THS4051MFKB [TI]

70MHz 高速放大器 | FK | 20 | -55 to 125;
THS4051MFKB
型号: THS4051MFKB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

70MHz 高速放大器 | FK | 20 | -55 to 125

放大器 运算放大器 放大器电路
文件: 总30页 (文件大小:487K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
THS4051  
D, DGN, AND JG PACKAGE  
(TOP VIEW)  
High Speed  
– 70 MHz Bandwidth (G = 1, –3 dB)  
– 240 V/µs Slew Rate  
– 60-ns Settling Time (0.1%)  
NULL  
IN–  
NULL  
1
2
3
4
8
7
6
5
V
High Output Drive, I = 100 mA (typ)  
O
CC+  
IN+  
OUT  
NC  
Excellent Video Performance  
– 0.1 dB Bandwidth of 30 MHz (G = 1)  
– 0.01% Differential Gain  
V
CC–  
NC – No internal connection  
– 0.01° Differential Phase  
Very Low Distortion  
– THD = –82 dBc (f = 1 MHz, R = 150 )  
– THD = –89 dBc (f = 1 MHz, R = 1 k)  
THS4052  
D AND DGN PACKAGE  
L
L
(TOP VIEW)  
Wide Range of Power Supplies  
1OUT  
1IN–  
1IN+  
V
CC+  
1
2
3
4
8
7
6
5
– V  
= ±5 V to ±15 V  
CC  
2OUT  
2IN–  
2IN+  
Available in Standard SOIC, MSOP  
PowerPAD , JG or FK Package  
–V  
CC  
Evaluation Module Available  
description  
Cross Section View Showing  
PowerPAD Option (DGN)  
The THS4051 and THS4052 are general-pur-  
pose, single/dual, high-speed voltage feedback  
amplifiers ideal for a wide range of applications  
including video, communication, and imaging.  
The devices offer very good ac performance with  
70-MHz bandwidth, 240-V/µs slew rate, and  
60-ns settling time (0.1%). The THS4051/2 are  
stable at all gains for both inverting and non-  
inverting configurations. These amplifiers have a  
high output drive capability of 100 mA and draw  
only 8.5-mA supply current per channel. Excellent  
professional video results can be obtained with  
the low differential gain/phase errors of 0.01%/  
0.01° and wide 0.1 dB flatness to 30 MHz. For  
applications requiring low distortion, the  
THS4051/2 is ideally suited with total harmonic  
distortion of –82 dBc at 1 MHz.  
This device is in the Product Preview stage of development.  
Please contact your local TI sales office for availability.  
THS4051  
FK PACKAGE  
(TOP VIEW)  
3
2
1
20 19  
NC  
IN–  
NC  
IN+  
NC  
NC  
V
4
5
6
7
8
18  
17  
16  
15  
14  
CC+  
NC  
OUT  
NC  
9
10 11 12 13  
RELATED DEVICES  
DEVICE  
DESCRIPTION  
THS4011/2 290-MHz Low Distortion High-Speed Amplifiers  
THS4031/2 100-MHz Low Noise High-Speed Amplifiers  
THS4081/2 175-MHz Low Power High-Speed Amplifiers  
CAUTION: The THS4051 and THS4052 provide ESD protection circuitry. However, permanent damage can still occur if this device  
is subjected to high-energy electrostatic discharges. Proper ESD precautions are recommended to avoid any performance  
degradation or loss of functionality.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
Copyright 2000, Texas Instruments Incorporated  
On products compliant to MIL-PRF-38535, all parameters are tested  
unless otherwise noted. On all other products, production  
processing does not necessarily include testing of all parameters.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
TOTAL HARMONIC DISTORTION  
vs  
FREQUENCY  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= ± 15 V  
CC  
Gain = 2  
= 2 V  
V
O(PP)  
R
= 150 Ω  
L
R
= 1 kΩ  
L
100k  
1M  
10M 20M  
f - Frequency - Hz  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
NUMBER  
OF  
CHANNELS  
PLASTIC  
SMALL  
OUTLINE  
(D)  
PLASTIC MSOP  
(DGN)  
EVALUATION  
MODULE  
CHIP  
CARRIER  
(FK)  
T
A
CERAMIC DIP  
(JG)  
SYMBOL  
DEVICE  
THS4051CDGN  
1
2
1
2
THS4051CD  
THS4052CD  
THS4051ID  
THS4052ID  
ACQ  
ACE  
ACR  
ACF  
THS4051EVM  
0°C to 70°C  
THS4052CDGN  
THS4052EVM  
THS4051IDGN  
40°C to 85°C  
55°C to 125°C  
THS4052IDGN  
1
THS4051MJG  
THS4051MFK  
The D and DGN packages are available taped and reeled. Add an R suffix to the device type (i.e., THS4051CDGN).  
This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.  
functional block diagram  
V
CC  
1IN–  
1IN+  
1OUT  
2OUT  
Null  
2IN–  
2IN+  
1
2
8
IN–  
6
OUT  
3
IN+  
–V  
CC  
Figure 2. THS4052 – Dual Channel  
Figure 1. THS4051 – Single Channel  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16.5 V  
CC  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
I
CC  
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mA  
O
Differential input voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±4 V  
IO  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Operating free-air temperature, T : C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
M-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds, JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Case temperature for 60 seconds, FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
θ
θ
T = 25°C  
A
JA  
(°C/W)  
JC  
PACKAGE  
(°C/W)  
38.3  
4.7  
POWER RATING  
167  
D
740 mW  
§
DGN  
JG  
58.4  
119  
2.14 W  
28  
1050 mW  
1375 mW  
FK  
87.7  
20  
§
ThisdatawastakenusingtheJEDECstandardLow-KtestPCB. FortheJEDECProposedHigh-K  
test PCB, the θ is 95°C/W with a power rating at T = 25°C of 1.32 W.  
This data was taken using 2 oz. trace and copper pad that is soldered directly to a 3 in. × 3 in. PC.  
JA  
A
For further information, refer to Application Information section of this data sheet.  
recommended operating conditions  
MIN NOM  
MAX  
±16  
32  
UNIT  
Dual supply  
Single supply  
C-suffix  
±4.5  
9
Supply voltage, V  
and V  
CC–  
V
CC+  
0
70  
Operating free-air temperature, T  
I-suffix  
–40  
–55  
85  
°C  
A
M-suffix  
125  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
electrical characteristics at T = 25°C, V  
= ±15 V, R = 150 (unless otherwise noted)  
A
CC  
L
dynamic performance  
THS405xC, THS405xI  
PARAMETER  
UNIT  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
TEST CONDITIONS  
MIN  
TYP  
70  
MAX  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
CC  
Gain = 1  
Gain = 2  
Gain = 1  
70  
Dynamic performance small-signal bandwidth  
