THS6301 [TI]

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器;
THS6301
型号: THS6301
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器

放大器 驱动 驱动器
文件: 总34页 (文件大小:1813K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
THS6301 G.Fast DSL 线路驱动器放大器(具有带宽和功率调节功能) 特  
1 特性  
3 说明  
1
支持 G.Fast 106MHz212MHz DSL 应用  
THS6301 是一款采用单通道电流反馈架构的差分线路  
驱动器,支持 G.Fast 和不同数字用户线路 (DSL) 家庭  
网关系统。该器件支持  
支持传统 VDSL ADSL2+ 应用  
适合 G.Fast 和传统应用的高 MTPR (线路功率 =  
8dBm):  
106MHz 212MHz G.Fast 数字用户线路配置文件,  
使用本地离散多音调制 (DMT) 信号。THS6301 可在  
8dBm 线路功率下以 212 MHz 的频率发挥高线性特  
性。  
ADSL2+ = 69dB  
VDSL-17a = 73dB  
VDSL-30a = 69dB  
G.Fast 106MHz = 62dB  
G.Fast 212MHz = 55dB  
该器件的独特架构可以最大限度地降低静态电流,同时  
仍可提供极高的线性特性。对于并不需要该放大器全部  
性能的线路驱动模式,该器件的内在偏置设置可提供节  
能效果。为了进一步提高灵活性并节省更多电力,可以  
通过连接到一个器件引脚的外部偏置电阻器来调节总静  
态电流。此外,该器件还 具备 两种线路端接模式,以  
便在非常低的功耗下保持阻抗匹配。  
多种电源模式可适应不同外形  
可通过外部电阻器调节偏置电流  
低功耗线路端接模式:10.2mA  
掉电模式  
12V 技术支持高功率输出  
2 应用  
该器件还可用作固定增益差分放大器,可以扩展带宽和  
功率以适应不同应用的 需求。  
G.Fast 和传统 DSL 线路驱动器  
通用宽带线路驱动器  
PLC 驱动器  
该器件采用 16 引脚 4 x 4mm VQFN 封装。  
器件信息(1)  
DAC 输出放大器  
器件型号  
THS6301  
封装  
VQFN (16)  
封装尺寸(标称值)  
4.00mm × 4.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
MTPR G.Fast 212 MHz  
(偏置 10PAR = 15 dB1/64 丢失音)  
多音功率比 (MTPR) 图形  
G.Fast212MHz8dBm)  
-40  
Digital Interface  
12 V  
Line Power = 4 dBm  
-42.5  
Line Power = 8 dBm  
-45  
-47.5  
-50  
B1  
B2  
VS+  
-52.5  
-55  
-57.5  
-60  
RSERIES  
+
IN+  
1:n  
OUT+  
OUT-  
œ
-62.5  
-65  
Differential  
to Line  
Differential  
Input  
RL  
-67.5  
-70  
RSERIES  
œ
IN-  
+
-72.5  
1M 25M 50M 75M 100M 125M 150M 175M 200M 225M  
Frequency (Hz)  
D020  
VSœ  
Bias Adjust  
IADJ  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS877  
 
 
 
 
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 19  
7.5 Programming .......................................................... 19  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Application .................................................. 20  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 9  
6.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 文档支持................................................................ 26  
11.2 接收文档更新通知 ................................................. 26  
11.3 社区资源................................................................ 26  
11.4 ....................................................................... 26  
11.5 静电放电警告......................................................... 26  
11.6 术语表 ................................................................... 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (April 2018) to Revision A  
Page  
已发布至生产 .......................................................................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
5 Pin Configuration and Functions  
RSA Package  
16-Pin VQFN  
Top View  
IADJ  
IN+  
INœ  
NC  
1
2
3
4
12  
11  
10  
9
NC  
VS+  
VSœ  
NC  
Thermal  
Pad  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
B1  
NO.  
16  
7
I
I
Most significant bit (MSB), logic level referenced to VS–  
Least significant bit (LSB), logic level referenced to VS–  
Bias current reference pin  
B2  
IADJ  
IN–  
1
I
3
Negative input  
IN+  
NC  
2
I
Positive input  
4
No internal connection to device (VS– recommended)  
5, 8, 9, 12,  
13, 14  
NC  
Not connected  
OUT–  
OUT+  
VS–  
6
O
O
Negative output  
15  
10  
11  
Positive output  
Negative supply voltage connection  
Positive supply voltage connection  
VS+  
The thermal pad is connected to pin 4 via a downbond connection.  
The pad must be at the same potential as pin 4.  
Thermal pad  
Copyright © 2018, Texas Instruments Incorporated  
3
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
13.2  
5.5  
10  
UNIT  
Supply voltage(2)  
Digital inputs to GND  
Analog inputs to GND  
Differential analog inputs  
Continuous power dissipation  
Tstg  
VS pin to GND (all modes)  
B1, B2  
V
V
V
V
–0.3  
2
VIN+, VIN–  
(VIN+ – VIN–)  
–6  
6
See Thermal Information  
Storage temperature  
Junction temperature  
–65  
150  
150  
°C  
°C  
TJ  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Supply bypass capacitor type, value and location relative to the device are critical to prevent damage to the device when the device is  
turned on. See Power Supply Recommendations.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, allpins(1)  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
11.4  
±5.7  
–40  
–40  
NOM  
12  
MAX  
12.6  
±6.3  
85  
UNIT  
VS  
Supply voltage  
V
±6  
TA  
TJ  
Ambient temperature  
Junction temperature  
°C  
°C  
125  
6.4 Thermal Information  
THS6301  
THERMAL METRIC(1)  
RSA (VQFN)  
UNIT  
16 PINS  
39  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
38.8  
18  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1
ΨJB  
17.9  
7.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
 
