THS4012DGN [TI]

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS; 290 - MHz的低失真高速放大器
THS4012DGN
型号: THS4012DGN
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS
290 - MHz的低失真高速放大器

放大器
文件: 总30页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
THS4011  
JG, D AND DGN PACKAGE  
(TOP VIEW)  
THS4012  
Very High Speed  
– 290 MHz Bandwidth (G = 1, –3 dB)  
– 310 V/µs Slew Rate  
D AND DGN PACKAGE  
(TOP VIEW)  
– 37 ns Settling Time (0.1%)  
1OUT  
1IN–  
1IN+  
V
CC+  
NULL  
IN–  
NULL  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
2OUT  
2IN–  
2IN+  
V
Very Low Distortion  
– THD = –80 dBc (f = 1 MHz, R = 150 )  
CC+  
IN+  
OUT  
NC  
L
–V  
CC  
V
110 mA Output Current Drive (Typical)  
CC–  
7.5 nV/Hz Voltage Noise  
NC – No internal connection  
Excellent Video Performance  
– 70 MHz Bandwidth (0.1 dB, G = 1)  
– 0.006% Differential Gain Error  
– 0.01° Differential Phase Error  
Cross Section View Showing  
PowerPAD Option (DGN)  
This device is in the Product Preview stage of development.  
Please contact your local TI sales office for availability.  
±5 V to ±15 V Supply Voltage  
Available in Standard SOIC, MSOP  
PowerPAD, JG, or FK Packages  
THS4011  
FK PACKAGE  
(TOP VIEW)  
Evaluation Module Available  
description  
The THS4011 and THS4012 are very high speed,  
single/dual, voltage feedback amplifiers ideal for  
a wide range of applications. The devices offer  
very good ac performance with 290-MHz  
bandwidth, 310-V/µs slew rate, and 37-ns settling  
time (0.1%). These amplifiers have a high output  
drive capability of 110 mA and draw only 7.8-mA  
supply current per channel. For applications  
requiring low distortion, the THS4011/12 operate  
with a total harmonic distortion (THD) of –80 dBc  
at f = 1 MHz. For video applications, the  
THS4011/12 offer 0.1 dB gain flatness to 70-MHz,  
0.006% differential gain error, and 0.01°  
differential phase error.  
3
2
1
20 19  
NC  
V
NC  
IN–  
NC  
IN+  
NC  
4
5
6
7
8
18  
17  
16  
15  
14  
CC+  
NC  
OUT  
NC  
9
10 11 12 13  
RELATED DEVICES  
DESCRIPTION  
DEVICE  
THS4011/2  
THS4031/2  
THS4061/2  
290-MHz Low Distortion High-Speed Amplifiers  
100-MHz Low Noise High Speed-Amplifiers  
180-MHz High-Speed Amplifiers  
CAUTION: THE THS4011 AND THS4012 provide ESD protection circuitry. However, permanent damage can still occur if this device  
is subjected to high-energy electrostatic discharges. Proper ESD precautions are recommended to avoid any performance  
degradation or loss of functionality.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
On products compliant to MIL-PRF-38535, all parameters are tested  
unless otherwise noted. On all other products, production  
processing does not necessarily include testing of all parameters.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
DISTORTION  
vs  
FREQUENCY  
–40  
V
R
G = 2  
= ± 15 V  
= 150 Ω  
CC  
L
–50  
–60  
–70  
–80  
2nd Harmonic  
–90  
–100  
–110  
3rd Harmonic  
100k  
1M  
10M  
f – Frequency – Hz  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
SMALL  
OUTLINE  
(D)  
NUMBER OF  
CHANNELS  
MSOP  
SYMBOL  
EVALUATION  
MODULE  
PLASTIC  
MSOP  
(DGN)  
CERAMIC  
CHIP  
CARRIER  
(FK)  
T
A
DIP  
(JG)  
1
2
1
2
THS4011CD  
THS4012CD  
THS4011ID  
THS4012ID  
THS4011CDGN  
TIACM  
TIABD  
TIACN  
TIABZ  
THS4011EVM  
0°C to  
70°C  
THS4012CDGN  
THS4012EVM  
THS4011IDGN  
–40°C to  
85°C  
THS4012IDGN  
–55°C to  
125°C  
1
THS4011MJG  
THS4011MFK  
The D and DGN packages are available taped and reeled. Add an R suffix to the device type (i.e., THS4011CDGNR).  
This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
functional block diagram  
Null  
1
2
8
IN–  
IN+  
6
OUT  
3
+
Figure 1. THS4011 – Single Channel  
V
CC  
8
2
3
1IN–  
1IN+  
1
7
1OUT  
2OUT  
+
6
5
2IN–  
2IN+  
+
4
–V  
CC  
Figure 2. THS4012 – Dual Channel  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16.5 V  
CC  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
I
CC  
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 mA  
O
Differential input voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±4 V  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
ID  
J
A
Operating free-air temperature, T , THS401xC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
THS401xI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
THS4011M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Lead temperature, 1,6 mm (1/16 inch) from case for 10 seconds, D, DGN package . . . . . . . . . . . . . . . 300°C  
Lead temperature, 1,6 mm (1/16 inch) from case for 60 seconds, JG package . . . . . . . . . . . . . . . . . . . 300°C  
