THS4141IDGK [TI]

HIGH SPEED FULLY DIFFERENTIAL I/O AMPLIFIERS; 高速全差动I / O放大器
THS4141IDGK
型号: THS4141IDGK
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH SPEED FULLY DIFFERENTIAL I/O AMPLIFIERS
高速全差动I / O放大器

运算放大器 放大器电路 光电二极管
文件: 总24页 (文件大小:521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
features  
key applications  
D
High Performance  
− 160 MHz −3 dB Bandwidth (V  
− 450 V/µs Slew Rate  
− −79 dB, Third Harmonic Distortion at  
1 MHz  
D
Single-Ended To Differential Conversion  
Differential ADC Driver  
= 15 V)  
CC  
D
D
D
D
Differential Antialiasing  
Differential Transmitter And Receiver  
Output Level Shifter  
− 6.5 nV/Hz Input-Referred Noise  
D
Differential Input/Differential Output  
− Balanced Outputs Reject Common-Mode  
Noise  
− Reduced Second Harmonic Distortion  
Due to Differential Output  
THS4140  
THS4141  
D, DGN, OR DGK PACKAGE  
D, DGN, OR DGK PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
V
V
V
V
IN+  
NC  
V
1
2
3
4
8
7
6
5
IN−  
IN+  
IN−  
1
2
3
4
8
7
6
5
D
D
Wide Power Supply Range  
V
PD  
V
V
OCM  
OCM  
− V  
= 5 V Single Supply to 15 V Dual  
V
V
CC  
CC+  
CC−  
CC+  
CC−  
Supply  
V
V
V
V
OUT−  
OUT+  
OUT− OUT+  
I
= 880 µA in Shutdown Mode  
CC(SD)  
(THS4140)  
HIGH-SPEED DIFFERENTIAL I/O FAMILY  
NUMBER OF  
description  
DEVICE  
SHUTDOWN  
CHANNELS  
The THS414x is one in a family of fully differential  
THS4140  
THS4141  
1
1
X
input/differential output devices fabricated using  
Texas Instruments’ state-of-the-art BiComI  
complementary bipolar process.  
The THS414x is made of a true fully-differential  
signal path from input to output. This design leads  
to an excellent common-mode noise rejection and  
improved total harmonic distortion.  
TOTAL HARMONIC DISTORTION  
vs  
FREQUENCY  
−30  
V
O
= 2 V  
PP  
RELATED DEVICES  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
DEVICE  
THS412x  
THS413x  
THS415x  
DESCRIPTION  
100 MHz, 43 V/µs, 3.7 nV/Hz  
150 MHz, 51 V/µs, 1.3 nV/Hz  
150 MHz, 650 V/µs, 7.6 nV/Hz  
typical A/D application circuit  
V
DD  
V
CC  
= 5 V to 15 V  
5 V  
AV  
DD  
DV  
V
V
IN  
DD  
+
A
A
V
OCM  
IN  
IN  
DIGITAL  
OUTPUT  
+
AV  
SS  
ref  
100k  
1M  
10M  
100M  
f − Frequency − Hz  
−5 V  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢣ  
Copyright 2001 − 2004, Texas Instruments Incorporated  
ꢟ ꢣ ꢠ ꢟꢘ ꢙꢭ ꢛꢚ ꢞ ꢦꢦ ꢤꢞ ꢜ ꢞ ꢝ ꢣ ꢟ ꢣ ꢜ ꢠ ꢨ  
ꢞꢜ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
EVALUATION  
MODULES  
MSOP PowerPAD  
(DGN) SYMBOL  
MSOP  
T
A
SMALL OUTLINE  
(D)  
(DGK)  
SYMBOL  
ATR  
THS4140CD  
THS4141CD  
THS4140ID  
THS4141ID  
THS4140CDGN  
THS4141CDGN  
THS4140IDGN  
THS4141IDGN  
AOF  
AOI  
THS4140CDGK  
THS4141CDGK  
THS4140IDGK  
THS4141IDGK  
THS4140EVM  
0°C to 70°C  
ATS  
THS4141EVM  
AOG  
AOK  
ASQ  
−40°C to 85°C  
ASR  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 V  
CC−  
CC+  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
CC  
I
Output current, I (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mA  
O
Differential input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
ID  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Maximum junction temperature, T (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Maximum junction temperature, continuous operation, long term reliability, T (see Note 3) . . . . . . . . 125°C  
J
Operating free-air temperature, T :C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 Inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
stg  
ESD ratings:  
HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2500 V  
CDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500 V  
MM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 V  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: The THS414x may incorporate a PowerPadon the underside of the chip. This acts as a heatsink and must be connected to a thermally  
dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature which could  