(–3 dB)  
CC  
38  
CC  
38  
CC  
BW  
30  
CC  
Bandwidth for 0.1 dB flatness  
30  
CC  
= 20 V,  
= 5 V,  
V
V
= ±15 V  
= ±5 V  
3.8  
12.7  
240  
200  
60  
O(pp)  
O(pp)  
CC  
§
Full power bandwidth  
CC  
= ±15 V,  
= ±5 V,  
= ±15 V,  
= ±5 V,  
= ±15 V,  
= ±5 V,  
20-V step,  
5-V step  
5-V step  
2-V step  
5-V step  
2-V step  
Gain = 5  
CC  
CC  
CC  
CC  
CC  
CC  
SR  
Slew rate  
Gain = –1  
Settling time to 0.1%  
Settling time to 0.01%  
Gain = –1  
Gain = –1  
60  
t
s
130  
140  
ns  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
§
Slew rate is measured from an output level range of 25% to 75%.  
Full power bandwidth = slew rate/2 πV  
O(Peak)  
.
noise/distortion performance  
THS405xC, THS405xI  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
–82  
MAX  
R
R
R
R
= 150 Ω  
= 1 kΩ  
L
L
L
L
V
= ±15 V  
= ±5 V  
CC  
CC  
–89  
V
O(pp)  
= 2 V,  
THD  
Total harmonic distortion  
dBc  
f = 1 MHz, Gain = 2  
= 150 Ω  
= 1 kΩ  
–78  
V
–87  
V
Input voltage noise  
Input current noise  
V
V
= ±5 V or ±15 V,  
= ±5 V or ±15 V,  
f = 10 kHz  
f = 10 kHz  
14  
nV/Hz  
pA/Hz  
n
CC  
I
n
0.9  
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
0.01%  
0.01%  
0.01°  
0.03°  
Gain = 2,  
40 IRE modulation,  
NTSC,  
±100 IRE ramp  
Differential gain error  
Differential phase error  
Gain = 2,  
40 IRE modulation,  
NTSC,  
±100 IRE ramp  
Channel-to-channel crosstalk  
(THS4052 only)  
V
CC  
= ±5 V or ±15 V,  
f = 1 MHz  
–57  
dB  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
electrical characteristics at T = 25°C, V = ±15 V, R = 150 (unless otherwise noted) (continued)  
A
CC  
L
dc performance  
THS405xC, THS405xI  
PARAMETER  
UNIT  
V/mV  
V/mV  
TEST CONDITIONS  
MIN  
5
TYP  
MAX  
T
= 25°C  
9
A
V
V
= ±15 V, R = 1 kΩ  
V
= ±10 V  
CC  
L
O
O
T
A
= full range  
= 25°C  
3
Open loop gain  
T
A
2.5  
2
6
= ±5 V, R = 250 Ω  
V
= ±2.5 V  
CC  
L
T
A
= full range  
= 25°C  
T
A
2.5  
10  
12  
V
OS  
Input offset voltage  
Offset voltage drift  
Input bias current  
V
CC  
V
CC  
V
CC  
= ±5 V or ±15 V  
= ±5 V or ±15 V  
= ±5 V or ±15 V  
mV  
µV/°C  
µA  
T
A
= full range  
= full range  
= 25°C  
T
A
15  
T
A
2.5  
6
8
I
I
IB  
T
A
= full range  
= 25°C  
T
A
35  
250  
400  
Input offset current  
Offset current drift  
V
CC  
= ±5 V or ±15 V  
nA  
OS  
T
A
= full range  
T
A
= full range  
0.3  
nA/°C  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
input characteristics  
THS405xC, THS405xI  
MIN TYP MAX  
±13.8 ±14.3  
PARAMETER  
UNIT  
V
TEST CONDITIONS  
V
CC  
V
CC  
V
CC  
V
CC  
= ±15 V  
= ±5 V  
V
Common-mode input voltage range  
ICR  
±3.8  
70  
±4.3  
100  
100  
1
= ±15 V,  
= ±5 V,  
V
V
= ±12 V  
= ±2.5 V  
ICR  
CMRR Common mode rejection ratio  
T
A
= full range  
dB  
70  
ICR  
r
Input resistance  
MΩ  
i
C
Input capacitance  
1.5  
pF  
i
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
output characteristics  
THS405xC, THS405xI  
PARAMETER  
UNIT  
V
TEST CONDITIONS  
MIN  
±11.5  
±3.2  
TYP  
±13  
MAX  
V
V
V
V
V
V
V
= ±15 V  
= ±5 V  
R
R
= 250 Ω  
= 150 Ω  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
L
L
±3.5  
V
I
Output voltage swing  
O
= ±15 V  
= ±5 V  
±13 ±13.6  
R
R
= 1 kΩ  
= 20 Ω  
V
L
L
±3.5  
80  
±3.8  
100  
75  
= ±15 V  
= ±5 V  
mA  
Output current  
O
50  
I
= ±15 V  
150  
13  
mA  
Short-circuit current  
Output resistance  
SC  
R
Open loop  
O
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
Observe power dissipation ratings to keep the junction temperature below the absolute maximum rating when the output is heavily loaded or  
shorted. See the absolute maximum ratings section of this data sheet for more information.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
electrical characteristics at T = 25°C, V = ±15 V, R = 150 (unless otherwise noted) (continued)  
A
CC  
L
power supply  
THS405xC, THS405xI  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
±4.5  
9
TYP  
MAX  
±16.5  
33  
Dual supply  
V
Supply voltage operating range  
Supply current (per amplifier)  
V
CC  
Single supply  
T
= 25°C  
8.5  
7.5  
84  
10.5  
11.5  
9.5  
A
V
CC  
V
CC  
V
CC  
= ±15 V  
= ±5 V  
T
A
= full range  
= 25°C  
I
mA  
dB  
CC  
T
A
T
A
= full range  
= 25°C  
10.5  
T
A
70  
68  
PSRR Power supply rejection ratio  
= ±5 V or ±15 V  
T
A
= full range  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
electrical characteristics at T = full range, V  
A
= ±15 V, R = 1 k(unless otherwise noted)  
CC  
L
dynamic performance  
THS4051M  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
70  
MAX  
§
Unity gain bandwidth  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= ±15 V,  
= ±15 V  
= ±5 V  
Closed loop  
R
= 1 kΩ  
L
50  
MHz  
CC  
70  
CC  
Gain = 1  
Gain = 2  
Gain = 1  
70  
Dynamic performance small-signal bandwidth  
(–3 dB)  
CC  
MHz  
= ±15 V  
= ±5 V  
38  
CC  
BW  
SR  
38  
CC  
= ±15 V  
= ±5 V  
30  
CC  
Bandwidth for 0.1 dB flatness  
MHz  
MHz  
V/µs  
ns  
30  
CC  
= 20 V,  
= 5 V,  
V
V
= ±15 V  
= ±5 V  
3.8  
12.7  
300  
200  
60  
O(pp)  
O(pp)  
CC  
Full power bandwidth  
CC  
§
= ±15 V,  
= ±5 V,  
= ±15 V,  
= ±5 V,  
= ±15 V,  
= ±5 V,  
R
= 1 kΩ  
L
240  
CC  
CC  
CC  
CC  
CC  
CC  
Slew rate  
5-V step  
5-V step  
2-V step  
5-V step  
2-V step  
Gain = –1  
Settling time to 0.1%  
Settling time to 0.01%  
Gain = –1  
60  
t
s
130  
140  
Gain = –1  
ns  
Full range = –55°C to 125°C for the THS4051M.  
§
Full power bandwidth = slew rate/2 πV  
This parameter is not tested.  
.
O(Peak)  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
electrical characteristics at T = full range, V  
A
= ±15 V, R = 1 k(unless otherwise noted)  
CC  
L
noise/distortion performance  
THS4051M  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
–82  
–89  
–78  
–87  
MAX  
R
R
R
R
= 150 Ω  
= 1 kΩ  
L
L
L
L
V
= ±15 V  
= ±5 V  
CC  
CC  
V
= 2 V,  
O(pp)  
f = 1 MHz, Gain = 2,  
= 25°C  
THD  
Total harmonic distortion  
dBc  
= 150 Ω  
= 1 kΩ  
T
A
V
V
T
A
= ±5 V or ±15 V,  
f = 10 kHz,  
f = 10 kHz,  
CC  
= 25°C  
V
Input voltage noise  
Input current noise  
R
R
= 150 Ω  
= 150 Ω  
14  
nV/Hz  
pA/Hz  
n
L
L
V
T
A
= ±5 V or ±15 V,  
CC  
= 25°C  
I
n
0.9  
Gain = 2,  
40 IRE modulation,  
NTSC,  
±100 IRE ramp,  
R = 150 Ω  
L
V
CC  
V
CC  
V
CC  
V
CC  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
0.01%  
0.01%  
0.01°  
Differential gain error  
Differential phase error  
T
A
= 25°C,  
Gain = 2,  
40 IRE modulation,  
NTSC,  
±100 IRE ramp,  
R = 150 Ω  
L
0.03°  
T
A
= 25°C,  
Full range = –55°C to 125°C for the THS4051M.  
dc performance  
THS4051M  
PARAMETER  
UNIT  
V/mV  
V/mV  
TEST CONDITIONS  
MIN  
5
TYP  
MAX  
T
= 25°C  
9
A
V
V
= ±15 V, V = ±10 V  
O
CC  
T
A
= full range  
= 25°C  
3
Open loop gain  
T
A
2.5  
2
6
= ±5 V, V = ±2.5 V  
CC  
O
T
A
= full range  
= 25°C  
T
A
2.5  
10  
13  
V
IO  
Input offset voltage  
Offset voltage drift  
Input bias current  
V
CC  
V
CC  
V
CC  
= ±5 V or ±15 V  
= ±5 V or ±15 V  
= ±5 V or ±15 V  
mV  
µV/°C  
µA  
T
A
= full range  
= full range  
= 25°C  
T
A
15  
T
A
2.5  
6
8
I
I
IB  
T
A
= full range  
= 25°C  
T
A
35  
250  
400  
Input offset current  
Offset current drift  
V
CC  
= ±5 V or ±15 V  
nA  
IO  
T
A
= full range  
T
A
= full range  
0.3  
nA/°C  
Full range = –55°C to 125°C for the THS4051M.  
input characteristics  
THS4051M  
PARAMETER  
UNIT  
V
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
CC  
V
CC  
V
CC  
V
CC  
= ±15 V  
= ±5 V  
±13.8 ±14.3  
V
Common-mode input voltage range  
ICR  
±3.8  
70  
±4.3  
100  
100  
1
= ±15 V,  
= ±5 V,  
V
V
= ±12 V  
= ±2.5 V  
ICR  
CMRR Common mode rejection ratio  
T
A
= full range  
dB  
70  
ICR  
r
Input resistance  
MΩ  
i
C
Input capacitance  
1.5  
pF  
i
Full range = –55°C to 125°C for the THS4051M.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
electrical characteristics at T = full range, V  
A
= ±15 V, R = 1 k(unless otherwise noted)  
CC  
L
(continued)  
output characteristics  
PARAMETER  
THS4051M  
UNIT  
V
TEST CONDITIONS  
MIN  
±12  
TYP  
±13  
MAX  
V
V
V
V
V
= ±15 V  
= ±5 V  
R
R
= 250 Ω  
= 150 Ω  
CC  
CC  
CC  
CC  
CC  
L
L
±3.2  
±3.5  
V
O
Output voltage swing  
= ±15 V  
= ±5 V  
±13 ±13.6  
R
= 1 kΩ  
V
L
±3.5  
±3.8  
= ±15 V,  
= 25°C  
80  
100  
T
A
I
V
T
A
= ±15 V,  
= full range  
R
= 20 Ω  
mA  
Output current  
O
CC  
L
70  
50  
V
= ±5 V  
75  
150  
13  
CC  
CC  
I
V
= ±15 V  
mA  
Short-circuit current  
SC  
R
Output resistance  
Open loop  
O
Full range = –55°C to 125°C for the THS4051M.  
Observe power dissipation ratings to keep the junction temperature below the absolute maximum rating when the output is heavily loaded or  
shorted. See the absolute maximum ratings section of this data sheet for more information.  
power supply  
THS4051M  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±16.5  
33  
Dual supply  
±4.5  
V
Supply voltage operating range  
Supply current (per amplifier)  
V
CC  
Single supply  
9
T
= 25°C  
8.5  
7.5  
84  
10.5  
11.5  
9.5  
A
V
= ±15 V  
= ±5 V  
CC  
T
A
= full range  
= 25°C  
I
mA  
dB  
CC  
T
A
V
V
CC  
T
A
= full range  
= full range  
10.5  
PSRR Power supply rejection ratio  
= ±5 V or ±15 V  
T
A
70  
CC  
Full range = –55°C to 125°C for the THS4051M.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
14  
12  
10  
8
T
=25°C  
A
V
= ± 5 V & ±15 V  
CC  
V
= ± 5 V  
CC  
R
= 1 kΩ  
L
R
= 150 Ω  
L
6
V
= ± 15 V  
CC  
4
2
–40 –20  
0
20  
40  
60  
80 100  
–40 –20  
0
20  
40  
60  
80 100  
5
7
9
11  
13  
15  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
±V - Supply Voltage - V  
CC  
A
A
Figure 3  
Figure 4  
Figure 5  
COMMON-MODE INPUT VOLTAGE  
SUPPLY CURRENT  
vs  
OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
14  
13.5  
13  
15  
13  
11  
9
11  
10  
9
T
=25°C  
A
T
T
=85°C  
=25°C  
A
A
V
R
= ± 15 V  
V
R
= ± 15 V  
= 250 Ω  
CC  
= 1 kΩ  
CC  
L
12.5  
12  
L
8
V
R
= ± 5 V  
CC  
= 1 kΩ  
4.5  
4
L
7
7
T
=–40°C  
A
3.5  
5
6
V
R
= ± 5 V  
= 150 Ω  
CC  
L
3
2.5  
3
5
–40 –20  
0
20  
40  
60  
80 100  
5
7
9
11  
13  
15  
5
7
9
11  
13  
15  
±V  
- Supply Voltage - V  
T
– Free-Air Temperature –  
C
± V - Supply Voltage - V  
CC  
CC  
A
Figure 6  
Figure 7  
Figure 8  
POWER SUPPLY REJECTION  
VOLTAGE & CURRENT NOISE  
CMRR  
vs  
RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1000  
100  
10  
V
R
V
= ±15 V or ±5 V  
= 1 kΩ  
CC  
F
V
T
A
= ± 15 V and ± 5V  
= 25°C  
CC  
V
= ±15 V & ±5 V  
CC  
–30  
–40  
= 2 V  
I(PP)  
–V  
CC  
V
N
–50  
–60  
–70  
+V  
CC  
I
N
–80  
–90  
1
–100  
0.10  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
100k  
1M  
10M  
100M  
f - Frequency - Hz  
f - Frequency - Hz  
f – Frequency – Hz  
Figure 9  
Figure 10  
Figure 11  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
TYPICAL CHARACTERISTICS  
OPEN LOOP GAIN AND  
PHASE RESPONSE  
vs  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
–20  
–30  
100  
80  
60  
40  
20  
0
30  
V
= ± 15 V  
CC  
Gain = 2  
V
= ± 5 V & ±15 V  
CC  
0
R
R
= 3.6 kΩ  
= 150 Ω  
F
L
Gain  
–40  
–50  
–60  
–30  
–60  
–90  
–120  
–150  
Phase  
–70  
–80  
–20  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
f – Frequency – Hz  
f - Frequency - Hz  
Figure 12  
Figure 13  
TOTAL HARMONIC DISTORTION  
DISTORTION  
vs  
DISTORTION  
vs  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
FREQUENCY  
–50  
–50  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
R
= ± 15 V  
= 1 kΩ  
V
R
= ± 15 V  
CC  
V
= ± 15 V  
CC  
L
CC  
Gain = 2  
= 2 V  
= 150 Ω  
L
–55  
–60  
–55  
–60  
G = 5  
f = 1 MHz  
G = 5  
f = 1 MHz  
V
O(PP)  
–66  
–70  
–75  
–66  
–70  
–75  
2nd Harmonic  
R
= 150 Ω  
L
2nd Harmonic  
3rd Harmonic  
–80  
–85  
–90  
–80  
–85  
–90  
R
= 1 kΩ  
L
3rd Harmonic  
15  
0
0
5
10  
15  
20  
5
10  
20  