Case temperature for 60 seconds, FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
θ
θ
T = 25°C  
A
JA  
(°C/W)  
JC  
PACKAGE  
(°C/W)  
38.3  
4.7  
POWER RATING  
167  
D
740 mW  
DGN  
JG  
58.4  
119  
2.14 W  
28  
1050 mW  
1375 mW  
FK  
87.7  
20  
This data was taken using the JEDEC standard Low-K test PCB. For the JEDEC Proposed  
High-K test PCB, the θ is 95°C/W with a power rating at T = 25°C of 1.32 W.  
This data was taken using 2 oz. trace and copper pad that is soldered directly to a 3 in. × 3 in.  
JA  
A
PC. For further information, refer to Application Information section of this data sheet.  
recommended operating conditions  
MIN NOM  
MAX  
±16  
32  
UNIT  
Split supply  
Single supply  
C suffix  
±4.5  
9
Supply voltage, V  
V
CC  
0
70  
Operating free-air temperature, T  
I suffix  
–40  
–55  
85  
°C  
A
M suffix  
125  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
electrical characteristics, V  
dynamic performance  
= ±15 V, R = 150 , T = 25°C, (unless otherwise noted)  
CC  
L
A
THS4011C/I,  
THS4012C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
290  
270  
70  
MAX  
V
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
CC  
CC  
CC  
CC  
Unity-gain bandwidth (–3 dB)  
Gain = 1  
MHz  
MHz  
MHz  
V/µs  
ns  
V
V
V
V
V
V
V
V
V
V
V
BW  
SR  
Bandwidth for 0.1 dB flatness  
Gain = 1  
35  
V
V
= ±15 V,  
= ±5 V,  
R
R
= 150 Ω  
= 150 Ω,  
= 20 V,  
= 5 V,  
4.9  
16  
CC  
L
L
O(PP)  
O(PP)  
Full power bandwidth (see Note 2)  
Slew rate  
CC  
= ±15 V  
310  
260  
37  
CC  
CC  
CC  
CC  
CC  
CC  
Gain = –1,  
R
L
= 150 Ω  
= ±5 V  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
Settling time to 0.1%  
Settling time to 0.01%  
V = –2.5 V to 2.5 V, Gain = –1  
I
35  
t
s
90  
V = –2.5 V to 2.5 V, Gain = –1  
I
ns  
70  
Full range = 0°C to 70°C for the C suffix and 40°C to 85°C for the I suffix.  
noise/distortion performance  
THS4011C/I,  
THS4012C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
V
= ±15 V,  
f = 1 MHz,  
c
CC  
THD  
Total harmonic distortion  
80  
dBc  
= 2 V  
O(PP)  
V
Input voltage noise  
Input current noise  
V
= ±5 V or ±15 V,  
= ±5 V or ±15 V,  
f = 10 kHz  
f = 10 kHz  
7.5  
1
nV/Hz  
pA/Hz  
n
CC  
CC  
I
n
V
Gain = 2,  
= 150 ,  
NTSC  
V
CC  
V
CC  
V
CC  
V
CC  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
0.01%  
0.01%  
0.01°  
Differential gain error  
R
L
Gain = 2,  
Differential phase error  
R
NTSC  
= 150 ,  
L
0.001°  
Full range = 0°C to 70°C for the C suffix and 40°C to 85°C for the I suffix.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
electrical characteristics at T = 25°C, V = ±15 V, R = 150 (unless otherwise noted) (continued)  
A
CC  
L
dc performance  
THS4011C/I,  
THS4012C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
= ±15 V,  
= ±10 V,  
= 1 kΩ  
T
= 25°C  
10  
8
25  
CC  
A
V/mV  
V
R
O
T
A
= full range  
= 25°C  
L
Open loop gain  
V
= ±5 V,  
= ±2.5 V,  
= 250 Ω  
T
A
7
12  
1
CC  
V/mV  
mV  
V
O
T
A
= full range  
5
R
L
T
A
= 25°C  
6
8
V
Input offset voltage  
Input offset voltage drift  
Input bias current  
V
CC  
= ±5 V or ±15 V  
= ±5 V or ±15 V  
IO  
T
A
= full range  
15 µV/°C  
T
A
= 25°C  
2
25  
6
I
I
V
CC  
µA  
8
IB  
T
A
= full range  
= 25°C  
T
A
250  
Input offset current  
Offset current drift  
V
V
= ±5 V or ±15 V  
= ±5 V or ±15 V  
nA  
IO  
CC  
T
A
= full range  
400  
0.3  
nA/°C  
CC  
Full range = 0°C to 70°C for the C suffix and 40°C to 85°C for the I suffix.  
input characteristics  
THS4011C/I,  
THS4012C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
V
= ±15 V  
= ±5 V  
±13 ±14.1  
CC  
V
Common-mode input voltage range  
V
ICR  
±3.8  
82  
±4.3  
CC  
T = 25°C  
A
110  
dB  
dB  
V
V
= ±15 V,  
= ±12 V  
CC  
IC  
T
= full range  
T = 25°C  
A
77  
A
CMRR Common-mode rejection ratio  
90  
95  
V
V
= ±5 V,  
= ±2.5 V  
CC  
IC  
dB  
T
A
= full range  
83  
R
C
Input resistance  
2
MΩ  
I
I
Input capacitance  
1.2  
pF  
Full range = 0°C to 70°C for the C suffix and 40°C to 85°C for the I suffix.  
output characteristics  
THS4011C/I,  
THS4012C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
±13.5  
±3.7  
±13  
±3.4  
110  
MAX  
V
CC  
V
CC  
V
CC  
V
CC  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
±13  
±3.4  
±12  
±3  
R
= 1 kΩ  
L
V
O
Output voltage swing  
V
R
R
= 250 Ω  
= 150 Ω  
L
L
V
V
= ±15 V  
= ±5 V  
70  
CC  
I
I
Output current  
R
= 20 ,  
mA  
O
L
50  
75  
CC  
Short-circuit output current  
Output resistance  
V
CC  
= ±15 V  
150  
12  
mA  
OS  
R
Open loop  
O
Full range = 0°C to 70°C for the C suffix and 40°C to 85°C for the I suffix.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