permanently damage the device. See TI technical brief SLMA002 and SLMA004 for more information about utilizing the PowerPad  
thermally enhanced package.  
NOTE 2: The absolute maximum temperature under any condition is limited by the constraints of the silicon process.  
NOTE 3: The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may  
result in reduced reliability and/or lifetime of the device.  
DISSIPATION RATING TABLE  
§
POWER RATING  
= 25°C T = 85°C  
A
θ
θ
JC  
(°C/W)  
JA  
PACKAGE  
(°C/W)  
T
A
D
97.5  
58.4  
260  
38.3  
4.7  
1.02 W  
1.71 W  
410 mW  
685 mW  
154 mW  
DGN  
DGK  
54.2  
385 mW  
§
This data was taken using the JEDEC standard High−K test PCB.  
Power rating is determined with a junction temperature of 125°C. This is the point where distortion starts to  
substantially increase. Thermal management of the final PCB should strive to keep the junction temperature at or  
below 125°C for best performance and long term reliability.  
recommended operating conditions  
MIN  
2.5  
TYP  
MAX  
15  
UNIT  
Dual supply  
Single supply  
C suffix  
Supply voltage, V  
CC+  
to V  
CC−  
V
5
0
30  
70  
85  
Operating free-air temperature, T  
°C  
A
I suffix  
−40  
PowerPAD is a trademark of Texas Instruments.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
electrical characteristics, V  
= 5 V, R = 800 , T = 25°C (unless otherwise noted)†  
CC  
L
A
dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
150  
MAX  
UNIT  
MHz  
MHz  
V/µs  
V
V
=
=
5
Gain = 1, R = 390 Ω  
f
CC  
BW  
SR  
Small signal bandwidth (−3 dB)  
15  
Gain = 1, R = 390 Ω  
160  
450  
96  
CC  
f
Slew rate (see Notes 1)  
Settling time to 0.1%  
Settling time to 0.01%  
Gain = 1  
Differential step  
voltage = 2 V  
t
s
Gain = 1  
ns  
,
304  
PP  
NOTE 4: Slew rate is measured from an output level range of 25% to 75%.  
The full range temperature is 0°C to 70°C for the C suffix, and −40°C to 85°C for the I suffix.  
distortion performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1 MHz  
8 MHz  
1 MHz  
8 MHz  
V
V
V
V
= 2 V  
= 2 V  
= 2 V  
= 2 V  
85  
65  
79  
55.5  
78  
−78  
O
O
O
O
PP  
PP  
PP  
PP  
Second harmonic distortion, differential in/differential out  
dB  
Third harmonic distortion, differential in/differential out  
Total harmonic distortion  
dB  
dB  
V
CC  
V
CC  
V
CC  
= 5  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
Differential input, differential output  
=
=
5
THD  
Gain = 1, R = 390 , R = 800 Ω  
f
L
15  
−79  
V
O
= 2 V  
PP  
Spurious free dynamic range (SFDR)  
Intermodulation distortion  
Third-order intercept  
−79  
dB  
dBc  
dB  
5 MHz  
−103  
37  
20 MHz  
The full range temperature is 0°C to 70°C for the C suffix, and −40°C to 85°C for the I suffix.  
noise performance  
PARAMETER  
Input voltage noise  
Input current noise  
The full range temperature is 0°C to 70°C for the C suffix, and −40°C to 85°C for the I suffix.  
TEST CONDITIONS  
f = 10 kHz  
f = 10 kHz  
MIN  
MIN  
TYP  
6.5  
MAX  
MAX  
UNIT  
V
nV/Hz  
pA/Hz  
n
I
n
1.25  
dc performance  
PARAMETER  
TEST CONDITIONS  
= 25°C  
TYP  
UNIT  
T
A
63  
60  
67  
Open loop gain  
dB  
T
= full range  
= 25°C  
A
T
A
1
7
Input offset voltage, differential  
T
= full range  
= 25°C  
A
8.5  
8
mV  
A
V
OS  
Input offset voltage, referred to V  
Offset drift  
T
0.5  
7
OCM  
T
A
= full range  
µV/°C  
µA  
I
I
Input bias current  
5.1  
0.1  
0.3  
15  
1
IB  
Input offset current  
µA  
T
= full range  
OS  
A
Offset drift  
nA/°C  
The full range temperature is 0°C to 70°C for the C suffix, and −40°C to 85°C for the I suffix.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
electrical characteristics, V  
CC  
= 5 V, R = 800 , T = 25°C (unless otherwise noted) (continued)†  
L
A
input characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CMRR  
Common-mode rejection ratio  
T
A
= full range  
75  
84  
dB  
3.77 to  