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
6.5 Electrical Characteristics  
at TA 25°C, VS+ = 12 V, VS– = 0 V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ = 100 pF, drive mode 5 (B1B2 = 01,  
G.Fast mid power)(1) and output power measured at input of transformer (1:1) with no assumed transformer insertion losses  
(unless otherwise noted)  
TEST  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(2)  
VOUT = 1 VPP, drive mode 1 (0Z, ADSL2+)  
500  
565  
C
C
VOUT = 1 VPP, drive mode 2 (Z1, VDSL low power)  
VOUT = 1 VPP, drive mode 3 (11, G.Fast low power  
and VDSL mid power)  
635  
C
SSBW  
Small-signal bandwidth  
MHz  
VOUT = 1 VPP, drive mode 4 (1Z, VDSL high power)  
VOUT = 1 VPP, drive mode 5 (01, G.Fast mid power)  
VOUT = 1 VPP, drive mode 6 (10, G.Fast high power)  
VOUT = 15 VPP, drive mode 1 (0Z, ADSL2+)  
540  
670  
618  
160  
200  
C
C
C
C
C
VOUT = 15 VPP, drive mode 2 (Z1, VDSL low power)  
VOUT = 15 VPP, drive mode 3 (11, G.Fast low power  
and VDSL mid power)  
260  
C
LSBW  
Large-signal bandwidth  
MHz  
VOUT = 15 VPP, drive mode 4 (1Z, VDSL high power)  
VOUT = 15 VPP, drive mode 5 (01, G.Fast mid power)  
270  
275  
C
C
VOUT = 15 VPP, drive mode 6 (10, G.Fast high  
power)  
300  
C
Drive mode 1 (0Z), 10%-90% 15-VPP pulse  
Drive mode 2 (Z1), 10%-90% 15-VPP pulse  
Drive mode 3 (11), 10%-90% 15-VPP pulse  
Drive mode 4 (1Z), 10%-90% 15-VPP pulse  
Drive mode 5 (01), 10%-90% 15-VPP pulse  
Drive mode 6 (10), 10%-90% 15-VPP pulse  
Drive mode 1 (0Z), 10%-90% 15-VPP pulse  
Drive mode 2 (Z1), 10%-90% 15-VPP pulse  
Drive mode 3 (11), 10%-90% 15-VPP pulse  
Drive mode 4 (1Z), 10%-90% 15-VPP pulse  
Drive mode 5 (01), 10%-90% 15-VPP pulse  
Drive mode 6 (10), 10%-90% 15-VPP pulse  
f > 1 MHz, drive mode 1 (0Z)  
3200  
4000  
6400  
7100  
8200  
10500  
2500  
3200  
4400  
5400  
6500  
8000  
4.3  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Slew rate down  
V/µs  
V/µs  
SR  
Slew rate up  
f > 1 MHz, drive mode 2 (Z1)  
3.9  
f > 1 MHz, drive mode 3 (11)  
3.9  
Input-referred voltage  
noise  
en  
nV/Hz  
f > 1 MHz, drive mode 4 (1Z)  
3.9  
f > 1 MHz, drive mode 5 (01)  
3.7  
f > 1 MHz, drive mode 6 (10)  
3.5  
Line-termination modes, referred to RSERIES  
Power-down mode, referred to RSERIES  
–154  
–166  
dBm/Hz  
Line-termination mode 00, output referred  
(f > 1 MHz)  
5.6  
6
C
C
C
Noise floor, line  
termination mode  
Line-termination mode Z0, output referred  
(f > 1 MHz)  
nV/Hz  
Power-down mode, output referred  
(f > 1 MHz)  
1.6  
(1) See Table 1 for the different Bias Modes of the device  
(2) Test levels (all values set by characterization and simulation): (A) 100% tested at TA 25°C. (B) Not tested in production; limits set by  
characterization and simulation. (C) Typical value only for information. (D) Simulated value only for information  
Copyright © 2018, Texas Instruments Incorporated  
5
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ = 100 pF, drive mode 5 (B1B2 = 01,  
G.Fast mid power)(1) and output power measured at input of transformer (1:1) with no assumed transformer insertion losses  
(unless otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(2)  
Line power = 8 dBm, f 552 kHz, PAR = 15 dB  
Line power = 8 dBm, f 1.104 MHz, PAR = 15 dB  
Line power = 8 dBm, f 2.208 MHz, PAR = 15 dB  
67  
69  
67  
C
C
C
ADSL2+ MTPR(3)  
dB  
Line power = 8 dBm, f 14 MHz,  
PAR = 15 dB, bias = 11  
73  
71.5  
69  
C
C
C
C
C
C
D
C
C
D
VDSL2-17a MTPR(3)  
dB  
Line power = 8 dBm, f 17.6 MHz,  
PAR = 15 dB, bias = 11  
Line power = 8 dBm, f 30 MHz,  
PAR = 15 dB, bias = 11  
VDSL2-30a MTPR(3)  
VDSL2-35b MTPR(3)  
dB  
dB  
Line power = 8 dBm, f 35 MHz,  
PAR = 15 dB, bias = 11  
66  
Line power = 4 dBm, f 106 MHz,  
PAR = 15 dB, bias 01  
68  
dB  
dB  
Line power = 8 dBm, f 106 MHz,  
PAR = 15 dB, bias 10  
G.Fast 106-MHz  
MTPR(3)  
62  
Line-termination mode, line power = 8 dBm,  
PAR = 15 dB  
60  
Line power = 4 dBm, f 212 MHz,  
PAR = 15 dB, bias 10  
63  
Line power = 8 dBm, f 212 MHz,  
PAR = 15 dB, bias 10  
G.Fast 212-MHz  
MTPR(3)  
55  
dB  
Line-termination mode, line power = 4 dBm,  
PAR = 15 dB  
50  
Drive mode 6 (10, G.Fast high power), f = 100 kHz  
Drive mode 6 (10, G.Fast high power), f = 50 MHz  
Drive mode 6 (10, G.Fast high power), f = 106 MHz  
Drive mode 6 (10, G.Fast high power), f = 212 MHz  
Power-down bias mode  
1.2  
1.7  
D
D
D
D
D
D
2.8  
Differential output  
impedance  
Ω
5.3  
2400  
1.3  
Line-termination modes  
DC PERFORMANCE  
AV  
Differential gain  
At dc, no load, all modes  
8.3  
–100  
18  
8.6  
8.9  
V/V  
mV  
VPP  
A
A
A
Differential output offset  
Output swing  
100  
Differential, at dc, 200-Ω load at amplifier output  
Differential input  
resistance  
RIN-DIFF  
RIN-SE  
8
4
10  
5
12  
6
kΩ  
kΩ  
A
A
Single-ended input  
resistance  
(3) ADSL2+, VDSL2-17a and VDSL2-30a profiles are specified with 1-in-4 missing tones; VDSL2-35b and G.Fast profiles are specified with  
1-in-64 missing tones  
6
Copyright © 2018, Texas Instruments Incorporated  
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
Electrical Characteristics (continued)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ = 100 pF, drive mode 5 (B1B2 = 01,  
G.Fast mid power)(1) and output power measured at input of transformer (1:1) with no assumed transformer insertion losses  
(unless otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
40  
40  
80  
80  
50  
50  
40  
40  
TYP  
75  
MAX  
UNIT  
LEVEL(2)  
Drive mode 1 (0Z), sourcing,  
output offset < 20-mV deviation  
A
Drive mode 1 (0Z), sinking,  
output offset < 20-mV deviation  
70  
A
A
A
A
A
A
A
Drive mode 6 (10), sourcing,  
output offset < 20-mV deviation  
160  
160  
95  
Drive mode 6 (10), sinking,  
output offset < 20-mV deviation  
Linear output current  
mA  
High power termination mode (00), sourcing,  
output offset <20-mV deviation  
High power termination mode (00), sinking,  
output offset <20-mV deviation  
90  
Low power termination mode (Z0), sourcing,  
output offset <20-mV deviation  
77  
Low power termination mode (Z0), sinking,  
output offset <20-mV deviation  
74  
COMMON MODE  
Input CM bias voltage  
Output CM bias voltage  
5.9  
5.9  
6
6
6.1  
6.1  
V
V
A
A
POWER SUPPLY  
Maximum supply voltage  
range  
All modes  
f = dc  
12.6  
V
A
A
Power-supply rejection  
ratio  
PSRR  
61  
dB  
Drive mode 1 (0Z, ADSL2+)  
13  
15.9  
20.1  
18.9  
24.3  
A
A
Drive mode 2 (Z1, VDSL low power)  
16.7  
Drive mode 3 (11, G.Fast low power and  
VDSL mid power)  
22.5  
27.2  
33.1  
A
Drive mode 4 (1Z, VDSL high power)  
Drive mode 5 (01, G.Fast mid power)  
Drive mode 6 (10, G.Fast high power)  
High power line termination mode (00)  
Low power line termination mode (Z0)  
Power-down mode  
24  
32.1  
36.7  
13.6  
8.3  
29.8  
38.9  
45.3  
16  
36.5  
47.8  
56  
A
A
A
A
A
A
IQ  
Quiescent current  
mA  
18.9  
11.6  
2.4  
10.2  
1.9  
Copyright © 2018, Texas Instruments Incorporated  
7
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ = 100 pF, drive mode 5 (B1B2 = 01,  
G.Fast mid power)(1) and output power measured at input of transformer (1:1) with no assumed transformer insertion losses  
(unless otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
220  
280  
310  
340  
480  
590  
220  
MAX  
UNIT  
LEVEL(2)  
Drive mode 1 (0Z, ADSL2+),  
line power = 8 dBm  
D
Drive mode 2 (Z1, VDSL low power),  
line power = 8 dBm  
D
D
D
D
D
D
Drive mode 3 (11, G.Fast low power and  
VDSL mid power), line power = 8 dBm  
Drive mode 4 (1Z, VDSL high power),  
line power = 8 dBm  
Dynamic power  
consumption  
Drive mode 5 (01, G.Fast mid power),  
line power = 4 dBm  
mW  
Drive mode 6 (10, G.Fast high power),  
line power = 8 dBm  
High power line termination mode (00),  
line power = 4 dBm  
Low power line termination mode (Z0),  
line power = 4 dBm  
120  
23  
D
D
Power-down mode  
8
Copyright © 2018, Texas Instruments Incorporated  
 
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
Minimum logic high level  
Maximum logic low level  
Logic mid range  
All digital pins, high  
2.3  
All digital pins, low  
0.6  
1.6  
V
VMID  
VFloat  
IIH  
All digital pins, driven externally  
All digital pins, floating  
1.2  
1.3  
V
Logic self-bias voltage  
1.4  
110  
–75  
1.5  
V
Logic high-level leakage current  
Logic low-level leakage current  
All digital pins, logic level = 3.6 V  
All digital pins, logic level = ground  
135  
µA  
µA  
IIL  
–85  
High power line termination mode (00) to  
drive mode 6 (10, G.Fast high power)  
64  
50  
Low power line termination mode (Z0) to  
drive mode 6 (10, G.Fast high power)  
Turn-on switching time  
Turn-off switching time  
ns  
ns  
Power down mode (ZZ) to Drive mode 6  
(10, G.Fast high power)  
60  
Drive mode 6 (10, G.Fast high power) to  
high power line termination mode (00)  
76  
Drive mode 6 (10, G.Fast high power) to  
low power line termination mode (Z0)  
400  
380  
Drive mode 6 (10, G.Fast high power) to  
power-down mode (ZZ)  
版权 © 2018, Texas Instruments Incorporated  
9
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA 25°C, VS+ = 12 V, VS– = 0 V, voltage gain (AV) = 8.5 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ  
=
100 pF, and drive mode 5 (B1B2 = 01, G.Fast mid power mode) and output power measured at input of transformer (1:1) with  
no assumed transformer insertion losses (unless otherwise noted)  
21  
18  
15  
12  
9
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
6
Drive Mode 6 (10)  
Drive Mode 5 (01)  
Drive Mode 4 (1Z)  
Drive Mode 3 (11)  
Drive Mode 2 (Z1)  
Drive Mode 1 (0Z)  
Drive Mode 6 (10)  
Drive Mode 5 (01)  
Drive Mode 4 (1Z)  
Drive Mode 3 (11)  
Drive Mode 2 (Z1)  
Drive Mode 1 (0Z)  
3
0
-3  
10  
100  
1k  
100  
1k  
Frequency (MHz)  
Frequency (MHz)  
D001  
D002  
VOUT = 1 VPP  
VOUT = 1 VPP  
1. Small-Signal Bandwidth  
2. 3-dB Normalized Gain Small-Signal Bandwidth  
21  
18  
15  
12  
9
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
HD2  
HD3  
Drive Mode 6 (10)  
Drive Mode 5 (01)  
Drive Mode 4 (1Z)  
Drive Mode 3 (11)  
Drive Mode 2 (Z1)  
Drive Mode 1 (0Z)  
6
3
100  
1k  
0 Z  
Z 1  
1 1  
1 Z  
0 1  
1 0  
Frequency (MHz)  
Bias Mode  
D003  
D004  
VOUT = 15 VPP  
Frequency = 50 MHz, VOUT = 1 VPP  
3. Large-Signal Bandwidth  
4. Bias Modes vs Distortion  
-55  
-60  
4
3.5  
3
3.42  
3.42  
3.29  
3.16  
-65  
2.9  
2.9  
-70  
-75  
2.5  
2
-80  
-85  
1.5  
1
-90  
-95  
-100  
-105  
-110  
0.5  
0
HD2  
HD3  
10  
100  
(0Z)  
(Z1)  
(11)  
(1Z)  
(01)  
(10)  
Frequency (MHz)  
Drive Bias Modes  
D005  
D006  
VOUT = 1 VPP  
5. Distortion vs Frequency Drive Mode 6 (Bias 10)  
6. Input Voltage Noise  
10  
版权 © 2018, Texas Instruments Incorporated  
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
Typical Characteristics (接下页)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, voltage gain (AV) = 8.5 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ  
=
100 pF, and drive mode 5 (B1B2 = 01, G.Fast mid power mode) and output power measured at input of transformer (1:1) with  
no assumed transformer insertion losses (unless otherwise noted)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6
5
4
3
2
1
0
Bias 00  
Bias Z0  
6.04  
5.6  
1.57  
(ZZ)  
(00)  
(Z0)  
0.01  
0.1  
1
10  
100  
Termination Bias Modes  
Frequency (MHz)  
D007  
D008  
Simulation data  
7. Termination Mode Noise Floor  
8. Termination Mode Differential Output Impedance  
10  
7.5  
5
120  
90  
10  
7.5  
5
120  
VOUT = 15 VPP  
VOUT = 8 VPP  
VOUT = 15 VPP  
VOUT = 8 VPP  
VOCM (15 VPP)  
90  
VOCM (15 VPP  
)
VOCM (8 VPP  
)
VOCM (8 VPP)  
60  
60  
2.5  
0
30  
2.5  
0
30  
0
0
-2.5  
-5  
-30  
-60  
-90  
-120  
-2.5  
-5  
-30  
-60  
-90  
-120  
-7.5  
-10  
-7.5  
-10  
Time (2.5 nsec/div)  
Time (2.5 nsec/div)  
D009  
D010  
SR down = 3200 V/µs, SR up = 2500 V/µs  
SR down = 4000 V/µs, SR up = 3200 V/µs  
9. Pulse Response Drive Mode 1 (Bias 0Z)  
10. Pulse Response Drive Mode 2 (Bias Z1)  
10  
7.5  
5
120  
90  
10  
7.5  
5
120  
VOUT = 15 VPP  
VOUT = 8 VPP  
VOUT = 15 VPP  
VOUT = 8 VPP  
90  
VOCM (15 VPP  
)
VOCM (15 VPP  
)
VOCM (8 VPP  
)
VOCM (8 VPP  
)
60  
60  
2.5  
0
30  
2.5  
0
30  
0
0
-2.5  
-5  
-30  
-60  
-90  
-120  
-2.5  
-5  
-30  
-60  
-90  
-120  
-7.5  
-10  
-7.5  
-10  
Time (2.5 nsec/div)  
Time (2.5 nsec/div)  
D011  
D012  
SR down = 6400 V/µs, SR up = 4400 V/µs  
SR down = 7100 V/µs, SR up = 5400 V/µs  
11. Pulse Response Drive Mode 3 (Bias 11)  
12. Pulse Response Drive Mode 4 (Bias 1Z)  
版权 © 2018, Texas Instruments Incorporated  
11  
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, voltage gain (AV) = 8.5 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ  
=
100 pF, and drive mode 5 (B1B2 = 01, G.Fast mid power mode) and output power measured at input of transformer (1:1) with  
no assumed transformer insertion losses (unless otherwise noted)  
10  
7.5  
5
160  
120  
80  
10  
7.5  
5
160  
120  
80  
VOUT = 15 VPP  
VOUT = 8 VPP  
VOUT = 15 VPP  
VOUT = 8 VPP  
VOCM (15 VPP  
)
VOCM (15 VPP  
)
VOCM (8 VPP  
)
VOCM (8 VPP  
)
2.5  
0
40  
2.5  
0
40  
0
0
-2.5  
-5  
-40  
-80  
-120  
-160  
-2.5  
-5  
-40  
-80  
-120  
-160  
-7.5  
-10  
-7.5  
-10  
Time (2.5 nsec/div)  
Time (2.5 nsec/div)  
D013  
D014  
SR down = 8200 V/µs, SR up = 6500 V/µs  
SR down = 10500 V/µs, SR up = 8000 V/µs  
13. Pulse Response Drive Mode 5 (Bias 01)  
14. Pulse Response Drive Mode 6 (Bias 10)  
100  
-40  
VIN x 0.1  
VOUT Bias 00  
VOUT Bias Z0  
VOUT Bias ZZ  
Line Power = 4 dBm  
Line Power = 8 dBm  
-42.5  
-45  
75  
50  
-47.5  
-50  
25  
-52.5  
-55  
0
-57.5  
-60  
-25  
-50  
-75  
-100  
-62.5  
-65  
-67.5  
-70  
-72.5  
1M 25M 50M 75M 100M 125M 150M 175M 200M 225M  
Time (5 nsec/div)  
Frequency (Hz)  
D015  
D020  
PAR = 15 dB, 1-in-64 missing tones  
15. Pulse Response Termination and Power-Down Modes  
16. MTPR G.Fast 212-MHz Profile (Bias 10)  
-40  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
TA = -40èC  
TA = 0èC  
TA = 25èC  
TA = 50èC  
TA = 85èC  
Drive Mode 6 (10)  
Drive Mode 5 (01)  
Drive Mode 4 (1Z)  
-45  
-50  
-55  
-60  
-65  
-70  
1M 25M 50M 75M 100M 125M 150M 175M 200M 225M  
1M 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M110M  
Frequency (Hz)  
Frequency (Hz)  
D021  
D022  
PAR = 15 dB, 1-in-64 missing tones, Line power = 8 dBm  
PAR = 15 dB, 1-in-64 missing tones, line power = 8 dBm  
17. MTPR Over Temperature G.Fast 212-MHz Profile (Bias  
18. MTPR G.Fast 106-MHz Profile  
10)  
12  
版权 © 2018, Texas Instruments Incorporated  
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
Typical Characteristics (接下页)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, voltage gain (AV) = 8.5 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ  
=
100 pF, and drive mode 5 (B1B2 = 01, G.Fast mid power mode) and output power measured at input of transformer (1:1) with  
no assumed transformer insertion losses (unless otherwise noted)  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
Drive Mode 6 (10)  
Drive Mode 5 (01)  
Drive Mode 4 (1Z)  
TA = -40èC  
TA = 0èC  
TA = 25èC  
TA = 50èC  
TA = 85èC  
1M 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M110M  
1M 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M110M  
Frequency (Hz)  
Frequency (Hz)  
D023  
D024  
PAR = 15 dB, 1-in-64 missing tones, line power = 4 dBm  
Line power = 8 dBm, PAR = 15 dB, 1-in-64 missing tones  
19. MTPR G.Fast 106-MHz Profile  
20. MTPR Over Temperature G.Fast 106-MHz Profile (Bias  
01)  
-50  
-50  
Drive Mode 4 (1Z)  
Drive Mode 3 (11)  
Drive Mode 2 (Z1)  
Drive Mode 4 (1Z)  
Drive Mode 3 (11)  
Drive Mode 2 (Z1)  
-55  
-60  
-65  
-70  
-75  
-80  
-55  
-60  
-65  
-70  
-75  
-80  
1M  
5M  
10M  
15M  
20M  
25M  
30M  
35M  
1M  
5M  
10M  
15M  
20M  
25M  
30M  
Frequency (Hz)  
Frequency (Hz)  
D025  
D026  
PAR = 15 dB, 1-in-64 missing tones, line power = 8 dBm  
PAR = 15 dB, 1-in-4 missing tones, line power = 8 dBm  
21. MTPR VDSL2-35b Profile  
22. MTPR VDSL2-30a Profile  
-50  
-55  
Drive Mode 4 (1Z)  
Drive Mode 3 (11)  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
Drive Mode 2 (Z1)  
-60  
-65  
-70  
-75  
-80  
-85  
Drive Mode 1 (0Z)  
-90  
200k 2.5M  
5M  
7.5M  
10M 12.5M 15M 17.5M  
0
250k 500k 750k 1M 1.25M 1.5M 1.75M 2M 2.25M 2.5M  
Frequency (Hz)  
Frequency (Hz)  
D027  
D028  
PAR = 15 dB, 1-in-4 missing tones, line power = 8 dBm  
PAR = 15 dB, 1-in-4 missing tones, line power = 8 dBm  
23. MTPR VDSL2-17a Profile  
24. MTPR ADSL2+ Profile  
版权 © 2018, Texas Instruments Incorporated  
13  
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, voltage gain (AV) = 8.5 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ  
=
100 pF, and drive mode 5 (B1B2 = 01, G.Fast mid power mode) and output power measured at input of transformer (1:1) with  
no assumed transformer insertion losses (unless otherwise noted)  
625  
600  
575  
550  
525  
500  
475  
450  
425  
400  
375  
350  
425  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
Bias 10  
Bias 01  
Bias 1Z  
Bias 1Z  
Bias 11  
Bias Z1  
Bias 0Z  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
Tx Power (dBm)  
Tx Power (dBm)  
D029  
D030  
G.Fast 106-MHz profile used  
VDSL2-30a profile used  
25. G.Fast Modes Power Consumption  
26. xDSL Modes Power Consumption  
4
3
4
3
VOUT  
B1 bias  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
VOUT  
B1 bias  
Time (50 nsec/div)  
Time (50 nsec/div)  
D033  
D034  
Bias mode 00 to 10 and 10 to 00  
Bias mode ZZ to 0Z and 0Z to ZZ  
27. Mode Switch Time 00 to 10  
28. Mode Switch Time ZZ to 0Z  
4
3
4
3
VOUT  
B1 bias  
VOUT  
B2 bias  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
Time (50 nsec/div)  
Time (50 nsec/div)  
D031  
D032  
Bias mode ZZ to 1Z and 1Z to ZZ  
Bias mode Z0 to Z1and Z1 to Z0  
29. Mode Switch Time ZZ to 1Z  
30. Mode Switch Time Z0 to Z1  
14  
版权 © 2018, Texas Instruments Incorporated  
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
Typical Characteristics (接下页)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, voltage gain (AV) = 8.5 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ  
=
100 pF, and drive mode 5 (B1B2 = 01, G.Fast mid power mode) and output power measured at input of transformer (1:1) with  
no assumed transformer insertion losses (unless otherwise noted)  
56  
54  
52  
50  
48  
46  
44  
42  
40  
38  
48  
46.5  
45  
43.5  
42  
40.5  
39  
37.5  
36  
34.5  
33  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
Temperature TA (èC)  
Temperature TA (èC)  
D035  
D036  
31. IQ vs Temperature Drive Mode 6 (Bias 10)  
32. IQ vs Temperature Drive Mode 5 (Bias 01)  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
36.5  
35.5  
34.5  
33.5  
32.5  
31.5  
30.5  
29.5  
28.5  
27.5  
26.5  
25.5  
24.5  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
Temperature TA (èC)  
Temperature TA (èC)  
D037  
D038  
33. IQ vs Temperature Drive Mode 4 (Bias 1Z)  
34. IQ vs Temperature Drive Mode 3 (Bias 11)  
24  
23.5  
23  
18.8  
18.3  
17.8  
17.3  
16.8  
16.3  
15.8  
15.3  
14.8  
14.3  
13.8  
13.3  
22.5  
22  
21.5  
21  
20.5  
20  
19.5  
19  
18.5  
18  
17.5  
17  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
Temperature TA (èC)  
Temperature TA (èC)  
D039  
D040  
35. IQ vs Temperature Drive Mode 2 (Bias Z1)  
36. IQ vs Temperature Drive Mode 1 (Bias 0Z)  
版权 © 2018, Texas Instruments Incorporated  
15  
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA 25°C, VS+ = 12 V, VS– = 0 V, voltage gain (AV) = 8.5 V/V, 100-Ω load, RSERIES = 47.5 Ω, RIADJ = 75 kΩ, CIADJ  
=
100 pF, and drive mode 5 (B1B2 = 01, G.Fast mid power mode) and output power measured at input of transformer (1:1) with  
no assumed transformer insertion losses (unless otherwise noted)  
18.5  
11.6  
11.3  
11  
18  
17.5  
17  
10.7  
10.4  
10.1  
9.8  
16.5  
16  
15.5  
15  
9.5  
9.2  
14.5  
14  
8.9  
8.6  
13.5  
8.3  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
Temperature TA (èC)  
Temperature TA (èC)  
D041  
D042  
37. IQ vs Temperature High-Power Termination Mode  
38. IQ vs Temperature Low-Power Termination Mode  
(Bias 00)  
(Bias Z0)  
2200  
2.4  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2.3  
2.2  
2.1  
2
1.9  
1.8  
1.7  
1.6  
600  
400  
200  
0
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
-100 -80 -60 -40 -20  
0
20 40 60 80 100  
Temperature TA (èC)  
Output Offset Voltage (mV)  
D043  
D044  
Approximately 2100 units  
39. IQ vs Temperature Power-Down Mode (Bias ZZ)  
40. Output Offset Voltage Histogram  
16  
版权 © 2018, Texas Instruments Incorporated  
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
7 Detailed Description  
7.1 Overview  
The THS6301 is a current-feedback architecture, differential line driver designed for G.Fast and xDSL systems.  
The device is targeted for use in G.Fast digital subscriber line (DSL) systems that enable native discrete  
multitone modulation (DMT) signals and supports an 8-dBm line power up to 212 MHz with good linearity.  
The device consists of a unique architecture consisting of an amplifier in a noninverting configuration with an  
internally-fixed gain of 8.5 V/V. The THS6301 is designed to drive the high-performance G.Fast 212-MHz DSL  
profile, but is also backwards-compatible to drive lower frequency profiles. The device features selectable bias  
modes for the G.Fast 106-MHz profile, VDSL profiles, and ADSL profiles. These modes reduce the quiescent  
current of the device based on the frequency requirements of the various DSL profiles to maximize power  
efficiency. Along with adjustable bias modes, the device features two line-termination modes that maintain an  
output impedance match with low power consumption. The line-termination modes allow for the device to be in a  
low-power state without causing distortion on a shared signal line.  
For further flexibility, the THS6301 features an IADJ pin that is used to further adjust the quiescent current of the  
device. A resistor connected to this pin can be changed to increase or decrease the device current to meet  
performance requirements and uses the lowest amount of power possible.  
7.2 Functional Block Diagram  
B1  
B2  
VS+  
Digital Block  
IN+  
+
OUT+  
VS+  
œ
5k  
5kꢀ  
œ
VSœ  
OUT-  
+
IN-  
IADJ  
Bias Adjust  
VSœ  
版权 © 2018, Texas Instruments Incorporated  
17  
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.3 Feature Description  
The THS6301 is a line driver that has a high current drive and a differential input and output. 41 shows an  
example circuit of the THS6301 configured to drive the G.Fast 212-MHz DSL profile. The bias control pins B1  
and B2 are set to 3.3 V and ground, respectively, to put the device in the G.Fast 212-MHz bias mode. This bias  
mode optimizes the internal power consumption of the device to meet performance specifications of the G.Fast  
212-MHz profile and can be changed to meet several different DSL profiles and other modes listed in 1. The  
IADJ pin is biased with a 75-kΩ (RIADJ) resistor that adjusts the device quiescent current to a nominal state. RIADJ  
can be increased to lower the quiescent current or decreased to raise the quiescent current of the device for fine-  
tuning. CIADJ provides decoupling for the IADJ pin and is typically 100 pF.  
The THS6301 has a 10-kΩ, internally-set differential input impedance and low output impedance. In 41 the  
input impedance is matched to 100 Ω by using a 100-Ω resistor connected differentially across the inputs. This  
value can easily be changed by using a different resistor to create the desired impedance at the input.  
Remember that the impedance in the device is actually the parallel combination of 10 kΩ and the external input  
resistor. For low impedances, this effect is minimal, but must be considered if the matched input impedance is  
increased. The output impedance of the THS6301 in 41 is set by the two RSERIES resistors to match 100 Ω.  
The internal output resistance is very low (< 2 Ω per output), so the output impedance is primarily set by the  
RSERIES resistors. These resistors can be adjusted to match various output impedance values.  
Digital Interface  
12 V  
B1  
B2  
VS+  
RSERIES  
+
IN+  
1:n  
OUT+  
OUT-  
œ
Differential  
to Line  
Differential  
Input  
RL  
RSERIES  
œ
IN-  
+
VSœ  
Bias Adjust  
IADJ  
41. G.Fast, 212-MHz Driving Mode Example Circuit  
18  
版权 © 2018, Texas Instruments Incorporated  
 
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
7.4 Device Functional Modes  
The THS6301 features nine different device operational modes, as listed in 1, to accommodate the G.Fast,  
xDSL, line termination, and power-down scenarios. The device is controlled by a 2-pin parallel interface that uses  
three-level logic to control the device state. The G.Fast and xDSL modes change the quiescent current of the  
device to meet signal performance requirements and maintain the lowest power possible, which allows for legacy  
DSL compatibility with maximum power efficiency. The two line-termination modes maintain a low impedance at  
the output and place the device in a low-power state. The line-termination modes allow for the muxing of multiple  
devices to one output line by putting the non-driving devices in a state that does not add distortion to the line. A  
power-down mode is also included to digitally shut down the device for the highest level of power savings. 1  
lists the device power modes and the typical quiescent currents for each mode.  
1. Bias Modes Truth Table  
BIAS CONTROL PINS  
TYPICAL QUIESCENT  
CURRENT (RIADJ = 75  
KΩ  
MODE  
DESCRIPTION  
SSBW (VOUT = 1.7  
VPP  
RECOMMENDED DSL PROFILE  
)
B1  
B2  
Power down  
Z
Z
Power down  
1.9 mA  
N/A  
N/A  
Low-power  
termination  
Z
0
0
0
Line termination (low power)  
10.2 mA  
High-power  
termination  
Line termination (high power)  
16 mA  
N/A  
Drive mode 1  
Drive mode 2  
0
Z
Z
1
ADSL2+  
15.9 mA  
20.1 mA  
564 MHz  
659 MHz  
VDSL (low power)  
G.Fast (low power) and VDSL (mid  
power)  
Drive mode 3  
1
1
27.2 mA  
755 MHz  
Drive mode 4  
Drive mode 5  
Drive mode 6  
1
0
1
Z
1
0
VDSL (high power)  
G.Fast (mid power)  
G.Fast (high power)  
29.8 mA  
38.9 mA  
45.3 mA  
605 MHz  
864 MHz  
814 MHz  
7.5 Programming  
The THS6301 programming is controlled by two parallel pins, B1 and B2. These pins use three-level logic to  
create nine different combinations for each pair of pins. The pins have a high state (1) when the pin voltage is  
greater than 2.3 V, a low state (0) when the pin voltage is less than 0.6 V, and an open state (Z) where the pin  
floats at approximately 1.4 V or can be driven between 1.2 V and 1.6 V. 1 lists the logic combinations for the  
two pins and the corresponding power modes.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The device is a single-port, very-high-bit-rate linear xDSL, G.Fast differential line driver where the device drives a  
twisted pair cable. The signal is generated by a high-speed, digital-to-analog converter (DAC) at low signal  
swings that is amplified by the G.Fast line driver.  
The G.Fast system is ac-coupled when transmitting information above the audio band. On the input of the line  
driver, this ac-coupling translates into the series capacitors to isolate the dc voltage coming from the DAC output  
common-mode voltage. On the output, a transformer is used to help isolate the 48 V present between the tip and  
ring of the telephone line.  
The transformer can be set to any useful ratio. In practice, the transformer-turn ratio is set between 1:1 and 1:1.4  
for the device. The output transformer usually has the active impedance synthesis factor set to 5. This synthesis  
factor means that the termination resistor (RT) is 1/5th of the load impedance reflected to the transformer  
secondary. Thus, the correct termination can be selected based on the transformer-turn ratio.  
Note that the resulting load detected by the amplifier may affect the amplifier linearity or output voltage swing  
capabilities.  
8.2 Typical Application  
42 shows a typical application circuit for this device.  
Digital  
Interface  
12 V  
VS+  
B1 B2  
THS6301  
0.1 µF  
+
IN+  
12 V  
RSERIES  
1:n  
100 Ω  
100 Ω  
OUT+  
L1  
L2  
100 Ω  
œ
Twisted  
Pair Cable  
RT  
2200 pF  
Differential  
Input  
Secondary  
Protection  
RL  
C1  
C2  
½ DAC3482  
6 V  
œ
100 Ω  
OUT-  
IN-  
3rd-Order, Low-Pass  
Filter  
+
RSERIES  
0.1 µF  
Bias Adjust  
100 pF  
IADJ  
VSœ  
75 kΩ  
42. Typical G.FAST Line Driver Configuration  
20  
版权 © 2018, Texas Instruments Incorporated  
 
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
Typical Application (接下页)  
8.2.1 Design Requirements  
2 provides the design requirements for a G.Fast line driver, which is met by the THS6301 device.  
2. Design Requirements  
DESIGN REQUIREMENT  
G.Fast, 106-MHz, 212-MHz transmit profile  
Legacy DSL profile support  
Supply voltage  
CONDITION  
Yes, using the bias control pins for line power = 8 dBm and PAR = 15 dBm  
Yes  
12 V  
Output current drive  
±80 mA, each output  
High isolation from input to output  
AC coupled  
Power-down functionality  
Input interface  
Output transformer ratio  
Surge protection  
1:1.5  
External needed  
8.2.2 Detailed Design Procedure  
The G.Fast signal input to the THS6301 comes from a high-speed DAC whose interleaving spurs are filtered out  
using either a 3rd- or 5th-order filter. Digital pre-emphasis can be employed in the DAC output such that the  
differential line driver compensates for the transmission line cable losses at long distance and high frequency.  
The THS6301 is operated on a 12-V single supply. Resulting from the single-supply operation, the device input is  
AC-coupled using a capacitor that blocks any DC current flowing out of the inputs to the adjacent circuitry. The  
AC-coupling capacitor forms a high-pass filter with the device input impedance. This pole must be set at a  
frequency low enough to not interfere with the desired xDSL or G.Fast signal.  
The THS6301 differential outputs usually drive a 1:n output transformer with a transformer turns ratio that can be  
changed depending upon the application. The output transformer selected must have low insertion loss in the  
desired frequency band in order to maintain good multi-tone power rejection (MTPR) for a given line power. The  
load is expected to be a transmission line with 100-Ω characteristic impedance on the primary side of the  
transformer. Referred to the transformer secondary, the load detected by the amplifier is 1 / n2 with 1:n being the  
transformer turn ratio. Practical limitations force the transformer-turn ratio to be between 1:1 and 1:1.6. At the  
lighter load detected by the amplifier (1:1), the voltage swing is limited by the class AB output stage and the  
maximum achievable swing of the amplifier. At the heaviest load (1:1.6), the voltage swing is limited by the  
current drive capability of the amplifier. To satisfy the synthesis impedance factor and the loading, the termination  
resistance (RT) can be set to RT = RL / 5 = 100 Ω / (5 × n2).  
For surge protection, consider adding a gas discharge tube (GDT) on the primary side of the output transformer.  
The gas discharge tube is required to shunt the large current that could flow through the cables during lightning  
surge, and protect the device outputs. The secondary protection is also normally added after the series  
resistance on the secondary transformer side. The secondary protection could be in the form of back to back  
switching diodes, which also help limit the residual surge current flowing into the device outputs.  
For the power-supply bypass, consider using X7R or X5R because of the better stability of these materials over  
temperature.  
版权 © 2018, Texas Instruments Incorporated  
21  
 
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
8.2.3 Application Curves  
43 and 44 show the MTPR results for 212-MHz and 160-MHz G.Fast profiles, respectively.  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-40  
-42.5  
-45  
Drive Mode 6 (10)  
Drive Mode 5 (01)  
Drive Mode 4 (1Z)  
Line Power = 4 dBm  
Line Power = 8 dBm  
-47.5  
-50  
-52.5  
-55  
-57.5  
-60  
-62.5  
-65  
-67.5  
-70  
-72.5  
1M 25M 50M 75M 100M 125M 150M 175M 200M 225M  
1M 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M110M  
Frequency (Hz)  
Frequency (Hz)  
D020  
D022  
PAR = 15 dB, 1-in-64 missing tones  
PAR = 15 dB, 1-in-64 missing tones, line power = 8 dBm  
43. MTPR G.Fast 212-MHz Profile  
44. MTPR G.Fast 106-MHz Profile  
22  
版权 © 2018, Texas Instruments Incorporated  
 
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
9 Power Supply Recommendations  
The THS6301 is recommended to operate using a total supply voltage of 12 V. If a lower or higher supply  
voltage is required, select one that is between 11.4 V and 12.6 V for optimal performance. Use supply-  
decoupling capacitors on the power-supply pins to minimize distortion caused by parasitic signals on the power  
supply. This usage is especially important in applications where many devices share a single power-supply bus.  
The device can be operated on split supplies (such as ±6 V). However, the bias adjust resistor must be tied to  
the negative supply for proper device operation. When operating the device on split supply, pins 4 and 10 act as  
the negative supply voltage pin. The thermal pad must be tied to either GND or the negative supply voltage in  
split-supply operation. The device bias mode pins are now referenced to the negative supply voltage for the  
different logic levels.  
As with all high-speed amplifiers, supply bypass capacitors are required for operation of the THS6301. Multiple  
capacitors are required to cover the entire frequency range of the device. For low frequency bypassing use a 10  
µF or larger tantalum capacitor (see the description of C1 in the THS6301EVM User's Guide). Place this  
capacitor within two or three centimeters of the amplifier. Use 0.1-µF and 1-nF high-frequency bypass capacitors  
(these capacitors are labeled C2 and C3 on the EVM). Place these capacitors within two to three millimeters of  
the amplifier and must be directly connected to the power-supply planes with low-impedance vias. Texas  
Instruments recommends using the capacitors shown in the bill of materials (BOM) that accompanies the  
THS6301EVM User's Guide. The capacitor part numbers are listed in the THS6301EVM user's guide.  
10 Layout  
10.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the THS6301 requires careful attention  
to board layout parasitics and external component types. Recommendations that optimize performance include:  
a. Minimize parasitic capacitance to any ac ground for all signal I/O pins. Excessive parasitic capacitance on  
the input pin can cause instability. In the line driver application, the parasitic capacitance forms a pole with  
the load detected by the amplifier and can reduce the effective bandwidth of the application circuit, thus  
leading to degraded performance. To reduce unwanted capacitance, open a window around the signal I/O  
pins in all ground and power planes around those pins. Otherwise, make sure that ground and power planes  
are unbroken elsewhere on the board.  
b. Minimize the distance (< 0.25") from the power-supply pins to high-frequency, 0.1-µF decoupling capacitors.  
At the device pins, make sure that the ground and power-plane layout are not in close proximity to the signal  
I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and decoupling  
capacitors. Always decouple the power-supply connections with these capacitors.  
c. Make sure the bias adjust resistor connected to the IADJ pin is not routed close to the device inputs in-order  
to avoid any high-frequency noise coupling into the IADJ pin and result in unexpected device behavior.  
d. Careful selection and placement of external components preserves the high-frequency performance of the  
device. Use very-low reactance-type resistors. Surface-mount resistors function best and allow a tighter  
overall layout. Metal-film or carbon composition, axially-leaded resistors also provide good high-frequency  
performance. Again, keep the leads and printed circuit board (PCB) traces as short as possible. Never use  
wire-wound type resistors in a high-frequency application.  
e. Connections to other wideband devices on the board can be made with short, direct traces or through  
onboard transmission lines. For short connections, consider the trace and the input to the next device as a  
lumped capacitive load. Use relatively wide traces (50 mils to 100 mils), preferably with ground and power  
planes opened up around them.  
f. Do not socket a high-speed part such as the THS6301. The additional lead length and pin-to-pin capacitance  
introduced by the socket can create an extremely troublesome parasitic network that makes achieving a  
smooth, stable frequency response almost impossible. Best results are obtained by soldering the device onto  
the board.  
g. TI recommends soldering the thermal pad to the PCB in order to conduct heat out of the device package.  
Vias underneath the part help regulate the flow of free air and also help conduct heat out of the package.  
版权 © 2018, Texas Instruments Incorporated  
23  
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.1 Power Dissipation and Thermal Considerations  
For maximum performance and reliability, the designer must ensure that the design does not exceed a junction  
temperature of 125°C. Between 125°C and 150°C, damage does not occur, but the performance of the amplifier  
begins to degrade and long-term reliability suffers. The thermal characteristics of the device are dictated by the  
package and the PCB. 公式 1 calculates maximum power dissipation for a given package:  
PD(MAX) = (TJ(MAX) – TA) / RθJA  
where  
PD(MAX) is the maximum power dissipation in the amplifier (W)  
TJ(MAX) is the absolute maximum junction temperature (°C)  
TA is the ambient temperature (°C)  
R
R
R
θJA = RθJC + RθCA  
θJC is the thermal coefficient from silicon transistors to the case (°C/W)  
θCA is the thermal coefficient from case to ambient temperature (°C/W)  
(1)  
For systems where heat dissipation is more critical, the THS6301 is offered in an 16-pin VQFN package with  
thermal pad. Because of the thermal pad, the thermal coefficient for the VQFN package is substantially improved  
over the traditional SOIC. The data for the VQFN packages with thermal pad assume a board layout that follows  
the thermal pad layout guidelines referenced in this section and detailed in the Quad Flatpack No-Lead Logic  
Packages application note. If the thermal pad is not soldered to the PCB, the thermal impedance increases  
substantially, which may cause serious heat and performance issues. Be sure to always solder the thermal pad  
to the PCB for optimum performance.  
When determining whether or not the device satisfies the maximum power dissipation requirement, consider not  
only quiescent power dissipation, but also dynamic power dissipation. Often times, this dissipation is difficult to  
quantify because the signal pattern is inconsistent, but an estimate of the RMS power dissipation can provide  
visibility into a possible problem.  
24  
版权 © 2018, Texas Instruments Incorporated  
 
THS6301  
www.ti.com.cn  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
10.2 Layout Example  
Ground and power  
plane exist on inner  
layers  
Ground and power plane  
removed from inner layers  
Remove GND and  
Power plane under pins  
2, 3, 6, and 15 to  
minimize stray PCB  
capacitance  
GND  
13  
15  
14  
16  
B1  
Place 0.1-µF decoupling  
OUT+  
NC  
NC  
capacitors close (< 0.25") to  
IADJ  
NC 12  
1
power-supply pin  
+
IN+  
2
œ
11  
10  
9
VS  
œ
IN-  
GND  
3
4
Avoid narrow power and  
ground traces to minimize  
inductance between the pins  
and decoupling capacitors  
+
GND  
GND  
NC  
NC  
OUT-  
6
NC  
B2  
7
GND  
Place output resistors  
on pins 6 and 15 as  
close as possible to  
minimize parasitic  
capacitance and  
5
8
prevent oscillation  
45. Example Layout  
版权 © 2018, Texas Instruments Incorporated  
25  
THS6301  
ZHCSI36A APRIL 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
《四方扁平封装无引线逻辑封装》应用手册  
ADSL 线路驱动器的有源输出阻抗》应用手册  
THS6301EVM 用户指南  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THS6301IRSAR  
THS6301IRSAT  
ACTIVE  
QFN  
QFN  
RSA  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
THS  
6301  
ACTIVE  
RSA  
NIPDAU  
THS  
6301  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Sep-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THS6301IRSAR  
THS6301IRSAT  
QFN  
QFN  
RSA  
RSA  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Sep-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THS6301IRSAR  
THS6301IRSAT  
QFN  
QFN  
RSA  
RSA  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

THS6301IRSAR

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器 | RSA | 16 | -40 to 85
TI

THS6301IRSAT

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器 | RSA | 16 | -40 to 85
TI

THS6302

双端口 G.Fast 和 G.mgFast DSL 线路驱动器
TI

THS6302IRHFR

Dual port G.Fast and G.mgFast DSL line driver | RHF | 28 | -40 to 85
TI

THS6832DR

LOW-POWER DISSIPATION ADSL LINE DRIVER
TI

THS7

EURO TERMINAL BLOCKS
ETC

THS7001

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS
TI

THS7001CPWP

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS
TI

THS7001CPWPG4

70-MHz High-Speed Programmable-Gain Amplifier 20-HTSSOP 0 to 70
TI

THS7001CPWPR

70-MHz High-Speed Programmable-Gain Amplifier 20-HTSSOP 0 to 70
TI

THS7001CPWPRG4

70-MHz High-Speed Programmable-Gain Amplifier 20-HTSSOP
TI

THS7001EVM

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS
TI