electrical characteristics at T = 25°C, V = ±15 V, R = 150 (unless otherwise noted) (continued)  
A
CC  
L
power supply  
THS4011C/I,  
THS4012C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±16.5  
33  
Dual supply  
±4.5  
V
CC  
Supply voltage  
V
Single supply  
9
T
= 25°C  
7.8  
6.9  
83  
9.5  
A
V
CC  
V
CC  
V
CC  
= ±15 V  
T
A
= full range  
= 25°C  
11  
I
Supply current (each amplifier)  
Power supply rejection ratio  
mA  
dB  
CC  
T
A
8.5  
= ±5 V  
T
A
= full range  
= 25°C  
10  
T
A
75  
68  
PSRR  
= ±5 V to ±15 V  
T
A
= full range  
Full range = 0°C to 70°C for the C suffix and 40°C to 85°C for the I suffix.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
electrical characteristics, V  
dynamic performance  
PARAMETER  
= ±15 V, R = 150 , T = 25°C, (unless otherwise noted)  
CC  
L
A
THS4011M  
UNIT  
TEST CONDITIONS  
MIN  
*160  
TYP  
200  
70  
MAX  
Unity-gain bandwidth  
Closed loop,  
Gain = 1  
R
= 1 kΩ  
V
= ±15 V  
= ±15 V  
= ±5 V  
MHz  
L
CC  
V
V
V
V
V
CC  
Bandwidth for 0.1 dB flatness  
BW  
35  
MHz  
CC  
= ±2.5 V  
30  
CC  
V
CC  
V
CC  
V
CC  
= ±15 V,  
= ±5 V,  
R
R
R
= 150 Ω,  
= 150 Ω,  
= 1 kΩ  
= 20 V  
= 20 V  
2.5  
8
L
L
L
O(PP)  
O(PP)  
Full power bandwidth (see Note 1)  
Slew rate  
MHz  
V/µs  
ns  
SR  
= ±15 V,  
*300  
400  
37  
V
V
V
V
= ±15 V  
CC  
CC  
CC  
CC  
Settling time to 0.1%  
V = –2.5 V to 2.5 V, Gain = –1  
I
= ±5 V  
35  
t
s
= ±15 V  
= ±5 V  
90  
Settling time to 0.01%  
V = –2.5 V to 2.5 V, Gain = –1  
ns  
I
70  
Full range = –55°C to 125°C for the M suffix.  
*This parameter is not tested.  
NOTE 1: Full pwer bandwidth = slew rate/2π V  
.
(PP)  
noise/distortion performance  
THS4011M  
TYP  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
MAX  
V
V
= ±15 V,  
f = 1 MHz,  
c
CC  
THD  
Total harmonic distortion  
80  
dBc  
= 1 V  
O(PP)  
V
Input voltage noise  
Input current noise  
V
= ±5 V or ±15 V,  
= ±5 V or ±15 V,  
f = 10 kHz  
f = 10 kHz  
7.5  
1
nV/Hz  
pA/Hz  
n
CC  
CC  
I
n
V
Gain = 2,  
= 150 ,  
NTSC  
V
CC  
V
CC  
V
CC  
V
CC  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
0.006  
0.001  
0.01°  
Differential gain error  
%
R
L
Gain = 2,  
R
NTSC  
= 150 ,  
Differential phase error  
L
0.002°  
Full range = –55°C to 125°C for the M suffix.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
electrical characteristics at T = full range, V  
A
= ±15 V, R = 1 k(unless otherwise noted)  
CC  
L
(continued)  
dc performance  
THS4011M  
PARAMETER  
UNIT  
V/mV  
V/mV  
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
R
= ±15 V,  
= 1 kΩ  
V
= ±10 V,  
= ±2.5 V,  
CC  
L
O
O
T
= full range  
= full range  
6
14  
A
Open loop gain  
V
R
= ±5 V,  
= 1 kΩ  
V
CC  
T
A
5
10  
L
T
= 25°C  
2
2
6
8
A
V
Input offset voltage  
Input offset voltage drift  
Input bias current  
V
V
V
= ±5 V or ±15 V  
= ±5 V or ±15 V  
= ±5 V or ±15 V  
mV  
µV/°C  
µA  
IO  
CC  
CC  
CC  
T
A
= full range  
15  
2
T
A
= 25°C  
6
8
I
I
IB  
T
A
= full range  
4
Input offset current  
Offset current drift  
V
V
= ±5 V or ±15 V  
= ±5 V or ±15 V  
25  
0.3  
250  
nA  
IO  
CC  
T
A
= 25°C  
nA/°C  
CC  
Full range = –55°C to 125°C for the M suffix.  
input characteristics  
THS4011M  
PARAMETER  
UNIT  
V
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
CC  
V
CC  
V
CC  
V
CC  
= ±15 V  
±13 ±14.1  
V
Common-mode input voltage range  
ICR  
= ±5 V  
±3.8  
75  
±4.3  
90  
95  
2
= ±15 V,  
= ±5 V,  
V
V
= ±12 V  
= ±2.5 V  
IC  
CMRR Common-mode rejection ratio  
dB  
84  
IC  
R
C
Input resistance  
MΩ  
I
I
Input capacitance  
1.2  
pF  
Full range = –55°C to 125°C for the M suffix.  
output characteristics  
THS4011M  
TYP  
±13.5  
±3.7  
±13  
PARAMETER  
UNIT  
V
TEST CONDITIONS  
MIN  
±13  
±3.4  
±12  
±3  
MAX  
V
V
V
V
V
V
V
= ±15 V  
= ±5 V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
R
= 1 kΩ  
L
V
Output voltage swing  
O
= ±15 V  
= ±5 V  
R
R
= 250 Ω  
= 150 Ω  
L
L
±3.4  
115  
= ±15 V  
= ±5 V  
70  
I
I
Output current  
R
= 20 Ω  
= 25°C  
mA  
O
L
50  
75  
Short-circuit output current  
Output resistance  
= ±15 V  
T
A
150  
mA  
OS  
R
Open loop  
12  
O
Full range = –55°C to 125°C for the M suffix.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
electrical characteristics at T = full range, V  
A
= ±15 V, R = 1 k(unless otherwise noted)  
CC  
L
(continued)  
power supply  
PARAMETER  
THS4011M  
UNIT  
TEST CONDITIONS  
MIN  
±4.5  
9
TYP  
MAX  
±16.5  
33  
Dual supply  
Single supply  
V
CC  
Supply voltage  
V
T
= 25°C  
7.8  
6.9  
9.5  
A
V
CC  
V
CC  
V
CC  
= ±15 V  
T
A
= full range  
= 25°C  
