
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
VIN-  
VOCM  
VCC+  
1
2
3
4
8
7
6
5
VIN+  
PD  
VIN-  
VOCM  
VCC+  
1
2
3
4
8
7
6
5
VIN+  
NC  
VCC -  
VOUT-  
VCC -  
VOUT-  
VOUT+  
VOUT+  
5-1. THS2630S D, DGN, or DGK Package  
8-Pin SOIC, HVSSOP, or VSSOP  
(Top View)  
5-2. THS2630 D, DGN, or DGK Package  
8-Pin SOIC, HVSSOP, or VSSOP  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NC  
THS2630S THS2630  
7
No connect  
7
3
6
1
2
4
5
8
I
PD  
Active low power-down pin  
Positive supply voltage pin  
Negative supply voltage pin  
Negative input pin  
3
6
1
2
4
5
8
VCC+  
VCC–  
VIN–  
VOCM  
VOUT+  
VOUT–  
VIN+  
I/O  
I/O  
I
I
Common mode input pin  
Positive output pin  
O
O
I
Negative output pin  
Positive input pin  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: THS2630  
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VI  
Input voltage  
+VCC  
37  
V
V
VCC  
VCCto VCC+  
Supply voltage  
Supply turn-on/off dV/dT(2)  
1.7  
150  
1.5  
10  
V/µs  
mA  
V
(3)  
IO  
Output current  
VID  
IIN  
Differential input voltage  
-1.5  
Continuous Input Current  
Maximum junction temperature  
Maximum junction temperature, continuous operation, long-term reliability  
Operating free-air temperature  
Storage temperature  
mA  
°C  
°C  
°C  
°C  
(4)  
TJ  
150  
125  
85  
(5)  
TJ  
TA  
0
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) Staying below this specification ensures that the edge-triggered ESD absorption devices across the supply pins remain off.  
(3) The THS2630 may incorporate a PowerPAD on the underside of the chip. This acts as a heatsink and must be connected to a  
thermally dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature  
which could permanently damage the device. See TI technical briefs SLMA002 and SLMA004 for more information about using the  
PowerPAD thermally-enhanced package.  
(4) The absolute maximum temperature under any condition is limited by the constraints of the silicon process.  
(5) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may  
result in reduced reliability and/or lifetime of the device.  
6.2 ESD Ratings  
VALUE  
UNIT  
THS2630: D, DGK, OR DGN PACKAGES  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
±3500  
±1500  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±2.5  
5
NOM  
MAX  
±17.5  
35  
UNIT  
V
Dual supply  
Vcc+ to  
Vcc–  
Single supply  
TA  
Operating free-air temperature  
85  
°C  
40  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: THS2630  
 
 
 
 
 
 
 
 
 
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
6.4 Thermal Information  
THS2630  
DGN (HVSSOP)  
8 PINS  
57.3  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
126.3  
67.3  
DGK (VSSOP)  
UNIT  
8 PINS  
147.3  
37.9  
83.2  
0.9  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
82.9  
RθJB  
ψJT  
Junction-to-board thermal resistance  
69.8  
29.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
19.5  
6.3  
69.0  
29.7  
81.6  
n/a  
ψJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
n/a  
13.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
VCC= ±5 V, Gain = 1 V/V, RF = 390 Ω, RL = 800 Ω, and TA = +25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DYNAMIC PERFORMANCE  
VCC = 5 V  
181  
183  
187  
108  
108  
111  
245  
100  
75  
VCC = ±5 V  
VCC = ±15 V  
VCC = 5 V  
Gain = 1, RF = 390 Ω  
Small-signal bandwidth (3 dB),  
BW  
MHz  
single-ended input, differential  
output, VI = 63 mVPP  
VCC = ±5 V  
VCC = ±15 V  
Gain = 2, RF = 750 Ω  
Gain-bandwidth product  
VOCM small-signal bandwidth  
Slew rate(1)  
VO = 200 mVPP, Gain = 20, RF = 750Ω  
MHz  
V/µs  
ns  
VI = 63 mVPP  
SR  
ts  
Settling time to 0.1%  
Settling time to 0.01%  
31  
Step voltage = 2 V, gain = 1  
52  
DISTORTION PERFORMANCE  
f = 250 kHz  
106  
93  
106  
93  
108  
94  
99  
84  
100  
86  
109  
VCC = 5 V  
f = 1 MHz  
f = 250 kHz  
VCC = ±5 V  
f = 1 MHz  
Total harmonic distortion, differential  
input, differential output, VO = 2 VPP  
f = 250 kHz  
VCC = ±15 V  
THD  
dBc  
f = 1 MHz  
f = 250 kHz  
VCC = ±5 V  
f = 1 MHz  
VO = 4 VPP  
f = 250 kHz  
VCC = ±15 V  
f = 1 MHz  
VCC = ±2.5  
VO= 2 VPP  
VO = 4 VPP  
VCC = ±5  
VCC = ±15  
VCC = ±5  
VCC = ±15  
112  
Spurious-free dynamic range,  
differential input, differential output, f  
= 250 kHz  
SFDR  
116  
dBc  
104  
106  
IMD3  
OIP3  
Third intermodulation distortion  
Third-order intercept  
dBc  
dB  
53  
41.5  
VI(PP) = 4 V, F1 = 3 MHz, F2 = 3.5 MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: THS2630  
 
