THS4061CDG4 [TI]

180-MHz HIGH-SPEED AMPLIFIERS; 180 MHz的高速放大器
THS4061CDG4
型号: THS4061CDG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

180-MHz HIGH-SPEED AMPLIFIERS
180 MHz的高速放大器

放大器
文件: 总30页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
THS4061  
JG, D AND DGN PACKAGE  
(TOP VIEW)  
THS4062  
D AND DGN PACKAGE  
(TOP VIEW)  
D
High Speed  
− 180 MHz Bandwidth (G = 1, −3 dB)  
− 400 V/µs Slew Rate  
− 40-ns Settling Time (0.1%)  
NULL  
IN−  
NULL  
1OUT  
1IN−  
1IN+  
V
CC+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
2OUT  
2IN−  
2IN+  
D
D
High Output Drive, I = 115 mA (typ)  
O
CC+  
IN+  
OUT  
NC  
Excellent Video Performance  
− 75 MHz 0.1 dB Bandwidth (G = 1)  
− 0.02% Differential Gain  
V
−V  
CC  
CC−  
NC − No internal connection  
− 0.02° Differential Phase  
D
D
D
D
Very Low Distortion  
− THD = −72 dBc at f = 1 MHz  
Cross-Section View Showing  
PowerPAD Option (DGN)  
Wide Range of Power Supplies  
− V  
= 5 V to 15 V  
CC  
THS4061  
FK PACKAGE  
(TOP VIEW)  
Available in Standard SOIC, MSOP  
PowerPAD, JG, or FK Package  
Evaluation Module Available  
description  
3
2
1
20 19  
The THS4061 and THS4062 are general-  
NC  
IN−  
NC  
IN+  
NC  
NC  
V
4
5
6
7
8
18  
17  
16  
15  
14  
purpose, single/dual, high-speed voltage feed-  
back amplifiers ideal for a wide range of  
applications including video, communication, and  
imaging. The devices offer very good ac  
performance with 180-MHz bandwidth, 400-V/µs  
slew rate, and 40-ns settling time (0.1% ). The  
THS4061/2 are stable at all gains for both  
inverting and noninverting configurations. These  
amplifiers have a high output drive capability of  
115 mA and draw only 7.8 mA supply current per  
channel. Excellent professional video results can  
be obtained with the low differential gain/phase  
errors of 0.02%/0.02° and wide 0.1 db flatness to  
75 MHz. For applications requiring low distortion,  
the THS4061/2 is ideally suited with total  
harmonic distortion of −72 dBc at f = 1 MHz.  
CC+  
NC  
OUT  
NC  
9
10 11 12 13  
V
I
+
_
75  
75 Ω  
75 Ω  
V
O
THS4061  
2 kΩ  
2 kΩ  
LINE DRIVER (G = 2)  
CAUTION: The THS4061 and THS4062 provide ESD protection circuitry. However, permanent damage can still occur if this  
device is subjected to high-energy electrostatic discharges. Proper ESD precautions are recommended to avoid any  
performance degradation or loss of functionality  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments Incorporated.  
Copyright 1998 − 2003, Texas Instruments Incorporated  
ꢗ ꢜ ꢧ ꢟ ꢞꢪ ꢥꢤ ꢢꢣ ꢤꢞ ꢠꢧ ꢩꢛ ꢡꢜ ꢢ ꢢꢞ ꢋꢍ ꢓꢊ ꢏꢕ ꢔ ꢊꢱꢉꢲ ꢱꢲꢇ ꢡꢩꢩ ꢧꢡ ꢟ ꢡ ꢠꢦ ꢢꢦꢟ ꢣ ꢡ ꢟ ꢦ ꢢꢦ ꢣꢢꢦ ꢪ  
ꢢ ꢦ ꢣ ꢢꢛ ꢜꢰ ꢞꢝ ꢡ ꢩꢩ ꢧꢡ ꢟ ꢡ ꢠ ꢦ ꢢ ꢦ ꢟ ꢣ ꢫ  
ꢥ ꢜꢩ ꢦꢣꢣ ꢞ ꢢꢬꢦ ꢟ ꢮꢛ ꢣꢦ ꢜ ꢞꢢꢦ ꢪꢫ ꢗ ꢜ ꢡꢩ ꢩ ꢞ ꢢꢬꢦ ꢟ ꢧꢟ ꢞ ꢪꢥꢤ ꢢꢣ ꢇ ꢧꢟ ꢞ ꢪꢥꢤ ꢢꢛꢞ ꢜ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
RELATED DEVICES  
DESCRIPTION  
DEVICE  
THS4011/2  
THS4031/2  
THS4061/2  
290-MHz Low Distortion High-Speed Amplifiers  
100-MHz Low Noise High Speed-Amplifiers  
180-MHz High-Speed Amplifiers  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
NUMBER OF  
CHANNELS  
MSOP  
SYMBOL  
EVALUATION  
MODULES  
PLASTIC  
MSOP  
(DGN)  
CERAMIC  
DIP  
CHIP  
CARRIER  
(FK)  
T
A
SMALL  
OUTLINE  
(D)  
(JG)  
1
2
1
2
THS4061CD  
THS4062CD  
THS4061ID  
THS4062ID  
THS4061CDGN  
THS4062CDGN  
THS4061IDGN  
THS4062IDGN  
TIABS  
TIABM  
TIABT  
TIABN  
THS4061EVM  
0°C to  
70°C  
THS4062EVM  
−40°C to  
85°C  
−55°C to  
125°C  
1
THS4061MJG  
THS4061MFK  