11  
I
Quiescent current  
mA  
dB  
CC  
T
A
8.5  
= ±5 V  
T
A
= full range  
= 25°C  
10  
T
A
80  
78  
86  
83  
PSRR  
Power supply rejection ratio  
= ±5 V to ±15 V  
T
A
= full range  
Full range = –55°C to 125°C for the M suffix.  
PARAMETER MEASUREMENT INFORMATION  
1.5 kΩ  
1.5 kΩ  
1.5 kΩ  
1.5 kΩ  
_
_
+
V
O1  
V
O2  
V
I1  
V
I2  
+
CH1  
CH2  
150 Ω  
150 Ω  
50 Ω  
50 Ω  
Figure 3. THS4012 Crosstalk Test Circuit  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
OUPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
INPUT OFFSET VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
14  
12  
3
1.4  
T
= 25° C  
A
V
= ±15 V  
V
= ±15 V or ±5 V  
CC  
CC  
1.2  
1
2.5  
R
= 1 kΩ  
L
10  
8
2
R
= 150 Ω  
L
0.8  
0.6  
1.5  
6
1
0.4  
0.2  
0
4
2
0.5  
0
5
7
9
11  
13  
15  
–40 –20  
0
20  
40  
60  
80 100  
–40 –20  
0
20  
40  
60  
80 100  
± V – Supply Voltage – V  
CC  
T
– Free-Air Temperature –  
C
A
T
– Free-AIR Temperature – C  
A
Figure 4  
Figure 5  
Figure 6  
MAXIMUM OUTPUT VOLTAGE SWING  
vs  
COMMON-MODE INPUT VOLTAGE  
PSRR  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
FREQUENCY  
14  
100  
90  
15  
13  
V
= ±15 V or ±5 V  
CC  
T
= 25° C  
A
13.5  
13  
V
= ± 15 V  
CC  
= 1 kΩ  
R
80  
L
70  
60  
12.5  
12  
11  
9
V
R
= ± 15 V  
= 250 Ω  
CC  
L
50  
40  
4.5  
4
V
R
= ± 5 V  
CC  
= 1 kΩ  
L
7
30  
20  
3.5  
V
R
= ± 5 V  
5
3
CC  
3
= 150 Ω  
10  
0
L
2.5  
–40 –20  
0
20  
40  
60  
80 100  
5
7
9
11  
13  
15  
1k  
10k  
100k  
1M  
10M  
100M  
T
– Free-Air Temperature – C  
± V  
– Supply Voltage – V  
f – Frequency – Hz  
A
CC  
Figure 7  
Figure 8  
Figure 9  
CMRR  
vs  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
OPEN-LOOP GAIN RESPONSE  
100  
80  
0
120  
V
± 15V  
CC  
V
± 5V  
V
± 15V  
CC  
CC  
–10  
100  
–20  
–30  
V
± 5V  
60  
40  
20  
0
CC  
80  
60  
40  
V
± 15V  
CC  
–40  
–50  
V = CH2  
I
V
= CH1  
O
–60  
–70  
V = CH1  
I
V
= CH2  
O
20  
0
–80  
–90  
–20  
1k  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
10K 100K 1M  
10M 100M 1G  
f – Frequency – Hz  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 10  
Figure 11  
Figure 12  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
DISTORTION  
vs  
DISTORTION  
vs  
DISTORTION  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
–40  
–50  
–40  
–50  
–40  
–50  
V
R
G = 2  
= ± 15 V  
V
R
G = 2  
= ± 5 V  
V
= ± 15 V  
CC  
R = 150 Ω  
L
CC  
= 1 kΩ  
CC  
= 1 kΩ  
L
L
G = 2  
–60  
–70  
–80  
–60  
–70  
–80  
–60  
–70  
–80  
2nd Harmonic  
2nd Harmonic  
2nd Harmonic  
–90  
–100  
–110  
–90  
–100  
–110  
–90  
–100  
–110  
3rd Harmonic  
3rd Harmonic  
3rd Harmonic  
100k  
1M  
10M  
100k  
1M  
10M  
100k  
1M  
10M  
f – Frequency – Hz  
Figure 13  
f – Frequency – Hz  
Figure 14  
f – Frequency – Hz  
Figure 15  
DISTORTION  
vs  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
5
0
5
–40  
–50  
R = 270 Ω  
f
R = 270 Ω  
f
V
R
G = 2  
= ± 5 V  
CC  
= 150 Ω  
L
0
R = 100 Ω  
f
R = 100 Ω  
f
–60  
–70  
–80  
–5  
2nd Harmonic  
–5  
–10  
–15  
–10  
–15  
–90  
–100  
–110  
3rd Harmonic  
V
R
G = 1  
= ± 15 V  
= 150 Ω  
V
R
G = 1  
= ± 5 V  
CC  
= 150 Ω  
L
CC  
L
–20  
–25  
–20  
100k  
1M  
10M  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
f – Frequency – Hz  
Figure 16  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 17  
Figure 18  
NOISE SPECTRAL DENSITY  
DIFFERENTIAL PHASE  
vs  
vs  
FREQUENCY  
NUMBER OF 150-LOADS  
0.35°  
0.3°  
0.25°  
0.2°  
0.15°  
0.1°  
0.05°  
0°  
100  
Gain = 2  
V
= ± 15 V  
CC  
R
= 1 kΩ  
F
40 IRE-NTSC Modulation  
Worst Case ± 100 IRE Ramp  
10  
V
= ± 5 V  
CC  
V
= ±15 V or ±5 V  
CC  
1
10  
100  
1k  
10k  
100k  
1
2
3
4
f – Frequency – Hz  
Number of 150-Loads  
Figure 19  
Figure 20  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL PHASE  
vs  
DIFFERENTIAL GAIN  
vs  
DIFFERENTIAL GAIN  
vs  
NUMBER OF 150-LOADS  
NUMBER OF 150-LOADS  
NUMBER OF 150-LOADS  
0.4°  
0.35°  
0.3°  
0.06  
0.05  
0.05  
0.04  
0.03  
Gain = 2  
Gain = 2  
Gain = 2  
R
= 1 kΩ  
R
= 1 kΩ  
R = 1 kΩ  
F
F
F
40 IRE-PAL Modulation  
Worst Case ± 100 IRE Ramp  
40 IRE-NTSC Modulation  
Worst Case ± 100 IRE Ramp  
40 IRE-PAL Modulation  
Worst Case ± 100 IRE Ramp  
0.04  
0.03  
0.25°  
0.2°  
V
= ± 15 V  
CC  
V
= ± 15 V  
0.02  
0.01  
CC  
0.15°  
0.1°  
V = ± 15 V  
CC  
0.02  
0.01  
V
= ± 5 V  
CC  
V
= ± 5 V  
CC  
0.05°  
0°  
V
2
= ± 5 V  
CC  
0
0
1
2
3
4
1
3
4
1
2
3
4
Number of 150-Loads  
Number of 150-Loads  
Number of 150-Loads  
Figure 21  
Figure 22  
Figure 23  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
theory of operation  
