THS4304DG4 [TI]

3GHz 低噪声宽带运算放大器 | D | 8 | -40 to 85;
THS4304DG4
型号: THS4304DG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3GHz 低噪声宽带运算放大器 | D | 8 | -40 to 85

放大器 光电二极管 运算放大器 放大器电路
文件: 总26页 (文件大小:854K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
Wideband Operational Amplifier  
FEATURES  
APPLICATIONS  
Active Filter  
ADC Driver  
Ultrasound  
Gamma Camera  
RF/Telecom  
Wide Bandwidth: 3 GHz  
High Slew Rate: 830 V/µs  
Low Voltage Noise: 2.4 nV/Hz  
Single Supply: 5 V, 3 V  
Quiescent Current: 18 mA  
DESCRIPTION  
The THS4304 is a wideband, voltage-feedback operational amplifier designed for use in high-speed analog  
signal-processing chains operating with a single 5-V power supply. Developed in the BiCom3 silicon germanium  
process technology, the THS4304 offers best-in-class performance using a single 5-V supply as opposed to  
previous generations of operational amplifiers requiring ±5-V supplies.  
The THS4304 is a traditional voltage-feedback topology that provides the following benefits: balanced inputs, low  
offset voltage and offset current, low offset drift, high common mode and power supply rejection ratio.  
The THS4304 is offered in 8-pin MSOP package (DGK), the 8-pin SOIC package (D), and the space-saving 5-pin  
SOT-23 package (DBV).  
DIFFERENTIAL ADC DRIVE  
+5V  
10 k  
90  
V
(= 2.5V)  
REF  
Combined THS4304 and  
ADS5500 SFDR  
10 kΩ  
0.1 µF  
R
R
F
G
V
REF  
85  
80  
75  
+5V  
+3.3 VA +3.3VD  
THS 4304  
1:1  
100Ω  
1nF  
CM  
V
IN  
1kΩ  
A
A
IN+  
ADS 5500  
D
A
49.9 Ω  
V
G = 10 dB,  
REF  
+5V  
R
R
= 249 ,  
F
G
From  
50Ω  
source  
1kΩ  
= 115 ,  
IN−  
CM  
SNR = 69.6,  
THS 4304  
F
125 MSPS  
S =  
CM  
0.1  
100Ω  
1nF  
10  
20  
30  
40  
50  
µF  
f − Frequency − MHz  
V
REF  
R
R
F
G
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004, Texas Instruments Incorporated  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
PINOUT DRAWING  
TOP VIEW  
DBV  
TOP VIEW  
D and DGK  
+
V
V
1
2
5
4
NC  
IN−  
IN+  
NC  
S
1
2
3
4
8
7
6
5
OUT  
+
V
S
V −  
S
V
OUT  
IN+  
IN−  
3
V −  
S
V
OUT  
NOTE: NC indicates there is no internal connection to these pins.  
PACKAGING / ORDERING INFORMATION  
TRANSPORT MEDIA,  
QUANTITY  
PACKAGED DEVICES  
PACKAGE TYPE  
PACKAGE MARKINGS  
THS4304DBVT  
THS4304DBVR  
THS4304D  
Tape and Reel, 250  
Tape and Reel, 3000  
Rails, 75  
SOT-23-5  
AKW  
SOIC-8  
THS4304DR  
Tape and Reel, 2500  
Rails, 100  
THS4304DGK  
THS4304DGKR  
MSOP-8  
AKU  
Tape and Reel, 2500  
DISSIPATION RATINGS  
POWER RATING(2)  
θJC  
(°C/W)  
θJA  
PACKAGE  
(°C/W)(1)  
TA25°C  
391 mW  
1.02 W  
TA = 85°C  
156 mW  
410 mW  
221 mW  
DBV (5)  
D (8)  
55  
255.4  
97.5  
38.3  
71.5  
DGK (8)  
180.8  
553 mW  
(1) This data was taken using the JEDEC standard High-K test PCB.  
(2) Power rating determined with a junction temperature of 125°C. This is the point where distortion starts to substantially increase. Thermal  
management of the final PCB should strive to keep the junction temperature at or below 125°C for best performance and long-term  
reliability.  
2
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
UNIT  
VS  
VI  
Supply voltage  
+6.0 V  
Input voltage  
±VS  
IO  
Output current  
150 mA  
VID  
Differential input voltage  
±2 V  
Continuous power dissipation  
See Dissipation Rating Table  
Maximum junction temperature, any condition(2)  
Operating free-air temperature range, continuous operation, long-term reliability(2)  
Storage temperature range  
150°C  
125°C  
TJ  
Tstg  
–65°C to 150°C  
300°C  
Lead temperature: 1,6 mm (1/16 inch) from case for 10 seconds  
HBM  
1600 V  
ESD Ratings  
CDM  
MM  
1000 V  
100 V  
(1) The absolute maximum ratings under any condition is limited by the constraints of the silicon process. Stresses above these ratings may  
cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.  
(2) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may  
result in reduced reliability and/or lifetime of the device.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±1.35  
2.7  
MAX UNIT  
Dual supply  
±2.5  
V
Supply voltage, (VS+ and VS–  
)
Single supply  
5
Input common-mode voltage range  
VS–– 0.2 VS+ + 0.2  
V
3
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
ELECTRICAL CHARACTERISTICS  
Specifications: VS = 5 V: RF = 249 , RL = 100 , and G = +2 unless otherwise noted  
TYP  
OVER TEMPERATURE  
TEST  
PARAMETER  
CONDITIONS  
LEVEL(1)  
0°C to –40°C to  
MIN/  
MAX  
25°C  
25°C  
UNITS  
70°C  
85°C  
AC PERFORMANCE  
G = +1, VO = 100 mVpp  
G = +2, VO = 100 mVpp  
G = +5, VO = 100 mVpp  
G = +10, VO = 100 mVpp  
G >+10  
3
GHz  
GHz  
MHz  
MHz  
MHz  
MHz  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
C
C
C
C
C
1
Small-Signal Bandwidth  
187  
87  
Gain Bandwidth Product  
0.1-dB Flat Bandwidth  
870  
300  
G= +2, VO = 100 mVpp,  
CF = 0.5 pF  
C
Large-Signal Bandwidth  
Slew Rate  
G = +2, VO = 2 VPP  
240  
830  
790  
4.5  
7.5  
35  
MHz  
V/µs  
V/µs  
ns  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
C
C
C
C
C
C
C
G = +2, VO = 1-V Step  
G = +2, VO = 2-V Step  
G = –2, VO = 2-V Step  
G = –2, VO = 2-V Step  
G = –2, VO = 2-V Step  
G = +2, VO = 2-V Step  
Settling Time to 1%  
Settling Time to 0.1%  
Settling Time to 0.01%  
Rise / Fall Times  
ns  
ns  
2.5  
ns  
Harmonic Distortion  
RL= 100 Ω  
–84  
–95  
dBc  
dBc  
dBc  
dBc  
Typ  
Typ  
Typ  
Typ  
C
C
C
C
Second Harmonic Distortion  
Third Harmonic Distortion  
G = +2,  
VO = 2 VPP  
f = 10 MHz  
RL = 1 kΩ  
,
RL = 100 Ω  
RL = 1 kΩ  
–100  
–100  
Third-Order Intermodulation  
Distortion (IMD3)  
–84  
48  
dBc  
Typ  
Typ  
C
C
G = +2, VO= 2-VPP envelope,  
200-kHz tone spacing,  
f = 20 MHz  
Third-Order Output Intercept  
(OIP3)  
dBm  
Noise Figure  
G = +2, f = 1 GHz  
f = 1 MHz  
15  
2.4  
2.1  
dB  
Typ  
Typ  
Typ  
C
C
C
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Open-Loop Voltage Gain  
nV/Hz  
pA/Hz  
f = 1 MHz  
VO = ± 0.8 V, VCM = 2.5 V  
65  
54  
4
50  
50  
dB  
Min  
A
(AOL  
)
Input Offset Voltage  
0.5  
5
5
5
5
mV  
µV/°C  
µA  
Max  
Typ  
Max  
Typ  
Max  
Typ  
A
B
A
B
A
B
Input Offset Voltage Drift  
Input Bias Current  
7
12  
1
18  
50  
1.2  
10  
18  
50  
1.2  
10  
VCM = 2.5 V  
Input Bias Current Drift  
Input Offset Current  
nA/°C  
µA  
0.5  
Input Offset Current Drift  
INPUT CHARACTERISTICS  
Common-Mode Input Range  
nA/°C  
–0.2 to  
5.2  
0.2 to  
4.8  
0.4 to  
4.6  
0.4 to  
4.6  
V
Min  
Min  
A
A
Common-Mode Rejection  
Ratio  
VO = ± 0.2 V, VCM = 2.5 V  
95  
80  
73  
73  
dB  
Input Resistance  
Input Capacitance  
100  
1.5  
kΩ  
Typ  
Typ  
C
C
Each input, referenced to GND  
pF  
(1) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and  
simulation. (C) Typical value only for information.  
4
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
ELECTRICAL CHARACTERISTICS (continued)  
Specifications: VS = 5 V: RF = 249 , RL = 100 , and G = +2 unless otherwise noted  
TYP  
OVER TEMPERATURE  
TEST  
PARAMETER  
CONDITIONS  
LEVEL(1)  
0°C to –40°C to  
MIN/  
MAX  
25°C  
25°C  
UNITS  
70°C  
85°C  
OUTPUT CHARACTERISTICS  
1.1 to  
3.9  
1.2 to  
3.8  
1.3 to  
3.7  
1.3 to  
3.7  
RL = 100 Ω  
Output Voltage Swing  
V
Min  
A
1 to 4  
1.1 to  
3.9  
1.2 to  
3.8  
1.2 to  
3.8  
RL = 1 kΩ  
Output Current (Sourcing)  
Output Current (Sinking)  
Output Impedance  
RL = 10 Ω  
RL = 10 Ω  
f = 100 kHz  
140  
92  
100  
65  
57  
40  
57  
40  
mA  
mA  
Min  
Min  
Typ  
A
A
A
0.016  
POWER SUPPLY  
Maximum Operating Voltage  
Minimum Operating Voltage  
Maximum Quiescent Current  
Minimum Quiescent Current  
5
5.5  
2.7  
5.5  
2.7  
5.5  
2.7  
Max  
Min  
Max  
Min  
Min  
V
A
5
18  
18  
80  
18.9  
17.5  
73  
19.4  
16.6  
66  
19.4  
16.6  
66  
mA  
mA  
dB  
A
A
A
Power Supply Rejection  
(+PSRR)  
VS+ = 5.5 V to 4.5 V, VS– = 0 V  
Power Supply Rejection  
(-PSRR)  
VS+ = 5 V, VS– = –0.5 V to +0.5  
V
60  
57  
54  
54  
dB  
Min  
A
5
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
ELECTRICAL CHARACTERISTICS  
Specifications: VS = 3 V: RF = 249 , RL = 499 , and G = +2 unless otherwise noted  
TYP  
OVER TEMPERATURE  
TEST  
–40°C  
to  
85°C  
PARAMETER  
CONDITIONS  
LEVEL(1)  
0°C to  
70°C  
MIN/  
MAX  
25°C  
25°C  
UNITS  
AC PERFORMANCE  
G = +1, VO = 100 mVpp  
G = +2, VO = 100 mVpp  
G = +5, VO = 100 mVpp  
G = +10, VO = 100 mVpp  
G >+10  
3
GHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
C
C
C
C
C
C
C
C
C
C
C
900  
190  
83  
Small-Signal Bandwidth  
Gain Bandwidth Product  
Large-Signal Bandwidth  
830  
450  
750  
675  
4.5  
20  
G = +2, VO = 1 VPP  
G = +2, VO = 1-V Step  
G = +2, VO = 1-V Step  
G = –2, VO = 0.5-V Step  
G = –2, VO = 0.5-V Step  
G = +2, VO = 0.5-V Step  
Slew Rate  
Settling Time to 1%  
Settling Time to 0.1%  
Rise / Fall Times  
ns  
1.5  
ns  
Harmonic Distortion  
Second Harmonic Distortion  
G = +2,  
VO = 0.5 VPP  
f = 10 MHz  
–92  
–91  
dBc  
dBc  
Typ  
Typ  
C
C
,
RL = 499 Ω  
Third Harmonic Distortion  
Noise Figure  
G = +2, f = 1 GHz  
f = 1 MHz  
15  
2.4  
2.1  
dB  
Typ  
Typ  
Typ  
C
C
C
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
nV/Hz  
pA/Hz  
f = 1 MHz  
Open-Loop Voltage Gain (AOL  
)
VO = ± 0.5 V, VCM = 1.5 V  
49  
2
44  
4
dB  
mV  
Min  
Max  
Typ  
Max  
Typ  
Max  
Typ  
A
A
B
A
B
A
B
Input Offset Voltage  
5
5
5
5
Input Offset Voltage Drift  
Input Bias Current  
µV/°C  
µA  
7
12  
1
18  
50  
1.2  
10  
18  
50  
1.2  
10  
VCM = 1.5 V  
Input Bias Current Drift  
Input Offset Current  
nA/°C  
µA  
0.4  
Input Offset Current Drift  
INPUT CHARACTERISTICS  
nA/°C  
–0.2  
to 3.2  
0.2 to 0.4 to 0.4 to  
Common-Mode Input Range  
V
Min  
A
2.8  
2.6  
2.6  
Common-Mode Rejection Ratio  
Input Resistance  
VO = ± 0.09 V, VCM = 1.5 V  
92  
100  
1.5  
80  
70  
70  
dB  
kΩ  
pF  
Min  
Typ  
Typ  
A
C
C
Each input, referenced to GND  
Input Capacitance  
(1) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and  
simulation. (C) Typical value only for information.  
6
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
ELECTRICAL CHARACTERISTICS (continued)  
Specifications: VS = 3 V: RF = 249 , RL = 499 , and G = +2 unless otherwise noted  
TYP  
OVER TEMPERATURE  
TEST  
–40°C  
to  
85°C  
PARAMETER  
OUTPUT CHARACTERISTIC  
Output Voltage Swing  
CONDITIONS  
LEVEL(1)  
0°C to  
70°C  
MIN/  
MAX  
25°C  
25°C  
UNITS  
1.1 to 1.2 to 1.3 to 1.3 to  
1.9 1.8 1.7 1.7  
RL = 100 Ω  
V
Min  
A
1 to 2 1.1 to 1.2 to 1.2 to  
RL = 1 kΩ  
1.9  
50  
45  
1.8  
40  
35  
1.8  
40  
35  
Output Current (Sourcing)  
Output Current (Sinking)  
Output Impedance  
RL = 10 Ω  
RL = 10 Ω  
f = 100 kHz  
57  
57  
mA  
mA  
Min  
Min  
Typ  
A
A
A
0.016  
POWER SUPPLY  
Maximum Operating Voltage  
Minimum Operating Voltage  
Maximum Quiescent Current  
Minimum Quiescent Current  
Power Supply Rejection (+PSRR)  
Power Supply Rejection (-PSRR)  
3
3
5.5  
2.7  
17.9  
16.5  
60  
5.5  
2.7  
18.4  
15.6  
54  
5.5  
2.7  
18.4  
15.6  
54  
Max  
Min  
Max  
Min  
Min  
Min  
V
A
17.2  
17.2  
80  
mA  
mA  
dB  
A
A
A
A
VS+ = 3.3 V to 2.7 V, VS– = 0 V  
VS+ = 5 V, VS– = –0.5 V to +0.5 V  
60  
55  
52  
52  
dB  
7
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
5 V  
Frequency response  
0.1-dB Flatness  
1–3, 5, 6  
4
Frequency response by package  
S-Parameters  
7
vs Frequency  
8
2nd Harmonic distortion  
3rd Harmonic distortion  
2nd Harmonic distortion  
3rd Harmonic distortion  
vs Frequency  
9, 11  
10, 12  
13  
vs Frequency  
vs Output voltage  
vs Output voltage  
vs Frequency  
14  
IMD3  
OIP3  
SR  
3rd Order intermodulation distortion  
3rd Order output intercept point  
Slew rate  
15  
vs Frequency  
16  
vs Output voltage  
vs Frequency  
17  
Vn/In  
Noise  
18  
Noise figure  
vs Frequency  
19  
Iq  
Quiescent current  
vs Supply voltage  
vs Frequency  
20  
Rejection ratio  
21  
VO  
Output voltage  
vs Load resistance  
vs Input common-mode voltage  
vs Case temperature  
vs Case temperature  
vs Frequency  
22  
VOS  
IIB  
Input offset voltage  
Input bias and offset current  
Input offset voltage  
Open-loop gain  
23  
24  
VOS  
25  
26  
VO  
VO  
VO  
VO  
ZO  
3 V  
Small-signal transient response  
Large-signal transient response  
Settling time  
27  
28  
29  
Overdrive recovery time  
Output impedance  
30  
vs Frequency  
31  
Frequency response  
2nd Harmonic distortion  
3rd Harmonic distortion  
Harmonic Distortion  
Slew rate  
32–35  
36  
vs Frequency  
vs Frequency  
37  
vs Output voltage  
vs Output voltage  
38  
SR  
VO  
VO  
IIB  
39  
Settling time  
40  
Output voltage  
vs Load resistance  
vs Case temperature  
vs Case temperature  
41  
Input bias and offset current  
Input offset voltage  
Large-signal transient response  
Overdrive recovery time  
Output impedance  
42  
VOS  
VO  
VO  
ZO  
43  
44  
45  
vs Frequency  
46  
8
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
TYPICAL CHARACTERISTICS (5 V)  
FREQUENCY RESPONSE  
FREQUENCY RESPONSE  
FREQUENCY RESPONSE  
6
5
4
3
2
1
10  
24  
Gain = 1,  
Gain = 2,  
R
R
V
= 249 ,  
= 100 ,  
= 100 mV  
= 5 V  
F
L
O
S
22  
20  
18  
R
V
= 100 ,  
G = 10  
G = 5  
L
S
9
8
7
6
5
4
3
2
1
0
R
R
V
= 249 ,  
= 100 ,  
= 100 mV  
= 5 V  
V
= 100 mV  
PP  
F
L
O
S
O
C
= 0 pF  
F
= 5 V  
PP  
V
PP,  
V
16  
14  
12  
10  
8
V
= 200 mV  
PP  
O
C
= 0.5 pF  
F
1 GHz  
G = 2  
0
6
V
= 400 mV  
PP  
C
= 1 pF  
O
F
−1  
4
−2  
−3  
−4  
2
G = 1, R = 0 Ω  
F
V
= 800 mV  
PP  
O
0
−2  
3 GHz  
100 M  
−4  
100 k  
10 M  
1 G  
10 G  
1 M  
10 M  
100 M  
1 G  
10 G  
1 M  
1 M  
10 M 100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 1.  
Figure 2.  
Figure 3.  
0.1-dB FLATNESS  
FREQUENCY RESPONSE  
FREQUENCY RESPONSE  
22  
20  
18  
16  
14  
12  
10  
22  
6.4  
6.3  
6.2  
6.1  
87 MHz  
Gain = 2,  
90 MHz  
20  
18  
16  
14  
12  
10  
8
R
R
V
= 249 ,  
= 100 ,  
F
L
O
S
R
R
V
= 249 ,  
= 100 ,  
R
C
R
V
= 249 ,  
F
L
O
S
F
F
L
O
S
= 0.5 pF,  
= 100 ,  
= 100 mV  
= 5 V  
,
= 2 V  
PP  
,
= 1 V  
PP  
V
= 5 V  
,
PP  
V
= 5 V  
V
300 MHz  
200 MHz  
175 MHz  
6
5.9  
5.8  
8
6
4
2
6
4
240 MHz  
2
480 MHz  
R
F
= 0 Ω  
R
F
= 0 Ω  
0
0
−2  
5.7  
5.6  
−2  
−4  
1 M  
560 MHz  
100 M  
290 MHz  
−4  
10 M  
1 G  
10 G  
1 M  
10 M  
100 M  
1 G  
1 M  
10 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 4.  
Figure 5.  
Figure 6.  
S-PARAMETERS  
vs  
FREQUENCY  
2ND HARMONIC DISTORTION  
FREQUENCY RESPONSE  
BY PACKAGE  
vs  
FREQUENCY  
−40  
−50  
−60  
−70  
−80  
−90  
10  
9
8
7
6
5
4
3
2
1
0
Gain = 2  
SOT-23  
S21  
0
R
V
V
= 249 Ω  
= 2 V  
= 5 V  
F
O
S
PP  
SOIC  
SOT-23 R = 100 Ω  
L
−20  
−40  
−60  
S22  
MSOP R = 100 Ω  
L
MSOP  
S11  
S12  
Gain = 2,  
Gain = 2,  
R
R
= 249 ,  
= 100 ,  
= 100 mV  
= 5 V  
F
L
O
S
R
R
O
S
= 249 ,  
= 100 ,  
= 100 mV  
= 5 V  
F
L
−80  
,
PP  
V
V
−100  
110  
,
PP  
V
V
MSOP and SOT-23 R = 499 to 1 k Ω  
L
−100  
10 M  
100 M  
1 G  
10 G  
1 M  
1 M  
10 M  
100 M  
1 M  
10 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 7.  
Figure 8.  
Figure 9.  
9
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
TYPICAL CHARACTERISTICS (5 V) (continued)  
3RD HARMONIC DISTORTION  
2ND HARMONIC DISTORTION  
3RD HARMONIC DISTORTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−40  
−50  
−60  
−70  
−80  
−90  
−40  
−50  
−60  
−70  
−80  
−90  
−30  
−40  
Gain = 2,  
Gain = 2  
Gain = 2,  
R
= 249 ,  
F
O
S
R
V
= 249  
R
V
= 249 ,  
F
O
S
F
O
S
V
V
= 2 V  
,
PP  
= 1 V  
= 5 V  
= 1 V  
,
PP  
PP  
= 5 V  
V
V
= 5 V  
−50  
SOT-23 R = 100 Ω  
L
−60  
−70  
MSOP R = 100 Ω  
L
MSOP and SOT-23  
MSOP and SOT-23  
R
−80  
R
L
= 100 to 1 kΩ  
= 100 to 1 kΩ  
L
−90  
−100  
110  
−100  
110  
−100  
110  
MSOP and SOT-23 R = 499 to 1 kΩ  
L
10 M  
100 M  
10 M  
100 M  
1 M  
1 M  
1 M  
10 M  
100 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 10.  
Figure 11.  
Figure 12.  
3RD ORDER  
2ND HARMONIC DISTORTION  
3RD HARMONIC DISTORTION  
INTERMODULATION DISTORTION  
vs  
vs  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
FREQUENCY  
−40  
−30  
−30  
−40  
Gain = 2,  
Gain = 2,  
Gain = 2,  
R
R
= 249 ,  
= 100 ,  
F
L
R
R
= 249 ,  
= 100 ,  
R
R
= 249 ,  
= 100 ,  
−40  
−50  
−60  
−70  
−80  
−90  
F
L
F
L
−50  
−60  
200 kHz Spacing,  
f = 10 MHz,  
f = 10 MHz,  
V
= 5 V  
−50  
S
V
= 5 V  
V = 5 V  
S
S
V
= 2 V  
PP  
O
−60  
envelope  
−70  
−70  
SOT-23 R = 100 Ω  
L
−80  
−80  
SOT-23 R = 100 to 1 kΩ  
L
−90  
V
= 1 V  
O
PP  
−90  
envelope  
−100  
110  
−100  
110  
−100  
110  
SOT-23 R = 499 to 1 kΩ  
L
0
0.5  
1
1.5  
2
2.5  
3
10 M  
100 M  
0
0.5  
1
1.5  
2
2.5  
3
V
− Output Voltage − V  
V
− Output Voltage − V  
f − Frequency − Hz  
O
PP  
O
PP  
Figure 13.  
Figure 14.  
Figure 15.  
3RD ORDER  
OUTPUT INTERCEPT POINT  
SLEW RATE  
vs  
OUTPUT VOLTAGE  
NOISE  
vs  
FREQUENCY  
vs  
FREQUENCY  
60  
50  
40  
30  
20  
10  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
1000  
Gain = 2,  
R
R
= 249 ,  
= 100 ,  
= 5 V  
F
L
S
V
100  
Rise  
Fall  
I
n
10  
1
Gain = 2,  
R
R
= 249 ,  
= 100 ,  
F
L
O
V
n
V
= 2−V envelope,  
PP  
200−kHz Spacing,  
S
V
= 5 V  
10  
100  
1 k  
10 k 100 k 1 M 10 M  
100 M  
0
0.5  
1
1.5  
2
2.5  
3
10 M  
f − Frequency − Hz  
f − Frequency − Hz  
V
− Output Voltage −V  
O
PP  
Figure 16.  
Figure 17.  
Figure 18.  
10  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
TYPICAL CHARACTERISTICS (5 V) (continued)  
NOISE FIGURE  
vs  
FREQUENCY  
QUIESCENT CURRENT  
REJECTION RATIO  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
110  
22  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
= 5 V  
S
100  
90  
CMRR  
T
= 85°C  
A
PSRR+  
80  
T
A
= 25°C  
70  
T
A
= −40°C  
60  
50  
PSRR−  
40  
30  
20  
10  
0
6
Gain = 2,  
6
R
F
R
G
R
L
= 249 ,  
= 249 ,  
= 100 ,  
= 5 V  
4
4
2
2
V
S
0
0
500 M  
1 G  
10 M  
2.5  
3.5  
4.5  
2
3
4
5
10 k  
100 k  
1 M  
10 M  
100 M  
1 G  
V
− Supply Voltage − V  
f − Frequency − Hz  
S
f − Frequency − Hz  
Figure 19.  
Figure 20.  
Figure 21.  
INPUT BIAS AND OFFSET  
CURRENT  
OUTPUT VOLTAGE  
vs  
LOAD RESISTANCE  
INPUT OFFSET VOLTAGE  
vs  
INPUT COMMON-MODE VOLTAGE  
vs  
CASE TEMPERATURE  
4
5
9
8
7
6
5
4
3
2
1
0
280  
V
= 5 V  
S
4.5  
V = 5 V  
S
I
260  
240  
220  
200  
180  
160  
140  
120  
100  
IB  
3.5  
3
4
3.5  
3
2.5  
2
I
IB+  
V
= 5 V  
S
2.5  
2
1.5  
1
I
OS  
1.5  
1
0.5  
0
−40−3020−10 0 10 20 30 40 50 60 70 80 90  
10  
100  
1000  
−1  
0
1
2
3
4
5
6
Case Temperature − °C  
R
L
− Load Resistance −  
V
− Input Common-Mode Range − V  
ICR  
Figure 22.  
Figure 23.  
Figure 24.  
INPUT OFFSET VOLTAGE  
vs  
CASE TEMPERATURE  
OPEN-LOOP GAIN  
vs  
SMALL-SIGNAL  
TRANSIENT RESPONSE  
FREQUENCY  
600  
500  
400  
300  
200  
100  
0
2.8  
80  
20  
V
= 5 V  
V
= 5 V  
S
S
Input  
2.7  
2.6  
2.5  
2.4  
2.3  
70  
60  
0
−20  
Gain  
50  
40  
30  
20  
10  
−40  
−60  
−80  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
Output  
Phase  
−100  
−120  
Gain = 2  
= 100  
= 249 Ω  
t /t = 300 ps  
= 5 V  
R
R
L
F
0
−10  
−20  
−140  
−160  
−180  
r
f
V
S
0
10  
20  
30  
40  
50  
60  
10 k  
100 k 1 M 10 M 100 M 1 G  
10 G  
−403020−10 0 10 20 30 40 50 60 70 80 90  
t − Time − ns  
f − Frequency − Hz  
Case Temperature − °C  
Figure 25.  
Figure 26.  
Figure 27.  
11  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
TYPICAL CHARACTERISTICS (5 V) (continued)  
LARGE-SIGNAL  
TRANSIENT RESPONSE  
OVERDRIVE  
RECOVERY TIME  
SETTLING TIME  
3.5  
3
3.5  
4.5  
4
Input  
Input  
Gain = 2  
3.25  
3
4
3.5  
3
R
R
V
= 100  
= 249 Ω  
= 5 V  
L
F
S
3.5  
2.5  
2
4
3
Output  
2.75  
2.5  
2.25  
2
Gain = 2  
1.5  
3.5  
R
R
V
= 100  
= 249 Ω  
= 5 V  
L
F
2.5  
2
2.5  
3
Output  
S
Gain = 2  
2.5  
2
1.5  
1
R
R
V
= 100  
= 249 Ω  
= 5 V  
L
F
S
1.5  
1
2
1.5  
1
1.75  
1.5  
0.5  
0
10  
20  
30  
40  
50  
60  
0
0.1  
0.2 0.3 0.4  
t − Time − µs  
0.5  
0.6 0.7  
0
1
2
3
4
5
6
7
t − Time − ns  
t − Time − ns  
Figure 28.  
Figure 29.  
Figure 30.  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
10 k  
Gain = 2,  
R
V
= 249 ,  
= 5 V  
1 k  
100  
10  
F
S
1
0.1  
0.01  
100 k  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
Figure 31.  
12  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
TYPICAL CHARACTERISTICS (3 V)  
FREQUENCY RESPONSE  
FREQUENCY RESPONSE  
FREQUENCY RESPONSE  
24  
10  
9
8
7
6
5
4
3
2
1
0
10  
R
R
= 249 ,  
= 499 ,  
= 100 mV  
= 3 V  
V
= 100 mV  
PP  
O
F
Gain = 2  
9
22  
20  
18  
16  
14  
12  
10  
G 10  
Gain = 2  
R
R
V
= 499  
= 249 ,  
= 100 mV  
= 3 V  
C
F
= 0 pF  
L
L
F
O
S
R
R
V
= 499  
= 249 ,  
= 3 V  
L
F
S
V
V
,
PP  
O
S
8
7
6
5
4
3
2
1
0
PP,  
V
G 5  
C
= 0.5 pF  
F
V
= 200 mV  
PP  
O
V
V
= 400 mV  
O
O
PP  
PP  
8
6
4
2
G 2  
C
F
= 1 pF  
−3dB 900 MHz  
= 800 mV  
G 1, R 0Ω  
F
0
−2  
−4  
1 M  
10 M  
100 M  
1 G  
10 G  
10 M  
100 M  
1 G  
10 G  
10 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 32.  
Figure 33.  
Figure 34.  
2ND HARMONIC DISTORTION  
3RD HARMONIC DISTORTION  
vs  
vs  
FREQUENCY RESPONSE  
FREQUENCY  
FREQUENCY  
22  
20  
18  
16  
14  
12  
10  
8
−50  
−50  
−3 dB 85 MHz  
Gain = 2  
Gain = 2  
R
R
= 499  
= 249 ,  
= 500 mV  
= 3 V  
L
R
R
= 499  
= 249 ,  
= 500 mV  
= 3 V  
L
F
O
S
F
O
S
−60  
−70  
−60  
−70  
V
V
PP,  
V
V
PP,  
−3 dB 90 MHz  
−3 dB 450 MHz  
−80  
−90  
−80  
6
4
R
R
= 249 ,  
= 499 ,  
F
2
L
−90  
0
−2  
V
V
= 1 V  
= 3 V  
,
PP  
O
S
−100  
−4  
−100  
1 M  
10 M  
100 M  
1 M  
10 M  
100 M  
1 G  
1 M  
10 M  
100 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 35.  
Figure 36.  
Figure 37.  
HARMONIC DISTORTION  
vs  
SLEW RATE  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
SETTLING TIME  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
1.75  
Gain = 2  
Gain = 2,  
Rise  
R
R
= 499  
R
R
= 249 ,  
L
F
F
L
S
= 249 ,  
= 499 ,  
= 3 V  
1.65  
1.55  
f = 10 MHz,  
V
V
= 3 V  
S
Gain = 2  
Fall  
R
R
V
= 499  
= 249 Ω  
= 3 V  
L
F
S
1.45  
1.35  
1.25  
HD 2  
HD 3  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
0
1
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
1
2
3
4
5
6
7
8
9
10  
V
− Output Voltage − V  
V
− Output Voltage − V  
t − Time − ns  
O
PP  
O
PP  
Figure 38.  
Figure 39.  
Figure 40.  
13  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
TYPICAL CHARACTERISTICS (3 V) (continued)  
INPUT BIAS AND  
OUTPUT VOLTAGE  
vs  
LOAD RESISTANCE  
OFFSET CURRENT  
vs  
INPUT OFFSET VOLTAGE  
vs  
CASE TEMPERATURE  
CASE TEMPERATURE  
9
8
7
6
5
4
2.5  
2.25  
2
2.25  
640  
620  
600  
580  
560  
540  
520  
500  
V
= 3 V  
V
= 3 V  
V
= 3 V  
S
S
S
2
1.75  
1.5  
I
IB  
I
IB+  
1.75  
1.5  
1.25  
I
OS  
3
2
1
0.75  
0.5  
1.25  
1
1
0
480  
460  
−40  
−20  
0
20  
40  
60  
80  
−40 −20  
0
20  
40  
60  
80  
10  
100  
1000  
T
C
− Case Temperature − °C  
T
C
− Case Temperature − °C  
R
L
− Load Resistance − W  
Figure 41.  
Figure 42.  
Figure 43.  
OUTPUT IMPEDANCE  
vs  
LARGE-SIGNAL  
TRANSIENT RESPONSE  
OVERDRIVE RECOVERY TIME  
FREQUENCY  
2.5  
2.25  
2
10 k  
1 k  
2.25  
Input  
G = 2,  
Gain = 2,  
2
R
R
V
= 499 ,  
= 249 ,  
= 3 V  
2
L
F
R
V
= 249 ,  
= 3 V  
F
S
1.5  
1.75  
1.5  
1.75  
S
3
1
100  
10  
Output  
1.5  
Input  
0.5  
2.5  
2
1.25  
1
1.25  
1
1.5  
1
Output  
Gain = 2,  
1
R
F
R
L
= 249 ,  
= 499 ,  
= 3 V  
0.75  
0.5  
0.75  
0.5  
0.1  
0.5  
0
V
S
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0.01  
−10  
0
10  
20  
30  
40  
50  
60  
100 k  
1 M  
10 M  
100 M  
1 G  
t − Time − µs  
t − Time − ns  
f − Frequency − Hz  
Figure 44.  
Figure 45.  
Figure 46.  
14  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
APPLICATION INFORMATION  
For many years, high-performance analog design has required the generation of split power supply voltages, like  
±15 V, ±8 V, and more recently ±5 V, in order to realize the full performance of the amplifiers available. Modern  
trends in high-performance analog are moving towards single-supply operation at 5 V, 3 V, and lower. This  
reduces power supply cost due to less voltages being generated and conserves energy in low power  
applications. It can also take a toll on available dynamic range, a valuable commodity in analog design, if the  
available voltage swing of the signal must also be reduced.  
Two key figures of merit for dynamic range are signal-to-noise ratio (SNR) and spurious free dynamic range  
(SFDR).  
SNR is simply the signal level divided by the noise:  
Signal  
Noise  
SNR +  
and SFDR is the signal level divided by the highest spur:  
Signal  
SFDR +  
Spur  
In an operational amplifier, reduced supply voltage typically results in reduced signal levels due to lower voltage  
available to operate the transistors within the amplifier. When noise and distortion remain constant, the result is a  
commensurate reduction in SNR and SFDR. To regain dynamic range, the process and the architecture used to  
make the operational amplifier must have superior noise and distortion performance with lower power supply  
overhead required for proper transistor operation.  
The THS4304 BiCom3 operational amplifier is just such a device. It is able to provide 2-Vpp signal swing at its  
output on a single 5-V supply with noise and distortion performance similar to the best 10-V operational  
amplifiers on the market today  
GENERAL APPLICATION  
The THS4304 is a traditional voltage-feedback topology with wideband performance up to 3 GHz at unity gain.  
Care must be taken to ensure that parasitic elements do not erode the phase margin.  
Capacitance at the output and inverting input, and resistance and inductance in the feedback path, can cause  
problems.  
To reduce parasitic capacitance, the ground plane should be removed from under the part.  
To reduce inductance in the feedback, the circuit traces should be kept as short and direct as possible. For best  
performance in non-inverting unity gain (G=+1V/V), it is recommended to use a wide trace directly between the  
output and inverting input.  
For a gain of +2V/V, it is recommended to use a 249-feedback resistor. With good layout, this should keep the  
frequency response peaking to around 2 dB. This resistance is high enough to not load the output excessively,  
and the part is capable of driving 100-load with good performance. Higher-value resistors can be used, with  
more peaking. For example, 499 gives about 5 dB of peaking, and gives slightly better distortion performance  
with 100-load. Lower value feedback resistors can also be used to reduce peaking, but degrades the distortion  
performance with heavy loads.  
Power supply bypass capacitors are required for proper operation. The most critical are 0.1-µF ceramic  
capacitors; these should be placed as close to the part as possible. Larger bulk capacitors can be shared with  
other components in the same area as the operational amplifier.  
HARMONIC DISTORTION  
For best second harmonic (HD2), it is important to use a single-point ground between the power supply bypass  
capacitors when using a split supply. It is also recommended to use a single ground or reference point for input  
termination and gain-setting resistors (R8 and R11 in the non-inverting circuit). It is recommended to follow the  
EVM layout closely in your application.  
15  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
APPLICATION INFORMATION (continued)  
SOT-23 versus MSOP  
With light loading of 500-and higher resistance, the THS4304 shows HD2 that is not dependant of package.  
With heavy output loading of 100 , the THS4304 in SOT-23 package shows about 6 dB better HD2  
performance versus the MSOP package.  
EVALUATION MODULES  
The THS4304 has two evaluation modules (EVMs) available. One is for the MSOP (DGK) package and the other  
for the SOT-23 (DBV) package. These provide a convenient platform for evaluating the performance of the part  
and building various different circuits. The full schematics, board layout, and bill of materials (as supplied) for the  
boards are shown in the following illustrations.  
−V  
S
GND GND +V  
S
J3  
J4  
J6  
J5  
−V  
S
+V  
S
FB1  
FB2  
V
REF  
R3  
R6  
+V  
S
C5  
C1  
C2  
C4  
GND  
TP1  
C3  
R7  
R8  
R9  
C8  
−V  
S
+V  
S
*
C6  
+V  
S
U1  
C9  
J2  
4
3
5
R2  
THS4304  
R1  
C7  
J1  
1
R10  
2
*
R12  
R11  
−V  
S
V
REF  
*C6 − DGK EVM Only  
*R12 − DBV EVM Only  
Figure 47. EVM Full Schematic  
16  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
APPLICATION INFORMATION (continued)  
EVM BILL OF MATERIALS  
THS4304 EVM(1)  
PCB  
SMD  
Size  
Reference  
Manufacturer's  
Part Number  
Distributor's  
Part Number  
Item  
Description  
Designator  
Quantity  
1
FB1, FB2  
2
(STEWARD)  
HI1206N800R-00  
(DIGI-KEY)  
240-1010-1-ND  
Bead, ferrite, 3-A, 80-Ω  
1206  
1206  
2
3
Capacitor, 3.3-µF, Ceramic  
C1, C2  
2
2
(AVX) 1206YG335ZAT2A  
(GARRETT)  
1206YG335ZAT2A  
Capacitor, 0.1-µF, Ceramic  
0603  
C4, C5  
(AVX) 0603YC104KAT2A  
(GARRETT)  
0603YC104KAT2A  
4
5
Open  
Open  
0603  
0603  
C3, C6(2)  
2
5
R1, R3, R6,  
R9, R12(3)  
6
7
8
9
Resistor, 0-, 1/10-W, 1%  
Resistor, 49.9-, 1/10-W, 1%  
Resistor, 249-, 1/10-W, 1%  
0603  
0603  
0603  
C7. C8, C9,  
C10  
4
2
2
4
(KOA) RK73Z1JTTD  
(GARRETT)  
RK73Z1JTTD  
R2, R11  
(KOA) RK73H1JLTD49R9F  
(KOA) RK73H1JLTD2490F  
(HH SMITH) 101  
(GARRETT)  
RK73H1JLTD49R9F  
R7, R8  
(GARRETT)  
RK73H1JLTD2490F  
Jack, banana recepticle, 0.25-in. di-  
ameter hole  
J3, J4, J5, J6  
(NEWARK) 35F865  
10 Test point, black  
TP1  
J1, J2  
U1  
1
2
1
(KEYSTONE) 5001  
(DIGI-KEY) 5001K-ND  
(NEWARK) 90F2624  
11 Connector, edge, SMA PCB jack  
12 Integrated Circuit, THS4304  
(JOHNSON) 142-0701-801  
(TI) THS4304DGK, or  
(TI) THS4304DBV  
13 Standoff, 4-40 HEX, 0.625-in.  
Length  
4
(KEYSTONE) 1808  
NEWARK) 89F1934  
14 Screw, Phillips, 4-40, 0.250-in.  
15 Board, printed-circuit  
4
1
SHR-0440-016-SN  
(TI) THS4304DGK ENG A, or  
(TI) THS4304DBV ENG A  
(1) NOTE: All items are designated for both the DBV and DGK EVMs unless otherwise noted.  
(2) C6 used on DGK EVM only.  
(3) R12 used on DBV EVM only.  
17  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
Figure 48. THS4304DGK EVM Layout Top and L2  
Figure 49. THS4304DGK EVM Layout Bottom and L3  
Figure 50. THS4304DBV EVM Layout Top and L2  
Figure 51. THS4304DBV EVM Layout Bottom and L3  
18  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
NON-INVERTING GAIN WITH SPLIT SUPPLY  
The following schematic shows how to configure the operational amplifier for non-inverting gain with split power  
supply (± 2.5V). This is how the EVM is supplied from TI. This configuration is convenient for test purposes  
because most signal generators and analyzer are designed to use ground-referenced signals by default. Note  
the input and output provides 50-termination.  
−V  
S
GND GND +V  
S
J3  
J4  
J6  
J5  
+V  
S
−V  
S
FB1  
FB2  
C5  
0.1 mF  
C1  
3.3 mF  
C2  
3.3 mF  
C4  
0.1 mF  
GND  
C8  
0
R8  
R7  
TP1  
249 W  
249 W  
+V  
S
U1  
4
3
J2  
5
R2  
49.9 W  
C9  
1
J1  
R10  
0
C7  
0
0
2
THS4304DBV  
R11  
49.9 W  
−V  
S
Figure 52. Non-Inverting Gain with Split Power Supply  
19  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
INVERTING GAIN WITH SPLIT POWER SUPPLY  
The following schematic shows how to configure the operational amplifier for inverting gain of 1 (–1 V/V) with  
split power supply (±2.5 V). Note the input and output provides 50-termination for convenient interface to  
common test equipment.  
−V  
S
GND GND +V  
S
J3  
J4  
J6  
J5  
+V  
S
−V  
S
FB1  
FB2  
C4  
0.1 mF  
C5  
0.1 mF  
C1  
3.3 mF  
C2  
3.3 mF  
R7  
GND  
249 W  
TP1  
J1  
C7  
0
R9  
+V  
S
221 W  
U1  
R11  
61.9 W  
J2  
4
4
3
3
5
5
R2  
49.9 W  
C9  
+
1
1
THS4304DBV  
0
2
2
R1  
124 W  
−V  
S
C8  
0
Figure 53. Inverting Gain with Split Power Supply  
20  
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
NON-INVERTING SINGLE-SUPPLY OPERATION  
The THS4304 EVM can easily be configured for single 5-V supply operation, as shown in the following  
schematic, with no change in performance. This circuit passes dc signals at the input, so care must be taken to  
reference (or bias) the input signal to mid-supply.  
If dc operation is not required, the amplifier can be ac coupled by inserting a capacitor in series with the input  
(C7) and output (C9).  
V
REF  
−V  
S
GND GND +V  
S
R3  
R6  
J3  
NC  
J4  
J6  
J5  
+V  
S
+V  
S
FB2  
10 kW  
10 kW  
C8  
R8  
R7  
C2  
3.3 mF  
C4  
0.1 mF  
249 W  
249 W  
GND  
TP1  
0.1 mF  
+V  
S
U1  
5
5
4
3
3
4
J2  
R2  
49.9 W  
C9  
0
+
1
1
J1  
C7  
0
R10  
0
THS4304DBV  
2
2
R1  
49.9 W  
C5  
0
V
REF  
Figure 54. Non-Inverting 5-V Single-Supply Amplifier  
DIFFERENTIAL ADC DRIVE AMPLIFIER  
The circuit shown in Figure 54 is adapted as shown in Figure 55 to provide a high-performance differential  
amplifier drive circuit for use with high-performance ADCs, like the ADS5500 (14-bit 125-MSP ADC). For testing  
purposes, the circuit uses a transformer to convert the signal from a single-ended source to differential. If the  
input signal source in your application is differential and biased to mid-rail, no transformer is required.  
The circuit employs two amplifiers to provide a differential signal path to the ADS5500. A resistor divider (two  
10-kresistors) is used to obtain a mid-supply reference voltage of 2.5 V (VREF) (the same as shown in the  
single-supply circuit of Figure 54). Applying this voltage to the one side of RG and to the positive input of the  
operational amplifier (via the center-tap of the transformer) sets the input and output common-mode voltage of  
the operational amplifiers to mid-rail to optimize their performance. The ADS5500 requires an input  
common-mode voltage of 1.5 V. Due to the mismatch in required common-mode voltage, the signal is ac coupled  
from the amplifier output, via the two 1-nF capacitors, to the input of the ADC. The CM voltage of the ADS5500 is  
used to bias the ADC input to the required voltage, via the 1-kresistors. Note: 100-µA common-mode current is  
drawn by the ADS5500 input stage (at 125 MSPS). This causes a 100-mV shift in the input common-mode  
voltage, which does not impact the performance when driving the input to –1 dB of full scale. To offset this effect,  
a voltage divider from the power supply can be used to derive the input common-mode voltage reference.  
Because the operational amplifiers are configured as non-inverting, the inputs are high impedance. This is  
particularly useful when interfacing to a high-impedance source. In this situation, the amplifiers provide  
impedance matching and amplification of the signal.  
The SFDR performance of the circuit is shown in the following graph (see Figure 56) and provides for full  
performance from the ADS5500 to 40 MHz.  
21  
 
THS4304  
www.ti.com  
SLOS436AMARCH 2004REVISED JULY 2004  
The differential topology employed in this circuit provides for significant suppression of the 2nd-order harmonic  
distortion of the amplifiers. This, along with the superior 3rd-order harmonic distortion performance of the  
amplifiers, results in the SFDR performance of the circuit (at frequencies up to 40 MHz) being set by higher-order  
harmonics generated by the sampling process of the ADS5500.  
The amplifier circuit (with resistor divider for bias voltage generation) requires a total of 185 mW of power from a  
single 5-V power supply.  
+5V  
10 k W  
V
(= 2.5V)  
REF  
mF  
0.1  
10 k W  
R
R
F
G
V
REF  
+5V  
+3.3 VA +3.3 VD  
THS4304  
1:1  
100 W  
1nF  
CM  
V
IN  
1kW  
A
A
IN+  
ADS 5500  
D
A
49 .9 W  
V
REF  
+5V  
From  
1kW  
IN−  
CM  
50 W  
source  
THS4304  
CM  
100 W  
1nF  
0.1 mF  
V
REF  
R
R
F
G
Figure 55. Differential ADC Drive Amplifier Circuit  
90  
Combined THS4304 and  
ADS5500 SFDR  
85  
80  
G = 10 dB,  
−1 dBFS,  
R
R
= 249 ,  
= 115 ,  
F
G
SNR = 69.6,  
F
S =  
125 MSPS  
20  
75  
10  
30  
40  
50  
f − Frequency − MHz  
Figure 56. SFDR Performance versus Frequency – THS4304 Driving ADS5500  
22  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

THS4304DGK

Wideband Operational Amplifier
TI

THS4304DGKG4

暂无描述
TI

THS4304DGKR

Wideband Operational Amplifier
TI

THS4304DGKRG4

IC OP-AMP, 5000 uV OFFSET-MAX, 830 MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MSOP-8, Operational Amplifier
TI

THS4304DGKT

暂无描述
TI

THS4304DR

Wideband Operational Amplifier
TI

THS4304DRB

OP-AMP, 1000MHz BAND WIDTH, PDSO8, PLASTIC, MSOP-8
TI

THS4304_14

Wideband Operational Amplifier
TI

THS4500

WIDEBAND, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIERS
TI

THS4500-EP

增强型产品宽带低失真全差分放大器
TI

THS4500CD

WIDEBAND, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIERS
TI

THS4500CDG4

High-Speed Fully Differential Amplifier, +/-5 V 8-SOIC 0 to 70
TI