100k  
1M  
10M 20M  
f - Frequency - Hz  
V
– Output Voltage – V  
V
– Output Voltage – V  
O
O
Figure 14  
Figure 15  
Figure 16  
DISTORTION  
vs  
DISTORTION  
vs  
DISTORTION  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
–40  
–40  
–40  
V
R
G = 2  
V
= ± 15 V  
CC  
= 1 kΩ  
V
R
G = 2  
V
= ± 5 V  
= 1 kΩ  
V
R
G = 2  
V
= ± 15 V  
= 150 Ω  
CC  
L
CC  
L
L
–50  
–60  
–70  
–50  
–60  
–70  
–50  
–60  
–70  
= 2 V  
O(PP)  
= 2 V  
= 2 V  
O(PP)  
O(PP)  
2nd Harmonic  
2nd Harmonic  
2nd Harmonic  
–80  
–90  
–80  
–90  
–80  
–90  
3rd Harmonic  
3rd Harmonic  
3rd Harmonic  
10M  
–100  
–100  
–100  
100k  
1M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
f – Frequency – Hz  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 17  
Figure 18  
Figure 19  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
TYPICAL CHARACTERISTICS  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
DISTORTION  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
–40  
2
1
2
1
V
R
G = 2  
V
= ± 5 V  
CC  
= 150 Ω  
R
= 750 Ω  
R
= 750 Ω  
F
L
F
–50  
–60  
–70  
= 2 V  
O(PP)  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
R
= 620 Ω  
F
2nd Harmonic  
R
= 620 Ω  
F
R
= 0 Ω  
F
3rd Harmonic  
R
= 0 Ω  
F
–80  
–90  
V
= ± 15 V  
V
= ± 5 V  
CC  
Gain = 1  
= 150 Ω  
CC  
Gain = 1  
R = 150 Ω  
L
R
V
L
= 62 mV  
V
= 62 mV  
O(PP)  
O(PP)  
–100  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100M  
100M  
100k  
1M  
10M  
100M  
100M  
100M  
f – Frequency – Hz  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 20  
Figure 21  
Figure 22  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
0.4  
0.3  
0.4  
0.3  
8
7
6
5
4
3
2
1
0
V
= ± 5 V  
CC  
Gain = –1  
= 150 Ω  
V
= ± 15 V  
CC  
Gain = 1  
= 150 Ω  
R
= 3.6 kΩ  
F
R
= 750 Ω  
R
F
L
R
V
L
0.2  
0.2  
V
= 62 mV  
O(PP)  
= 62 mV  
O(PP)  
R
= 750 Ω  
F
0.1  
0.1  
R
= 2.7 kΩ  
F
–0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.0  
–0.1  
–0.2  
–0.3  
–0.4  
R
= 1 kΩ  
R
= 620 Ω  
F
F
R
= 620 Ω  
F
V
= ±15 V  
CC  
Gain = 2  
= 150 Ω  
R
= 0 Ω  
F
R
V
L
R
= 0 Ω  
F
= 125 mV  
O(PP)  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100k  
1M  
10M  
f - Frequency - Hz  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 23  
Figure 24  
Figure 25  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
8
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
V
= ±15 V  
V
= ±5 V  
CC  
Gain = 2  
= 150 Ω  
CC  
Gain = 2  
R = 150 Ω  
L
7
6
5
4
3
2
1
0
R
= 3.6 kΩ  
F
R
V
L
= 125 mV  
V
= 125 mV  
O(PP)  
O(PP)  
R
= 3.6 kΩ  
F
R
= 3.6 kΩ  
F
R
= 2.7 kΩ  
F
R
= 1 kΩ  
F
R
= 2.7 kΩ  
F
R
= 2.7 kΩ  
F
V
= ±5 V  
CC  
Gain = 2  
R
= 1 kΩ  
R
= 1 kΩ  
R
V
= 150 Ω  
F
F
L
= 125 mV  
O(PP)  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100k  
1M  
10M  
f - Frequency - Hz  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 26  
Figure 27  
Figure 28  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
TYPICAL CHARACTERISTICS  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
8
7
6
5
4
3
2
1
0
2
1
2
1
C = 10 pF  
L
R
= 5.6 kΩ  
R
= 5.6 kΩ  
F
F
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
R
= 3.9 kΩ  
F
R
= 3.9 kΩ  
F
R
= 1 kΩ  
L
R
= 1 kΩ  
R
= 1 kΩ  
F
R
= 150 Ω  
F
L
V
= ± 15 V  
V
= ±15 V  
CC  
Gain = 2  
= 2.7 k Ω  
CC  
Gain = –1  
V
= ± 5 V  
CC  
Gain = –1  
R
V
= 150 Ω  
R
V
L
R
V
= 150 Ω  
L
L
= 62 mV  
= 125 mV  
O(PP)  
= 62 mV  
O(PP)  
O(PP)  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
f - Frequency - Hz  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 29  
Figure 30  
Figure 31  
SETTING TIME  
vs  
OUTPUT AMPLITUDE  
vs  
DIFFERENTIAL GAIN  
vs  
OUTPUT STEP  
NUMBER OF 150-LOADS  
FREQUENCY  
0.12  
0.10  
10  
5
180  
160  
140  
120  
100  
80  
Gain = 2  
40 IRE-NTSC Modulation  
Worst Case ± 100 IRE Ramp  
V
= ± 5 V  
CC  
0.01%  
V
V
=2.25 V  
O(PP)  
O(PP)  
0
0.08  
0.06  
V
= ± 15 V  
–5  
V
= ± 15 V  
=0.4 V  
CC  
0.01%  
CC  
–10  
–15  
–20  
–25  
–30  
V
0.1%  
= ± 15 V  
CC  
V
=125 mV  
O(PP)  
0.04  
0.02  
60  
V
= ± 15 V  
V
= ± 5 V  
CC  
Gain = 2  
CC  
V
0.1%  
= ± 5 V  
CC  
R
= 360 Ω  
F
40  
R
R
= 2.7 kΩ  
= 150 Ω  
F
L
20  
0
1
2
3
4
1
2
3
4
5
100k  
1M  
10M  
100M  
f - Frequency - Hz  
V
- Output Step Voltage - V  
Number of 150-Loads  
O
Figure 32  
Figure 33  
Figure 34  
DIFFERENTIAL GAIN  
vs  
DIFFERENTIAL PHASE  
vs  
DIFFERENTIAL PHASE  
vs  
NUMBER OF 150-LOADS  
NUMBER OF 150-LOADS  
NUMBER OF 150-LOADS  
0.5°  
0.4°  
0.3°  
0.2°  
0.1°  
0.6°  
0.5°  
0.2  
0.16  
0.12  
Gain = 2  
40 IRE-PAL Modulation  
Worst Case ± 100 IRE Ramp  
Gain = 2  
Gain = 2  
40 IRE-PAL Modulation  
Worst Case ± 100 IRE Ramp  
R = 1 kΩ  
F
40 IRE-NTSC Modulation  
Worst Case ± 100 IRE Ramp  
V
= ± 15 V  
CC  
0.4°  
0.3°  
V
= ± 15 V  
V
= ± 15 V  
CC  
CC  
V
= ± 5 V  
CC  
0.08  
0.04  
V
3
= ± 5 V  
0.2°  
0.1°  
CC  
V
= ± 5 V  
CC  
0
0°  
0°  
1
2
3
4
1
2
4
1
2
3
4
Number of 150-Loads  
Number of 150-Loads  
Number of 150-Loads  
Figure 35  
Figure 36  
Figure 37  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
TYPICAL CHARACTERISTICS  
1-V STEP RESPONSE  
5-V STEP RESPONSE  
1-V STEP RESPONSE  
0.6  
0.4  
3
2
0.6  
0.4  
V
= ± 15 V  
V
= ± 5 V  
CC  
Gain = 2  
CC  
Gain = 2  
R
R
= 2.7 kΩ  
= 150 Ω  
R
R
= 2.7 kΩ  
= 150 Ω  
F
L
F
L
0.2  
1
0.2  
–0.0  
–0.2  
–0.4  
–0.6  
0
–0.0  
–0.2  
–0.4  
–0.6  
–1  
–2  
–3  
V
= ± 5 V  
CC  
Gain = –1  
R
R
= 3.9 kΩ  
= 150 Ω  
F
L
0
50 100 150 200 250 300 350 400  
t - Time - ns  
0
50 100 150 200 250 300 350 400  
t - Time - ns  
0
50 100 150 200 250 300 350 400  
t - Time - ns  
Figure 38  
Figure 39  
Figure 40  
20-V STEP RESPONSE  
15  
V
= ± 15 V  
CC  
Gain = 5  
10  
5
R
R
= 2.7 kΩ  
= 150 & 1 kΩ  
F
L
0
–5  
–10  
–15  
0
100  
200  
300  
400  
500  
t - Time - ns  
Figure 41  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
theory of operation  
The THS405x is a high-speed, operational amplifier configured in a voltage feedback architecture. It is built  
using a 30-V, dielectrically isolated, complementary bipolar process with NPN and PNP transistors possessing  
f s of several GHz. This results in an exceptionally high performance amplifier that has a wide bandwidth, high  
T
slew rate, fast settling time, and low distortion. A simplified schematic is shown in Figure 42.  
(7) V  
+
CC  
(6) OUT  
IN(2)  
IN+ (3)  
(4) V  
CC  
NULL (1)  
NULL (8)  
Figure 42. THS4051 Simplified Schematic  
noise calculations and noise figure  
Noise can cause errors on very small signals. This is especially true when amplifying small signals, where  
signal-to-noise ratio (SNR) is very important. The noise model for the THS405x is shown in Figure 43. This  
model includes all of the noise sources as follows:  
e = Amplifier internal voltage noise (nV/Hz)  
n
IN+ = Noninverting current noise (pA/Hz)  
IN– = Inverting current noise (pA/Hz)  
e
= Thermal voltage noise associated with each resistor (e = 4 kTR )  
Rx x  
Rx  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
noise calculations and noise figure (continued)  
e
Rs  
e
n
R
Noiseless  
S
+
_
e
ni  
e
no  
IN+  
IN–  
e
Rf  
R
F
e
Rg  
R
G
Figure 43. Noise Model  
The total equivalent input noise density (e ) is calculated by using the following equation:  
ni  
2
2
2
e
e
IN  
R
IN–  
R
R
4 kTR  
4 kT R  
R
n
s
ni  
S
F
G
F
G
Where:  
–23  
k = Boltzmann’s constant = 1.380658 × 10  
T = Temperature in degrees Kelvin (273 +°C)  
R || R = Parallel resistance of R and R  
F
G
F
G
To get the equivalent output noise of the amplifier, just multiply the equivalent input noise density (e ) by the  
ni  
overall amplifier gain (A ).  
V
R
R
F
e
e
A
e
1
(noninverting case)  
no  
ni  
ni  
V
G
As the previous equations show, to keep noise at a minimum, small value resistors should be used. As the  
closed-loop gain is increased (by reducing R ), the input noise is reduced considerably because of the parallel  
G
resistance term. This leads to the general conclusion that the most dominant noise sources are the source  
resistor (R ) and the internal amplifier noise voltage (e ). Because noise is summed in a root-mean-squares  
S
n
method, noise sources smaller than 25% of the largest noise source can be effectively ignored. This can greatly  
simplify the formula and make noise calculations much easier to calculate.  
For more information on noise analysis, please refer to the Noise Analysis section in Operational Amplifier  
Circuits Applications Report (literature number SLVA043).  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
noise calculations and noise figure (continued)  
This brings up another noise measurement usually preferred in RF applications, the noise figure (NF). Noise  
figure is a measure of noise degradation caused by the amplifier. The value of the source resistance must be  
defined and is typically 50 in RF applications.  
2
e
ni  
NF  
10log  
2
e
Rs  
Because the dominant noise components are generally the source resistance and the internal amplifier noise  
voltage, we can approximate noise figure as:  
2
2
e
IN  
R
n
S
NF  
10log 1  
4 kTR  
S
Figure 44 shows the noise figure graph for the THS405x.  
NOISE FIGURE  
vs  
SOURCE RESISTANCE  
40  
f = 10 kHz  
35  
T
A
= 25°C  
30  
25  
20  
15  
10  
5
0
10  
100  
1k  
10k  
100k  
Source Resistance - Ω  
Figure 44. Noise Figure vs Source Resistance  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
driving a capacitive load  
Driving capacitive loads with high performance amplifiers is not a problem as long as certain precautions are  
taken. The first is to realize that the THS405x has been internally compensated to maximize its bandwidth and  
slew rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the  
output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for  
capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series with the output of  
the amplifier, as shown in Figure 45. A minimum value of 20 should work well for most applications. For  
example, in 75-transmission systems, setting the series resistor value to 75 both isolates any capacitance  
loading and provides the proper line impedance matching at the source end.  
1 kΩ  
1 kΩ  
_
Input  
20 Ω  
Output  
LOAD  
THS405x  
+
C
Figure 45. Driving a Capacitive Load  
offset nulling  
The THS405x has very low input offset voltage for a high-speed amplifier. However, if additional correction is  
required, an offset nulling function has been provided on the THS4051. The input offset can be adjusted by  
placing a potentiometer between terminals 1 and 8 of the device and tying the wiper to the negative supply. This  
is shown in Figure 46.  
V
CC  
+
0.1 µF  
+
_
THS4051  
10 kΩ  
0.1 µF  
V
CC  
Figure 46. Offset Nulling Schematic  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
offset voltage  
Theoutputoffsetvoltage,(V )isthesumoftheinputoffsetvoltage(V )andbothinputbiascurrents(I )times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB–  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
R
R
F
F
V
V
1
I
R
1
I
R
OO  
IO  
IB  
S
IB–  
F
G
G
Figure 47. Output Offset Voltage Model  
optimizing unity gain response  
Internal frequency compensation of the THS405x was selected to provide very wideband performance yet still  
maintain stability when operated in a noninverting unity gain configuration. When amplifiers are compensated  
in this manner there is usually peaking in the closed loop response and some ringing in the step response for  
very fast input edges, depending upon the application. This is because a minimum phase margin is maintained  
for the G=+1 configuration. For optimum settling time and minimum ringing, a feedback resistor of 620 should  
be used as shown in Figure 48. Additional capacitance can also be used in parallel with the feedback resistance  
if even finer optimization is required.  
Input  
+
Output  
THS406x  
_
620 Ω  
Figure 48. Noninverting, Unity Gain Schematic  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 49).  
R
R
F
G
V
R
R
O
F
1
V
1
O
1
+
V
I
V
1
sR1C1  
I
G
R1  
C1  
f
–3dB  
2 R1C1  
Figure 49. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
–3dB  
2 RC  
C2  
R
F
1
R
=
G
R
F
2 –  
)
(
R
Q
G
Figure 50. 2-Pole Low-Pass Sallen-Key Filter  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
circuit layout considerations  
To achieve the levels of high frequency performance of the THS405x, follow proper printed-circuit board high  
frequency design techniques. A general set of guidelines is given below. In addition, a THS405x evaluation  
board is available to use as a guide for layout or for evaluating the device performance.  
Ground planes – It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
Proper power supply decoupling – Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
Sockets – Sockets are not recommended for high-speed operational amplifiers. The additional lead  
inductancein the socket pins will often lead to stability problems. Surface-mount packages soldered directly  
to the printed-circuit board is the best implementation.  
Short trace runs/compact part placements – Optimum high frequency performance is achieved when stray  
series inductance has been minimized. To realize this, the circuit layout should be made as compact as  
possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting  
input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray  
capacitance at the input of the amplifier.  
Surface-mount passive components – Using surface-mount passive components is recommended for high  
frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mountcomponents, theproblemwithstrayseriesinductanceisgreatlyreduced. Second, thesmall  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
general PowerPAD design considerations  
The THS405x is available packaged in a thermally-enhanced DGN package, which is a member of the  
PowerPAD family of packages. This package is constructed using a downset leadframe upon which the die  
is mounted [see Figure 51(a) and Figure 51(b)]. This arrangement results in the lead frame being exposed as  
a thermal pad on the underside of the package [see Figure 51(c)]. Because this thermal pad has direct thermal  
contact with the die, excellent thermal performance can be achieved by providing a good thermal path away  
from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of the  
surface mount with the, heretofore, awkward mechanical methods of heatsinking.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
NOTE A: The thermal pad is electrically isolated from all terminals in the package.  
Figure 51. Views of Thermally Enhanced DGN Package  
Although there are many ways to properly heatsink this device, the following steps illustrate the recommended  
approach.  
Thermal pad area (68 mils x 70 mils) with 5 vias  
(Via diameter = 13 mils)  
Figure 52. PowerPAD PCB Etch and Via Pattern  
1. Prepare the PCB with a top side etch pattern as shown in Figure 52. There should be etch for the leads as  
well as etch for the thermal pad.  
2. Place five holes in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small  
so that solder wicking through the holes is not a problem during reflow.  
3. Additionalvias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the THS405xDGN IC. These additional vias may be larger than the 13-mil  
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad  
area to be soldered so that wicking is not a problem.  
4. Connect all holes to the internal ground plane.  
5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection  
methodology. Webconnectionshaveahighthermalresistanceconnectionthatisusefulforslowingtheheat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier.  
In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore,  
the holes under the THS405xDGN package should make their connection to the internal ground plane with  
a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five  
holes exposed. The bottom-side solder mask should cover the five holes of the thermal pad area. This  
prevents solder from being pulled away from the thermal pad area during the reflow process.  
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
8. With these preparatory steps in place, the THS405xDGN IC is simply placed in position and run through  
the solder reflow operation as any standard surface-mount component. This results in a part that is properly  
installed.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
The actual thermal performance achieved with the THS405xDGN in its PowerPAD package depends on the  
application. In the example above, if the size of the internal ground plane is approximately 3 inches × 3 inches,  
then the expected thermal coefficient, θ , is about 58.4°C/W. For comparison, the non-PowerPAD version  
JA  
of the THS405x IC (SOIC) is shown. For a given θ , the maximum power dissipation is shown in Figure 53 and  
JA  
is calculated by the following formula:  
T
–T  
MAX  
A
P
D
JA  
Where:  
P
= Maximum power dissipation of THS405x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
3.5  
DGN Package  
T
= 150°C  
J
θ
= 58.4°C/W  
JA  
2 oz. Trace And Copper Pad  
With Solder  
3
2.5  
2
DGN Package  
= 158°C/W  
2 oz. Trace And  
Copper Pad  
θ
JA  
SOIC Package  
High-K Test PCB  
θ
= 98°C/W  
JA  
Without Solder  
1.5  
1
SOIC Package  
Low-K Test PCB  
0.5  
0
θ
= 167°C/W  
JA  
–40  
–20  
0
20  
40  
60  
80  
100  
T
A
– Free-Air Temperature – °C  
NOTE A: Results are with no air flow and PCB size = 3”× 3”  
Figure 53. Maximum Power Dissipation vs Free-Air Temperature  
More complete details of the PowerPAD installation process and thermal management techniques can be  
foundintheTexasInstrumentsTechnicalBrief, PowerPAD ThermallyEnhancedPackage. Thisdocumentcan  
be found at the TI web site (www.ti.com) by searching on the key word PowerPAD . The document can also  
be ordered through your local TI sales office. Refer to literature number SLMA002 when ordering.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the  
device, especially devices with multiple amplifiers. Because these devices have linear output stages (Class  
A-B), most of the heat dissipation is at low output voltages with high output currents. Figure 54 to Figure 57 show  
this effect, along with the quiescent heat, with an ambient air temperature of 50°C. Obviously, as the ambient  
temperature increases, the limit lines shown will drop accordingly. The area under each respective limit line is  
considered the safe operating area. Any condition above this line will exceed the amplifier’s limits and failure  
may result. When using V = ±5 V, there is generally not a heat problem, even with SOIC packages. But, when  
CC  
using V  
= ±15 V, the SOIC package is severely limited in the amount of heat it can dissipate. The other key  
CC  
factor when looking at these graphs is how the devices are mounted on the PCB. The PowerPAD devices are  
extremely useful for heat dissipation. But, the device should always be soldered to a copper plane to fully use  
the heat dissipation properties of the PowerPAD . The SOIC package, on the other hand, is highly dependent  
on how it is mounted on the PCB. As more trace and copper area is placed around the device, θ decreases  
JA  
and the heat dissipation capability increases. The currents and voltages shown in these graphs are for the total  
package. For the dual amplifier package (THS4052), the sum of the RMS output currents and voltages should  
be used to choose the proper package. The graphs shown assume that both amplifier’s outputs are identical.  
THS4051  
MAXIMUM RMS OUTPUT CURRENT  
vs  
THS4051  
MAXIMUM RMS OUTPUT CURRENT  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
1000  
100  
10  
200  
T
T
A
= 150°C  
= 50°C  
J
Maximum Output  
Current Limit Line  
V
= ± 5 V  
= 150°C  
= 50°C  
V
= ± 15 V  
CC  
CC  
T
T
A
180  
160  
140  
120  
100  
j
Maximum Output  
Current Limit Line  
DGN Package  
= 58.4°C/W  
θ
JA  
Package With  
θ
< = 120°C/W  
JA  
SO-8 Package  
= 167°C/W  
80  
60  
40  
θ
SO-8 Package  
= 98°C/W  
JA  
Low-K Test PCB  
θ
JA  
High-K Test PCB  
SO-8 Package  
= 167°C/W  
θ
JA  
Low-K Test PCB  
Safe Operating  
Area  
Safe Operating  
Area  
20  
0
0
3
6
9
12  
15  
0
1
2
3
4
5
| V | – RMS Output Voltage – V  
O
| V | – RMS Output Voltage – V  
O
Figure 54  
Figure 55  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
THS4052  
THS4052  
MAXIMUM RMS OUTPUT CURRENT  
vs  
MAXIMUM RMS OUTPUT CURRENT  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
1000  
100  
200  
Maximum Output  
Current Limit Line  
Package With  
60°C/W  
V
T
= ± 15 V  
Maximum Output  
Current Limit Line  
CC  
= 150°C  
θ
JA  
180  
160  
140  
120  
100  
J
T
= 50°C  
A
Both Channels  
SO-8 Package  
= 167°C/W  
SO-8 Package  
= 98°C/W  
θ
80  
60  
40  
JA  
Low-K Test PCB  
θ
10  
JA  
High-K Test PCB  
Safe Operating Area  
= ± 5 V  
DGN Package  
= 58.4°C/W  
V
CC  
= 150°C  
SO-8 Package  
SO-8 Package  
= 98°C/W  
θ
JA  
T
J
θ
= 167°C/W  
θ
JA  
Low-K Test PCB  
JA  
High-K Test PCB  
20  
0
T = 50°C  
A
Safe Operating Area  
Both Channels  
4
1
0
3
6
9
12  
15  
0
1
2
3
5
| V | – RMS Output Voltage – V  
O
| V | – RMS Output Voltage – V  
O
Figure 56  
Figure 57  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
APPLICATION INFORMATION  
evaluation board  
AnevaluationboardisavailablefortheTHS4051(literaturenumberSLOP220)andTHS4052(literaturenumber  
SLOP234). This board has been configured for very low parasitic capacitance in order to realize the full  
performance of the amplifier. A schematic of the evaluation board is shown in Figure 58. The circuitry has been  
designed so that the amplifier may be used in either an inverting or noninverting configuration. For more  
information, please refer to the THS4051 EVM User’s Guide or the THS4052 EVM User’s Guide. To order the  
evaluation board, contact your local TI sales office or distributor.  
V
CC  
+
+
C2  
C5  
6.8 µF  
0.1 µF  
R4  
2 kΩ  
NULL  
R5  
49.9 Ω  
IN+  
+
_
R3  
49.9 Ω  
OUT  
THS4051  
NULL  
R2  
C1  
2 kΩ  
6.8 µF  
+
C4  
0.1 µF  
IN–  
V
CC  
R1  
49.9 Ω  
Figure 58. THS4051 Evaluation Board  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
MECHANICAL INFORMATION  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
PINS **  
0.050 (1,27)  
8
14  
16  
DIM  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
M
A MAX  
14  
8
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
7
A
0.010 (0,25)  
0°8°  
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
MECHANICAL INFORMATION  
DGN (S-PDSO-G8)  
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE  
0,38  
0,25  
0,65  
M
0,25  
8
5
Thermal Pad  
(See Note D)  
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°6°  
1
4
0,69  
0,41  
3,05  
2,95  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073271/A 01/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions include mold flash or protrusions.  
D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad. This pad is electrically  
and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-187  
PowerPAD is a trademark of Texas Instruments.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
MECHANICAL INFORMATION  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS4051, THS4052  
70-MHz HIGH-SPEED AMPLIFIERS  
SLOS238C– MAY 1999 – REVISED MAY 2000  
MECHANICAL INFORMATION  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE PACKAGE  
0.400 (10,20)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.063 (1,60)  
0.015 (0,38)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL-STD-1835 GDIP1-T8  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

THS4051MJG

70-MHz HIGH-SPEED AMPLIFIERS
TI

THS4051MJGB

70-MHz High-Speed Amplifier 8-CDIP -55 to 125
TI

THS4052

70-MHz HIGH-SPEED AMPLIFIERS
TI

THS4052CD

70-MHz HIGH-SPEED AMPLIFIERS
TI

THS4052CDG4

70-MHz Low-Cost Voltage-Feedback Amplifier, Dual 8-SOIC 0 to 70
TI

THS4052CDGN

70-MHz HIGH-SPEED AMPLIFIERS
TI

THS4052CDGNG4

DUAL OP-AMP, 12000uV OFFSET-MAX, 30MHz BAND WIDTH, PDSO8, GREEN, POWERPAD, PLASTIC, MSOP-8
TI

THS4052CDGNR

70-MHz Low-Cost Voltage-Feedback Amplifier, Dual 8-HVSSOP 0 to 70
TI

THS4052CDGNRG4

DUAL OP-AMP, 12000uV OFFSET-MAX, 30MHz BAND WIDTH, PDSO8, GREEN, POWERPAD, PLASTIC, MSOP-8
TI

THS4052CDR

Dual-channel 70-MHz voltage-feedback high-speed amplifier | D | 8 | 0 to 70
TI

THS4052CDRG4

70-MHz Low-Cost Voltage-Feedback Amplifier, Dual 8-SOIC 0 to 70
TI

THS4052D

70-MHz HIGH-SPEED AMPLIFIERS
TI