4.3  
V
ICR  
Common-mode input voltage range  
−4 to 4.5  
V
R
C
Input resistance, closed loop  
Input capacitance  
Measured into each input terminal  
Open loop  
14.4  
3.9  
43  
MΩ  
pF  
I
I
r
Output resistance  
o
The full range temperature is 0°C to 70°C for the C suffix, and −40°C to 85°C for the I suffix.  
output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
T
= 25°C  
1.2 to 3.8 0.9 to 4.1  
1.3 to 3.7  
A
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 5 V  
T
A
= full range  
= 25°C  
T
A
3.7  
3.6  
12  
11  
3.9  
12.9  
45  
Output voltage swing  
=
=
5 V  
V
T
A
= full range  
= 25°C  
T
A
15 V  
T
A
= full range  
= 25°C  
T
A
35  
25  
45  
35  
65  
50  
= 5 V  
T
A
= full range  
= 25°C  
T
A
60  
I
O
Output current, R = 7 Ω  
=
=
5 V  
mA  
L
T
A
= full range  
= 25°C  
T
A
85  
15 V  
T
A
= full range  
The full range temperature is 0°C to 70°C for the C suffix, and −40°C to 85°C for the I suffix.  
power supply  
PARAMETER  
TEST CONDITIONS  
Single supply  
Split supply  
MIN  
TYP  
MAX  
UNIT  
4
33  
V
CC  
Supply voltage range  
V
2
16.5  
16  
T
= 25°C  
13.2  
A
V
V
=
=
5 V  
CC  
T
A
= full range  
= 25°C  
18  
I
Quiescent current  
mA  
CC  
15 V  
T
A
15  
CC  
T
= 25°C  
0.88  
1.2  
1.4  
A
I
Quiescent current (shutdown) (THS4140)  
Power supply rejection ratio (dc)  
mA  
dB  
CC(SD)  
T
A
= full range  
= 25°C  
T
A
70  
65  
90  
PSRR  
T
A
= full range  
The full range temperature is 0°C to 70°C for the C suffix, and −40°C to 85°C for the I suffix.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
PSRR  
Power supply rejection ratio  
Small signal frequency response  
Large signal frequency response  
Common-mode rejection ratio  
Small signal frequency response  
Slew rate  
vs Frequency (differential out)  
1
2
3
CMMR  
SR  
vs Frequency  
4
5
6
vs Frequency  
7
Second harmonic distortion  
Third harmonic distortion  
vs Output voltage  
vs Frequency  
8, 9  
10, 11  
12, 13  
14  
15  
16  
17  
18  
19  
20  
vs Output voltage  
Settling time  
V
V
Voltage noise  
vs Frequency  
n
Single-ended output voltage  
Output voltage  
vs Common-mode output voltage  
vs Differential load resistance  
vs Frequency  
O
z
Output impedance  
Input bias current  
Output current range  
o
vs Supply voltage  
vs Supply voltage  
POWER SUPPLY REJECTION RATIO  
vs  
FREQUENCY (DIFFERENTIAL OUT)  
−20  
−30  
V
CC  
= 5 V to 15 V  
−40  
−50  
V
CC−  
−60  
−70  
V
CC  
−80  
100 k  
1 M  
10 M  
100 M  
f − Frequency (Differential Out) − Hz  
Figure 1  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS  
SMALL SIGNAL FREQUENCY RESPONSE  
LARGE SIGNAL FREQUENCY RESPONSE  
45  
40  
35  
30  
25  
20  
15  
10  
5
5
R
V
= 800 Ω,  
L
V = 0.4 V  
PP  
I
=
5 V,  
0
CC  
V = 45 mV  
I
PP  
R = 24 kΩ  
f
−5  
V = 0.126 V  
I PP  
−10  
R = 2.4 kΩ  
f
−15  
−20  
R = 1.2 kΩ  
f
V = 40 m V  
I PP  
R = 470 Ω  
f
0
R = 240 Ω  
−25  
−30  
R = 330 ,  
f
f
−5  
R
= 800 ,  
L
−10  
V
CC  
=
5 V,  
G = 1  
−15  
−20  
−35  
100 k  
100 k  
1M  
10 M  
100 M  
1 G  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 2  
Figure 3  
COMMON-MODE REJECTION RATIO  
vs  
SMALL SIGNAL FREQUENCY RESPONSE  
FREQUENCY  
−40  
−50  
−60  
−70  
−80  
1
V = 0.8 mV  
PP  
V
= 5 V  
I
CC  
0
V
CC  
= 5 V  
V
=
=
5 V  
15 V  
CC  
V
CC  
V
CC  
=
15 V  
−1  
V
CC  
= 5 V  
−2  
R = 390 ,  
f
R
= 800 ,  
L
−90  
V = 45 mV RMS  
I
G = 1  
−100  
−3  
100 k  
1 M  
10 M  
100 M  
1 G  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 4  
Figure 5  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS  
SECOND HARMONIC DISTORTION  
vs  
SLEW RATE  
FREQUENCY  
1.25  
1
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
V Peak = 1,  
I
V
R
= 4 V  
PP,  
O
L
f
T
A
= 25 °C  
= 800 ,  
V
CC  
= 5 V  
R = 330 ,  
G = 1  
0.75  
0.5  
V
CC  
=
15 V  
0.25  
0
V
CC  
= 15 V  
V
= 5 V  
CC  
−0.25  
−0.5  
−0.75  
−1  
G = 1,  
R = 330 ,  
= 800 ,  
= 1 pF,  
C = 0  
I
f
L
F
R
C
−1.25  
116  
118  
120  
122  
124  
126  
128  
100 k  
1M  
10 M  
100 M  
t − Time − ns  
f − Frequency − Hz  
Figure 6  
Figure 7  
SECOND HARMONIC DISTORTION  
SECOND HARMONIC DISTORTION  
vs  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
−57  
−58  
−59  
−60  
−61  
−62  
−63  
−64  
−65  
−66  
−80  
−82  
−84  
−86  
−88  
−90  
−92  
f = 1 MHz  
,
V
CC  
= 15 V  
R
= 800 ,  
L
f
V
CC  
= 5 V  
R = 330 ,  
G = 1  
V
= 15 V  
CC  
V
CC  
= 5 V  
V
CC  
= 5 V  
V
= 5 V  
CC  
f = 16 MHz  
R
R = 330 ,  
G = 1  
,
= 800 ,  
L
f
1
2
3
4
5
6
1
2
3
4
5
6
V
O
− Output Voltage − V  
V
O
− Output Voltage − V  
Figure 8  
Figure 9  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS  
THIRD HARMONIC DISTORTION  
THIRD HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
−30  
−40  
−30  
−40  
V
R
= 2 V  
PP,  
V
= 4 V  
O
L
f
O PP,  
= 800 ,  
R = 800 ,  
L
R = 330 ,  
G = 1  
R = 330 ,  
G = 1  
f
−50  
−50  
−60  
−60  
V
CC  
= 5 V  
−70  
−70  
V
CC  
= 5 V  
V
CC  
= 15 V  
−80  
−80  
V
CC  
= 15 V  
−90  
−90  
−100  
110  
−100  
110  
V
=
5 V  
CC  
100 k  
1M  
10 M  
100 M  
100 k  
1M  
10 M  
100 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 10  
Figure 11  
THIRD HARMONIC DISTORTION  
THIRD HARMONIC DISTORTION  
vs  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
−71  
−73  
−75  
−77  
−79  
−81  
−83  
−85  
−87  
−89  
−41  
−43  
−45  
−47  
−49  
−51  
−53  
−55  
−57  
−59  
−61  
f = 1 MHz  
= 800 ,  
f = 16 MHz  
= 800 ,  
V
CC  
= 5 V  
R
L
V
= 5 V  
CC  
R
L
R = 330 ,  
f
R = 330 ,  
f
G = 1  
G = 1  
V
CC  
= 5 V  
V
= 15 V  
CC  
V
CC  
= 5 V  
V
CC  
= 15 V  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
1
2
3
4
5
6
V
− Output Voltage − V  
O
V
− Output Voltage − V  
O
Figure 12  
Figure 13  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS  
VOLTAGE NOISE  
vs  
FREQUENCY  
SETTLING TIME  
2.40  
2.30  
2.20  
2.10  
2
100  
R = 510 ,  
f
C
= 1 pF,  
F
V
V
= 4 V,  
O(PP)  
= 5 V,  
CC  
Small Scale  
10  
19 ns to 1%  
96 ns to 0.1%  
304 ns to 0.01%  
1.90  
1.80  
1.70  
1.60  
1.50  
1
10  
100  
1 K  
10 K  
100 K  
0
50  
100  
150  
200  
250  
300  
f − Frequency − Hz  
t − Time − ns  
Figure 14  
Figure 15  
SINGLE-ENDED INPUT OFFSET VOLTAGE  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL LOAD RESISTANCE  
vs  
COMMON-MODE OUTPUT VOLTAGE  
3
15  
R = 1 k,  
R = 1 kΩ  
G = 2  
f
L
f
R
= 800 ,  
V
=
=
15 V  
5 V  
CC  
CC  
G = 1  
2.5  
2
V
10  
5
OUT+  
V
CC  
= 5 V  
V
CC  
= 2.5 V  
V
V
OUT+  
1.5  
1
0
V
OUT−  
V
= 15 V  
CC  
−5  
−10  
−15  
V
V
= − 5 V  
CC  
V  
OUT−  
0.5  
0
= − 15 V  
CC  
−12 −9  
−6  
−3  
0
3
6
9
12  
100  
1k  
10 k  
100 k  
V
OCM  
− Common-Mode Output Voltage − V  
R
− Differential Load Resistance − Ω  
L
Figure 16  
Figure 17  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
100  
10  
1
V
CC  
=
5 V  
0.1  
0.01  
100 k  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
Figure 18  
INPUT BIAS CURRENT  
vs  
OUTPUT CURRENT RANGE  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
90  
6.50  
6
80  
70  
60  
50  
40  
30  
20  
10  
T
A
= −40°C  
T
A
= −40°C  
T
A
= 25°C  
5.50  
5
T
A
= 85°C  
T
A
= 85°C  
T
A
= 25°C  
4.50  
4
3.50  
3
0
11  
V
13  
15  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
1
3
5
7
9
V
CC  
− Supply Voltage −  
V
V
CC  
− Supply Voltage −  
Figure 19  
Figure 20  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
resistor matching  
Resistor matching is important in fully differential amplifiers. The balance of the output on the reference voltage  
depends on matched ratios of the resistors. CMRR, PSRR, and cancellation of the second harmonic distortion  
will diminish if resistor mismatch occurs. Therefore, it is recommended to use 1% tolerance resistors or better  
to keep the performance optimized.  
V
sets the dc level of the output signals. If no voltage is applied to the V  
pin, it will be set to the midrail  
OCM  
OCM  
voltage internally defined as:  
ǒVCC)Ǔ ǒ CC–Ǔ  
) V  
2
In the differential mode, the V  
mode is the same as the input in the gain of 1. V  
on the two outputs cancel each other. Therefore, the output in the differential  
OCM  
has a high bandwidth capability up to the typical operation  
OCM  
range of the amplifier. For the prevention of noise going through the device, use a 0.1 µF capacitor on the V  
pin as a bypass capacitor. The following graph shows the simplified diagram of the THS414x.  
OCM  
V
CC+  
Output Buffer  
V
IN−  
x1  
V
V
OUT+  
C
R
R
V
IN+  
Vcm Error  
Amplifier  
+
_
C
x1  
OUT−  
Output Buffer  
V
CC+  
30 kΩ  
V
CC−  
30 kΩ  
CC−  
V
V
OCM  
Figure 21. THS414x Simplified Diagram  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
data converters  
Data converters are one of the most popular applications for the fully differential amplifiers. The following  
schematic shows a typical configuration of a fully differential amplifier attached to a differential ADC.  
V
DD  
V
CC  
5 V  
AV  
DD  
IN1  
DV  
DD  
V
IN  
+
A
A
V
OCM  
+
IN2  
AV  
0.1 µF  
V
ref  
SS  
−5 V  
V
CC  
Figure 22. Fully Differential Amplifier Attached to a Differential ADC  
Fully differential amplifiers can operate with a single supply. V defaults to the midrail voltage, V /2. The  
OCM  
CC  
differential output may be fed into a data converter. This method eliminates the use of a transformer in the circuit.  
If the ADC has a reference voltage output (V ), then it is recommended to connect it directly to the V of  
ref  
OCM  
the amplifier using a bypass capacitor for stability. For proper operation, the input common-mode voltage to the  
input terminal of the amplifier should not exceed the common-mode input voltage range.  
V
DD  
V
CC  
5 V  
AV  
DD  
IN1  
DV  
DD  
V
IN  
+
A
A
V
OCM  
+
IN2  
AV  
0.1 µF  
V
ref  
SS  
Figure 23. Fully Differential Amplifier Using a Single Supply  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
data converters (continued)  
Some single supply applications may require the input voltage to exceed the common-mode input voltage  
range. In such cases, the following circuit configuration is suggested to bring the common-mode input voltage  
within the specifications of the amplifier.  
V
DD  
V
CC  
R
V
CC  
f
R
PU  
5 V  
R
g
V
OUT  
OUT  
AV  
DD  
DV  
DD  
V
IN  
+
V
A
A
P
IN  
IN  
V
OCM  
+
0.1 µF  
AV  
SS  
V
ref  
V
R
g
R
PU  
CC  
V
R
f
Figure 24. Circuit With Improved Common-Mode Input Voltage  
The following equation is used to calculate R  
:
PU  
V
– V  
P
ǒVIN PǓ  
ǒCC  
PǓ  
R
+
PU  
1
RG  
1
RF  
– V  
) V  
– V  
OUT  
driving a capacitive load  
Driving capacitive loads with high-performance amplifiers is not a problem as long as certain precautions are  
taken. The first is to realize that the THS414x has been internally compensated to maximize its bandwidth and  
slew rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the  
output will decrease the device’s phase margin leading to high-frequency ringing or oscillations. Therefore, for  
capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series with the output of  
the amplifier, as shown in Figure 25. A minimum value of 20 should work well for most applications. For  
example, in 50-transmission systems, setting the series resistor value to 50 both isolates any capacitance  
loading and provides the proper line impedance matching at the source end.  
390 Ω  
20 Ω  
Output  
390 Ω  
THS414x  
20 Ω  
390 Ω  
Output  
390 Ω  
Figure 25. Driving a Capacitive Load  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
Active antialias filtering  
For signal conditioning in ADC applications, it is important to limit the input frequency to the ADC. Low-pass  
filters can prevent the aliasing of the high frequency noise with the frequency of operation. The following figure  
presents a method by which the noise may be filtered in the THS414x.  
C1  
R2  
V
CC  
R4  
+
C3  
C3  
R1  
R3  
R3  
+
V
V
V
+
IN  
IN  
R
THS414x  
(t)  
C2  
THS1050  
Vs  
+
IN  
V
+
V
OCM  
IN  
V
OCM  
R1  
V
IC  
R4  
V
CC  
+
C1  
R2  
Figure 26. Antialias Filtering  
The transfer function for this filter circuit is:  
ȡ
ȣ
Rt  
ȡ
ȣ
2R4 ) Rt  
K
R2  
R1  
ȧ
ȧx  
Where K +  
H (f) + ȧ  
ȧ
ȧ
j2πfR4RtC3ȧ  
d
2
jf  
1 )  
Ȣ
f
1
2R4 ) Rt Ȥ  
ǒFSF x fcǓ  
)
) 1  
Ȣ
Ȥ
Q FSF x fc  
Ǹ
2 x R2R3C1C2  
R3C1 ) R2C1 ) KR3C1  
1
FSF x fc +  
and Q +  
Ǹ
2π 2 x R2R3C1C2  
K sets the pass band gain, fc is the cutoff frequency for the filter, FSF is a frequency-scaling factor, and Q is  
the quality factor.  
2
ǸRe ) Im  
2
|
|
2
2
ǸRe ) Im  
|
|
FSF +  
and Q +  
2Re  
Where Re is the real part, and Im is the imaginary part of the complex pole pair. Setting R2 = R, R3 = mR,  
C1 = C, and C2 = nC results in:  
Ǹ
2 x mn  
1
FSF x fc +  
and Q +  
Ǹ
(
)
1 ) m 1 ) K  
2πRC 2 x mn  
Start by determining the ratios, m and n, required for the gain and Q of the filter type being designed, then select  
C and calculate R for the desired fc.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
PRINCIPLES OF OPERATION  
theory of operation  
The THS414x is a fully differential amplifier. Differential amplifiers are typically differential in/single out, whereas  
fully differential amplifiers are differential in/differential out.  
Differential Amplifier  
THS414x  
Fully differential Amplifier  
R
f
V
CC+  
R
R
(g)  
(g)  
_
_
+
V
V
V
IN−  
O+  
+
_
V
IN+  
O−  
+
R
f
V
OCM  
V
CC−  
Figure 27. Differential Amplifier Versus a Fully Differential Amplifier  
To understand the THS414x fully differential amplifiers, the definition for the pinouts of the amplifier are  
provided.  
ǒV Ǔ ǒV Ǔ  
)
I)  
I–  
ǒVI)Ǔ ǒVI–Ǔ  
Input voltage definition  
V
+
V
+
ID  
IC  
V
2
ǒVO)  
Ǔ
ǒVO–Ǔ  
)
ǒVO)Ǔ ǒVO–Ǔ  
Output voltage definition  
Transfer function  
V
+
+
OD  
OC  
2
V
+ V  
x A  
ǒ Ǔ  
OD  
ID  
+ V  
f
Output common mode voltage V  
OC  
OCM  
Differential Structure Rejects  
Coupled Noise at the Input  
Differential Structure Rejects  
Coupled Noise at the Output  
V
CC+  
_
V
V
V
IN−  
O+  
+
_
V
IN+  
O−  
+
V
OCM  
CC−  
Differential Structure Rejects  
Coupled Noise at the Power Supply  
V
Figure 28. Definition of the Fully Differential Amplifier  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
PRINCIPLES OF OPERATION  
theory of operation (continued)  
The following schematics depict the differences between the operation of the THS414x, fully differential  
amplifier, in two different modes. Fully differential amplifiers can work with differential input or can be  
implemented as single in/differential out.  
R
f
V
CC+  
R
R
(g)  
(g)  
V
IN−  
IN+  
+
V
V
O+  
+
Vs  
O−  
V
V
OCM  
Note: For proper operation, maintain  
symmetry by setting  
V
CC−  
R 1 = R 2 = R and R 1 = R 2 = R  
f
f
f
f
(g) (g) (g)  
A = R /R  
(g)  
R
f
Figure 29. Amplifying Differential Signals  
R
f
V
CC+  
R
R
(g)  
(g)  
V
V
RECOMMENDED RESISTOR VALUES  
IN−  
GAIN  
R
R Ω  
+
V
V
(g)  
f
O+  
+
1
2
5
10  
390  
374  
402  
402  
390  
750  
2010  
4020  
O−  
IN+  
V
OCM  
Vs  
V
CC−  
R
f
Figure 30. Single In With Differential Out  
If each output is measured independently, each output is one-half of the input signal when gain is 1. The  
following equations express the transfer function for each output:  
1
2
V
+
V
O
I
The second output is equal and opposite in sign:  
1
V
+ –  
V
O
I
2
Fully differential amplifiers may be viewed as two inverting amplifiers. In this case, the equation of an inverting  
amplifier holds true for gain calculations. One advantage of fully differential amplifiers is that they offer twice as  
much dynamic range compared to single-ended amplifiers. For example, a 1-V ADC can only support an input  
PP  
signal of 1 V . If the output of the amplifier is 2 V , then it will not be practical to feed a 2-V signal into the  