The THS401x is a high-speed, operational amplifier configured in a voltage feedback architecture. It is built  
using a 30-V, dielectrically isolated, complementary bipolar process with NPN and PNP transistors possessing  
f s of several GHz. This results in an exceptionally high performance amplifier that has a wide bandwidth, high  
T
slew rate, fast settling time, and low distortion. A simplified schematic is shown in Figure 24.  
(7) V  
+
CC  
(6) OUT  
IN(2)  
IN+ (3)  
(4) V  
CC  
NULL (1)  
NULL (8)  
Figure 24. THS4011 Simplified Schematic  
noise calculations and noise figure  
Noise can cause errors on very small signals. This is especially true when amplifying small signals. The noise  
model for the THS401x is shown in Figure 25. This model includes all of the noise sources as follows:  
e = Amplifier internal voltage noise (nV/Hz)  
n
IN+ = Noninverting current noise (pA/Hz)  
IN– = Inverting current noise (pA/Hz)  
e
= Thermal voltage noise associated with each resistor (e = 4 kTR )  
Rx x  
Rx  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
noise calculations and noise figure (continued)  
e
Rs  
e
n
R
Noiseless  
S
+
_
e
ni  
e
no  
IN+  
IN–  
e
Rf  
R
F
e
Rg  
R
G
Figure 25. Noise Model  
The total equivalent input noise density (e ) is calculated by using the following equation:  
ni  
2
2
2
e
e
IN  
R
IN–  
R
R
4 kTR  
4 kT R  
R
n
s
ni  
S
F
G
F
G
Where:  
–23  
k = Boltzmann’s constant = 1.380658 × 10  
T = Temperature in degrees Kelvin (273 +°C)  
R || R = Parallel resistance of R and R  
F
G
F
G
To get the equivalent output noise of the amplifier, just multiply the equivalent input noise density (e ) by the  
ni  
overall amplifier gain (A ).  
V
R
R
F
e
e
A
e
1
(noninverting case)  
no  
ni  
ni  
V
G
As the previous equations show, to keep noise at a minimum, small value resistors should be used. As the  
closed-loop gain is increased (by reducing R ), the input noise is reduced considerably because of the parallel  
G
resistance term. This leads to the general conclusion that the most dominant noise sources are the source  
resistor (R ) and the internal amplifier noise voltage (e ). Because noise is summed in a root-mean-squares  
S
n
method, noise sources smaller than 25% of the largest noise source can be effectively ignored. This can greatly  
simplify the formula and make noise calculations much easier to calculate.  
For more information on noise analysis, please refer to the Noise Analysis section in Operational Amplifier  
Circuits Applications Report (literature number SLVA043).  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
noise calculations and noise figure (continued)  
This brings up another noise measurement usually preferred in RF applications, the noise figure (NF). Noise  
figure is a measure of noise degradation caused by the amplifier. The value of the source resistance must be  
defined and is typically 50 in RF applications.  
2
e
ni  
NF  
10log  
2
e
Rs  
Because the dominant noise components are generally the source resistance and the internal amplifier noise  
voltage, we can approximate noise figure as:  
2
2
e
IN  
R
n
S
NF  
10log 1  
4 kTR  
S
Figure 26 shows the noise figure graph for the THS401x.  
NOISE FIGURE  
vs  
SOURCE RESISTANCE  
30  
f = 10 kHz  
T
A
= 25°C  
25  
20  
15  
10  
5
0
10  
100  
1 k  
10 k  
100 k  
Source Resistance – Ω  
Figure 26. Noise Figure vs Source Resistance  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
driving a capacitive load  
Driving capacitive loads with high performance amplifiers is not a problem as long as certain precautions are  
taken. The first is to realize that the THS401x has been internally compensated to maximize its bandwidth and  
slew rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the  
output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for  
capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series with the output of  
the amplifier, as shown in Figure 27. A minimum value of 20 should work well for most applications. For  
example, in 75-transmission systems, setting the series resistor value to 75 both isolates any capacitance  
loading and provides the proper line impedance matching at the source end.  
1.3 kΩ  
1.3 kΩ  
_
Input  
20 Ω  
Output  
LOAD  
THS401x  
+
C
Figure 27. Driving a Capacitive Load  
offset nulling  
The THS401x has very low input offset voltage for a high-speed amplifier. However, if additional correction is  
required, an offset nulling function has been provided on the THS4011. The input offset can be adjusted by  
placing a potentiometer between terminals 1 and 8 of the device and tying the wiper to the negative supply. This  
