THS5651IDWR [TI]

10-Bit, 100MSPS, CommsDAC, Diff. Scalable Current Outputs between 2mA to 20mA 28-SOIC -40 to 85;
THS5651IDWR
型号: THS5651IDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10-Bit, 100MSPS, CommsDAC, Diff. Scalable Current Outputs between 2mA to 20mA 28-SOIC -40 to 85

光电二极管 转换器
文件: 总28页 (文件大小:699K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
SOIC (DW) OR TSSOP (PW) PACKAGE  
(TOP VIEW)  
Member of the Pin-Compatible  
CommsDAC Product Family  
100 MSPS Update Rate  
10-Bit Resolution  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NC  
NC  
NC  
NC  
CLK  
DV  
DGND  
2
DD  
3
Superior Spurious Free Dynamic Range  
Performance (SFDR) to Nyquist at 20 MHz  
Output: 61 dBc  
4
MODE  
5
AV  
DD  
6
COMP2  
IOUT1  
IOUT2  
AGND  
COMP1  
BIASJ  
EXTIO  
EXTLO  
SLEEP  
1 ns Setup/Hold Time  
7
8
Differential Scalable Current Outputs: 2 mA  
to 20 mA  
9
10  
11  
12  
13  
14  
On-Chip 1.2-V Reference  
3 V and 5 V CMOS-Compatible Digital  
Interface  
Straight Binary or Twos Complement Input  
Power Dissipation: 175 mW at 5 V, Sleep  
Mode: 25 mW at 5 V  
NC – No internal connection  
Package: 28-Pin SOIC and TSSOP  
The THS5651 is a 10-bit resolution digital-to-analog converter (DAC) specifically optimized for digital data  
transmission in wired and wireless communication systems. The 10-bit DAC is a member of the CommsDAC  
series of high-speed, low-power CMOS digital-to-analog converters. The CommsDAC family consists of pin  
compatible 14-, 12-, 10-, and 8-bit DACs. All devices offer identical interface options, small outline package and  
pinout. The THS5651 offers superior ac and dc performance while supporting update rates up to 100 MSPS.  
The THS5651 operates from an analog supply of 4.5 V to 5.5 V. Its inherent low power dissipation of 175 mW  
ensures that the device is well suited for portable and low power applications. Lowering the full-scale current  
output reduces the power dissipation without significantly degrading performance. The device features a  
SLEEP mode, which reduces the standby power to approximately 25 mW, thereby optimizing the power  
consumption for system needs.  
The THS5651 is manufactured in Texas Instruments advanced high-speed mixed-signal CMOS process. A  
current-source-array architecture combined with simultaneous switching shows excellent dynamic  
performance. On-chip edge-triggered input latches and a 1.2 V temperature compensated bandgap reference  
provide a complete monolithic DAC solution. The digital supply range of 3 V to 5.5 V supports 3 V and 5 V CMOS  
logic families. Minimum data input setup and hold times allow for easy interfacing with external logic. The  
THS5651 supports both a straight binary and twos complement input word format, enabling flexible interfacing  
with digital signal processors.  
The THS5651 provides a nominal full-scale differential output current of 20 mA and >300 koutput impedance,  
supporting both single-ended and differential applications. The output current can be directly fed to the load  
(e.g., external resistor load or transformer), with no additional external output buffer required. An accurate  
on-chip reference and control amplifier allows the user to adjust this output current from 20 mA down to 2 mA,  
withnosignificantdegradationofperformance. Thisreducespowerconsumptionandprovides20dBgainrange  
control capabilities. Alternatively, an external reference voltage and control amplifier may be applied in  
applications using a multiplying DAC. The output voltage compliance range is 1.25 V.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
CommsDAC is a trademark of Texas Instruments Incorporated.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
description (continued)  
The THS5651 is available in both a 28-pin SOIC and TSSOP package. The device is characterized for operation  
over the industrial temperature range of –40°C to 85°C.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
28-TSSOP  
(PW)  
28-SOIC  
(DW)  
40°C to 85°C  
THS5651IPW  
THS5651IDW  
functional block diagram  
AV  
DD  
C
1
SLEEP  
COMP1  
0.1 µF  
0.1 µF  
COMP2  
EXTLO  
EXTIO  
1.2 V  
REF  
IOUT1  
1 nF  
+
R
R
Output  
Current  
Switches  
50 Ω  
LOAD  
LOAD  
Current  
Source  
Array  
C
EXT  
BIASJ  
Control  
AMP  
0.1 µF  
I
IOUT2  
BIAS  
R
BIAS  
2 kΩ  
DV  
DD  
50 Ω  
Logic  
D[9:0]  
Control  
MODE  
CLK  
DGND  
AGND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AGND  
AV  
NO.  
20  
I
I
Analog ground return for the internal analog circuitry  
Positive analog supply voltage (4.5 V to 5.5 V)  
Full-scale output current bias  
24  
DD  
BIASJ  
CLK  
18  
O
I
28  
External clock input. Input data latched on rising edge of the clock.  
Compensation and decoupling node, requires a 0.1 µF capacitor to AV  
Internal bias node, requires a 0.1 µF decoupling capacitor to AGND.  
Data bits 0 through 9.  
COMP1  
COMP2  
D[9:0]  
19  
I
.
DD  
23  
I
[1:10]  
I
D9 is most significant data bit (MSB), D0 is least significant data bit (LSB).  
Digital ground return for the internal digital logic circuitry  
Positive digital supply voltage (3 V to 5.5 V)  
DGND  
26  
27  
17  
I
I
DV  
DD  
EXTIO  
I/O Used as external reference input when internal reference is disabled (i.e., EXTLO = AV ). Used as internal  
DD  
reference output when EXTLO = AGND, requires a 0.1 µF decoupling capacitor to AGND when used as reference  
output  
EXTLO  
IOUT1  
IOUT2  
MODE  
16  
22  
21  
25  
O
O
O
I
Internal reference ground. Connect to AV to disable the internal reference source  
DD  
DAC current output. Full scale when all input bits are set 1  
Complementary DAC current output. Full scale when all input bits are 0  
Mode select. Internal pulldown. Mode 0 is selected if this pin is left floating or connected to DGND. See  
timing diagram.  
NC  
[11:14]  
15  
N
I
No connection  
SLEEP  
Asynchronous hardware power down input. Active High. Internal pulldown. Requires 5 µs to power down but 3 ms  
to power up.  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, AV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6.5 V  
(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6.5 V  
DD  
DD  
DV  
Voltage between AGND and DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 0.5 V  
Supply voltage range, AV to DV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –6.5 V to 6.5 V  
DD  
DD  
CLK, SLEEP, MODE (see Note 2) . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
Digital input D9–D0 (see Note 2) . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
IOUT1, IOUT2 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1 V to AV  
COMP1, COMP2 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to AV  
EXTIO, BIASJ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to AV  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
DD  
DD  
EXTLO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 0.3 V  
Peak input current (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Peak total input current (all inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –30 mA  
Operating free-air temperature range, T : THS5651I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
A
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Measured with respect to AGND.  
2. Measured with respect to DGND.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
electrical characteristics over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, IOUT = 20 mA (unless otherwise noted)  
DD  
FS  
dc specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
10  
Bits  
DC accuracy  
INL  
Integral nonlinearity  
–1  
±0.5  
±0.25  
1
LSB  
LSB  
T
A
= –40°C to 85°C  
DNL  
Differential nonlinearity  
–0.5  
0.5  
Monotonicity  
Analog output  
Monotonic  
Offset error  
0.02  
2.3  
%FSR  
%FSR  
Without internal reference  
With internal reference  
Gain error  
1.3  
Full scale output current  
2
20  
mA  
V
Output compliance range  
Output resistance  
AV  
DD  
= 5 V, IOUT  
FS  
= 20 mA  
–1  
1.25  
300  
5
kΩ  
pF  
Output capacitance  
Reference output  
Reference voltage  
1.18  
0.1  
1.22  
100  
1.32  
1.25  
V
§
Reference output current  
nA  
Reference input  
V
Input voltage range  
Input resistance  
V
EXTIO  
1
1.3  
MΩ  
MHz  
pF  
Small signal bandwidth  
Input capacitance  
Without C  
COMP1  
100  
Temperature coefficients  
Offset drift  
0
±40  
Without internal reference  
With internal reference  
ppm of  
FSR/°C  
Gain drift  
±120  
±35  
Reference voltage drift  
Power supply  
AV  
Analog supply voltage  
Digital supply voltage  
Analog supply current  
4.5  
3
5
5.5  
5.5  
30  
5
V
DD  
DV  
V
DD  
AVDD  
DVDD  
25  
3
mA  
mA  
mA  
I
I
Sleep mode supply current  
Sleep mode  
#
Digital supply current  
5
6
||  
Power dissipation  
AV  
DD  
= 5 V, DV  
= 5 V, IOUT  
FS  
= 20 mA  
175  
±0.4  
mW  
%FSR/V  
°C  
DD  
AV  
DD  
Power supply rejection ratio  
DV  
±0.025  
DD  
Operating range  
–40  
85  
§
#
||  
Measured at IOUT1 in virtual ground configuration.  
Nominal full-scale current IOUT equals 32X the IBIAS current.  
Use an external buffer amplifier with high impedance input to drive any external load.  
Reference bandwidth is a function of external cap at COMP1 pin and signal level.  
FS  
Measured at f  
Measured for 50 R  
= 50 MSPS and f  
= 1 MHz.  
CLK  
OUT  
at IOUT1 and IOUT2, f  
= 50 MSPS and f  
= 20 MHz.  
OUT  
LOAD  
CLK  
Specifications subject to change  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
electrical characteristics over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, IOUT = 20 mA, differential transformer coupled output, 50 doubly terminated load  
DD  
FS  
(unless otherwise noted)  
ac specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analog output  
DV  
DV  
= 4.5 V to 5.5 V  
100  
67  
DD  
DD  
f
Maximum output update rate  
MSPS  
CLK  
= 3 V to 3.6 V  
t
t
Output settling time to 0.1%  
35  
1
ns  
ns  
s(DAC)  
Output propagation delay  
pd  
GE  
Glitch energy  
Worst case LSB transition (code 511 – code 512)  
5
pV–s  
ns  
t
t
Output rise time 10% to 90%  
1
r(IOUT)  
Output fall time 90% to 10%  
Output noise  
1
ns  
f(IOUT)  
IOUT  
IOUT  
= 20 mA  
= 2 mA  
15  
10  
FS  
pA/HZ  
FS  
AC linearity  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 25 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 1 MHz, T = 25°C  
–72  
–72  
–70  
–70  
75  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
OUT  
OUT  
OUT  
A
= 1 MHz, T = –40°C to 85°C  
–64  
A
THD  
Total harmonic distortion  
dBc  
= 2 MHz, T = 25°C  
A
= 100 MSPS, f  
OUT  
= 2 MHz, T = 25°C  
A
= 25 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 50 MSPS, f  
= 1 MHz, T = 25°C  
A
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1 MHz, T = –40°C to 85°C  
66  
A
= 1 MHz, T = 25°C  
74  
73  
65  
61  
66  
53  
53  
82  
81  
78  
A
dBc  
= 2.51 MHz, T = 25°C  
A
Spurious free dynamic range to  
Nyquist  
= 5.02 MHz, T = 25°C  
A
= 20.2 MHz, T = 25°C  
A
SFDR  
= 100 MSPS, f  
= 100 MSPS, f  
= 100 MSPS, f  
= 5.04 MHz, T = 25°C  
dBc  
dBc  
dBc  
OUT  
OUT  
OUT  
A
= 20.2 MHz, T = 25°C  
A
= 40.4 MHz, T = 25°C  
A
= 50 MSPS, f  
= 50 MSPS, f  
= 1 MHz, T = 25°C,1 MHz span  
OUT  
A
Spurious free dynamic range  
within a window  
= 5.02 MHz, 2 MHz span  
dBc  
OUT  
= 100 MSPS, f  
= 5.04 MHz, 4 MHz span  
OUT  
Measured single ended into 50 load at IOUT1.  
Single-ended output IOUT1, 50 doubly terminated load.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
electrical characteristics over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, IOUT = 20 mA (unless otherwise noted)  
DD  
FS  
digital specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Interface  
DV  
DV  
DV  
DV  
DV  
DV  
= 5 V  
3.5  
2.1  
5
3.3  
0
DD  
DD  
DD  
DD  
DD  
DD  
V
High-level input voltage  
V
V
IH  
IL  
= 3.3 V  
= 5 V  
1.3  
0.9  
10  
10  
5
V
Low-level input voltage  
= 3.3 V  
0
I
I
High-level input current  
Low-level input current  
Input capacitance  
= 3 V to 5.5 V  
= 3 V to 5.5 V  
–10  
–10  
1
µA  
µA  
pF  
IH  
IL  
Timing  
t
t
t
t
Input setup time  
1
1
4
ns  
ns  
ns  
clk  
su(D)  
Input hold time  
h(D)  
Input latch pulse high time  
Digital delay time  
w(LPH)  
d(D)  
1
Specifications subject to change  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 0 dBFS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 5 MSPS  
90  
84  
78  
72  
66  
60  
54  
48  
84  
78  
72  
66  
60  
54  
0 dBFS  
fCLK = 5 MSPS  
–6 dBFS  
–12 dBFS  
fCLK = 25 MSPS  
fCLK = 50 MSPS  
fCLK = 70 MSPS  
fCLK = 100 MSPS  
0
10  
20  
30  
40  
50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
Fout – MHz  
Fout – MHz  
Figure 1  
Figure 2  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 25 MSPS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 50 MSPS  
78  
72  
66  
60  
54  
48  
78  
72  
66  
60  
54  
48  
–6 dBFS  
–12 dBFS  
–6 dBFS  
0 dBFS  
0 dBFS  
–12 dBFS  
0
2
4
6
8
10  
12  
0
5
10  
15  
20  
25  
Fout – MHz  
Fout – MHz  
Figure 3  
Figure 4  
† AV  
= DV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
DD  
noted.)  
DD  
FS  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 70 MSPS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 100 MSPS  
78  
72  
66  
60  
54  
48  
78  
72  
66  
60  
54  
48  
–6 dBFS  
–12 dBFS  
–6 dBFS  
–12 dBFS  
0 dBFS  
0 dBFS  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
Fout – MHz  
Fout – MHz  
Figure 5  
Figure 6  
SPURIOUS FREE DYNAMIC RANGE  
vs  
SPURIOUS FREE DYNAMIC RANGE  
vs  
AOUT AT FOUT = FCLOCK/5  
AOUT AT FOUT = FCLOCK/11  
78  
72  
66  
60  
54  
48  
78  
72  
66  
60  
54  
48  
2.27 MHz @ 25 MSPS  
4.55 MHz @ 50 MSPS  
5 MHz @ 25 MSPS  
10 MHz @ 50 MSPS  
6.36 MHz @ 70 MSPS  
9.1 MHz @ 100 MSPS  
20 MHz @ 100 MSPS  
14 MHz @ 70 MSPS  
–27 –24 –21 –18 –15 –12 –9 –6 –3  
0
–27 –24 –21 –18 –15 –12 –9 –6 –3  
0
Aout – dBFS  
Aout – dBFS  
Figure 7  
Figure 8  
† AV  
= DV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
DD  
noted.)  
DD  
FS  
A
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
TYPICAL CHARACTERISTICS  
DUAL TONE SPURIOUS FREE DYNAMIC RANGE  
TOTAL HARMONIC DISTORTION  
vs  
CLOCK FREQUENCY AT FOUT = 2 MHZ  
vs  
AOUT AT FOUT = FCLOCK/7  
78  
–66  
–72  
–78  
–84  
3.38/3.63 MHz @ 25 MSPS  
0.675/0.725 MHz @ 5 MSPS  
72  
6.75/7.25 MHz @ 50 MSPS  
2nd Harmonic  
3rd Harmonic  
66  
60  
13.5/14.5 MHz  
@ 100 MSPS  
4th Harmonic  
54  
9.67/10.43 MHz  
@ 70 MSPS  
48  
–30 –27 –24 –21 –18 –15 –12 –9 –6 –3  
0
0
20  
40  
60  
80  
100  
120  
Aout – dBFS  
Fclock – MSPS  
Figure 9  
Figure 10  
SPURIOUS FREE DYNAMIC RANGE  
vs  
FULL-SCALE OUTPUT CURRENT  
SPURIOUS FREE DYNAMIC RANGE  
vs  
OUTPUT FREQUENCY AT 100 MSPS  
78  
78  
72  
66  
60  
54  
48  
Fclock = 100 MSPS  
Fout = 2.5 MHz  
72  
66  
60  
54  
48  
Differential @ –6 dBFS  
Fout = 10 MHz  
Fout = 40 MHz  
Differential @ 0 dBFS  
Single-ended @ –6 dBFS  
Single-ended  
@ 0 dBFS  
Fout = 28.6 MHz  
2
4
6
8
10 12 14 16 18 20  
IoutFS – mA  
0
5
10 15 20 25 30 35 40 45 50  
Fout – MHz  
Figure 11  
Figure 12  
† AV  
= DV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
DD  
DD  
FS  
A
noted.)  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
vs  
TEMPERATURE AT 70 MSPS  
78  
72  
66  
60  
54  
48  
Fout = 2 MHz  
Fout = 10 MHz  
Fout = 25 MHz  
–40  
–20  
0
20  
40  
60  
80  
T
A
°C  
Figure 13  
INTEGRAL NONLINEARITY  
0.1  
–0.0  
–0.1  
–0.2  
–0.3  
0
128  
256  
384  
512  
640  
768  
896  
1024  
Code  
Figure 14  
† AV  
= DV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
DD  
noted.)  
DD  
FS  
A
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
0.2  
0.1  
0.0  
–0.1  
–0.2  
0
128  
256  
384  
512  
640  
768  
896  
1024  
Code  
Figure 15  
SINGLE-TONE OUTPUT SPECTRUM  
0
–10  
–20  
–30  
–40  
–50  
–60  
Fout = 5 MHz at  
Fclock = 50 MSPS  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
Frequency – MHz  
Figure 16  
SINGLE-TONE OUTPUT SPECTRUM  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
Fout = 10 MHz at  
Fclock = 100 MSPS  
–100  
0
10  
20  
30  
40  
50  
Frequency – MHz  
Figure 17  
† AV  
= DV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
FS A  
DD  
noted.)  
DD  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
TYPICAL CHARACTERISTICS  
DUAL-TONE OUTPUT SPECTRUM  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Fclock = 100 MSPS  
Fout1 = 13.2 MHz,  
Fout2 = 14.2 MHz  
0
10  
20  
30  
40  
50  
Frequency – MHz  
Figure 18  
FOUR-TONE OUTPUT SPECTRUM  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Fclock = 50 MSPS  
Fout1 = 6.25 MHz,  
Fout2 = 6.75 MHz,  
Fout3 = 7.25 MHz,  
Fout4 = 7.75 MHz  
0
5
10  
15  
20  
25  
Frequency – MHz  
Figure 19  
† AV  
= DV  
= 5 V, IOUT  
= 20 mA, differential transformer coupled output, 50 doubly terminated load, T = 25°C (unless otherwise  
DD  
noted.)  
DD  
FS  
A
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
The THS5651 architecture is based on current steering, combining high update rates with low power  
consumption. The CMOS device consists of a segmented array of PMOS transistor current sources, which are  
capable of delivering a full-scale current up to 20 mA. High-speed differential current switches direct the current  
of each current source to either one of the output nodes, IOUT1 or IOUT2. The complementary output currents  
thus enable differential operation, canceling out common mode noise sources (on-chip and PCB noise), dc  
offsets, even order distortion components, and increase signal output power by a factor of two. Major  
advantages of the segmented architecture are minimum glitch energy, excellent DNL, and very good dynamic  
performance. The DAC’s high output impedance of >300 kand fast switching result in excellent dynamic  
linearity (spurious free dynamic range SFDR).  
The full-scale output current is set using an external resistor R  
voltage reference source (1.2 V) and control amplifier. The current I  
internally to provide a full-scale output current equal to 32 times I  
from 20 mA down to 2 mA.  
in combination with an on-chip bandgap  
BIAS  
through resistor R  
. The full-scale current can be adjusted  
is mirrored  
BIAS  
BIAS  
BIAS  
data interface and timing  
The THS5651 comprises separate analog and digital supplies, i.e. AV  
and DV . The digital supply voltage  
DD  
DD  
can be set from 5.5 V down to 3 V, thus enabling flexible interfacing with external logic. The THS5651 provides  
two operating modes, as shown in Table 1. Mode 0 (mode pin connected to DGND) supports a straight binary  
input data word format, whereas mode 1 (mode pin connected to DV ) sets a twos complement input  
DD  
configuration.  
Figure 20 shows the timing diagram. Internal edge-triggered flip-flops latch the input word on the rising edge  
of the input clock. The THS5651 provides for minimum setup and hold times (> 1 ns), allowing for noncritical  
external interface timing. Conversion latency is one clock cycle for both modes. The clock duty cycle can be  
chosenarbitrarilyunderthetimingconstraintslistedinthedigitalspecificationstable. However, a50%dutycycle  
will give optimum dynamic performance. Figure 21 shows a schematic of the equivalent digital inputs of the  
THS5651, valid for pins D9–D0, SLEEP, and CLK. The digital inputs are CMOS-compatible with logic thresholds  
of DV /2 ±20%. Since the THS5651 is capable of being updated up to 100 MSPS, the quality of the clock and  
DD  
data input signals are important in achieving the optimum performance. The drivers of the digital data interface  
circuitry should be specified to meet the minimum setup and hold times of the THS5651, as well as its required  
min/max input logic level thresholds. Typically, the selection of the slowest logic family that satisfies the above  
conditions will result in the lowest data feed-through and noise. Additionally, operating the THS5651 with  
reduced logic swings and a corresponding digital supply (DV ) will reduce data feed-through. Note that the  
DD  
update rate is limited to 67 MSPS for a digital supply voltage DV  
of 3 V to 3.6 V.  
DD  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
D[9:0]  
Valid Data  
t
s(DAC)  
t
pd  
0.1%  
50%  
DAC  
90%  
10%  
Output  
0.1%  
r(IOUT)  
(IOUT1 or  
IOUT2)  
t
t
h(D)  
t
su(D)  
t
d(D)  
1/f  
CLK  
CLK  
50%  
50%  
50%  
50%  
50%  
50%  
t
w(LPH)  
Figure 20. Timing Diagram  
Table 1. Input Interface Modes  
MODE 0  
MODE 1  
MODE PIN CONNECTED TO  
DV  
FUNCTION/MODE  
MODE PIN CONNECTED TO  
DGND  
DD  
Input code format  
Binary  
Twos complement  
DV  
DD  
External  
Digital in  
Internal  
Digital in  
Figure 21. Digital Equivalent Input  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
DAC transfer function  
The THS5651 delivers complementary output currents IOUT1 and IOUT2. Output current IOUT1 equals the  
approximate full-scale output current when all input bits are set high in mode 0 (straight binary input), i.e. the  
binaryinputwordhasthedecimalrepresentation1023. Formode1, theMSBisinverted(twoscomplementinput  
format). Full-scale output current will flow through terminal IOUT2 when all input bits are set low (mode 0,  
straight binary input). The relation between IOUT1 and IOUT2 can thus be expressed as:  
IOUT1  
IOUT  
IOUT2  
FS  
where IOUT is the full-scale output current. The output currents can be expressed as:  
FS  
CODE  
1024  
IOUT1  
IOUT  
FS  
(1023 CODE)  
1024  
IOUT2  
IOUT  
FS  
where CODE is the decimal representation of the DAC data input word. Output currents IOUT1 and IOUT2 drive  
resistor loads R or a transformer with equivalent input load resistance R . This would translate into  
LOAD  
LOAD  
single-ended voltages VOUT1 and VOUT2 at terminal IOUT1 and IOUT2, respectively, of:  
CODE  
1024  
VOUT1  
VOUT2  
IOUT1  
IOUT2  
R
R
IOUT  
R
LOAD  
LOAD  
FS  
(1023–CODE)  
1024  
IOUT  
R
LOAD  
LOAD  
FS  
The differential output voltage VOUT  
can thus be expressed as:  
DIFF  
(2CODE–1023)  
VOUT  
VOUT1–VOUT2  
IOUT  
R
DIFF  
FS  
LOAD  
1024  
The latter equation shows that applying the differential output will result in doubling of the signal power delivered  
to the load. Since the output currents of IOUT1 and IOUT2 are complementary, they become additive when  
processed differentially. Care should be taken not to exceed the compliance voltages at node IOUT1 and  
IOUT2, which would lead to increased signal distortion.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
reference operation  
The THS5651 comprises a bandgap reference and control amplifier for biasing the full-scale output current. The  
full-scale output current is set by applying an external resistor R  
. The bias current I  
through resistor  
BIAS  
BIAS  
R
is defined by the on-chip bandgap reference voltage and control amplifier. The full-scale output current  
BIAS  
equals 32 times this bias current. The full-scale output current IOUT can thus be expressed as:  
FS  
32  
V
EXTIO  
BIAS  
IOUT  
32  
I
BIAS  
FS  
R
where V  
is the voltage at terminal EXTIO. The bandgap reference voltage delivers an accurate voltage  
EXTIO  
of 1.2 V. This reference is active when terminal EXTLO is connected to AGND. An external decoupling capacitor  
C
of 0.1 µF should be connected externally to terminal EXTIO for compensation. The bandgap reference  
EXT  
can additionally be used for external reference operation. In that case, an external buffer with high impedance  
input should be applied in order to limit the bandgap load current to a maximum of 100 nA. The internal reference  
can be disabled and overridden by an external reference by connecting EXTLO to AV . Capacitor C  
hence be omitted. Terminal EXTIO thus serves as either input or output node.  
may  
DD  
EXT  
The full-scale output current can be adjusted from 20 mA down to 2 mA by varying resistor R  
or changing  
BIAS  
the externally applied reference voltage. The internal control amplifier has a wide input range, supporting the  
full-scale output current range of 20 dB. The bandwidth of the internal control amplifier is defined by the internal  
1 nF compensation capacitor at pin COMP1 and the external compensation capacitor C1. The relatively weak  
internal control amplifier may be overridden by an externally applied amplifier with sufficient drive for the internal  
1 nF load, as shown in Figure 22. This provides the user with more flexibility and higher bandwidths, which are  
specifically attractive for gain control and multiplying DAC applications. Pin SLEEP should be connected to  
AGND or left disconnected when an external control amplifier is used.  
EXT Reference  
Voltage  
External  
Control AMP  
THS4041  
+
AGND  
SLEEP  
1 nF  
AV  
DD  
COMP1  
AV  
DD  
AVDD  
1.2 V  
REF  
Current Source Array  
EXTLO  
EXTIO  
BIASJ  
REF AMP  
+
Internal  
Control AMP  
R
EXT  
IOUT1 or IOUT2  
Figure 22. Bypassing the Internal Reference and Control Amplifier  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
analog current outputs  
Figure 23 shows a simplified schematic of the current source array output with corresponding switches.  
Differential PMOS switches direct the current of each individual PMOS current source to either the positive  
output node IOUT1 or its complementary negative output node IOUT2. The output impedance is determined  
by the stack of the current sources and differential switches, and is typically >300 kin parallel with an output  
capacitance of 5 pF.  
OutputnodesIOUT1andIOUT2haveanegativecompliancevoltageof1V, determinedbytheCMOSprocess.  
Beyond this value, transistor breakdown may occur, resulting in reduced reliability of the THS5651 device. The  
positive output compliance depends on the full-scale output current IOUT and positive supply voltage AV  
.
FS  
DD  
The positive output compliance equals 1.25 V for AV  
= 5 V and IOUT = 20 mA. Exceeding the positive  
DD  
FS  
compliance voltage adversely affects distortion performance and integral nonlinearity. The optimum distortion  
performance for a single-ended or differential output is achieved when the maximum full-scale signal at IOUT1  
and IOUT2 does not exceed 0.5 V (e.g. when applying a 50 doubly terminated load for 20 mA full-scale output  
current). Applications requiring the THS5651 output (i.e., OUT1 and/or OUT2) to extend its output compliance  
should size R  
accordingly.  
LOAD  
AV  
DD  
Current  
Sources  
Switches  
IOUT1  
IOUT2  
Current Source Array  
R
R
LOAD  
LOAD  
Figure 23. Equivalent Analog Current Output  
Figure 24(a) shows the typical differential output configuration with two external matched resistor loads. The  
nominalresistorloadof50willgiveadifferentialoutputswingof2V whenapplyinga20mAfull-scaleoutput  
PP  
current. The output impedance of the THS5651 depends slightly on the output voltage at nodes IOUT1 and  
IOUT2. Consequently, for optimum dc integral nonlinearity, the configuration of Figure 24(b) should be chosen.  
In this I–V configuration, terminal IOUT1 is kept at virtual ground by the inverting operational amplifier. The  
complementary output should be connected to ground to provide a dc current path for the current sources  
switchedto IOUT2. Note that the INL/DNL specifications for the THS5651 are measured with IOUT1 maintained  
at virtual ground. The amplifier’s maximum output swing and the DAC’s full-scale output current determine the  
valueofthefeedbackresistorR . CapacitorC filtersthesteepedgesoftheTHS5651currentoutput, thereby  
FB  
FB  
reducing the operational amplifier slew-rate requirements. In this configuration, the op amp should operate on  
a dual supply voltage due to its positive and negative output swing. Node IOUT1 should be selected if a  
single-ended unipolar output is desirable.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
C
FB  
R
FB  
50 Ω  
+)  
100 Ω  
+
IOUT1  
IOUT2  
IOUT1  
IOUT2  
+)  
VOUT  
–)  
VOUT  
–)  
THS4001  
THS4011  
50 Ω  
(a)  
(b)  
Figure 24. Differential and Single-Ended Output Configuration  
The THS5651 can be easily configured to drive a doubly terminated 50 cable. Figure 25(a) shows the  
single-ended output configuration, where the output current IOUT1 flows into an equivalent load resistance of  
25 . Node IOUT2 should be connected to ground or terminated with a resistor of 25 . Differential-to-single  
conversion (e.g., for measurement purposes) can be performed using a properly selected RF transformer, as  
shown in Figure 25(b). This configuration provides maximum rejection of common-mode noise sources and  
even order distortion components, thereby doubling the power to the output. The center tap on the primary side  
of the transformer is connected to AGND, enabling a dc current flow for both IOUT1 and IOUT2. Note that the  
ac performance of the THS5651 is optimum and specified using this differential transformer coupled output,  
limiting the voltage swing at IOUT1 and IOUT2 to ±0.5 V.  
50 Ω  
1:1  
50 Ω  
VOUT  
VOUT  
IOUT1  
IOUT2  
IOUT1  
IOUT2  
100 Ω  
50 Ω  
50 Ω  
50 Ω  
25 Ω  
(a)  
(b)  
Figure 25. Driving a Doubly Terminated 50 Cable  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
sleep mode  
The THS5651 features a power-down mode that turns off the output current and reduces the supply current to  
less than 5 mA over the analog supply range of 4.5 V to 5.5 V and temperature range. The power-down mode  
is activated by applying a logic level 1 to the SLEEP pin (e.g., by connecting pin SLEEP to AVDD). An internal  
pulldown circuit at node SLEEP ensures that the THS5651 is enabled if the input is left disconnected. Power-up  
and power-down activation times depend on the value of external capacitor at node SLEEP. For a nominal  
capacitor value of 0.1 µF power down takes less than 5 µs, and approximately 3 ms to power backup. The  
SLEEP mode should not be used when an external control amplifier is used, as shown in Figure 22.  
definitions of specifications and terminology  
integral nonlinearity (INL)  
The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum  
deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale  
errors.  
differential nonlinearity (DNL)  
The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the  
measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage  
changes in the same direction (or remains constant) as a change in the digital input code.  
offset error  
Offset error is defined as the deviation of the output current from the ideal of zero at a digital input value of 0.  
gain error  
Gain error is the error in slope of the DAC transfer function.  
signal-to-noise ratio + distortion (S/N+D or SINAD)  
S/N+D or SINAD is the ratio of the rms value of the output signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in  
decibels.  
spurious free dynamic range (SFDR)  
SFDR is the difference between the rms value of the output signal and the rms value of the largest spurious  
signal within a specified bandwidth. The value for SFDR is expressed in decibels.  
total harmonic distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic components to the rms value of the fundamental signal  
and is expressed in decibels.  
output compliance range  
The maximum and minimum allowable voltage of the output of the DAC, beyond which either saturation of the  
output stage or breakdown may occur.  
settling time  
The time required for the output to settle within a specified error band.  
glitch energy  
The time integral of the analog value of the glitch transient.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
offset drift  
The change in offset error versus temperature from the ambient temperature (T = 25°C) in ppm of full-scale  
A
range per °C.  
gain drift  
The change in gain error versus temperature from the ambient temperature (T = 25°C) in ppm of full-scale  
A
range per °C.  
reference voltage drift  
The change in reference voltage error versus temperature from the ambient temperature (T = 25°C) in ppm  
A
of full-scale range per °C.  
THS5651 evaluation board  
An evaluation module (EVM) board for the THS5651 digital-to-analog converter is available for evaluation. This  
board allows the user the flexibility to operate the THS5651 in various configurations. Possible output  
configurations include transformer coupled, resistor terminated, and inverting/noninverting amplifier outputs.  
The digital inputs are designed to interface with the TMS320 C5000 or C6000 family of DSPs or to be driven  
directly from various pattern generators with the onboard option to add a resistor network for proper load  
termination.  
See the THS56x1 Evaluation Module User’s Guide for more details (SLAU032).  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-Bit, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
Figure 27. Board Layout, Layer 1  
Figure 28. Board Layout, Layer 2  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
Figure 29. Board Layout, Layer 3  
Figure 30. Board Layout, Layer 4  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
Figure 31. Board Layout, Layer 5  
Table 2. Bill of Materials  
QTY  
3
REF. DES  
C1, C22, C31  
PART NUMBER  
1206ZC105KAT2A  
DESCRIPTION  
MFG.  
Ceranucm 1 µF, 10 V, X7R, 10%  
6.3 V, 4.7 µF, tantalum  
AVX  
4
C18, C19, C28, C35  
C15, C24, C4  
C25, C32  
ECSTOJY475  
ECSTOJY106  
Panasonic  
Panasonic  
3
6.3 V, 10 µF, tantalum  
0
Ceramic, not installed, 50 V, X7R, 10%  
Ceramic, 0.01 µF, 50 V, X7R, 10%  
Ceramic, 0.1 µF, 50 V, X7R, 10%  
6
C14, C2, C20, C26, C29, C33 12065C103KAT2A  
AVX  
AVX  
17  
C10, C11, C12, C13, C16,  
C17, C21, C23, C27, C3, C30,  
C34, C5, C6, C7, C8, C9  
12065C104KAT2A  
2
4
1
1
D1, D2  
AND/AND5GA or equivalent  
27-43-037447  
GREEN LED, 1206 size SM chip LED  
Fair-Rite SM beads #27-037447  
34-Pin header for IDC  
FB1, FB2, FB3, FB4  
FairRite  
Samtec  
Lumberg  
J1  
J2  
TSW-117-07-L-D or equivalent  
KRMZ2 or equivalent  
2 Terminal screw connector,  
2TERM_CON  
1
1
3
0
3
1
4
J3  
TSW-112-07-L-S or equivalent  
KRMZ3 or equivalent  
142-0701-206 or equivalent  
142-0701-206 or equivalent  
DO1608C-472  
Single row 12-pin header  
Samtec  
J4  
3 Terminal screw connector  
Lumberg  
J5, J6, J7  
J8, J9  
PCB Mount SMA jack, SMA_PCB_MT  
PCB Mount SMA jack, not installed  
DO1608C-series, DS1608C-472  
1206 Chip resistor, 1.5K, 1/4 W, 1%  
Johnson Components  
Johnson Components  
Coil Craft  
L1, L2, L3  
R1  
1206  
R10, R11, R4, R5  
CTS/CTS766-163-(R)330-G-TR 8 Element isolated resistor pack, 33 Ω  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
APPLICATION INFORMATION  
Table 2. Bill of Materials (Continued)  
QTY  
4
REF. DES  
R12, R19, R7, R9  
PART NUMBER  
DESCRIPTION  
MFG.  
1206  
1206  
1206 Chip resistor, 33 , 1/4 W, 1%  
1206 Chip resistor, 0 , 1/4 W, 1%  
4 mm SM Pot, 5K  
5
R13, R17. R2, R21, R8  
1
R14  
3214W-1-502 E or equivalent  
Bourns  
1
R15  
1206  
1206 Chip resistor, 2.94K, 1/4 W, 1%  
1206 Chip resistor, 3K, 1/4 W, 1%  
1206 Chip resistor, 49.94K, 1/4 W, 1%  
1206 Chip resistor, 10K, 1/4 W, 1%  
1206 Chip resistor, 10K, 1/4 W, 1%  
1206 Chip resistor, 100K, 1/4 W, 1%  
1206 Chip resistor, TBD, 1/4 W, 1%  
1206 Chip resistor, 750K, 1/4 W, 1%  
RF Transformer, T1-1T-KK81  
1
R16  
1206  
3
R18, R24, R29  
1206  
3
R20, R3, R6  
1206  
1
R22  
1206  
1
R23  
1206  
1
R25  
1206  
4
R26, R27, R28, R30  
1206  
1
T1  
T1-1T-KK81  
SN74LVT245BDW  
MiniCircuits  
TI  
2
U1, U2  
Octal bus transceiver, 3-state,  
SN74LVT245B  
1
1
U3  
U4  
SN74AHCT1G00DBVR/  
SN74AHC1G00DBVR  
Single gate NAND, SN74AHC1G00  
TI  
TI  
SN74AHCT1G32DBVR/  
SN74AHCC1G32DBVR  
Single 2 input positive or gate,  
SN74AHC1G32  
THS5641  
THS5641IDW  
DAC, 2.7–5.5 V, 8 Bit, 125 MHz  
DAC, 2.7–5.5 V, 10 Bit, 125 MHz  
DAC, 2.7–5.5 V, 12 Bit, 125 MHz  
DAC, 2.7–5.5 V, 14 Bit, 125 MHz  
Quad AND gate  
TI  
TI  
TI  
TI  
TI  
TI  
THS5651  
THS5651IDW  
THS5661  
THS5661IDW  
THS5671  
THS5647IDW  
1
1
0
SN74ALVC08  
LT1004D  
SN74ALVC08D  
LT1004CD-1-2/LT1004ID-1-2  
AD1580BRT  
Precision 1.2 V reference  
NOT INSTALLED  
Precision voltage reference, not  
installed  
1
4
3
2
THS3001  
W2  
THS3001CD/THS2001ID  
THS3001 high-speed op amp  
TI  
TSW-102-07-L-S or equivalent  
TSW-102-07-L-S or equivalent  
TSW-102-07-L-S or equivalent  
2 position jumper_.1’’ spacing, W2  
3 position jumper_.1’’ spacing, W3  
Samtec  
Samtec  
Samtec  
W3  
2X3_JUMPER  
6-Pin header dual row, 0.025×0.1,  
2X3_JUMPER  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PINS SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
28  
0.710  
DIM  
0.410  
0.510  
0.610  
A MAX  
A MIN  
(10,41) (12,95) (15,49) (18,03)  
0.400  
0.500  
0.600  
0.700  
(10,16) (12,70) (15,24) (17,78)  
4040000/C 07/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS5651  
10-BIT, 100 MSPS, CommsDAC  
DIGITAL-TO-ANALOG CONVERTER  
SLAS197A – JUNE 1999  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

THS5651IPW

10-BIT, 100 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5651IPWLE

PARALLEL, WORD INPUT LOADING, 0.035us SETTLING TIME, 10-BIT DAC, PDSO28, PLASTIC, TSSOP-28
TI

THS5651IPWR

10-Bit, 100MSPS, CommsDAC, Diff. Scalable Current Outputs between 2mA to 20mA 28-TSSOP -40 to 85
TI

THS5651PW

10-BIT, 100 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5651_05

10-BIT, 100 MSPS, CommsDAC DIGITAL-TO-ANALOG CONVERTER
TI

THS5661

12-BIT, 100 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5661A

12-BIT, 125 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5661ADW

12-BIT, 125 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5661AIDW

12-BIT, 125 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI

THS5661AIDWG4

PARALLEL, WORD INPUT LOADING, 0.035us SETTLING TIME, 12-BIT DAC, PDSO28, GREEN, PLASTIC, SOIC-28
TI

THS5661AIDWR

12-Bit, 125 MSPS, CommsDAC, Diff. Scalable Current Outputs between 2mA to 20mA 28-SOIC -40 to 85
TI

THS5661AIPW

12-BIT, 125 MSPS, CommsDACE DIGITAL-TO-ANALOG CONVERTER
TI