The D and DGN packages are available taped and reeled. Add an R suffix to the device type (i.e., THS4061CDGNR).  
functional block diagram  
Null  
1
2
8
IN−  
IN+  
6
OUT  
3
+
Figure 1. THS4061 − Single Channel  
V
CC  
8
2
3
1IN−  
1IN+  
1
7
1OUT  
2OUT  
+
6
5
2IN−  
2IN+  
+
4
−V  
CC  
Figure 2. THS4062 − Dual Channel  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V + to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 V  
CC  
CC  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
I
CC  
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mA  
O
Differential input voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V  
IO  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Operating free-air temperature, T : C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
M-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds, D and DGN package . . . . . . . . . . . . 300°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds, JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Case temperature for 60 seconds, FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
740 mW  
6 mW/°C  
17.1 mW/°C  
8.4 mW/°C  
11 mW/°C  
475 mW  
385 mW  
DGN  
2.14 W  
1.37 W  
1.11 W  
JG  
FK  
1057 mW  
1375 mW  
627 mW  
546 mW  
210 mW  
275 mW  
880 mW  
715 mW  
The DGN package incorporates a PowerPAD on the underside of the device. This acts as a heatsink and must be connected to a thermal dissipation  
plane for proper power dissipation. Failure to do so can result in exceeding the maximum specified junction temperature, which could permanently  
damage the device.  
recommended operating conditions  
MIN NOM  
MAX  
16  
UNIT  
Dual supply  
Single supply  
C-suffix  
4.5  
9
Supply voltage, V + and V  
CC CC  
V
32  
0
70  
I-suffix  
−40  
−55  
85  
Operating free-air temperature, T  
°C  
A
M-suffix  
125  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
electrical characteristics at T = 25°C, V  
= 15 V, R = 150 (unless otherwise noted)  
A
CC  
L
dynamic performance  
THS4061C/I,  
THS4062C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
180  
50  
MAX  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
=
=
=
=
=
=
=
5 V  
Gain = 1  
MHz  
MHz  
Dynamic performance small-signal  
bandwidth (−3 dB)  
15 V  
5 V  
Gain = −1  
50  
BW  
SR  
15 V  
5 V  
75  
Bandwidth for 0.1 dB flatness  
Slew rate  
Gain = 1  
MHz  
V/µs  
ns  
20  
15 V  
5 V  
400  
350  
40  
Gain = −1  
Gain = −1  
Gain = −1  
15 V, 5-V step (0 V to 5 V)  
5 V, = −2.5 V to 2.5 V,  
15 V, 5-V step (0 V to 5 V)  
Settling time to 0.1%  
Settling time to 0.01%  
V
40  
O
t
s
140  
150  
ns  
5 V,  
V
O
= −2.5 V to 2.5 V,  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
noise/distortion performance  
THS4061C/I,  
THS4062C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
−72  
14.5  
1.6  
MAX  
THD  
Total harmonic distortion  
Input voltage noise  
Input current noise  
f = 1 MHz  
f = 10 kHz,  
f = 10 kHz,  
dBc  
V
n
V
V
=
=
5 V or 15 V  
5 V or 15 V  
nV/Hz  
pA/Hz  
CC  
I
n
CC  
0.02  
%
V
V
=
=
15 V  
5 V  
CC  
Differential gain error  
Gain = 2,  
Gain = 2,  
NTSC, 40 IRE modulation  
NTSC, 40 IRE modulation  
0.02  
%
CC  
V
V
=
=
15 V  
5 V  
0.02°  
0.06°  
CC  
Differential phase error  
CC  
Channel-to-channel crosstalk  
(THS4062 only)  
V
CC  
=
5 V or 15 V,  
f = 1 MHz  
65  
dB  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
dc performance  
THS4061C/I,  
THS4062C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
T
= 25°C  
5
4
15  
A
V
V
=
=
15 V,  
5 V,  
V
V
=
=
10 V,  
R
R
= 1 kΩ  
V/mV  
V/mV  
CC  
O
L
T
A
= full range  
= 25°C  
Open loop gain  
T
A
2.5  
2
8
2.5 V,  
= 1 kΩ  
CC  
O
L
T
A
= full range  
Input offset voltage  
Offset drift  
V
V
V
V
=
=
=
=
5 V or 15 V  
5 V or 15 V  
5 V or 15 V  
5 V or 15 V  
2.5  
15  
3
8
mV  
µV/°C  
µA  
CC  
CC  
CC  
CC  
V
T
= full range  
OS  
A
I
I
Input bias current  
Input offset current  
Offset current drift  
T
A
= full range  
= full range  
6
IB  
T
A
75  
0.3  
250  
nA  
OS  
T
A
= full range  
nA/°C  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
electrical characteristics at T = 25°C, V = 15 V, R = 150 (unless otherwise noted) (continued)  
A
CC  
L
input characteristics  
THS4061C/I,  
THS4062C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
14.1  
4.3  
110  
95  
MAX  
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
15 V  
13.8  
3.8  
70  
V
Common-mode input voltage range  
V
ICR  
5 V  
15 V,  
5 V,  
V
V
=
=
12 V  
ICR  
CMRR Common mode rejection ratio  
T
A
= full range  
dB  
2.5 V  
70  
ICR  
R
C
Input resistance  
1
MΩ  
I
i
Input capacitance  
2
pF  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
output characteristics  
THS4061C/I,  
THS4062C/I  
TEST CONDITIONS  
PARAMETER  
UNIT  
MIN  
TYP  
12.5  
3.5  
MAX  
V
V
V
V
V
V
V
=
=
=
=
=
=
=
15 V  
5 V  
R
R
= 250 Ω  
= 150 Ω  
11.5  
3.2  
13  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
L
L
V
V
V
Output voltage swing  
Output current  
O
15 V  
5 V  
13.5  
3.7  
R
R
= 1 kΩ  
= 20 Ω  
L
L
3.5  
80  
15 V  
5 V  
115  
75  
I
I
mA  
O
50  
Short-circuit current  
Output resistance  
15 V  
150  
12  
mA  
SC  
R
Open loop  
O
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
power supply  
THS4061C/I,  
THS4062C/I  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
16.5  
33  
Dual supply  
4.5  
9
V
Supply voltage operating range  
Quiescent current (per amplifier)  
V
CC  
Single supply  
V
V
=
=
15 V  
5 V  
7.8  
7.3  
78  
10.5  
10  
CC  
I
T
= full range  
mA  
dB  
CC  
A
CC  
T
A
= 25°C  
70  
68  
PSRR Power supply rejection ratio  
V
CC  
=
5 V or 15 V  
T
A
= full range  
Full range = 0°C to 70°C for C suffix and 40°C to 85°C for I suffix  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
electrical characteristics at T = 25°C, V  
= 15 V, R = 150 (unless otherwise noted)  
A
CC  
L
dynamic performance  
THS4061M  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
180  
180  
180  
50  
MAX  
Unity-gain bandwidth  
Closed loop,  
R
= 1 kΩ  
V
=
15 V  
*140  
MHz  
L
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
=
=
=
=
=
=
=
15 V  
5 V  
Gain = 1  
MHz  
MHz  
Dynamic performance small-signal  
bandwidth (−3 dB)  
15 V  
5 V  
BW  
SR  
Gain = −1  
Gain = 1  
50  
15 V  
5 V  
75  
Bandwidth for 0.1 dB flatness  
Slew rate  
MHz  
20  
15 V  
R
= 1 kΩ  
*400  
500  
40  
V/µs  
L
15 V, 5-V step (0 V to 5 V)  
5 V, = −2.5 V to 2.5 V,  
15 V, 5-V step (0 V to 5 V)  
Settling time to 0.1%  
Settling time to 0.01%  
Gain = −1  
Gain = −1  
ns  
ns  
V
O
40  
t
s
140  
150  
5 V,  
V
O
= −2.5 V to 2.5 V,  
Full range = −55°C to 125°C for M suffix  
*This parameter is not tested.  
noise/distortion performance  
THS4061M  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
−72  
MAX  
THD  
Total harmonic distortion  
Input voltage noise  
Input current noise  
f = 1 MHz  
f = 10 kHz,  
f = 10 kHz,  
dBc  
V
n
V
V
=
=
5 V or 15 V  
5 V or 15 V  
14.5  
1.6  
nV/Hz  
pA/Hz  
CC  
I
n
CC  
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
15 V  
5 V  
0.02  
0.02  
0.02°  
0.06°  
Differential gain error  
Differential phase error  
Gain = 2,  
Gain = 2,  
NTSC, 40 IRE Modulation  
NTSC, 40 IRE Modulation  
%
15 V  
5 V  
Full range = −55°C to 125°C for M suffix  
dc performance  
THS4061M  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
9
MAX  
V
V
=
=
15 V,  
5 V,  
V
V
=
=
10 V,  
R
R
= 1 kΩ  
= 1 kΩ  
5
CC  
O
L
Open loop gain  
T
A
= full range  
V/mV  
2.5 V,  
2.5  
6
CC  
O
L
T
= 25°C  
2.5  
8
9
mV  
mV  
A
Input offset voltage  
V
=
5 V or 15 V  
R
= 1 kΩ  
CC  
L
T
A
= full range  
= full range  
= full range  
= full range  
= full range  
V
IO  
Offset drift  
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
5 V or 15 V  
5 V or 15 V  
5 V or 15 V  
5 V or 15 V  
R
R
R
R
= 1 kΩ  
= 1 kΩ  
= 1 kΩ  
= 1 kΩ  
T
A
15  
3
µV/°C  
µA  
L
L
L
L
I
I
Input bias current  
Input offset current  
Offset current drift  
T
A
6
IB  
T
A
75  
0.3  
250  
nA  
IO  
T
A
nA/°C  
Full range = −55°C to 125°C for M suffix  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
electrical characteristics at T = full range, V  
A
= 15 V, R = 1 k(unless otherwise noted)  
CC  
L
(continued)  
input characteristics  
THS4061M  
PARAMETER  
UNIT  
V
TEST CONDITIONS  
MIN  
13.8  
3.8  
70  
TYP  
14.1  
4.3  
86  
MAX  
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
15 V  
5 V  
V
ICR  
Common-mode input voltage range  
15 V,  
5 V,  
V
V
=
=
12 V  
ICR  
CMRR Common mode rejection ratio  
dB  
2.5 V  
80  
90  
ICR  
R
C
Input resistance  
1
MΩ  
I
i
Input capacitance  
2
pF  
Full range = −55°C to 125°C for M suffix  
output characteristics  
THS4061M  
TEST CONDITIONS  
PARAMETER  
UNIT  
V
MIN  
TYP  
13.1  
3.5  
MAX  
V
V
V
V
V
V
V
=
=
=
=
=
=
=
15 V  
5 V  
R
R
= 250 Ω  
= 150 Ω  
12  
3.2  
13  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
L
L
V
O
Output voltage swing  
Output current  
15 V  
5 V  
13.5  
3.7  
R
R
= 1 kΩ  
V
L
L
3.5  
70  
15 V  
5 V  
115  
75  
I
I
= 20 Ω  
= 25°C  
mA  
O
50  
Short-circuit current  
Output resistance  
15 V  
T
A
150  
12  
mA  
SC  
R
Open loop  
O
Full range = −55°C to 125°C for M suffix  
power supply  
THS4061M  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
16.5  
33  
Dual supply  
4.5  
9
V
Supply voltage operating range  
Quiescent current  
V
CC  
Single supply  
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
15 V  
5 V  
7.8  
7.3  
9
T
= 25°C  
A
8.5  
11  
I
mA  
dB  
CC  
15 V  
5 V  
T
A
= full range  
10.5  
T
A
= 25°C  
76  
74  
80  
78  
PSRR Power supply rejection ratio  
V
CC  
=
5 V or 15 V  
T
A
= full range  
Full range = −55°C to 125°C for M suffix  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
FIGURE  
3
I
Input bias current  
Input offset voltage  
Open-loop gain  
Phase  
vs Free-air temperature  
vs Free-air temperature  
vs Frequency  
IB  
V
4
IO  
5
vs Frequency  
5
Differential gain  
Differential phase  
Closed-loop gain  
Output amplitude  
vs Number of loads  
vs Number of loads  
vs Frequency  
6, 8  
7, 9  
10, 11  
12, 13  
14  
vs Frequency  
CMRR Common-mode rejection ratio  
vs Frequency  
vs Frequency  
15  
PSRR  
Power supply rejection ratio  
vs Free-air temperature  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
16  
V
Output voltage swing  
Supply current  
17  
O(PP)  
I
18  
CC  
E
nv  
Noise spectral density  
Total harmonic distortion  
Crosstalk  
19  
THD  
vs Frequency  
20, 21  
22, 23  
vs Frequency  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
vs  
INPUT OFFSET VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3.5  
3
0
−0.5  
−1  
VCC = 15 V, 5 V  
VCC = 5 V  
−1.5  
−2  
VCC = 15 V  
−2.5  
−3  
2.5  
2
−3.5  
−40  
−20  
0
20  
40  
60  
80  
100  
−40  
−20  
0
20  
40  
60  
80  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 3  
Figure 4  
OPEN-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
90  
80  
70  
60  
50  
40  
30  
VCC = 15 V  
VCC = 5 V  
0°  
−45°  
−90°  
−135°  
−180°  
Phase  
20  
10  
0
1k  
10k  
100k  
1M  
10M  
100M  
1G  
f − Frequency − Hz  
Figure 5  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL GAIN  
vs  
NUMBER OF LOADS  
DIFFERENTIAL PHASE  
vs  
NUMBER OF LOADS  
0.14%  
0.7°  
Gain = 2  
Gain = 2  
RF = 680 Ω  
RF = 680 Ω  
0.12%  
0.1%  
0.6  
0.5°  
0.4°  
0.3°  
0.2°  
0.1°  
0°  
40 IRE − NTSC  
40 IRE − NTSC  
Worst Case 100 IRE Ramp  
Worst Case 100 IRE Ramp  
V
= 5  
CC  
Phase  
0.08%  
0.06%  
0.04%  
0.02%  
0%  
V
= 15  
CC  
Gain  
V
CC  
=
15  
Phase  
V
CC  
Gain  
= 5  
1
2
3
4
1
2
3
4
Number of 150 Loads  
Number of 150 Loads  
Figure 6  
Figure 7  
DIFFERENTIAL GAIN  
vs  
NUMBER OF LOADS  
DIFFERENTIAL PHASE  
vs  
NUMBER OF LOADS  
0.2%  
0.18%  
0.16%  
0.14%  
0.12%  
1°  
Gain = 2  
= 680 Ω  
40 IRE − PAL  
Worst Case 100 IRE Ramp  
Gain = 2  
= 680 Ω  
0.9°  
0.8°  
0.7°  
0.6°  
R
R
F
F
40 IRE − PAL  
Worst Case 100 IRE Ramp  
V = 15  
CC  
Gain  
0.1%  
0.08%  
0.06%  
0.04%  
0.02%  
0.5°  
0.4°  
0.3°  
0.2°  
0.1°  
V
= 5  
Gain  
CC  
V
= 5  
CC  
Phase  
V
3
=
15  
Phase  
CC  
0%  
0°  
1
2
3
4
1
2
4
Number of 150 Loads  
Number of 150 Loads  
Figure 8  
Figure 9  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
CLOSED-LOOP GAIN  
vs  
CLOSED-LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
2
0
5
0
V
CC  
=
15 V  
−2  
−4  
V
CC  
= 5 V  
−5  
−10  
−6  
−8  
−10  
V
=
15 V, 5 V  
CC  
−15  
20  
Gain = −1  
R
R
Gain = 1  
−12  
−14  
= 510 Ω  
= 150 Ω  
R
R
= 270 Ω  
= 150 Ω  
F
L
F
L
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 10  
Figure 11  
OUTPUT AMPLITUDE  
vs  
OUTPUT AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
4
2
R
= 510 Ω  
F
R
= 1 kΩ  
F
2
0
0
R
= 3 kΩ  
−2  
F
R
= 270 Ω  
F
−2  
−4  
R = 200 Ω  
F
−4  
−6  
−6  
−8  
−8  
Gain = 1  
Gain = −1  
R
= 150 Ω  
L
R
= 150 Ω  
L
−10  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 12  
Figure 13  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
120  
100  
80  
−80  
V
CC  
= 15 V, 5 V  
−70  
−60  
−50  
−40  
−30  
−20  
60  
40  
20  
0
−10  
0
V
CC  
=
15 V, 5 V  
10k  
100k  
1M  
10M  
100M  
1k  
10k 100k  
1M  
10M  
100M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 14  
Figure 15  
POWER SUPPLY REJECTION RATIO  
OUTPUT VOLTAGE SWING  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
90  
30  
25  
20  
15  
88  
86  
84  
82  
80  
78  
76  
R
= 1 kΩ  
V
= −15 V  
L
CC  
R
= 150 Ω  
L
V
CC  
= 15 V  
10  
5
74  
72  
0
−40  
−20  
0
20  
40  
60  
80  
100  
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
CC  
− Supply Voltage − V  
Figure 16  
Figure 17  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
NOISE SPECTRAL DENSITY  
vs  
FREQUENCY  
10  
9
180  
160  
140  
120  
100  
80  
T
A
= 25°C  
V
CC  
= 15 V  
8
V
CC  
= 5 V  
7
6
5
4
60  
40  
20  
0
−40  
−20  
0
20  
40  
60  
80  
100  
10  
100  
1k  
10k  
100k  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 18  
Figure 19  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
−40  
−50  
−60  
−70  
−80  
−90  
−40  
−50  
−60  
−70  
−80  
−90  
Gain = 2  
15 V  
= 150 Ω  
Gain = 2  
5 V  
= 150 Ω  
V
R
=
V
R
=
CC  
L
CC  
L
2nd Harmonic  
2nd Harmonic  
3rd Harmonic  
3rd Harmonic  
−100  
110  
−100  
110  
100k  
1M  
10M  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 20  
Figure 21  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
CROSSTALK  
vs  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
0
G = 2,  
G = 2,  
−10  
R
R
V
= 300 W,  
R
R
V
= 300 W,  
F
L
O
S
F
L
O
S
= 100 W,  
= 200 mV  
= + 5 V  
= 100 W,  
= 200 mV  
= + 15 V  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
,
,
PP  
PP  
V
V
See Figure 24  
See Figure 24  
CH B to A  
CH B to A  
CH A to B  
CH A to B  
−90  
−100  
100 k  
1 M  
10 M  
100 M  
1 G  
100 k  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 22  
Figure 23  
300 W  
300 W  
THS4062  
A
+
V
IN  
100 W  
49.9 W  
300 W  
300 W  
50 W Load  
Measured  
THS4062  
49.9 W  
B
+
49.9 W  
Figure 24. Test Circuits  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
APPLICATION INFORMATION  
theory of operation  
The THS406x is a high speed, operational amplifier configured in a voltage feedback architecture. It is built using  
a 30-V, dielectrically isolated, complementary bipolar process with NPN and PNP transistors possessing f s of  
T
several GHz. This results in an exceptionally high performance amplifier that has a wide bandwidth, high slew  
rate, fast settling time, and low distortion. A simplified schematic is shown in Figure 25.  
(7) V  
CC  
+
(6) OUT  
IN(2)  
IN+ (3)  
(4) V  
CC  
NULL (1)  
NULL (8)  
Figure 25. THS4061 Simplified Schematic  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
APPLICATION INFORMATION  
offset nulling  
The THS4061 has very low input offset voltage for a high-speed amplifier. However, if additional correction is  
required, an offset nulling function has been provided. By placing a potentiometer between terminals 1 and 8  
and tying the wiper to the negative supply, the input offset can be adjusted. This is shown in  
Figure 26.  
V
CC  
+
0.1 µF  
+
_
THS4061  
10 kΩ  
0.1 µF  
V
CC  
Figure 26. Offset Nulling Schematic  
optimizing unity gain response  
Internal frequency compensation of the THS406x was selected to provide very wideband performance yet still  
maintain stability when operated in a noninverting unity gain configuration. When amplifiers are compensated  
in this manner there is usually peaking in the closed loop response and some ringing in the step response for  
very fast input edges, depending upon the application. This is because a minimum phase margin is maintained  
for the G=+1 configuration. For optimum settling time and minimum ringing, a feedback resistor of 270 should  
be used as shown in Figure 27. Additional capacitance can also be used in parallel with the feedback resistance  
if even finer optimization is required.  
Input  
+
Output  
THS406x  
_
270 Ω  
Figure 27. Noninverting, Unity Gain Schematic  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢄ ꢅꢈ  
ꢆ ꢉ ꢄ ꢊꢋꢁ ꢌ ꢁꢍ ꢎꢁ ꢊꢂꢏꢐ ꢐꢑ ꢒꢋ ꢏ ꢓꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
APPLICATION INFORMATION  
driving a capacitive load  
Driving capacitive loads with high performance amplifiers is not a problem as long as certain precautions are  
taken. The first is to realize that the THS406x has been internally compensated to maximize its bandwidth and  
slew rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the  
output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for  
capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series with the output of  
the amplifier, as shown in Figure 28. A minimum value of 20 should work well for most applications. For  
example, in 75-transmission systems, setting the series resistor value to 75 both isolates any capacitance  
loading and provides the proper line impedance matching at the source end.  
510 Ω  
510 Ω  
_
Input  
20 Ω  
Output  
LOAD  
THS406x  
+
C
Figure 28. Driving a Capacitive Load  
circuit layout considerations  
In order to achieve the levels of high frequency performance of the THS406x, it is essential that proper  
printed-circuit board high frequency design techniques be followed. A general set of guidelines is given below.  
In addition, a THS406x evaluation board is available to use as a guide for layout or for evaluating the device  
performance.  
D
Ground planes − It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distances increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
Sockets − Sockets are not recommended for high-speed operational amplifiers. The additional lead  
inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly  
to the printed-circuit board is the best implementation.  
Short trace runs/compact part placements − Optimum high frequency performance is achieved when stray  
series inductance has been minimized. To realize this, the circuit layout should be made as compact as  
possible thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting  
input of the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance  
at the input of the amplifier.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢈ  
ꢆꢉ ꢄꢊꢋ ꢁꢌ ꢁ ꢍ ꢎꢁꢊꢂꢏ ꢐ ꢐꢑ ꢒꢋ ꢏꢓ ꢍ ꢔꢍ ꢐꢕ ꢂ  
SLOS234E − DECEMBER 1998 − REVISED DECEMBER 2003  
APPLICATION INFORMATION  
circuit layout considerations (continued)  
D
Surface-mount passive components − Using surface-mount passive components is recommended for  
high-frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance  
of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the  
small size of surface-mount components naturally leads to a more compact layout, thereby minimizing both  
stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths  
be kept as short as possible.  
evaluation board  
An evaluation board is available for the THS4061 (literature number SLOP226) and THS4062 (literaure number  
SLOP235). This board has been configured for very low parasitic capacitance in order to realize the full  
performance of the amplifier. A schematic of the evaluation board is shown in Figure 29. The circuitry has been  
designed so that the amplifier may be used in either an inverting or noninverting configuration. To order the  
evaluation board contact your local TI sales office or distributor. For more detailed information, refer to the  
THS4061 EVM User’s Manual (literature number SLOU038) or the THS4062 EVM User’s Manual (literature  
number SLOU040)  
V
CC  
+
+
C2  
C3  
0.1 µF  
6.8 µF  
R4  
1 kΩ  
NULL  
R5  
49.9 Ω  
IN+  
+
_
R3  
49.9 Ω  
OUT  
THS4061  
NULL  
R2  
C1  
1 kΩ  
6.8 µF  
+
C4  
0.1 µF  
IN−  
V
CC  
R1  
49.9 Ω  
Figure 29. THS4061 Evaluation Board Schematic  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
SOIC  
Drawing  
5962-9960101Q2A  
5962-9960101QPA  
THS4061CD  
ACTIVE  
ACTIVE  
ACTIVE  
FK  
JG  
D
20  
8
1
1
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4061CDG4  
THS4061CDGN  
ACTIVE  
ACTIVE  
SOIC  
D
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4061CDGNG4  
THS4061CDGNR  
THS4061CDGNRG4  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4061CDR  
THS4061CDRG4  
THS4061ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4061IDG4  
THS4061IDGNG4  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGN  
TBD  
Call TI  
Call TI  
THS4061IDGNR  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4061IDGNRG4  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4061IDR  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4061IDRG4  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4061MFKB  
THS4061MJG  
THS4061MJGB  
THS4062CD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CDIP  
SOIC  
FK  
JG  
JG  
D
20  
8
1
1
1
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4062CDG4  
THS4062CDGN  
ACTIVE  
ACTIVE  
SOIC  
D
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4062CDGNG4  
ACTIVE  
MSOP-  
DGN  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
Power  
PAD  
no Sb/Br)  
THS4062CDGNRG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
TBD  
Call TI  
Call TI  
THS4062CDR  
THS4062CDRG4  
THS4062ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4062IDG4  
THS4062IDGN  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4062IDGNG4  
THS4062IDGNR  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4062IDGNRG4  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4062IDR  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4062IDRG4  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2007  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
330  
330  
330  
330  
330  
330  
(mm)  
12  
THS4061CDGNR  
THS4061CDR  
THS4061IDGNR  
THS4061IDR  
DGN  
D
8
8
8
8
8
8
8
SITE 40  
SITE 60  
SITE 40  
SITE 60  
SITE 60  
SITE 40  
SITE 60  
5.2  
6.4  
5.2  
6.4  
6.4  
5.2  
6.4  
3.3  
5.2  
3.3  
5.2  
5.2  
3.3  
5.2  
1.6  
2.1  
1.6  
2.1  
2.1  
1.6  
2.1  
8
8
8
8
8
8
8
12  
12  
12  
12  
12  
12  
12  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
12  
DGN  
D
12  
12  
THS4062CDR  
THS4062IDGNR  
THS4062IDR  
D
12  
DGN  
D
12  
12  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2007  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
THS4061CDGNR  
THS4061CDR  
THS4061IDGNR  
THS4061IDR  
DGN  
D
8
8
8
8
8
8
8
SITE 40  
SITE 60  
SITE 40  
SITE 60  
SITE 60  
SITE 40  
SITE 60  
338.1  
346.0  
338.1  
346.0  
346.0  
338.1  
346.0  
340.5  
346.0  
340.5  
346.0  
346.0  
340.5  
346.0  
21.1  
29.0  
21.1  
29.0  
29.0  
21.1  
29.0  
DGN  
D
THS4062CDR  
THS4062IDGNR  
THS4062IDR  
D
DGN  
D
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright 2008, Texas Instruments Incorporated  

相关型号:

THS4061CDGN

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061CDGNG4

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061CDGNR

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061CDGNRG4

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061CDR

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061CDRG4

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061D

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061DGN

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061EVM

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061FK

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061ID

180-MHz HIGH-SPEED AMPLIFIERS
TI

THS4061IDG4

180-MHz HIGH-SPEED AMPLIFIERS
TI