is shown in Figure 28.  
V
CC  
+
0.1 µF  
+
_
THS4011  
10 kΩ  
0.1 µF  
V
CC  
Figure 28. Offset Nulling Schematic  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
offset voltage  
Theoutputoffsetvoltage,(V )isthesumoftheinputoffsetvoltage(V )andbothinputbiascurrents(I )times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB–  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
R
R
F
F
V
V
1
I
R
1
I
R
OO  
IO  
IB  
S
IB–  
F
G
G
Figure 29. Output Offset Voltage Model  
optimizing unity gain response  
Internal frequency compensation of the THS401x was selected to provide very wideband performance yet still  
maintain stability when operated in a noninverting unity gain configuration. When amplifiers are compensated  
in this manner there is usually peaking in the closed loop response and some ringing in the step response for  
very fast input edges, depending upon the application. This is because a minimum phase margin is maintained  
fortheG=+1configuration. Foroptimumsettlingtimeandminimumringing, afeedback resistorof 100should  
be used as shown in Figure 30. Additional capacitance can also be used in parallel with the feedback resistance  
if even finer optimization is required.  
Input  
+
Output  
THS401x  
_
100 Ω  
Figure 30. Noninverting, Unity Gain Schematic  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifer  
(see Figure 31).  
R
R
F
G
V
1
O
+
V
I
R1  
V
C1  
f
–3dB  
2 R1C1  
R
O
F
1
1
V
R
1
sR1C1  
I
G
Figure 31. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
–3dB  
2 RC  
C2  
R
F
1
R
=
G
R
F
2 –  
)
(
R
Q
G
Figure 32. 2-Pole Low-Pass Sallen-Key Filter  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
circuit layout considerations  
To achieve the levels of high frequency performance of the THS401x, follow proper printed-circuit board high  
frequency design techniques. A general set of guidelines is given below. In addition, a THS401x evaluation  
board is available to use as a guide for layout or for evaluating the device performance.  
Ground planes – It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
Proper power supply decoupling – Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
Sockets – Sockets are not recommended for high-speed operational amplifiers. The additional lead  
inductancein the socket pins will often lead to stability problems. Surface-mount packages soldered directly  
to the printed-circuit board is the best implementation.  
Short trace runs/compact part placements – Optimum high frequency performance is achieved when stray  
series inductance has been minimized. To realize this, the circuit layout should be made as compact as  
possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting  
input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray  
capacitance at the input of the amplifier.  
Surface-mount passive components – Using surface-mount passive components is recommended for high  
frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mountcomponents, theproblemwithstrayseriesinductanceisgreatlyreduced. Second, thesmall  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
general PowerPAD design considerations  
The THS401x is available packaged in a thermally-enhanced DGN package, which is a member of the  
PowerPAD family of packages. This package is constructed using a downset leadframe upon which the die is  
mounted [see Figure 33(a) and Figure 33(b)]. This arrangement results in the lead frame being exposed as a  
thermal pad on the underside of the package [see Figure 33(c)]. Because this thermal pad has direct thermal  
contact with the die, excellent thermal performance can be achieved by providing a good thermal path away  
from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of  
surface mount with the, heretofore, awkward mechanical methods of heatsinking.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
NOTE A: The thermal pad is electrically isolated from all terminals in the package.  
Figure 33. Views of Thermally Enhanced DGN Package  
Although there are many ways to properly heatsink this device, the following steps illustrate the recommended  
approach.  
Thermal pad area (68 mils x 70 mils) with 5 vias  
(Via diameter = 13 mils)  
Figure 34. PowerPAD PCB Etch and Via Pattern  
1. Prepare the PCB with a top side etch pattern as shown in Figure 34. There should be etch for the leads as  
well as etch for the thermal pad.  
2. Place five holes in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small  
so that solder wicking through the holes is not a problem during reflow.  
3. Additionalvias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the THS401xDGN IC. These additional vias may be larger than the 13-mil  
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad  
area to be soldered so that wicking is not a problem.  
4. Connect all holes to the internal ground plane.  
5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection  
methodology. Webconnectionshaveahighthermalresistanceconnectionthatisusefulforslowingtheheat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier.  
In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore,  
the holes under the THS401xDGN package should make their connection to the internal ground plane with  
a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five  
holes exposed. The bottom-side solder mask should cover the five holes of the thermal pad area. This  
prevents solder from being pulled away from the thermal pad area during the reflow process.  
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
8. With these preparatory steps in place, the THS401xDGN IC is simply placed in position and run through  
the solder reflow operation as any standard surface-mount component. This results in a part that is properly  
installed.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
The actual thermal performance achieved with the THS401xDGN in its PowerPAD package depends on the  
application. In the example above, if the size of the internal ground plane is approximately 3 inches × 3 inches,  
then the expected thermal coefficient, θ , is about 58.4 C/W. For comparison, the non-PowerPAD version of  
JA  
the THS401x IC (SOIC) is shown. For a given θ , the maximum power dissipation is shown in Figure 35 and  
JA  
is calculated by the following formula:  
T
–T  
MAX  
A
P
D
JA  
Where:  
P
= Maximum power dissipation of THS401x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
3.5  
DGN Package  
= 58.4°C/W  
T
= 150°C  
J
θ
JA  
2 oz. Trace And Copper Pad  
With Solder  
3
DGN Package  
= 158°C/W  
2 oz. Trace And  
Copper Pad  
2.5  
2
θ
JA  
SOIC Package  
High-K Test PCB  
θ
= 98°C/W  
JA  
Without Solder  
1.5  
1
SOIC Package  
Low-K Test PCB  
0.5  
0
θ
= 167°C/W  
JA  
–40  
–20  
0
20  
40  
60  
80  
100  
T
A
– Free-Air Temperature – °C  
NOTE A: Results are with no air flow and PCB size = 3”× 3”  
Figure 35. Maximum Power Dissipation vs Free-Air Temperature  
More complete details of the PowerPAD installation process and thermal management techniques can be found  
in the Texas Instruments Technical Brief, PowerPAD Thermally Enhanced Package. This document can be  
found at the TI web site (www.ti.com) by searching on the key word PowerPAD. The document can also be  
ordered through your local TI sales office. Refer to literature number SLMA002 when ordering.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the  
device, especially muti-amplifier devices. Because these devices have linear output stages (Class A-B), most  
of the heat dissipation is at low output voltages with high output currents. Figure 36 to Figure 39 show this effect,  
along with the quiescent heat, with an ambient air temperature of 50°C. When using V  
= ±5 V, there is  
CC  
generally not a heat problem, even with SOIC packages. But, when using V  
= ±15 V, the SOIC package is  
CC  
severely limited in the amount of heat it can dissipate. The other key factor when looking at these graphs is how  
the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But,  
the device should always be soldered to a copper plane to fully use the heat dissipation properties of the  
PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As  
more trace and copper area is placed around the device, θ decreases and the heat dissipation capability  
JA  
increases. The currents and voltages shown in these graphs are for the total package. For the dual amplifier  
package (THS4012), the sum of the RMS output currents and voltages should be used to choose the proper  
package.  
THS4011  
MAXIMUM RMS OUTPUT CURRENT  
vs  
THS4011  
MAXIMUM RMS OUTPUT CURRENT  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
1000  
100  
10  
200  
T
T
A
= 150°C  
= 50°C  
J
Maximum Output  
Current Limit Line  
V
= ± 5 V  
= 150°C  
= 50°C  
V
= ± 15 V  
CC  
CC  
T
T
A
180  
160  
140  
120  
100  
j
Maximum Output  
Current Limit Line  
DGN Package  
= 58.4°C/W  
θ
JA  
Package With  
θ
< = 120°C/W  
JA  
SO-8 Package  
= 167°C/W  
80  
60  
40  
θ
SO-8 Package  
= 98°C/W  
JA  
Low-K Test PCB  
θ
JA  
High-K Test PCB  
SO-8 Package  
= 167°C/W  
Safe Operating  
Area  
θ
JA  
Low-K Test PCB  
Safe Operating  
Area  
20  
0
0
3
6
9
12  
15  
0
1
2
3
4
5
| V | – RMS Output Voltage – V  
O
| V | – RMS Output Voltage – V  
O
Figure 36  
Figure 37  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
THS4012  
THS4012  
MAXIMUM RMS OUTPUT CURRENT  
MAXIMUM RMS OUTPUT CURRENT  
vs  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
1000  
100  
200  
Maximum Output  
Current Limit Line  
Package With  
60°C/W  
V
T
= ± 15 V  
Maximum Output  
Current Limit Line  
CC  
= 150°C  
θ
JA  
180  
160  
140  
120  
100  
J
T
= 50°C  
A
Both Channels  
SO-8 Package  
= 167°C/W  
SO-8 Package  
= 98°C/W  
θ
80  
60  
40  
JA  
Low-K Test PCB  
θ
10  
JA  
High-K Test PCB  
Safe Operating Area  
= ± 5 V  
DGN Package  
= 58.4°C/W  
V
CC  
= 150°C  
SO-8 Package  
SO-8 Package  
= 98°C/W  
θ
JA  
T
J
θ
= 167°C/W  
θ
JA  
Low-K Test PCB  
JA  
High-K Test PCB  
20  
0
T = 50°C  
A
Safe Operating Area  
Both Channels  
4
1
0
3
6
9
12  
15  
0
1
2
3
5
| V | – RMS Output Voltage – V  
O
| V | – RMS Output Voltage – V  
O
Figure 38  
Figure 39  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
APPLICATION INFORMATION  
evaluation board  
AnevaluationboardisavailablefortheTHS4011(literaturenumberSLOP128)andTHS4012(literaturenumber  
SLOP230). This board has been configured for very low parasitic capacitance in order to realize the full  
performance of the amplifier. A schematic of the THS4011 evaluation board is shown in Figure 40. The circuitry  
has been designed so that the amplifier may be used in either an inverting or noninverting configuration. For  
moreinformation, pleaserefertotheTHS4011EVMUser’sGuide(literaturenumberSLOU028)ortheTHS4012  
EVM User’s Guide (literature number SLOU041) To order the evaluation board contact your local TI sales office  
or distributor.  
V
CC  
+
+
C1  
C2  
6.8 µF  
0.1 µF  
R1  
1 kΩ  
NULL  
R2  
49.9 Ω  
IN+  
+
_
R3  
49.9 Ω  
OUT  
THS4011  
NULL  
R5  
C3  
1 kΩ  
6.8 µF  
+
C4  
0.1 µF  
IN–  
V
CC  
R4  
49.9 Ω  
Figure 40. THS4011 Evaluation Board  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
MECHANICAL INFORMATION  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
PINS **  
0.050 (1,27)  
8
14  
16  
DIM  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
M
A MAX  
A MIN  
14  
8
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
7
A
0.010 (0,25)  
0°8°  
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
MECHANICAL INFORMATION  
DGN (S-PDSO-G8)  
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE  
0,38  
0,25  
0,65  
M
0,25  
8
5
Thermal Pad  
(See Note D)  
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°6°  
1
4
0,69  
0,41  
3,05  
2,95  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073271/A 04/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions include mold flash or protrusions.  
D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-187  
PowerPAD is a trademark of Texas Instruments Incorporated.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
MECHANICAL INFORMATION  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
18 17 16 15 14 13 12  
TERMINALS  
MIN  
MAX  
MIN  
MAX  
**  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
21  
22  
23  
24  
25  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
B SQ  
A SQ  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4011, THS4012  
290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS  
SLOS216B – JUNE 1999 – FEBRUARY 2000  
MECHANICAL INFORMATION  
CERAMIC DUAL-IN-LINE PACKAGE  
JG (R-GDIP-T8)  
0.400 (10,20)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.063 (1,60)  
0.015 (0,38)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL-STD-1835 GDIP1-T8  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

THS4012EVM

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4012ID

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4012IDG4

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4012IDGN

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4012IDGNG4

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4012IDGNR

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4012IDGNRG4

290-MHz LOW-DISTORTION HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4012IDR

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4012IDRG4

IC DUAL OP-AMP, 8000 uV OFFSET-MAX, 70 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8, Operational Amplifier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4021

350-MHz LOW-NOISE HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4021CD

350-MHz LOW-NOISE HIGH-SPEED AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4021CDG4

350-MHz Ultra-Low Noise Voltage-Feedback Amplifier 8-SOIC 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI