THVD1552DGS

更新时间:2024-10-30 05:39:38
品牌:TI
描述:具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGS | 10 | -40 to 125

THVD1552DGS 概述

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGS | 10 | -40 to 125

THVD1552DGS 数据手册

通过下载THVD1552DGS数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
具有 ±18kV IEC ESD 保护功能的 THVD15xx 5V RS-485 收发器  
1 特性  
每个器件由 5V 单电源供电。该系列中的器件具有扩展  
共模电压范围,因此这些器件适用于长电缆上的 多点  
应用。  
1
符合或超过 TIA/EIA-485A 标准要求  
4.5V 5.5V 电源电压  
集成总线 I/O 保护  
THVD15xx 系列器件采用小型 VSSOP 封装,适用于  
空间受限的 应用。这些器件在自然通风环境下的额定  
温度范围为 –40°C 125°C。  
±30kV HBM ESD  
±18kV IEC 61000-4-2 ESD 接触放电  
±25kV IEC 61000-4-2 ESD 空气间隙放电  
±4kV IEC 61000-4-4 电气快速瞬变  
器件信息(1)  
器件型号  
THVD1510  
封装  
VSSOP (8)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
3.00mm × 3.00mm  
3.00mm × 3.00mm  
8.65mm × 3.91mm  
扩展级运行共模:± 15V  
EMI 500kbps 50Mbps 数据速率  
扩展温度范围:-40°C 125°C  
用于噪声抑制的大接收器滞后  
低功耗  
THVD1550  
SOIC (8)  
THVD1551  
THVD1512  
VSSOP (8)  
VSSOP (10)  
VSSOP (10)  
SOIC (14)  
THVD1552  
低待机电源电流:小于 1µA  
运行期间的电流:< 1mA  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
适用于热插拔功能的无干扰加电/断电  
开路、短路和空闲总线失效防护  
THVD1510 THVD1550 简化原理图  
1/8 单位负载选项(多达 256 个总线节点)  
1
R
小尺寸 VSSOP 封装(可节省布板空间)或 SOIC  
封装(可实现快插兼容性)  
2
7
6
RE  
B
A
3
4
DE  
D
2 应用  
电机驱动器  
THVD1551 简化原理图  
工厂自动化与控制  
电网基础设施  
楼宇自动化  
HVAC 系统  
视频监控  
8
A
B
2
R
7
6
5
Z
Y
3
D
过程分析  
THVD1512 THVD1552 简化原理图  
电信基础设施  
(9)12  
A
B
2(1)  
3(2)  
R
(8)11  
RE  
3 说明  
4(3)  
5(4)  
DE  
D
(7)10  
(6)9  
Z
Y
THVD15xx 是一系列抗噪 RS-485/RS-422 收发器,专  
用于在恶劣的工业环境中运行。这些器件的总线引脚可  
耐受高级别的 IEC 电气快速瞬变 (EFT) IEC 静电放  
(ESD) 事件,从而无需使用其他系统级保护组件。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEV1  
 
 
 
 
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
9.2 Functional Block Diagrams ..................................... 14  
9.3 Feature Description................................................. 14  
9.4 Device Functional Modes........................................ 15  
10 Application and Implementation........................ 18  
10.1 Application Information...................................... 18  
10.2 Typical Application ............................................... 18  
11 Power Supply Recommendations ..................... 24  
12 Layout................................................................... 25  
12.1 Layout Guidelines ................................................. 25  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 26  
13.1 器件支持................................................................ 26  
13.2 第三方产品免责声明.............................................. 26  
13.3 相关链接................................................................ 26  
13.4 接收文档更新通知 ................................................. 26  
13.5 社区资源................................................................ 26  
13.6 ....................................................................... 26  
13.7 静电放电警告......................................................... 26  
13.8 术语表 ................................................................... 26  
14 机械、封装和可订购信息....................................... 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings ............................................................ 6  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 7  
7.5 Power Dissipation ..................................................... 7  
7.6 Electrical Characteristics........................................... 8  
7.7 Switching Characteristics.......................................... 9  
7.8 Switching Characteristics.......................................... 9  
7.9 Typical Characteristics............................................ 10  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 14  
9.1 Overview ................................................................. 14  
8
9
4 修订历史记录  
Changes from Revision B (July 2018) to Revision C  
Page  
Changed the Description of pins 13 and 14 in the Pin Functions table for THVD1512, THVD1552 D package................... 5  
Changes from Revision A (January 2018) to Revision B  
Page  
Added TSD to the Electrical Characteristics table ................................................................................................................... 8  
Changes from Original (September 2017) to Revision A  
Page  
Changed the Machine model (MM) value From: ±400 To: ±200 in the ESD Ratings............................................................ 6  
Changed the VOH MIN value From: 2.4 V To: 4 V in the Electrical Characteristics table ..................................................... 8  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
5 Device Comparison Table  
PART NUMBER  
THVD1512  
THVD1510  
THVD1552  
THVD1551  
THVD1550  
DUPLEX  
ENABLES  
DE, RE  
DE, RE  
DE, RE  
None  
SIGNALING RATE  
NODES  
Full  
Half  
Full  
Full  
Half  
up to 500 kbps  
256  
up to 50 Mbps  
196  
DE, RE  
6 Pin Configuration and Functions  
THVD1510, THVD1550 Devices  
8-Pin D Package (SOIC)  
Top View  
THVD1510, THVD1550 Devices  
8-Pin DGK Package (VSSOP)  
Top View  
R
/RE  
DE  
D
1
2
3
4
8
7
6
5
VCC  
B
R
/RE  
DE  
D
1
2
3
4
8
7
6
5
VCC  
B
A
A
GND  
GND  
Not to scale  
Not to scale  
Pin Functions  
PIN  
D
6
I/O  
DESCRIPTION  
NAME  
A
DGK  
6
7
4
3
5
1
8
2
Bus input/output  
Bus input/output  
Digital input  
Digital input  
Ground  
Bus I/O port, A (complementary to B)  
Bus I/O port, B (complementary to A)  
Driver data input  
B
7
D
4
DE  
GND  
R
3
Driver enable, active high (2 MΩ internal pull-down)  
Device ground  
5
1
Digital output  
Power  
Receive data output  
VCC  
RE  
8
5-V supply  
2
Digital input  
Receiver enable, active low (2 MΩ internal pull-up)  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
THVD1551 Device  
8-Pin DGK Package (VSSOP)  
Top View  
VCC  
R
1
2
3
4
8
7
6
5
A
B
Z
Y
D
GND  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DGK  
A
8
7
3
4
2
1
5
6
Bus input  
Bus input  
Digital input  
Ground  
Bus input, A (complementary to B)  
Bus input, B (complementary to A)  
Driver data input  
B
D
GND  
R
Device ground  
Digital output  
Power  
Receive data output  
VCC  
Y
5-V supply  
Bus output  
Bus output  
Bus output, Y (complementary to Z)  
Bus output, Z (complementary to Y)  
Z
4
Copyright © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
THVD1552 Device  
14-Pin D Package (SOIC)  
Top View  
THVD1512, THVD1552 Devices  
10-Pin DGS Package (VSSOP)  
Top View  
NC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VCC  
VCC  
A
R
/RE  
DE  
R
RE  
1
2
3
4
5
10  
9
VCC  
A
B
DE  
8
B
D
Z
D
7
Z
GND  
GND  
Y
GND  
6
Y
8
NC  
Not to scale  
Not to scale  
Pin Functions  
PIN  
D
I/O  
DESCRIPTION  
NAME  
A
DGS  
9
12  
11  
5
Bus input  
Bus input  
Bus input, A (complementary to B)  
Bus input, B (complementary to A)  
Driver data input  
B
8
D
4
Digital input  
Digital input  
Ground  
DE  
GND  
NC  
R
4
3
Driver enable, active high (2 MΩ internal pull-down)  
Device ground  
6, 7(1)  
1, 8  
2
5
1
Internally not connected  
Receive data output  
Digital output  
Power  
10  
5-V supply.  
VCC  
5-V supply. These pins are not connected together internally, so power must  
be applied to both.  
13, 14  
Power  
Y
9
10  
3
6
7
2
Bus output  
Bus output  
Digital input  
Bus output, Y (Complementary to Z)  
Z
Bus output, Z (Complementary to Y)  
RE  
Receiver enable, active low (2 MΩ internal pull-up)  
(1) These pins are internally connected  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage  
Bus voltage  
VCC  
–0.5  
7
V
Range at any bus pin (A, B, Y, or Z) as  
differential or common-mode with respect to  
GND  
–18  
18  
V
Input voltage  
Range at any logic pin (D, DE, or RE)  
IO  
–0.3  
–24  
–65  
5.7  
24  
V
Receiver output current  
Storage temperature, Tstg  
mA  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±18,000  
±25,000  
±30,000  
UNIT  
Contact discharge, per IEC 61000-4-2  
Air-gap discharge, per IEC 61000-4-2  
Bus terminals and GND  
Bus terminals and GND  
Bus terminals and GND  
Human-body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
All pins except Bus  
terminals and GND  
V(ESD)  
Electrostatic discharge  
Electrical fast transient  
V
±8,000  
±1,500  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
Machine model (MM), per JEDEC JESD22-A115-A  
±200  
V(EFT)  
Per IEC 61000-4-4  
Bus terminals  
±4,000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
5.5  
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage at any bus terminal(1)  
-15  
15  
V
High-level input voltage (driver, driver enable, and receiver enable  
inputs)  
VIH  
VIL  
2
0
VCC  
0.8  
V
V
Low-level input voltage (driver, driver enable, and receiver enable  
inputs)  
VID  
IO  
Differential input voltage  
Output current, driver  
-15  
-60  
-8  
15  
60  
8
V
mA  
mA  
Ω
IOR  
RL  
Output current, receiver  
Differential load resistance  
54  
THVD1510, THVD1512  
Signaling rate  
500  
50  
kbps  
Mbps  
°C  
1/tUI  
THVD1550, THVD1551, THVD1552  
TA  
TJ  
Operating ambient temperature  
Junction temperature  
-40  
-40  
125  
150  
°C  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
7.4 Thermal Information  
THVD1510  
THVD1550  
THVD1551  
THVD1510  
THVD1550  
THVD1512  
THVD1552  
THVD1552  
THERMAL METRIC(1)  
UNIT  
D (SOIC)  
8 PINS  
112.4  
62.7  
D (SOIC)  
14 PINS  
88.0  
DGK (VSSOP)  
8 PINS  
151.7  
62.8  
DGS (VSSOP)  
10 PINS  
151.4  
59.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
45.4  
62.0  
44.1  
81.3  
81.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
15.4  
11.3  
7.8  
6.5  
ψJB  
61.3  
43.7  
79.8  
79.9  
RθJC(bot)  
N/A  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Dissipation  
PARAMETER  
TEST CONDITIONS  
VALUE  
210  
UNIT  
THVD151x 500 kbps  
THVD155x 50 Mbps  
THVD151x 500 kbps  
THVD155x 50 Mbps  
THVD151x 500 kbps  
THVD155x 50 Mbps  
Unterminated  
mW  
RL = 300 Ω, CL = 50 pF (driver)  
350  
Driver and receiver enabled,  
VCC = 5.5 V, TA = 125 °C,  
50% duty cycle square wave at  
signaling rate  
220  
RS-422 load  
PD  
mW  
mW  
RL = 100 Ω, CL = 50 pF (driver)  
330  
250  
RS-485 load  
RL = 54 Ω, CL = 50 pF (driver)  
340  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
RL = 60 Ω, -15 V Vtest 15 V, (See 11)  
RL = 100 Ω (See 12)  
1.5  
2
2.7  
3
V
V
V
Driver differential output  
voltage magnitude  
|VOD  
|
RL = 54 Ω (See 12)  
1.5  
2.7  
Change in differential output  
voltage  
Δ|VOD  
|
–200  
1
200  
3
mV  
V
Common-mode output  
voltage  
VOC  
VCC/2  
RL = 54 Ω (See 12)  
Change in steady-state  
ΔVOC(SS) common-mode output  
–200  
–250  
200  
250  
mV  
mA  
voltage  
IOS  
Short-circuit output current  
DE = VCC, -15 V VO 15V  
Receiver  
VI = 12 V  
VI = 15 V  
VI = -7 V  
VI = -15 V  
VI = 12 V  
VI = 15 V  
VI = -7 V  
VI = -15 V  
75  
95  
125  
156  
THVD151x  
DE = 0 V, VCC = 0 V or 5.5 V  
THVD155x  
-100  
-215  
-40  
-85  
II  
Bus input current  
μA  
115  
150  
-75  
160  
200  
-130  
-280  
-180  
Receiver  
Positive-going input  
threshold voltage  
VTH+  
See(1)  
–200  
–85  
–20  
mV  
Negative-going input  
threshold voltage  
Over common-mode range of - 7 V to +12 V  
Over common-mode range of ± 15 V  
VTH-  
VHYS  
VTH+  
–135  
50  
See(1)  
mV  
mV  
mV  
Input hysteresis  
Positive-going input  
threshold voltage  
See(1)  
–220  
–85  
–20  
Negative-going input  
threshold voltage  
VTH-  
–135  
See(1)  
mV  
VHYS  
VOH  
VOL  
Input hysteresis  
50  
VCC - 0.3  
0.2  
mV  
V
Output high voltage  
Output low voltage  
IOH = -8 mA  
IOL = 8 mA  
4
-1  
0.4  
1
V
Output high-impedance  
current  
IOZ  
VO = 0 V or VCC, RE = VCC  
µA  
Logic  
IIN  
Input current (D, DE, RE)  
4.5 V VCC 5.5 V, 0 V VIN VCC  
–5  
0
5
µA  
Supply  
RE = 0 V, DE = VCC  
No load  
,
Driver and receiver enabled  
Driver enabled, receiver disabled  
Driver disabled, receiver enabled  
Driver and receiver disabled  
700  
400  
400  
1000  
620  
630  
1
µA  
µA  
µA  
RE = VCC, DE = VCC  
No load  
,
ICC  
Supply current (quiescent)  
RE = 0 V, DE = 0 V,  
No load  
RE = VCC, DE = 0 V,  
D = open, No load  
0.1  
µA  
°C  
TSD  
Thermal shutdown temperature  
170  
(1) Under any specific conditions, VTH+ is specified to be at least VHYS higher than VTH–  
.
8
Copyright © 2017–2018, Texas Instruments Incorporated  
 
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
7.7 Switching Characteristics  
500-kbps devices (THVD1510, THVD1512) over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
tr, tf  
Differential output rise/fall time  
Propagation delay  
300  
400  
350  
600  
500  
15  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF  
See 13  
Pulse skew, |tPHL – tPLH  
|
Disable time (THVD1510,  
THVD1512)  
tPHZ, tPLZ  
110  
200  
ns  
See 14 and 15  
RE = 0 V  
RE = VCC  
100  
2
500  
4
ns  
µs  
Enable time (THVD1510,  
THVD1512)  
tPZH, tPZL  
Receiver  
tr, tf  
Differential output rise/fall time  
Propagation delay  
15  
50  
25  
60  
10  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
CL = 15 pF  
See 16  
Pulse skew, |tPHL – tPLH  
|
Disable time (THVD1510,  
THVD1512)  
tPHZ, tPLZ  
30  
60  
40  
ns  
ns  
tPZH(1)  
,
DE = VCC  
DE = 0 V  
See 17  
See 18  
100  
tPZL(1)  
tPZH(2)  
tPZL(2)  
,
,
Enable time (THVD1510,  
THVD1512)  
3
8
μs  
7.8 Switching Characteristics  
50-Mbps devices (THVD1550, THVD1551, THVD1552) over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
tr, tf  
Differential output rise/fall time  
Propagation delay  
1
5
2
6
16  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF  
See 13  
10  
Pulse skew, |tPHL – tPLH  
|
3.5  
Disable time (THVD1550,  
THVD1552)  
tPHZ, tPLZ  
10  
22  
ns  
See 14 and 15  
RE = 0 V  
RE = VCC  
10  
2
22  
4
ns  
Enable time (THVD1550,  
THVD1552)  
tPZH, tPZL  
μs  
Receiver  
tr, tf  
Differential output rise/fall time  
Propagation delay  
1
3
6
45  
2
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
CL = 15 pF  
See 16  
30  
Pulse skew, |tPHL – tPLH  
|
Disable time (THVD1550,  
THVD1552)  
tPHZ, tPLZ  
8
18  
90  
ns  
ns  
tPZH(1)  
,
DE = VCC  
DE = 0 V  
See 17  
See 18  
55  
tPZL(1)  
tPZH(2)  
tPZL(2)  
,
,
Enable time (THVD1550,  
THVD1552)  
3
8
μs  
版权 © 2017–2018, Texas Instruments Incorporated  
9
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.9 Typical Characteristics  
5
4.5  
4
4.5  
4
VOL  
VOH  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
10 20 30 40 50 60 70 80 90 100 110  
0
10 20 30 40 50 60 70 80 90 100 110  
IO - Driver Output Current (mA)  
IO - Driver Output Current (mA)  
D001  
D002  
VCC = 5 V  
DE = VCC  
D = 0 V  
VCC = 5 V  
DE = VCC  
D = 0 V  
1. Driver Output Voltage vs Driver Output Current  
2. Driver Differential Output Voltage vs Driver Output  
60  
50  
40  
30  
20  
10  
0
460  
450  
440  
430  
420  
410  
400  
390  
380  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-40  
-20  
0
20  
40  
60  
80  
100  
120  
VCC - Supply Voltage (V)  
Temperature (èC)  
D003  
D004  
TA = 25°C  
DE = VCC  
RL = 54 Ω  
D = VCC  
3. Driver Output Current vs Supply Voltage  
4. THVD1510 Driver Rise or Fall Time vs Temperature  
395  
390  
385  
380  
375  
370  
365  
360  
355  
350  
345  
340  
335  
330  
3
2.5  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
5. THVD1510 Driver Propagation Delay vs Temperature  
6. THVD1550 Driver Rise or Fall Time vs Temperature  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Characteristics (接下页)  
14  
80  
70  
60  
50  
40  
30  
20  
10  
0
12  
10  
8
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
50  
100 150 200 250 300 350 400 450 500  
Temperature (èC)  
Signaling Rate (Kbps)  
D007  
D008  
RL = 54 Ω  
7. THVD1550 Driver Propagation Delay vs Temperature  
8. THVD1510 Supply Current vs Signal Rate  
7
6
5
4
3
2
1
0
90  
VIT- (-7 V) VIT+ (-7 V)  
VIT- (0 V) VIT+ (0 V)  
VIT- (12 V) VIT+ (12 V)  
80  
70  
60  
50  
40  
30  
20  
10  
0
-170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Differential Input Voltage (mV)  
D010  
Signaling Rate (Mbps)  
D009  
RL = 54 Ω  
10. Receiver Output vs Input  
9. THVD1550 Supply Current vs Signal Rate  
8 Parameter Measurement Information  
375  
Vcc  
DE  
D
A
B
V
test  
VOD  
R
0V or V  
cc  
L
375 Ω  
11. Measurement of Driver Differential Output Voltage With Common-Mode Load  
A
V
A
A
B
R /2  
L
B
D
V
B
0V or V  
cc  
V
OD  
V
OC(PP)  
R /2  
L
ûV  
OC(SS)  
V
OC  
C
L
V
OC  
12. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
V
cc  
Vcc  
DE  
50%  
V
I
0 V  
A
B
t
t
R =  
L
54  
PHL  
PLH  
D
~
V
2 V  
~
C = 50 pF  
L
OD  
90%  
50%  
10%  
Input  
50 Ω  
V
I
Generator  
V
OD  
~ œ 2 V  
~
t
r
t
f
13. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
A
V
cc  
S1  
V
O
D
50%  
V
I
0 V  
V
B
R
110  
=
DE  
50 Ω  
L
t
PZH  
=
C
L
Input  
OH  
50 pF  
90%  
Generator  
V
I
50%  
V
O
~
~ 0V  
t
PHZ  
14. Measurement of Driver Enable and Disable Times With Active High Output and Pull-Down Load  
Vcc  
Vcc  
50%  
RL= 110 Ω  
VI  
tPZL  
VO  
A
B
0 V  
S1  
VO  
tPLZ  
D
Vcc  
DE  
CL=  
50 pF  
Input  
Generator  
50%  
10%  
VOL  
VI  
50 Ω  
15. Measurement of Driver Enable and Disable Times With Active Low Output and Pull-up Load  
3 V  
50%  
V
I
A
B
0 V  
R
VO  
t
tPHL  
Input  
PLH  
50  
V
1.5V  
0 V  
VOH  
Generator  
I
90%  
50%  
10%  
CL=15 pF  
RE  
V
OD  
V
tr  
OL  
t
f
16. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
V
cc  
Vcc  
DE  
Vcc  
V
50%  
I
0V  
V
A
B
tPZH(1)  
1 kΩ  
tPHZ  
D
V
O
R
D at Vcc  
S1 to GND  
0V or Vcc  
S1  
OH  
90%  
V
50%  
O
CL=15 pF  
0V  
RE  
tPZL(1)  
tPLZ  
Input  
Generator  
D at 0V  
S1 to Vcc  
V
CC  
50 Ω  
V
I
V
50%  
O
10%  
V
OL  
17. Measurement of Receiver Enable/Disable Times With Driver Enabled  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
Parameter Measurement Information (接下页)  
Vcc  
0V  
Vcc  
VI  
50%  
A
B
1 kΩ  
tPZH(2)  
V or 1.5V  
VO  
R
S1  
VOH  
A at 1.5V  
B at 0V  
S1 to GND  
1.5 V or 0V  
50%  
VO  
CL=15 pF  
RE  
0V  
tPZL(2)  
Input  
Generator  
A at 0V  
B at 1.5V  
S1 to VCC  
VCC  
50 Ω  
VI  
VO  
50%  
VOL  
18. Measurement of Receiver Enable Times With Driver Disabled  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
THVD1510 and THVD1550 are low-power, half-duplex RS-485 transceivers available in two speed grades  
suitable for data transmission up to 500 kbps and 50 Mbps respectively.  
THVD1551 is fully enabled with no external enabling pins. THVD1512 and THVD1552 have active-high driver  
enables and active-low receiver enables. A standby current of less than 1 µA can be achieved by disabling both  
driver and receiver.  
9.2 Functional Block Diagrams  
VCC  
R
RE  
A
B
DE  
D
GND  
19. THVD1510 and THVD1550  
VCC  
A
R
D
R
B
VCC  
Z
Y
D
GND  
20. THVD1551  
VCC  
A
R
R
B
RE  
DE  
D
Z
Y
D
GND  
21. THVD1512 and THVD1552  
9.3 Feature Description  
Internal ESD protection circuits of the THVD15xx protect the transceivers against electrostatic discharges (ESD)  
according to IEC 61000-4-2 of up to ±18 kV and against electrical fast transients (EFT) according to IEC 61000-  
4-4 of up to ±4 kV. With careful system design, one could achieve ±4 kV EFT Criterion A (no data loss when  
transient noise is present).  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
Feature Description (接下页)  
The THVD15xx device family provides internal biasing of the receiver input thresholds in combination with large  
input-threshold hysteresis. The receiver output remains logic high under a bus-idle or bus-short conditions  
without the need for external failsafe biasing resistors. Device operation is specified over a wide ambient  
temperature range from –40°C to 125°C.  
9.4 Device Functional Modes  
9.4.1 Device Functional Modes for THVD1510 and THVD1550  
When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input  
D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage defined as  
VOD = VA – VB is positive. When D is low, the output states reverse: B turns high, A becomes low, and VOD is  
negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin  
has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by  
default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output  
A turns high and B turns low.  
1. Driver Function Table for THVD1510 and THVD1550  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
A
H
L
B
L
H
H
Actively drive bus high  
Actively drive bus low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus high by default  
OPEN  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high.  
When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between VTH+  
and VTH- the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not  
actively driven (idle bus).  
2. Receiver Function Table for THVD1510 and THVD1550  
DIFFERENTIAL INPUT  
VID = VA – VB  
VTH+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Receiver disabled  
VTH- < VID < VTH+  
VID < VTH-  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
版权 © 2017–2018, Texas Instruments Incorporated  
15  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
9.4.2 Device Functional Modes for THVD1551  
For this device, the driver and receiver are fully enabled, thus the differential outputs Y and Z follow the logic  
states at data input D at all times. A logic high at D causes Y to turn high and Z to turn low. In this case, the  
differential output voltage defined as VOD = VY – VZ is positive. When D is low, the output states reverse: Z turns  
high, Y becomes low, and VOD is negative. The D pin has an internal pull-up resistor to VCC, thus, when left  
open while the driver is enabled, output Y turns high and Z turns low.  
3. Driver Function Table for THVD1551  
INPUT  
OUTPUTS  
FUNCTIONS  
D
H
Y
H
L
Z
L
Actively drive bus high  
Actively drive bus low  
L
H
L
OPEN  
H
Actively drive bus high by default  
When the differential input voltage defined as VID = VA – VB is higher than the positive input threshold, VTH+, the  
receiver output, R, turns high. When VID is less than the negative input threshold, VTH–, the receiver output, R,  
turns low. If VID is between VTH+ and VTH– the output is indeterminate. Internal biasing of the receiver inputs  
causes the output to go failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus  
lines are shorted to one another (short-circuit), or the bus is not actively driven (idle bus).  
4. Receiver Function Table for THVD1551  
DIFFERENTIAL INPUT  
VID = VA – VB  
OUTPUT  
FUNCTION  
R
H
?
VTH+ < VID  
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
VTH- < VID < VTH+  
VID < VTH-  
L
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
H
H
H
9.4.3 Device Functional Modes for THVD1512 and THVD1552  
When the driver enable pin, DE, is logic high, the differential outputs Y and Z follow the logic states at data input  
D. A logic high at D causes Y to turn high and Z to turn low. In this case the differential output voltage defined as  
VOD = VY – VZ is positive. When D is low, the output states reverse: Z turns high, Y becomes low, and VOD is  
negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin  
has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by  
default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output  
Y turns high and Z turns low.  
5. Driver Function Table for THVD1512 and THVD1552  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
Y
H
L
Z
L
H
H
Actively drive bus high  
Actively drive bus low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus high by default  
OPEN  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high.  
When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between VTH+  
and VTH- the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not  
actively driven (idle bus).  
6. Receiver Function Table for THVD1512 and THVD1552  
DIFFERENTIAL INPUT  
VID = VA – VB  
VTH+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Receiver disabled  
VTH- < VID < VTH+  
VID < VTH-  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
版权 © 2017–2018, Texas Instruments Incorporated  
17  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The THVD15xx family consists of half-duplex and full-duplex RS-485 transceivers commonly used for  
asynchronous data transmissions. For half-duplex devices, the driver and receiver enable pins allow for the  
configuration of different operating modes. Full-duplex implementation requires two signal pairs (four wires), and  
allows each node to transmit data on one pair while simultaneously receiving data on the other pair.  
10.2 Typical Application  
An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, generally allows for higher data rates  
over longer cable length.  
R
R
R
R
A
B
A
B
RE  
RE  
R
R
T
T
DE  
D
DE  
D
D
D
A
B
A
B
R
R
R
R
D
D
D
D
RE DE  
RE DE  
22. Typical RS-485 Network With Half-Duplex Transceivers  
Y
Z
A
B
R
D
R
R
R
R
R
R
T
T
T
T
DE  
RE  
Master  
R
Slave  
D
RE  
D
DE  
D
B
A
Z
Y
A
B
Z
Y
R
Slave  
D
R RE DE D  
23. Typical RS-485 Network With Full-Duplex Transceivers  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Application (接下页)  
10.2.1 Design Requirements  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
10.2.1.1 Data Rate and Bus Length  
There is an inverse relationship between data rate and cable length, which means the higher the data rate, the  
shorter the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485  
systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at  
distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or  
10%.  
10000  
5%, 10%, and 20% Jitter  
1000  
Conservative  
Characteristics  
100  
10  
100  
1k  
10k  
100 k  
1M  
10M  
100 M  
Data Rate (bps)  
24. Cable Length vs Data Rate Characteristic  
Even higher data rates are achievable (that is, 50 Mbps for the THVD1550, THVD1551 and THVD1552) in cases  
where the interconnect is short enough (or has suitably low attenuation at signal frequencies) to not degrade the  
data.  
10.2.1.2 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce  
reflections of varying phase as the length of the stub increases. As a general guideline, the electrical length, or  
round-trip delay, of a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum  
physical stub length as shown in 公式 1.  
L(STUB) 0.1 × tr × v × c  
where  
tr is the 10/90 rise time of the driver  
c is the speed of light (3 × 108 m/s)  
v is the signal velocity of the cable or trace as a factor of c  
(1)  
10.2.1.3 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to drive 32 unit loads (UL), where 1 unit load  
represents a load impedance of approximately 12 k. Because the THVD15xx family consists of 1/8 UL  
transceivers, connecting up to 256 receivers to the bus is possible.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
10.2.1.4 Receiver Failsafe  
The differential receivers of the THVD15xx family are failsafe to invalid bus states caused by the following:  
Open bus conditions, such as a disconnected connector  
Shorted bus conditions, such as cable damage shorting the twisted-pair together  
Idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the differential receiver will output a failsafe logic high state so that the output of the  
receiver is not indeterminate.  
Receiver failsafe is accomplished by offsetting the receiver thresholds such that the input indeterminate range  
does not include zero volts differential. In order to comply with the RS-422 and RS-485 standards, the receiver  
output must output a high when the differential input VID is more positive than 200 mV, and must output a low  
when VID is more negative than –200 mV. The receiver parameters which determine the failsafe performance are  
VTH+, VTH–, and VHYS (the separation between VTH+ and VTH–). As shown in the Electrical Characteristics table,  
differential signals more negative than –200 mV will always cause a low receiver output, and differential signals  
more positive than 200 mV will always cause a high receiver output.  
When the differential input signal is close to zero, it is still above the VTH+ threshold, and the receiver output will  
be high. Only when the differential input is more than VHYS below VTH+ will the receiver output transition to a low  
state. Therefore, the noise immunity of the receiver inputs during a bus fault conditions includes the receiver  
hysteresis value, Vhys, as well as the value of VTH+  
.
20  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Application (接下页)  
10.2.1.5 Transient Protection  
The bus pins of the THVD15xx transceiver family include on-chip ESD protection against ±30-kV HBM and ±18-  
kV IEC 61000-4-2 contact discharge. The International Electrotechnical Commission (IEC) ESD test is far more  
severe than the HBM ESD test. The 50% higher charge capacitance, C(S), and 78% lower discharge resistance,  
R(D), of the IEC model produce significantly higher discharge currents than the HBM model. As stated in the IEC  
61000-4-2 standard, contact discharge is the preferred transient protection test method.  
R(C)  
R(D)  
40  
35  
30  
25  
20  
15  
10  
5
50 M  
(1 M)  
330 Ω  
10-kV IEC  
(1.5 kΩ)  
Device  
Under  
Test  
High-Voltage  
Pulse  
Generator  
150 pF  
(100 pF)  
C(S)  
10-kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time (ns)  
25. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment. Common  
discharge events occur because of human contact with connectors and cables. Designers may choose to  
implement protection against longer duration transients, typically referred to as surge transients.  
EFTs are generally caused by relay-contact bounce or the interruption of inductive loads. Surge transients often  
result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the  
switching of power systems, including load changes and short circuit switching. These transients are often  
encountered in industrial environments, such as factory automation and power-grid systems.  
26 compares the pulse power of the EFT and surge transients with the power caused by an IEC ESD  
transient. The left-hand diagram shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT  
transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are  
representative of events that may occur in factory environments in industrial and process automation.  
The right-hand diagram shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge  
transient. 6-kV surge transients are most likely to occur in power generation and power-grid systems.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6-kV Surge  
22  
20  
18  
16  
14  
12  
10  
8
0.5-kV Surge  
4-kV EFT  
6
4
2
0.5-kV Surge  
10-kV ESD  
0
0
5
10 15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40  
Time (µs)  
Time (µs)  
26. Power Comparison of ESD, EFT, and Surge Transients  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
 
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
In the case of surge transients, high-energy content is characterized by long pulse duration and slow decaying  
pulse power. The electrical energy of a transient that is dumped into the internal protection cells of a transceiver  
is converted into thermal energy, which heats and destroys the protection cells, thus destroying the transceiver.  
27 shows the large differences in transient energies for single ESD, EFT, surge transients, and an EFT pulse  
train that is commonly applied during compliance testing.  
1000  
100  
Surge  
10  
1
EFT Pulse Train  
0.1  
0.01  
EFT  
10-3  
10-4  
ESD  
10-5  
10-6  
0.5  
1
2
4
6
8 10  
15  
Peak Pulse Voltage (kV)  
27. Comparison of Transient Energies  
10.2.2 Detailed Design Procedure  
28 and 29 suggest a protection circuit against 1 kV surge (IEC 61000-4-5) transients. 7 shows the  
associated bill of materials.  
5V  
100nF  
100nF  
10k  
V
CC  
R1  
R
RxD  
TVS  
RE  
DE  
D
A
B
MCU/  
UART  
DIR  
TxD  
R2  
10k  
GND  
28. Transient Protection Against Surge Transients for Half-Duplex Devices  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Application (接下页)  
5V  
100nF  
R1  
10k  
V
CC  
TVS  
A
B
R
RxD  
DIR  
RE  
R2  
R1  
MCU/  
UART  
DE  
D
DIR  
TxD  
TVS  
Z
Y
10k  
GND  
R2  
29. Transient Protection Against Surge Transients for Full-Duplex Devices  
7. Bill of Materials  
DEVICE  
XCVR  
R1  
FUNCTION  
ORDER NUMBER  
MANUFACTURER  
5-V, RS-485 transceiver  
THVD15xx  
TI  
10-Ω, pulse-proof thick-film resistor  
CRCW0603010RJNEAHP  
CDSOT23-SM712  
Vishay  
Bourns  
R2  
TVS  
Bidirectional 400-W transient suppressor  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
10.2.3 Application Curves  
500 kbps  
50 Mbps  
31. THVD1550 Waveforms with 60-Ω Termination  
30. THVD1510 Waveforms with 60-Ω Termination  
11 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a 100  
nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage ripple  
present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and  
inductance of the PCB power planes.  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
12 Layout  
12.1 Layout Guidelines  
Robust and reliable bus node design often requires the use of external transient protection devices in order to  
protect against surge transients that may occur in industrial environments. Since these transients have a wide  
frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be  
applied during PCB design.  
1. Place the protection circuitry close to the bus connector to prevent noise transients from propagating across  
the board.  
2. Use VCC and ground planes to provide low inductance. Note that high-frequency currents tend to follow the  
path of least impedance and not the path of least resistance.  
3. Design the protection components into the direction of the signal path. Do not force the transient currents to  
divert from the signal path to reach the protection device.  
4. Apply 100-nF to 220-nF decoupling capacitors as close as possible to the VCC pins of transceiver, UART  
and/or controller ICs on the board.  
5. Use at least two vias for VCC and ground connections of decoupling capacitors and protection devices to  
minimize effective via inductance.  
6. Use 1-kΩ to 10-kΩ pullup and pulldown resistors for enable lines to limit noise currents in these lines during  
transient events.  
7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified  
maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the  
transceiver and prevent it from latching up.  
8. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide  
varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient  
blocking units (TBUs) that limit transient current to less than 1 mA.  
12.2 Layout Example  
5
Via to ground  
C
Via to VCC  
4
R
6
6
R
R
1
R
MCU  
5
TVS  
THVD15x0  
5
32. Half-Duplex Layout Example  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.2 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
8. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
THVD1510  
THVD1512  
THVD1550  
THVD1551  
THVD1552  
13.4 接收文档更新通知  
要接收文档更新通知,请转至 TI.com.cn 上您的器件的产品文件夹。请在右上角单击通知我 按钮进行注册,即可收  
到产品信息更改每周摘要(如有)。有关更改的详细信息,请查看任意已修订文档的修订历史记录。  
13.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.6 商标  
E2E is a trademark of Texas Instruments.  
13.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SOIC  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/B 04/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/B 04/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/B 04/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
TYP  
4.75  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
www.ti.com.cn  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
10  
SYMM  
6
5
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
THVD1510, THVD1512  
THVD1550, THVD1551, THVD1552  
ZHCSGQ1C SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
1
10  
SYMM  
8X (0.5)  
6
5
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THVD1510D  
THVD1510DGK  
THVD1510DGKR  
THVD1510DR  
THVD1512DGS  
THVD1512DGSR  
THVD1550D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
8
8
75  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
VD1510  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
DGK  
DGK  
D
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
1510  
8
2500 RoHS & Green  
2500 RoHS & Green  
1510  
8
VD1510  
1512  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
10  
10  
8
80  
RoHS & Green  
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
2500 RoHS & Green  
1512  
75  
80  
RoHS & Green  
RoHS & Green  
VD1550  
1550  
THVD1550DGK  
THVD1550DGKR  
THVD1550DR  
THVD1551DGK  
THVD1551DGKR  
THVD1552D  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
8
2500 RoHS & Green  
2500 RoHS & Green  
1550  
8
VD1550  
1551  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
80  
RoHS & Green  
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
8
2500 RoHS & Green  
1551  
14  
10  
10  
14  
50  
80  
RoHS & Green  
RoHS & Green  
1552  
THVD1552DGS  
THVD1552DGSR  
THVD1552DR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
1552  
2500 RoHS & Green  
2500 RoHS & Green  
1552  
1552  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Feb-2023  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THVD1510DGKR  
THVD1510DGKR  
THVD1510DR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
5.3  
5.3  
6.4  
5.3  
5.3  
6.4  
5.3  
5.3  
5.3  
6.5  
3.4  
3.4  
5.2  
3.4  
3.4  
5.2  
3.4  
3.4  
3.4  
9.0  
1.4  
1.4  
2.1  
1.4  
1.4  
2.1  
1.4  
1.4  
1.4  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8
THVD1512DGSR  
THVD1550DGKR  
THVD1550DR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGK  
D
10  
8
8
THVD1551DGKR  
THVD1552DGSR  
THVD1552DGSR  
THVD1552DR  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGS  
DGS  
D
8
10  
10  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THVD1510DGKR  
THVD1510DGKR  
THVD1510DR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
366.0  
364.0  
340.5  
366.0  
364.0  
340.5  
364.0  
366.0  
364.0  
340.5  
364.0  
364.0  
336.1  
364.0  
364.0  
336.1  
364.0  
364.0  
364.0  
336.1  
50.0  
27.0  
25.0  
50.0  
27.0  
25.0  
27.0  
50.0  
27.0  
32.0  
8
THVD1512DGSR  
THVD1550DGKR  
THVD1550DR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGK  
D
10  
8
8
THVD1551DGKR  
THVD1552DGSR  
THVD1552DGSR  
THVD1552DR  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGS  
DGS  
D
8
10  
10  
14  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
THVD1510D  
THVD1510DGK  
THVD1512DGS  
THVD1550D  
D
SOIC  
VSSOP  
VSSOP  
SOIC  
8
8
75  
80  
80  
75  
80  
80  
50  
80  
507  
330  
330  
507  
330  
274  
507  
330  
8
3940  
500  
4.32  
2.88  
2.88  
4.32  
2.88  
2.88  
4.32  
2.88  
DGK  
DGS  
D
6.55  
6.55  
8
10  
8
500  
3940  
500  
THVD1550DGK  
THVD1551DGK  
THVD1552D  
DGK  
DGK  
D
VSSOP  
VSSOP  
SOIC  
8
6.55  
6.55  
8
8
500  
14  
10  
3940  
500  
THVD1552DGS  
DGS  
VSSOP  
6.55  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

THVD1552DGS 相关器件

型号 制造商 描述 价格 文档
THVD1552DGSR TI 具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGS | 10 | -40 to 125 获取价格
THVD1552DR TI 具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | D | 14 | -40 to 125 获取价格
THVD2410 TI 具有 IEC ESD 保护功能的 3.3V 至 5V、RS-485 ±70V 故障保护收发器 获取价格
THVD2410DGKR TI 具有 IEC ESD 保护功能的 3.3V 至 5V、RS-485 ±70V 故障保护收发器 | DGK | 8 | -40 to 125 获取价格
THVD2410DR TI 具有 IEC ESD 保护功能的 3.3V 至 5V、RS-485 ±70V 故障保护收发器 | D | 8 | -40 to 125 获取价格
THVD2410DRBR TI 具有 IEC ESD 保护功能的 3.3V 至 5V、RS-485 ±70V 故障保护收发器 | DRB | 8 | -40 to 125 获取价格
THVD2410V TI 具有灵活 IO 和 70V 总线故障保护功能的 3V 至 5.5V、1Mbps、半双工 RS-485 收发器 获取价格
THVD2410V-EP TI 具有灵活 IO 和 70V 总线故障保护功能的增强型产品 3V 至 5.5V、1Mbps、半双工 RS-485 收发器 获取价格
THVD2410VDRCR TI 具有灵活 IO 和 70V 总线故障保护功能的 3V 至 5.5V、1Mbps、半双工 RS-485 收发器 | DRC | 10 | -40 to 125 获取价格
THVD2412 TI 具有 IEC ESD 和 ±70V 故障保护功能的 3.3V 至 5V、250Kbps、全双工 RS-485 收发器 获取价格

THVD1552DGS 相关文章

  • HARTING(浩亭)圆形连接器产品选型手册
    2024-10-31
    6
  • HYCON(宏康科技)产品选型手册
    2024-10-31
    6
  • GREEGOO整流二极管和晶闸管产品选型手册
    2024-10-31
    7
  • 西门子豪掷106亿美元,战略收购工程软件巨头Altair
    2024-10-31
    8