PP  
PP  
PP  
targeted ADC. Using a fully differential amplifier enables the user to break down the output into two 1-V signals  
PP  
with opposite signs and feed them into the differential input nodes of the ADC. In practice, the designer has been  
able to feed a 2-V peak-to-peak signal into a 1-V differential ADC with the help of a fully differential amplifier.  
The final result indicates twice as much dynamic range. Figure 31 illustrates the increase in dynamic range. The  
gain factor should be considered in this scenario. The THS414x fully differential amplifier offers an improved  
CMRR and PSRR due to its symmetrical input and output. Furthermore, second harmonic distortion is  
improved. Second harmonics tend to cancel because of the symmetrical output.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
PRINCIPLES OF OPERATION  
theory of operation (continued)  
a
V
OD  
= 1−0 = 1  
V
CC+  
+1  
_
V
V
V
IN−  
O+  
+
_
0
V
+1  
IN+  
O−  
+
0
V
OCM  
CC−  
V
OD  
= 0−1 = −1  
V
b
Figure 31. Fully Differential Amplifier With Two 1-V Signals  
PP  
Similar to the standard inverting amplifier configuration, input impedance of a fully differential amplifier is  
selected by the input resistor, R . If input impedance is a constraint in design, the designer may choose to  
(g)  
implement the differential amplifier as an instrumentation amplifier. This configuration improves the input  
impedance of the fully differential amplifier. The following schematic depicts the general format of  
instrumentation amplifiers.  
The general transfer function for this circuit is:  
V
R
OD  
– V  
f
2R2  
R1  
ǒ1 )  
Ǔ
+
V
R
IN1  
IN2  
(g)  
THS4012  
R
R
(g)  
f
+
V
IN1  
_
R2  
_
+
R1  
R2  
THS414x  
_
+
V
IN2  
R
R
THS4012  
(g)  
f
Figure 32. Instrumentation Amplifier  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
PRINCIPLES OF OPERATION  
circuit layout considerations  
To achieve the levels of high frequency performance of the THS414x, follow proper printed-circuit board high  
frequency design techniques. A general set of guidelines is given below. In addition, a THS414x evaluation  
board is available to use as a guide for layout or for evaluating the device performance.  
D
Ground planes—It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
Sockets—Sockets are not recommended for high-speed operational amplifiers. The additional lead  
inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly  
to the printed-circuit board is the best implementation.  
Short trace runs/compact part placements—Optimum high frequency performance is achieved when stray  
series inductance has been minimized. To realize this, the circuit layout should be made as compact as  
possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting  
input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray  
capacitance at the input of the amplifier.  
D
Surface-mount passive components—Using surface-mount passive components is recommended for high  
frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢃꢄ  
ꢁꢇ ꢈꢁ ꢉꢂꢊꢋ ꢋꢌ ꢍ ꢎꢏ ꢏꢐ ꢌꢇ ꢍꢍ ꢋꢑ ꢋꢒꢀ ꢇꢓ ꢏ ꢇꢔ ꢕ ꢓꢖꢊ ꢏꢇ ꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
PRINCIPLES OF OPERATION  
power-down mode  
The power-down mode is used when power saving is required. The power-down terminal (PD) found on the  
THS414x is an active low terminal. If it is left as a no-connect terminal, the device will always stay on due to an  
internal 50 kresistor to V . The threshold voltage for this terminal is approximately 1.4 V above V  
. This  
CC  
CC−  
means that if the PD terminal is 1.4 V above V  
, the device is active. If the PD terminal is less than 1.4 V above  
CC−  
V
, the device is off. For example, if V  
= −5 V, then the device is on when PD reaches 3.6 V, (-5 V + 1.4  
CC−  
CC−  
V = −3.6 V). By the same calculation, the device is off below −3.6 V. It is recommended to pull the terminal to  