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics (continued)  
VCC= ±5 V, Gain = 1 V/V, RF = 390 Ω, RL = 800 Ω, and TA = +25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
NOISE PERFORMANCE  
Vn  
In  
Input voltage noise  
Input current noise  
f = 10 kHz  
f = 10 kHz  
1.1  
1.3  
nV/Hz  
pA/Hz  
DC PERFORMANCE  
TA = +25°C  
91  
87  
95  
Open-loop gain  
dB  
TA = full range  
TA = +25°C  
VOS  
VOS  
Input offset voltage  
Input offset voltage  
Input offset voltage drift  
Input bias current  
-1.3  
±0.1  
1.3  
mV  
1.5  
TA = full range  
TA = full range  
TA = 25℃  
0.8  
4.8  
4.8  
22  
3.2 µV/°C  
9.8  
IIB  
TA = 25℃  
IIB  
Input bias current  
TA = full range  
TA = 25℃  
TA = full range  
TA = 25℃  
15.1  
350  
400  
µA  
nA  
IOS  
IOS  
Input offset current  
Input offset current  
Input offset current drift  
-250  
81  
TA = full range  
TA = full range  
nA  
0.13  
95  
nA/°C  
INPUT CHARACTERISTICS  
CMRR  
VICR  
Common-mode rejection ratio  
dB  
V
TA = 25℃  
TA = 25℃  
3.77 to  
4 to  
Common-mode input voltage range  
4.3  
4.5  
RI  
RI  
Common-mode input resistance  
Differential input resistance  
320  
12  
MΩ  
kΩ  
Measured into each input terminal  
Measured into each input terminal  
Common- mode input capacitance,  
closed loop  
CI_CM  
1.3  
pF  
Differential input capacitance, closed  
loop  
CI_DIFF  
ro  
2.3  
26  
pF  
Output resistance  
Open loop  
Open loop  
Ω
OUTPUT CHARACTERISTICS  
TA = +25°C  
±13.1  
±12.9  
25  
±13.4  
45  
V
V
Output voltage swing  
VCC = ±15 V, RL = 1kΩ  
VCC = 5 V, RL = 7 Ω  
VCC = ±5 V, RL = 7 Ω  
VCC = ±15 V, RL = 7 Ω  
TA = full range  
TA = +25°C  
TA = full range  
TA = +25°C  
20  
30  
55  
IO  
Output current  
mA  
TA = full range  
TA = +25°C  
28  
65  
85  
TA = full range  
60  
POWER SUPPLY  
Quiescent current  
VCC = ±5 V  
VCC = ±5 V  
VCC = ±15 V  
VCC = ±17.5 V  
TA = +25°C  
TA = full range  
TA = +25°C  
TA = +25°C  
8.9  
10.5  
12.4  
13.2  
13.2  
mA  
mA  
mA  
mA  
Quiescent current  
Quiescent current  
Quiescent current  
ICC  
11  
11  
Quiescent current (shutdown)  
(THS2630S only)(2)  
ICC(SD)  
PSRR  
TA = +25°C  
TA = +25°C  
0.77  
98  
0.92  
mA  
dB  
PD = 5 V  
Power-supply rejection ratio (dc)  
76  
OUTPUT COMMON-MODE (VOCM) CONTROL  
VOCM  
VOCM offset voltage  
specs  
VOCM driven to midsupply  
-2.7  
0.2  
2.7  
mV  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VCC= ±5 V, Gain = 1 V/V, RF = 390 Ω, RL = 800 Ω, and TA = +25°C, unless otherwise noted.  
PARAMETER  
Default VOCM offset  
VOCM input range low  
VOCM input range high  
VOCM input range low  
VOCM input range high  
VOCM input noise  
TEST CONDITIONS  
MIN  
TYP  
0.65  
14  
13.7  
4.1  
3.8  
MAX UNIT  
Relative to midsupply, VOCM pin floating  
-10  
10  
mV  
V
13.8  
VS = ±15 V  
13.3  
3.5  
V
VOCM  
specs  
V
V
4  
Flat-band, Vocm driven  
13  
nV/Hz  
kΩ  
VOCM input resistance  
15  
(1) Slew rate is measured from an output level range of 25% to 75%.  
(2) For detailed information on the behavior of the power-down circuit, see the Power-Down Mode section.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: THS2630  
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: THS2630D  
at TA = 25°C, VCC = ±5 V, RF = 390 Ω, G = +1 V/V, differential input, differential output and RL = 800 Ω(unless otherwise  
noted)  
25  
20  
15  
10  
5
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
0
G = 1, RF = 390  
G = 2, RF = 750   
G = 5, RF = 2 k  
G = 10, RF = 4 k  
-5  
RF = 390  
RF = 620   
-10  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
VI = 63 mVPP  
VI = 63 mVPP  
6-1. Small-Signal Frequency Response  
6-2. Small-Signal Frequency Response  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
VCC = 5 V  
VCC = 15 V  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
VI = 63 mVPP  
VI = 63 mVPP  
6-4. Small-Signal Frequency Response  
6-3. Small-Signal Frequency Response  
1
0.5  
0
VoutP  
VoutN  
VI (Diff)  
-0.5  
0.5  
0
-0.5  
-1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Time (s)  
.
VI = 63 mVPP  
6-6. Large-Signal Transient Response (Differential In/Single  
6-5. Small-Signal Frequency Response  
Out)  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: THS2630  
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: THS2630D (continued)  
at TA = 25°C, VCC = ±5 V, RF = 390 Ω, G = +1 V/V, differential input, differential output and RL = 800 Ω(unless otherwise  
noted)  
5
0
-20  
-40  
-5  
-60  
-10  
-15  
-20  
-25  
-80  
-100  
VCC = 2.5 V  
VCC = 5 V  
VCC = 15 V  
-120  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
Frequency (Hz)  
RF = 1 kΩ  
VI = 0.2 VRMS  
6-8. Common-Mode Rejection Ratio vs Frequency  
6-7. Large-Signal Frequency Response  
13  
12  
11  
10  
9
900  
VCC = 15 V  
VCC = 5 V  
850  
800  
750  
700  
650  
8
7
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
TA - Free-Air Temperature (C)  
TA - Free-Air Temperature (C)  
.
.
6-10. Supply Current vs Free-Air Temperature (Shutdown  
6-9. Supply Current vs Free-Air Temperature  
State)  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
2.04  
2.02  
2
IB-  
IB+  
1.98  
1.96  
1.94  
1.92  
1.9  
0
25  
50  
75  
Time (ns)  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
TA - Free-Air Temperature - C  
RF = 510 Ω, CF= 1 pF, VCC= 5 V, VO = 4 VPP  
6-12. Settling Time  
.
6-11. Input Bias Current vs Free-Air Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: THS2630D (continued)  
at TA = 25°C, VCC = ±5 V, RF = 390 Ω, G = +1 V/V, differential input, differential output and RL = 800 Ω(unless otherwise  
noted)  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
2.5  
2
VCC = +5 V  
VEE = -5 V  
1.5  
1
0.5  
0
+
VO-  
VO  
-0.5  
-1  
-1.5  
-2  
-2.5  
10k  
100k  
1M  
10M  
100M  
0
40  
80  
120  
Time (ns)  
160  
200  
Frequency (Hz)  
RF = 330 Ω, RL = 400 Ω  
VI_Peak = 2 V, CL = 10 pF, VCC = ±15 V  
6-13. Power-Supply Rejection Ratio vs Frequency  
6-14. Large-Signal Transient Response  
(Differential Out)  
-50  
-50  
-60  
VCC = 2.5 V  
VCC = 2.5 V  
VCC = 5 V  
VCC = 15 V  
VCC = 5 V  
-60  
VCC = 15 V  
-70  
-70  
-80  
-90  
-80  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
100k  
1M  
10M  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 2 VPP  
VOUT = 2 VPP, Single-ended Input, Differential Output  
6-16. Second-Harmonic Distortion vs Frequency  
-104  
6-15. Total Harmonic Distortion vs Frequency  
-30  
VCC = 5 V  
VCC = 2.5 V  
VCC = 5 V  
VCC = 15 V  
-40  
-50  
-106  
-108  
-110  
-112  
-114  
-116  
-118  
-120  
-122  
VCC = 15 V  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
100k  
1M  
10M  
0
1
2
3
4
5
6
7
Frequency (Hz)  
VO - Output Voltage (V)  
f = 250 kHz, Single-ended Input, Differential Output  
6-18. Second-Harmonic Distortion vs Output Voltage  
VOUT = 4 VPP, Single-ended Input, Differential Output  
6-17. Second-Harmonic Distortion vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: THS2630D (continued)  
at TA = 25°C, VCC = ±5 V, RF = 390 Ω, G = +1 V/V, differential input, differential output and RL = 800 Ω(unless otherwise  
noted)  
-100  
-102  
-104  
-106  
-108  
-110  
-112  
-114  
-116  
-118  
-30  
-40  
VCC = 2.5 V  
VCC = 5 V  
VCC = 2.5 V  
VCC = 5 V  
VCC = 15 V  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
100k  
1M  
10M  
0
1
2
3
4
5
6
7
Frequency (Hz)  
VOUT - Output Voltage (V)  
VOUT = 4 VPP, Single-ended Input, Differential Output  
6-20. Third-Harmonic Distortion vs Frequency  
f = 500 kHz, Single-ended Input, Differential Output  
6-19. Second-Harmonic Distortion vs Output Voltage  
-40  
-90  
VCC = 2.5 V  
-94  
-98  
-50  
-60  
VCC = 5 V  
VCC = 15 V  
-102  
-106  
-110  
-114  
-118  
-122  
-126  
-130  
-134  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
VCC = 2.5 V  
VCC = 5 V  
VCC = 15 V  
100k  
1M  
10M  
0
1
2
3
4
5
6
7
Frequency (Hz)  
VO - Output Voltage (V)  
VOUT = 2 VPP, Single-ended Input, Differential Output  
6-21. Third-Harmonic Distortion vs Frequency  
f = 500 kHz, Single-ended Input, Differential Output  
6-22. Third-Harmonic Distortion vs Output Voltage  
-100  
10  
-105  
-110  
-115  
-120  
-125  
-130  
VCC = 2.5 V  
VCC = 5 V  
VCC = 15 V  
1
0
1
2
3
4
5
6
7
10  
100  
1k  
10k  
100k  
VOUT - Output Voltage (V)  
Frequency (Hz)  
f = 250 kHz, Single-ended Input, Differential Output  
.
6-23. Third-Harmonic Distortion vs Output Voltage  
6-24. Voltage Noise vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: THS2630D (continued)  
at TA = 25°C, VCC = ±5 V, RF = 390 Ω, G = +1 V/V, differential input, differential output and RL = 800 Ω(unless otherwise  
noted)  
10  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
.
RF = 1 kΩ  
6-25. Current Noise vs Frequency  
6-26. Input Offset Voltage vs Common-Mode Output Voltage  
15  
100  
10  
5
Vcc = 5 V  
Vcc = 15 V  
10  
1
0
-5  
-10  
-15  
0.1  
100k  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
RL ()  
Frequency (Hz)  
.
RF = 1 kΩ, G = 2 V/V  
6-28. Output Impedance vs Frequency  
6-27. Output Voltage vs Differential Load Resistance  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
7.1.1 Fully-Differential Amplifiers  
The THS2630 is a fully differential amplifier (FDA). Differential signal processing offers a number of performance  
advantages in high-speed analog signal processing systems, including immunity to external common-mode  
noise, suppression of even-order non-linearities, and increased dynamic range. FDAs not only serve as the  
primary means of providing gain to a differential signal chain, but also provide a monolithic solution for  
converting single-ended signals into differential signals allowing for easy, high-performance processing. For  
more information on the basic theory of operation for FDAs, refer to the Fully Differential Amplifiers application  
note.  
7.2 Functional Block Diagram  
V
CC+  
Output Buffer  
V
IN−  
x1  
V
OUT+  
C
R
R
V
IN+  
Vcm Error  
Amplifier  
+
_
C
x1  
V
OUT−  
Output Buffer  
V
CC+  
30 kW  
V
CC−  
30 kW  
V
CC−  
V
OCM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: THS2630  
 
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
7.3 Feature Description  
7-1 and 7-2 shows the differences between the operation of the THS2630 in two different modes. FDAs  
can work with either differential or single-ended inputs.  
RG  
RG  
RF  
RF  
VCC+  
VCC+  
VSource  
+
+
VOUT+  
VOUT-  
VOUT+  
VOUT-  
+
+
VOCM  
VSource  
VOCM  
VCC-  
VCC-  
RG  
RF  
RG  
RF  
7-2. Amplifying Single-ended Input Signals  
7-1. Amplifying Differential Input Signals  
7.4 Device Functional Modes  
7.4.1 Power-Down Mode  
The power-down mode is used when power saving is required. The power-down terminal (PD) found on the  
THS2630S is an active low input. If left unconnected, an internal 250 kΩ resistor to VCC+ keeps the device  
turned on. The threshold voltage for the power-down function is approximately 1.4 V above VCC. This means  
that if the PD terminal is 1.4 V above VCC, the device is active. If the PD terminal is less than 1.4 V above  
VCC, the device is off. It is recommended to pull the terminal to VCCto turn the device off. 7-3 shows the  
simplified version of the power-down circuit. While in the power-down state, the amplifier goes into a high-  
impedance state. The amplifier's output impedance is typically greater than 1 Min the power-down state.  
V
CC  
250 kΩ  
To Internal Bias  
Circuitry Control  
PD  
V
CC  
7-3. Simplified Power-Down Circuit  
Similar to an opamp in an inverting configuration, the output impedance of an FDA is determined by its feedback  
network configuration. In addition, the THS2630S has an internal 10 kΩresistor at each output that is tied to the  
VCM error amplifier (see 7.2). The differential output impedance is equal to [(2*RF + 2*RG) || 20 kΩ]. 7-4  
shows the closed loop output impedance of the THS2630S when in power-down.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: THS2630  
 
 
 
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
VCC = ±5 V, G = 1 V/V, RF = 1kΩ, PD = VCC-  
7-4. Output Impedance (in Power-Down) vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: THS2630  
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Output Common-Mode Voltage  
The output common-mode voltage pin sets the dc output voltage of the THS2630. A voltage applied to the VOCM  
pin from a low-impedance source can be used to directly set the output common-mode voltage. If the VOCM pin  
is left floating it defaults to the mid-rail voltage, defined as:  
V
+ V  
CC +  
CC −  
(1)  
2
To minimize common-mode noise, connect a 0.1-µF bypass capacitor to the VOCM pin. Output common-mode  
voltage causes additional current to flow in the feedback resistor network. Since this current is supplied by the  
output stage of the amplifier, this creates additional power dissipation. For commonly-used feedback resistance  
values, this current is easily supplied by the amplifier. The additional internal power dissipation created by this  
current may be significant in some applications and may dictate use of the MSOP PowerPAD package to  
effectively control self-heating.  
8.1.1.1 Resistor Matching  
Resistor matching is important in FDAs to maintain good output balance. An ideal differential output signal  
implies the two outputs of the FDA should be exactly equal in amplitude and shifted 180° in phase. Any  
imbalance in amplitude or phase between the two output signals results in an undesirable common-mode signal  
at the output. The output balance error is a measure of how well the outputs are balanced and is defined as the  
ratio of the output common-mode voltage to the output differential signal.  
V
− V  
2
OUT +  
OUT +  
OUT −  
Output Balance Error =  
(2)  
V
− V  
OUT −  
At low frequencies, resistor mismatch is the primary contributor to output balance errors. Additionally CMRR,  
PSRR, and HD2 performance diminish if resistor mismatch occurs. Therefore, it is recommended to use 1%  
tolerance resistors or better to optimize performance. See 8-1 for recommended resistor values to use for a  
particular gain.  
8-1. Recommended Resistor Values  
Gain (V/V)  
RG (Ω)  
RF (Ω)  
390  
1
2
390  
374  
750  
5
402  
2010  
4020  
10  
402  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: THS2630  
 
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
8.1.2 Driving a Capacitive Load  
Driving capacitive loads with high-performance amplifiers is not a problem as long as certain precautions are  
taken. The THS2630 has been internally compensated to maximize its bandwidth and slew rate performance.  
When the amplifier is compensated in this manner, capacitive loading directly on the output decreases the  
device phase margin leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10 pF, it is recommended that a resistor be placed in series with the output of the amplifier, as shown in 图  
8-1. A minimum value of 20 should work well for most applications. For example, in 50-transmission  
systems, setting the series resistor value to 50 both isolates any capacitance loading and provides the proper  
line impedance matching at the source end.  
RG  
RF  
VCC+  
20 Ω  
VOUT+  
+
+
VOCM  
VOUT-  
20 Ω  
VCC-  
RG  
RF  
8-1. Driving a Capacitive Load  
8.1.3 Data Converters  
Driving data converters are one of the most popular applications for fully-differential amplifiers. 8-2 shows a  
typical configuration of an FDA attached to a differential analog-to-digital converter (ADC).  
RG  
RF  
VDD  
VIN  
VCC+ = 5 V  
RCB  
AVDD DVDD  
AIN1  
VOCM  
+
CCB  
THS1206  
+
AIN2  
VREF  
AVSS  
0.1 μF  
RCB  
VCC- = -5 V  
RG  
RF  
8-2. Fully-Differential Amplifier Attached to a Differential ADC  
FDAs can operate with a single supply. VOCM defaults to the mid-rail voltage, VCC/2. The differential output may  
be fed into a data converter. This method eliminates the use of a transformer in the circuit. If the ADC has a  
reference voltage output (Vref), then it is recommended to connect it directly to the VOCM of the amplifier using a  
bypass capacitor to reduce broadband common-mode noise.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: THS2630  
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
RG  
RF  
VDD  
VIN  
VCC = 5 V  
RCB  
AVDD DVDD  
AIN1  
VOCM  
+
CCB  
THS1206  
+
0.1 μF  
AIN2  
VREF  
AVSS  
RCB  
RG  
RF  
8-3. Fully-Differential Amplifier Using a Single Supply  
8.1.4 Single-Supply Applications  
For proper operation, the input common-mode voltage to the input terminal of the amplifier should not exceed  
the common-mode input voltage range. However, some single-supply applications may require the input voltage  
to exceed the common-mode input voltage range. In such cases, the circuit configuration of 8-4 is suggested  
to bring the common-mode input voltage within the specifications of the amplifier.  
VCC  
RPU  
RG  
RF  
VDD  
VIN  
VP  
VCC = 5 V  
RCB  
VOUT  
AVDD DVDD  
AIN1  
VOCM  
+
CCB  
THS1206  
VCC  
+
0.1 μF  
AIN2  
VREF  
AVSS  
RPU  
VOUT  
RCB  
RG  
RF  
8-4. Circuit With Improved Common-Mode Input Voltage  
方程3 is used to calculate RPU  
:
V
− V  
CC  
P
R
=
(3)  
PU  
1
1
V
− V  
+
V
− V  
IN  
P
OUT P  
R
R
G
F
8.2 Typical Application  
For signal conditioning in ADC applications, it is important to limit the input frequency to the ADC. Low-pass  
filters can prevent the aliasing of the high-frequency noise with the frequency of operation. 8-5 shows a  
method by which the noise may be filtered in the THS2630.  
8-5 shows a typical application design example for the THS2630 device in active low-pass filter topology  
driving and ADC.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: THS2630  
 
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
C1  
R2  
V
CC  
R4  
+
C3  
R1  
R3  
+
V
V
V
+
IN  
IN  
R
(t)  
THS2630  
C2  
Vs  
THS1050  
+
IN  
V
+
IN  
V
OCM  
V
OCM  
C3  
R1  
R3  
V
R4  
IC  
V
CC  
+
C1  
R2  
8-5. Antialias Filtering  
8.2.1 Design Requirements  
8-2 provides example design parameters and values for the typical application design example in 8-5.  
8-2. Design Parameters  
DESIGN PARAMETERS  
Supply voltage  
VALUE  
±2.5 V to ±17.5 V  
Voltage feedback  
Amplifier topology  
DC coupled with output common  
mode control capability  
Output control  
500 kHz, Multiple feedback low  
pass filter  
Filter requirement  
8.2.2 Detailed Design Procedure  
8.2.2.1 Active Antialias Filtering  
8-5 shows a multiple-feedback (MFB) lowpass filter. The transfer function for this filter circuit is:  
Rt  
K
2R4 + Rt  
j2πfR4RtC3  
2R4 + Rt  
R2  
R1  
H
f =  
×
Were K =  
(4)  
(5)  
d
2
f
jf  
1
1 +  
+
+ 1  
Q
FSF × fc  
FSF × fc  
2 × R2R3C1C2  
1
FSF × fc =  
and Q =  
R3C1 + R2C1 + KR3C1  
2π 2 × R2R3C1C2  
K sets the pass band gain, fc is the cutoff frequency for the filter, FSF is a frequency scaling factor, and Q is the  
quality factor.  
2
2
Re + Im  
2
2
FSF = Re + Im and Q =  
(6)  
2Re  
where Re is the real part, and Im is the imaginary part of the complex pole pair. Setting R2 = R, R3 = mR, C1 =  
C, and C2 = nC results in:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: THS2630  
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
2 × mn  
1 + m 1 + K  
1
FSF × fc =  
and Q =  
(7)  
2πRc 2 × mn  
Start by determining the ratios, m and n, required for the gain and Q of the filter type being designed, then select  
C and calculate R for the desired fc.  
8.2.3 Application Curve  
5
0
-5  
-10  
-15  
VCC = 2.5 V  
VCC = 5 V  
VCC = 15 V  
-20  
-25  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
8-6. Large-Signal Frequency Response  
8.3 Power Supply Recommendations  
The THS2630 device was designed to be operated on power supplies ranging from ±2.5 V to ±17.5 V (single-  
ended supplies of 5 V to 35 V). TI recommends using a power-supply accuracy of 5% or better. When operated  
on a board with high-speed digital signals, it is important to provide isolation between digital signal noise and the  
analog input pins. The THS2630 is connected to power supplies through pin 3 (VCC+) and pin 6 (VCC-). Each  
supply pin should be decoupled to GND as close to the device as possible with a low-inductance, surface-mount  
ceramic capacitor of approximately 10 nF. When vias are used to connect the bypass capacitors to a ground  
plane the vias should be configured for minimal parasitic inductance. One method of reducing via inductance is  
to use multiple vias. For broadband systems, two capacitors per supply pin are advised.  
To avoid undesirable signal transients, the THS2630 device should not be powered on with large inputs signals  
present. Careful planning of system power on sequencing is especially important to avoid damage to ADC inputs  
when an ADC is used in the application.  
8.4 Layout  
8.4.1 Layout Guidelines  
To achieve the levels of high-frequency performance of the THS2630 device, follow proper printed-circuit board  
(PCB) high-frequency design techniques. A general set of guidelines is given below. In addition, a THS2630  
device evaluation board is available to use as a guide for layout or for evaluating the device performance.  
Ground planesIt is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and output,  
the ground plane can be removed to minimize the stray capacitance.  
Proper power-supply decouplingUse a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor  
on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the  
application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier.  
In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this  
distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer  
should strive for distances of less than 0.1 inches between the device power terminals and the ceramic  
capacitors.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: THS2630  
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
Short trace runs/compact part placementsOptimum high-frequency performance is achieved when stray  
series inductance has been minimized. To realize this, the circuit layout should be made as compact as  
possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inputs of  
the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the  
input of the amplifier.  
8.4.2 Layout Example  
RG–  
RF+  
VIN  
RT–  
VCC+  
CBYP  
RO+  
+
+
FDA  
VOCM  
CL  
RO–  
PD  
VCC+  
CBYP  
VCC-  
RG+  
RF–  
RS+  
RT+  
8-7. Representative Schematic for Layout  
RS+  
VIN  
RT+  
RT–  
Remove GND and Power plane  
under output and inverting pins to  
minimize stray PCB capacitance  
1
2
3
4
8
7
6
5
IN–  
IN+  
Place the feedback resistors, R, gain  
resistors, RG±, and the isolation  
resistors, R, as close to the device  
pins as possible to minimize parasitics  
VOCM  
VCC+  
PD  
VCC–  
OUT+  
OUT–  
Vias to connect supply pins to  
CBYP. Place CBYP capacitors on  
the other side of the PCB as  
close to the vias as possible.  
Ground and power plane exist on  
inner layers.  
CL  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed.  
8-8. Layout Recommendations  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
8.4.3 General PowerPAD Design Considerations  
The THS2630 is available in a thermally-enhanced DGN package, which is a member of the PowerPAD family of  
packages. This package is constructed using a downset leadframe upon which the die is mounted (see 8-9 a  
and 8-9 b). This arrangement results in the lead frame being exposed as a thermal pad on the underside of  
the package (see 8-9 c). Because this thermal pad has direct thermal contact with the die, excellent thermal  
performance can be achieved by providing a good thermal path away from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of the  
surface mount with the previously awkward mechanical methods of heatsinking.  
More complete details of the PowerPAD installation process and thermal management techniques can be found  
in PowerPAD Thermally-Enhanced Package technical brief. This document can be found on the TI website  
(www.ti.com) by searching on the key word PowerPAD. The document can also be ordered through your local TI  
sales office. Refer to SLMA002 when ordering.  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
A. The thermal pad (PowerPAD) is electrically isolated from all other pins and can be connected to any potential from VCCto VCC+  
.
Typically, the thermal pad is connected to the ground plane because this plane tends to physically be the largest and is able to dissipate  
the most amount of heat.  
8-9. Views of Thermally-Enhanced DGN Package  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: THS2630  
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Design Guide for 2.3 nV/Hz, Differential, Time Gain Control (TGC) DAC Reference  
Design for Ultrasound design guide  
Texas Instruments, EVM User's Guide for High-Speed Fully-Differential Amplifier user's guide  
Texas Instruments, Fully Differential Amplifiers application note  
Texas Instruments, Maximizing Signal Chain Distortion Performance Using High Speed Amplifiers application  
note  
Texas Instruments, PowerPAD Thermally-Enhanced Package technical brief  
Texas Instruments, TI Precision Labs - Fully Differential Amplifiers video series  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: THS2630  
 
 
 
 
 
 
 
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
10.1 Mechanical Data  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: THS2630  
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: THS2630  
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
10.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTHS2630SDR  
SOIC  
D
8
8
2500  
2500  
330  
330  
12.4  
12.4  
6.40  
6.40  
5.20  
5.20  
2.10  
2.10  
8
8
12  
12  
Q1  
Q1  
PTHS2630SDGKR  
VSSOP  
DGK  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: THS2630  
 
THS2630  
ZHCSQB3 JANUARY 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
2500  
2500  
Length (mm) Width (mm)  
Height (mm)  
PTHS2630SDR  
PTHS2630SDGKR  
SOIC  
D
8
8
367  
366  
367  
364  
35  
50  
VSSOP  
DGK  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: THS2630  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTHS2630SDGKR  
PTHS2630SDR  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THS3

EURO TERMINAL BLOCKS
ETC

THS3000

Handheld Oscilloscopes
ETC

THS3001

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIERS
TI

THS3001-DIE

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIER
TI

THS3001CD

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIERS
TI

THS3001CDG4

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIER
TI

THS3001CDGN

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIERS
TI

THS3001CDGNG4

420-MHz Current-Feedback Amplifier 8-MSOP-PowerPAD 0 to 70
TI

THS3001CDGNR

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIER
TI

THS3001CDGNRG4

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIER
TI

THS3001CDR

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIER
TI

THS3001CDRG4

420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIER
TI