in order to turn the device off. The following graph shows the simplified version of the power-down circuit.  
V
CC−  
While in the power-down state, the amplifier goes into a high-impedance state. The amplifier output impedance  
is typically greater than 1 Min the power-down state.  
V
CC  
50 kΩ  
To Internal Bias  
Circuitry Control  
PD  
V
CC−  
Figure 33. Simplified Power-Down Circuit  
Due to the similarity of the standard inverting amplifier configuration, the output impedance appears to be very  
low while in the power-down state. This is because the feedback resistor (R ) and the gain resistor (R ) are  
f
(g)  
still connected to the circuit. Therefore, a current path is allowed between the input of the amplifier and the output  
of the amplifier. An example of the closed-loop output impedance is shown in Figure 34.  
OUTPUT IMPEDANCE (IN SHUTDOWN)  
vs  
FREQUENCY  
2200  
V
= 5 V,  
CC  
V = 0.8 V  
RMS  
I
PP  
CC−  
PD = V  
1200  
200  
10 k  
100 k  
1 M  
10 M  
100 M  
f − Frequency − Hz  
Figure 34  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ ꢅ ꢆ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢄ  
ꢁ ꢇꢈ ꢁꢉꢂ ꢊꢋꢋ ꢌ ꢍ ꢎ ꢏꢏꢐ ꢌꢇ ꢍ ꢍꢋ ꢑꢋ ꢒꢀ ꢇ ꢓꢏ ꢇ ꢔ ꢕ ꢓꢖ ꢊꢏ ꢇꢍ ꢇꢋ ꢑꢂ  
SLOS320E − MAY 2000 − REVISED JANUARY 2004  
PRINCIPLES OF OPERATION  
general PowerPAD design considerations  
The THS414x is available packaged in a thermally-enhanced DGN package, which is a member of the  
PowerPAD family of packages. This package is constructed using a downset leadframe upon which the die is  
mounted [see Figure 35(a) and Figure 35(b)]. This arrangement results in the lead frame being exposed as a  
thermal pad on the underside of the package [see Figure 35(c)]. Because this thermal pad has direct thermal  
contact with the die, excellent thermal performance can be achieved by providing a good thermal path away  
from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of the  
surface mount with the, heretofore, awkward mechanical methods of heatsinking.  
More complete details of the PowerPAD installation process and thermal management techniques can be found  
in the Texas Instruments Technical Brief, PowerPAD Thermally Enhanced Package (SLMA002). This document  
can be found at the TI web site (www.ti.com) by searching on the key word PowerPAD. The document can also  
be ordered through your local TI sales office. Refer to literature number SLMA002 when ordering.  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
NOTE A: The thermal pad is electrically isolated from all terminals in the package.  
Figure 35. Views of Thermally Enhanced DGN Package  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

THS4141IDGKG4

HIGH-SPEED FULLY DIFFERENTIAL I/O AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4141IDGKR

Fully Differential Input/Output High Slew Rate Amplifier 8-VSSOP -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4141IDGKRG4

Fully Differential Input/Output High Slew Rate Amplifier 8-VSSOP -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4141IDGN

HIGH SPEED FULLY DIFFERENTIAL I/O AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4141IDGNG4

HIGH-SPEED FULLY DIFFERENTIAL I/O AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4141IDGNR

HIGH-SPEED FULLY DIFFERENTIAL I/O AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4141IDGNRG4

OP-AMP, 8500uV OFFSET-MAX, PDSO8, GREEN, PLASTIC, MSOP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4141IDR

HIGH-SPEED FULLY DIFFERENTIAL I/O AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4141IDRG4

Fully Differential Input/Output High Slew Rate Amplifier 8-SOIC -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4150

HIGH-SPEED DIFFERENTIAL I/O AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4150CD

HIGH-SPEED DIFFERENTIAL I/O AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4150CDGKR

OP-AMP, 8500uV OFFSET-MAX, PDSO8, GREEN, PLASTIC, MSOP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI