TL054CDBRG4 [TI]

QUAD OP-AMP, 7700uV OFFSET-MAX, 2.7MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, SSOP-14;
TL054CDBRG4
型号: TL054CDBRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUAD OP-AMP, 7700uV OFFSET-MAX, 2.7MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, SSOP-14

放大器 光电二极管
文件: 总68页 (文件大小:1923K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A – FEBRUARY 1997 - REVISED FEBRUARY 2003  
Direct Upgrades to TL07x and TL08x BiFET  
Operational Amplifiers  
On-Chip Offset-Voltage Trimming for  
Improved DC Performance and Precision  
Grades Are Available (1.5 mV, TL051A)  
Faster Slew Rate (20 V/µs Typ) Without  
Increased Power Consumption  
TL051  
D OR P PACKAGE  
(TOP VIEW)  
TL052  
D, P, OR PS PACKAGE  
(TOP VIEW)  
TL054  
D, DB, N, OR NS PACKAGE  
(TOP VIEW)  
1OUT  
1IN–  
1IN+  
4OUT  
4IN–  
4IN+  
OFFSET N1  
IN–  
NC  
V
OUT  
1OUT  
1IN–  
1IN+  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CC+  
2OUT  
2IN–  
2IN+  
CC+  
IN+  
V
V
V
OFFSET N2  
V
CC+  
CC–  
CC–  
CC–  
2IN+  
2IN–  
2OUT  
3IN+  
3IN–  
3OUT  
8
description/ordering information  
The TL05x series of JFET-input operational amplifiers offers improved dc and ac characteristics over the TL07x  
and TL08x families of BiFET operational amplifiers. On-chip Zener trimming of offset voltage yields precision  
grades as low as 1.5 mV (TL051A) for greater accuracy in dc-coupled applications. Texas Instruments improved  
BiFET process and optimized designs also yield improved bandwidth and slew rate without increased power  
consumption. The TL05x devices are pin-compatible with the TL07x and TL08x and can be used to upgrade  
existing circuits or for optimal performance in new designs.  
BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors, without  
sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with  
high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than  
bipolar or CMOS devices having comparable power consumption.  
The TL05x family was designed to offer higher precision and better ac response than the TL08x, with the low  
noise floor of the TL07x. Designers requiring significantly faster ac response or ensured lower noise should  
consider the Excalibur TLE208x and TLE207x families of BiFET operational amplifiers.  
Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to  
observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing  
of the input signal is required, and loads should be terminated to a virtual-ground node at mid-supply. Texas  
Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single  
supplies.  
The TL05x are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply systems,  
Texas Instruments LinCMOS families of operational amplifiers (TLC-prefix) are recommended. When moving  
from BiFET to CMOS amplifiers, particular attention should be paid to the slew rate and bandwidth  
requirements, and also the output loading.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2003, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
ORDERING INFORMATION  
V
max  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
IO  
PACKAGE  
T
A
AT 25°C  
TL051ACP  
TL051ACP  
PDIP (P)  
SOIC (D)  
Tube of 50  
TL052ACP  
TL051ACD  
TL052ACD  
TL052ACDR  
TL051CP  
TL052ACP  
051AC  
800 µV  
Tube of 75  
Tube of 75  
Reel of 2500  
052AC  
TL051CP  
TL052CP  
TL054ACN  
PDIP (P)  
PDIP (N)  
Tube of 50  
TL052CP  
Tube of 25  
Tube of 75  
Reel of 2500  
Tube of 75  
Reel of 2500  
Tube of 50  
Reel of 2500  
Reel of 2000  
Reel of 2000  
Tube of 25  
Tube of 50  
Reel of 2500  
Reel of 2000  
Tube of 50  
Tube of 75  
Reel of 2500  
Tube of 25  
TL054ACN  
TL051CD  
TL051CDR  
TL052CD  
TL052CDR  
TL054ACD  
TL054ACDR  
TL052CPSR  
TL054CDBR  
TL054CN  
TL054CD  
TL054CDR  
TL054CNSR  
TL052AIP  
TL052AID  
TL052AIDR  
TL054AIN  
TL051IP  
TL051C  
TL052C  
TL054C  
0°C to 70°C  
1.5 mV  
SOIC (D)  
SOP (PS)  
SSOP (DB)  
PDIP (N)  
TL052  
TL054  
TL054CN  
4 mV  
SOIC (D)  
TL054C  
SOP (NS)  
PDIP (P)  
TL054  
TL052AI  
800 µV  
SOIC (D)  
PDIP (N)  
PDIP (P)  
052AI  
TL054AIN  
TL051IP  
TL052IP  
TL051I  
Tube of 50  
TL052IP  
Tube of 75  
Tube of 75  
Reel of 2500  
Tube of 50  
Reel of 2500  
Tube of 25  
Tube of 50  
Reel of 2500  
TL051ID  
40°C to 85°C  
1.5 mV  
TL052ID  
TL052I  
SOIC (D)  
TL052IDR  
TL054AID  
TL054AIDR  
TL054IN  
TL054AI  
TL054IN  
TL054I  
PDIP (N)  
SOIC (D)  
4 mV  
TL054ID  
TL054IDR  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
symbol (each amplifier)  
IN–  
OUT  
+
IN+  
equivalent schematic (each amplifier)  
V
CC+  
Q10  
Q2  
Q3  
Q15  
Q16  
JF3  
Q7  
Q6  
Q11  
Q13  
R7  
IN+  
Q12  
D1  
R9  
OUT  
IN–  
R5  
JF1  
JF2  
R8  
C1  
Q4  
Q17  
Q14  
Q8  
Q1  
Q9  
Q5  
OFFSET N1  
R10  
D2  
See Note A  
OFFSET N2  
R4  
R6  
R1  
R2  
R3  
V
CC–  
NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL051x.  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
Transistors  
TL051  
TL052  
TL054  
20  
10  
2
34  
19  
3
62  
37  
5
Resistors  
Diodes  
Capacitors  
1
2
4
Thesefigures include all four amplifiers and all ESD, bias, and trim circuitry.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
CC+  
CC–  
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V  
Input voltage range, V (any input, see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15 V  
I
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±80 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA  
CC+  
CC–  
Total current out of V  
Duration of short-circuit current at (or below) 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Package thermal impedance, θ (see Notes 4 and 5): D package (8 pin) . . . . . . . . . . . . . . . . . . . . . . 97°C/W  
JA  
D package (14 pin) . . . . . . . . . . . . . . . . . . . . . 86°C/W  
DB package (14 pin) . . . . . . . . . . . . . . . . . . . 96°C/W  
N package (14 pin) . . . . . . . . . . . . . . . . . . . . . 80°C/W  
NS package (14 pin) . . . . . . . . . . . . . . . . . . . 76°C/W  
P package (8 pin) . . . . . . . . . . . . . . . . . . . . . . 85°C/W  
PS package (8 pin) . . . . . . . . . . . . . . . . . . . . 95°C/W  
Operating virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Lead temperature 1,6 mm (1/16inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V  
CC+  
CC.  
2. Differential voltages are at IN+ with respect to IN.  
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.  
4. Maximum power dissipation is a function of T (max), θ , and T . The maximum allowable power dissipation at any allowable  
J
JA  
A
ambient temperature is P = (T (max) T )/θ . Operating at the absolute maximum T of 150°C can impact reliability.  
D
J
A
JA  
J
5. The package thermal impedance is calculated in accordance with JESD 51-7.  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
UNIT  
V
MIN  
±5  
MAX  
MIN  
±5  
MAX  
V
V
Supply voltage  
±15  
4
±15  
4
CC±  
V
CC±  
V
CC±  
= ±5 V  
1  
1  
Common-mode input voltage  
Operating free-air temperature  
V
IC  
= ±15 V  
11  
0
11  
70  
11  
40  
11  
85  
T
A
°C  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL051C and TL051AC electrical characteristics at specified free-air temperature  
TL051C, TL051AC  
= ±5 V  
PARAMETER  
TEST CONDITIONS  
T
A
V
V
= ±15 V  
UNIT  
CC±  
TYP  
CC±  
MIN  
MIN  
MAX  
3.5  
TYP  
MAX  
25°C  
Full range  
25°C  
0.75  
0.59  
1.5  
2.5  
0.8  
1.8  
TL051C  
4.5  
V
IO  
Input offset voltage  
Temperature coefficient  
mV  
0.55  
2.8  
0.35  
TL051AC  
Full range  
3.8  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
IC  
S
25°C to  
70°C  
TL051C  
8
8
8
8
µV/°C  
V
IO  
of input offset voltage  
25°C to  
70°C  
TL051AC  
25  
Input offset-voltage  
long-term drift  
25°C  
0.04  
0.04  
µV/mo  
§
25°C  
70°C  
25°C  
70°C  
4
0.02  
20  
100  
1
5
0.025  
30  
100  
1
pA  
nA  
pA  
nA  
V
= 0,  
V
V
= 0,  
= 0,  
O
IC  
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
200  
4
200  
4
V
O
= 0,  
IC  
IB  
See Figure 5  
0.15  
0.2  
1  
to  
4
2.3  
to  
5.6  
11 12.3  
25°C  
to  
to  
11  
15.6  
Common-mode input  
voltage range  
V
V
V
ICR  
1  
to  
4
11  
to  
11  
Full range  
25°C  
Full range  
25°C  
3
3
4.2  
3.8  
13  
13  
13.9  
12.7  
R
R
R
R
= 10 kΩ  
= 2 kΩ  
= 10 kΩ  
= 2 kΩ  
L
L
L
L
Maximum positive peak  
output voltage swing  
V
OM+  
2.5  
2.5  
2.5  
2.5  
2.3  
2.3  
25  
11.5  
11.5  
Full range  
25°C  
3.5  
3.2  
12 13.2  
12  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
V
A
V
OM–  
11  
11  
50  
12  
Full range  
25°C  
59  
65  
46  
105  
129  
85  
Large-signal differential  
R
= 2 kΩ  
V/mV  
0°C  
30  
60  
VD  
L
voltage amplification  
70°C  
20  
30  
12  
10  
12  
10  
r
Input resistance  
25°C  
i
c
Input capacitance  
25°C  
10  
85  
84  
84  
99  
98  
97  
12  
93  
92  
91  
99  
98  
97  
pF  
i
25°C  
65  
65  
65  
75  
75  
75  
75  
75  
75  
75  
75  
75  
Common-mode  
rejection ratio  
V
V
= V  
= 0,  
min,  
IC  
O
ICR  
CMRR  
dB  
dB  
0°C  
R
R
= 50 Ω  
= 50 Ω  
S
S
70°C  
25°C  
Supply-voltage rejection  
ratio (V /V  
k
V
= 0,  
= 0,  
0°C  
SVR  
O
O
)
CC± IO  
70°C  
25°C  
2.6  
2.7  
2.6  
3.2  
3.2  
3.2  
2.7  
2.8  
2.7  
3.2  
3.2  
3.2  
0°C  
I
Supply current  
V
No load  
mA  
CC  
70°C  
Full range is 0°C to 70°C.  
§
This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing  
on testing or nontesting of other parameters.  
Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at T = 150°C, extrapolated to  
A
T
For V  
= 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.  
A
= ±5 V, V = ±2.3 V, or for V  
CC±  
= ±15 V, V = ±10 V.  
CC±  
O
O
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL051C and TL051AC operating characteristics at specified free-air temperature  
TL051C, TL051AC  
PARAMETER  
TEST CONDITIONS  
T
V
= ±5 V  
V
= ±15 V  
UNIT  
A
CC±  
TYP  
16  
CC±  
MIN  
MAX  
MIN  
TYP  
MAX  
25°C  
13  
20  
Positive slew rate  
SR+  
Full  
range  
at unity gain  
16.4  
15  
11  
13  
11  
22.6  
18  
R
= 2 k,  
C = 100 pF,  
L
L
V/µs  
See Figure 1  
25°C  
Negative slew rate  
SR–  
Full  
range  
at unity gain  
16  
19.3  
25°C  
0°C  
55  
54  
63  
55  
54  
62  
24  
24  
24  
75  
18  
56  
55  
63  
57  
56  
64  
19  
19  
19  
75  
18  
t
Rise time  
r
f
70°C  
25°C  
0°C  
ns  
%
V
R
C
= ±10 mV,  
= 2 k,  
= 100 pF,  
I(PP)  
L
L
t
Fall time  
70°C  
25°C  
0°C  
See Figures 1 and 2  
Overshoot factor  
70°C  
25°C  
25°C  
f = 10 Hz  
Equivalent input noise  
V
nV/Hz  
µV  
n
§
voltage  
R
= 20 Ω,  
f = 1 kHz  
30  
S
See Figure 3  
Peak-to-peak equivalent  
input noise voltage  
f = 10 Hz to  
10 kHz  
V
25°C  
25°C  
25°C  
4
0.01  
0.003  
4
0.01  
0.003  
N(PP)  
Equivalent input  
noise current  
I
n
f = 1 kHz  
pA/Hz  
%
R
= 1 k,  
R
R
= 2 k,  
= 2 k,  
S
L
L
THD  
Total harmonic distortion  
f = 1 kHz  
25°C  
0°C  
3
3.2  
2.7  
59  
3.1  
3.3  
2.8  
62  
V = 10 mV,  
I
B
Unity-gain bandwidth  
MHz  
deg  
1
C
= 25 pF,  
See Figure 4  
L
70°C  
25°C  
0°C  
Phase margin at unity  
gain  
V = 10 mV,  
R = 2 k,  
L
See Figure 4  
I
φ
58  
62  
m
C
= 25 pF,  
L
70°C  
59  
62  
§
Full range is 0°C to 70°C.  
For V = ±5 V, V  
= ±1 V; for V  
= ±15 V, V  
= ±5 V.  
I(PP)  
CC±  
I(PP)  
CC±  
This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing  
on testing or nontesting of other parameters.  
For V  
= ±5 V, V  
= 1 V; for V  
= ±15 V, V  
= 6 V.  
O(RMS)  
CC±  
O(RMS)  
CC±  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL051I and TL051AI electrical characteristics at specified free-air temperature  
TL051I, TL051AI  
= ±5 V  
PARAMETER  
TEST CONDITIONS  
V
V
= ±15 V  
UNIT  
T
A
CC±  
TYP  
CC±  
MIN  
MIN  
MAX  
3.5  
TYP  
MAX  
25°C  
Full range  
25°C  
0.75  
0.59  
1.5  
3.3  
0.8  
2.6  
TL051I  
5.3  
V
IO  
Input offset voltage  
mV  
0.55  
2.8  
0.35  
TL051AI  
Full range  
4.6  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
IC  
S
25°C to  
85°C  
TL051I  
7
8
8
8
Temperature coefficient of  
input offset voltage  
µV/°C  
V
IO  
25°C to  
85°C  
TL051AI  
25  
Input offset-voltage  
long-term drift  
25°C  
0.04  
0.04  
µV/mo  
§
25°C  
85°C  
25°C  
85°C  
4
0.06  
20  
100  
10  
5
0.07  
30  
100  
10  
pA  
nA  
pA  
nA  
V
= 0,  
V
V
= 0,  
= 0,  
O
IC  
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
200  
20  
200  
20  
V
O
= 0,  
IC  
IB  
See Figure 5  
0.6  
0.7  
1  
to  
4
2.3  
to  
5.6  
11 12.3  
25°C  
to  
to  
11  
15.6  
Common-mode input  
voltage range  
V
V
V
ICR  
1  
to  
4
11  
to  
11  
Full range  
25°C  
Full range  
25°C  
3
3
4.2  
3.8  
13  
13  
13.9  
12.7  
R
R
R
R
= 10 kΩ  
= 2 kΩ  
= 10 kΩ  
= 2 kΩ  
L
L
L
L
Maximum positive peak  
output voltage swing  
V
V
OM +  
2.5  
2.5  
2.5  
2.5  
2.3  
2.3  
25  
11.5  
11.5  
Full range  
25°C  
3.5  
3.2  
12 13.2  
12  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
V
OM –  
11  
11  
50  
12  
Full range  
25°C  
59  
74  
43  
105  
145  
76  
Large-signal differential  
A
VD  
R
= 2 kΩ  
40°C  
85°C  
30  
60  
V/mV  
L
voltage amplification  
20  
30  
12  
10  
12  
10  
r
Input resistance  
25°C  
i
c
Input capacitance  
25°C  
10  
85  
83  
84  
99  
98  
99  
2.6  
2.4  
2.5  
12  
93  
90  
93  
99  
98  
99  
2.7  
2.6  
2.6  
pF  
i
25°C  
65  
65  
65  
75  
75  
75  
75  
75  
75  
75  
75  
75  
V
V
R
= V  
= 0,  
= 50 Ω  
min,  
ICR  
IC  
O
S
Common-mode  
rejection ratio  
CMRR  
40°C  
85°C  
dB  
dB  
25°C  
Supply-voltage rejection  
ratio (V /V  
V
R
= 0,  
= 50 Ω  
O
k
40°C  
85°C  
SVR  
)
CC± IO  
S
25°C  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
I
Supply current  
V
O
= 0,  
No load  
40°C  
85°C  
mA  
CC  
Full range is 40°C to 85°C  
§
This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing  
on testing or nontesting of other parameters.  
Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at T = 150°C, extrapolated to  
A
T
For V  
= 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.  
A
= ±5 V, V = ±2.3 V, or for V  
CC±  
= ±15 V, V = ±10 V.  
CC±  
O
O
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL051I and TL051AI operating characteristics at specified free-air temperature  
TL051I, TL051AI  
PARAMETER  
TEST CONDITIONS  
T
A
V
= ±5 V  
CC±  
TYP  
V
= ±15 V  
UNIT  
CC±  
MIN TYP  
MIN  
MAX  
MAX  
25°C  
16  
13  
11  
13  
11  
20  
Positive slew rate  
at unity gain  
SR+  
Full  
range  
R
= 2 k,  
C = 100 pF,  
L
L
V/µs  
See Figure 1  
25°C  
15  
18  
Negative slew rate  
SR–  
Full  
range  
at unity gain  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
25°C  
25°C  
55  
52  
64  
55  
51  
64  
24  
24  
24  
75  
18  
56  
53  
65  
57  
53  
65  
19  
19  
19  
75  
18  
t
Rise time  
r
f
ns  
%
V
R
C
= ±10 mV,  
= 2 k,  
= 100 pF,  
I(PP)  
L
L
t
Fall time  
See Figures 1 and 2  
Overshoot factor  
f = 10 Hz  
Equivalent input noise  
V
V
nV/Hz  
µV  
n
§
voltage  
R
= 20 Ω,  
f = 1 kHz  
30  
S
See Figure 3  
Peak-to-peak equivalent  
input noise voltage  
f = 10 Hz to  
10 kHz  
25°C  
25°C  
25°C  
4
4
0.01  
N(PP)  
Equivalent input  
noise current  
I
n
f = 1 kHz  
0.01  
pA/Hz  
%
R
= 1 k,  
R
R
= 2 k,  
= 2 k,  
S
L
L
THD  
Total harmonic distortion  
0.003  
0.003  
f = 1 kHz  
25°C  
40°C  
85°C  
3
3.5  
2.6  
59  
3.1  
3.6  
2.7  
62  
V = 10 mV,  
I
B
Unity-gain bandwidth  
MHz  
deg  
1
C
= 25 pF,  
See Figure 4  
L
25°C  
Phase margin at unity  
gain  
V = 10 mV,  
R = 2 k,  
L
See Figure 4  
I
φ
40°C  
85°C  
58  
61  
m
C
= 25 pF,  
L
59  
62  
§
Full range is 40°C to 85°C.  
For V = ±5 V, V = ±1 V; for V  
This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing  
on testing or nontesting of other parameters.  
= ±15 V, V = ±5 V.  
I(PP)  
CC±  
I(PP)  
CC±  
For V  
= ±5 V, V  
= 1 V; for V  
= ±15 V, V  
= 6 V.  
O(RMS)  
CC±  
O(RMS)  
CC±  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL052C and TL052AC electrical characteristics at specified free-air temperature  
TL052C, TL052AC  
= ±5 V  
PARAMETER  
TEST CONDITIONS  
V
V
= ±15 V  
UNIT  
T
A
CC±  
TYP  
CC±  
MIN  
MIN  
MAX  
3.5  
TYP  
MAX  
25°C  
Full range  
25°C  
0.73  
0.65  
1.5  
2.5  
0.8  
1.8  
TL052C  
4.5  
V
IO  
Input offset voltage  
mV  
0.51  
2.8  
0.4  
TL052AC  
TL052C  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
IC  
S
Full range  
3.8  
25°C to  
70°C  
8
8
8
6
Temperature coefficient  
of input offset voltage  
µV/°C  
V
IO  
25°C to  
70°C  
TL052AC  
25  
V
R
= 0,  
= 50 Ω  
Input offset-voltage  
long-term drift  
O
S
V
IC  
V
IC  
V
IC  
= 0,  
= 0,  
= 0,  
25°C  
0.04  
0.04  
µV/mo  
§
25°C  
70°C  
25°C  
70°C  
4
0.02  
20  
100  
1
5
0.025  
30  
100  
1
pA  
nA  
pA  
nA  
V
O
= 0,  
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
200  
4
200  
4
V
O
= 0,  
IB  
See Figure 5  
0.15  
0.2  
1  
to  
4
2.3  
to  
5.6  
11 12.3  
25°C  
to  
to  
11  
15.6  
Common-mode input  
voltage range  
V
V
V
ICR  
1  
to  
4
11  
to  
11  
Full range  
25°C  
Full range  
25°C  
3
3
4.2  
3.8  
13  
13  
13.9  
12.7  
R
R
R
R
= 10 kΩ  
= 2 kΩ  
= 10 kΩ  
= 2 kΩ  
L
L
L
L
Maximum positive peak  
output voltage swing  
V
V
OM+  
2.5  
2.5  
2.5  
2.5  
2.3  
2.3  
25  
11.5  
11.5  
Full range  
25°C  
3.5  
3.2  
12 13.2  
12  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
V
OM–  
11  
11  
50  
12  
Full range  
25°C  
59  
65  
46  
105  
129  
Large-signal differential  
A
VD  
R
= 2 kΩ  
0°C  
30  
60  
V/mV  
L
voltage amplification  
70°C  
20  
30  
85  
12  
12  
10  
r
Input resistance  
25°C  
10  
i
c
Input capacitance  
25°C  
10  
85  
84  
84  
12  
93  
92  
91  
pF  
i
25°C  
65  
65  
65  
75  
75  
75  
Common-mode  
rejection ratio  
V
IC  
V
O
= V  
= 0,  
min,  
ICR  
CMRR  
R
= 50 Ω  
0°C  
dB  
S
70°C  
Full range is 0°C to 70°C.  
This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing  
or nontesting of other parameters.  
§
Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at T = 150°C, extrapolated to  
A
T
For V  
= 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.  
A
= ±5 V, V = ±2.3 V; at V = ±15 V, V = ±10 V.  
CC± O  
CC±  
O
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL052C and TL052AC electrical characteristics at specified free-air temperature (continued)  
TL052C, TL052AC  
PARAMETER  
TEST CONDITIONS  
V
MIN  
75  
= ±5 V  
V
= ±15 V  
UNIT  
T
CC±  
TYP  
CC±  
A
MAX  
MIN  
75  
TYP  
99  
MAX  
25°C  
0°C  
99  
98  
Supply-voltage rejection  
k
V
= 0,  
= 0,  
R = 50 Ω  
S
75  
75  
98  
dB  
SVR  
O
ratio (V /V )  
CC±  
IO  
70°C  
25°C  
0°C  
75  
97  
75  
97  
4.6  
4.7  
4.4  
120  
5.6  
6.4  
6.4  
4.8  
4.8  
4.6  
120  
5.6  
6.4  
6.4  
Supply current  
(two amplifiers)  
I
V
A
No load  
mA  
dB  
CC  
O
70°C  
25°C  
V /V  
O1 O2  
Crosstalk attenuation  
= 100  
VD  
TL052C and TL052AC operating characteristics at specified free-air temperature  
TL052C, TL052AC  
PARAMETER  
TEST CONDITIONS  
V
= ±5 V  
V
= ±15 V  
UNIT  
T
A
CC±  
TYP  
CC±  
MIN  
MAX  
MIN  
9
TYP  
MAX  
25°C  
17.8  
15.4  
20.7  
SR+  
Slew rate at unity gain  
Negative slew rate  
R
= 2 kΩ,  
C
= 100 pF, Full range  
L
8
L
V/µs  
See Figure 1  
25°C  
Full range  
25°C  
9
17.8  
SR–  
at unity gain  
8
55  
54  
63  
55  
54  
62  
24  
24  
24  
71  
19  
56  
55  
63  
57  
56  
64  
19  
19  
19  
71  
19  
t
Rise time  
0°C  
r
f
70°C  
ns  
%
V
R
C
= ±10 mV,  
= 2 kΩ,  
25°C  
I(PP)  
L
L
t
Fall time  
0°C  
= 100 pF,  
See Figures 1 and 2  
70°C  
25°C  
0°C  
Overshoot factor  
70°C  
25°C  
25°C  
f = 10 Hz  
Equivalent input noise  
V
V
nV/Hz  
µV  
n
§
voltage  
R
= 20 ,  
f = 1 kHz  
30  
S
See Figure 3  
Peak-to-peak equivalent  
input noise current  
f = 10 Hz to  
10 kHz  
25°C  
25°C  
25°C  
4
0.01  
4
0.01  
N(PP)  
Equivalent input  
noise current  
I
n
f = 1 kHz  
pA/Hz  
%
R
= 1 k,  
f = 1 kHz  
R
R
= 2 k,  
= 2 k,  
S
L
L
THD  
Total harmonic distortion  
0.003  
0.003  
25°C  
0°C  
3
3.2  
2.6  
60  
3
3.2  
2.7  
63  
V = 10 mV,  
I
C
B
1
Unity-gain bandwidth  
MHz  
deg  
= 25 pF,  
See Figure 4  
L
70°C  
25°C  
0°C  
Phase margin at unity  
gain  
V = 10 mV,  
R = 2 k,  
L
See Figure 4  
I
C
φ
m
59  
63  
= 25 pF,  
L
70°C  
60  
63  
§
Full range is 0°C to 70°C.  
For V = ±5 V, V = ±1 V; for V  
This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing  
or nontesting of other parameters.  
= ±15 V, V = ±5 V.  
I(PP)  
CC±  
I(PP)  
CC±  
For V  
= ±5 V, V  
= 1 V; for V  
= ±15 V, V  
= 6 V.  
CC±  
O(RMS)  
CC±  
O(RMS)  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL052I and TL052AI electrical characteristics at specified free-air temperature  
TL052I, TL052AI  
= ±5 V  
PARAMETER  
TEST CONDITIONS  
V
V
= ±15 V  
UNIT  
T
A
CC±  
TYP  
CC±  
MIN  
MIN  
MAX  
3.5  
TYP  
MAX  
25°C  
Full range  
25°C  
0.73  
0.65  
1.5  
3.3  
0.8  
2.6  
TL052I  
5.3  
V
IO  
Input offset voltage  
mV  
0.51  
2.8  
0.4  
TL052AI  
V
V
R
= 0,  
O
IC  
S
Full range  
4.6  
= 0,  
25°C to  
85°C  
= 50 Ω  
TL052I  
7
6
6
6
µV/°C  
Temperature coefficient  
V
IO  
25°C to  
85°C  
TL052AI  
25  
V
R
= 0,  
= 50 Ω  
Input offset-voltage  
long-term drift  
O
S
V
V
= 0,  
= 0,  
25°C  
0.04  
0.04  
µV/mo  
IC  
§
25°C  
85°C  
25°C  
85°C  
4
0.06  
20  
100  
10  
5
0.07  
30  
100  
10  
pA  
nA  
pA  
nA  
V
O
= 0,  
IC  
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
200  
20  
200  
20  
V
O
= 0,  
V
IC  
= 0,  
IB  
See Figure 5  
0.6  
0.7  
1  
to  
4
2.3  
to  
5.6  
11 12.3  
25°C  
to  
to  
11  
15.6  
Common-mode input  
voltage range  
V
V
V
ICR  
1  
to  
4
11  
to  
11  
Full range  
25°C  
Full range  
25°C  
3
3
4.2  
3.8  
13  
13  
13.9  
12.7  
R
R
R
R
= 10 kΩ  
= 2 kΩ  
= 10 kΩ  
= 2 kΩ  
L
L
L
L
Maximum positive peak  
output voltage swing  
V
V
OM+  
2.5  
2.5  
2.5  
2.5  
2.3  
2.3  
25  
11.5  
11.5  
Full range  
25°C  
3.5  
3.2  
12 13.2  
12  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
V
OM–  
11  
11  
50  
12  
Full range  
25°C  
59  
74  
43  
105  
145  
76  
Large-signal differential  
A
VD  
R
= 2 kΩ  
40°C  
85°C  
30  
60  
V/mV  
L
voltage amplification  
20  
30  
12  
10  
12  
10  
r
Input resistance  
25°C  
i
c
Input capacitance  
25°C  
10  
85  
83  
84  
12  
93  
90  
93  
pF  
i
25°C  
65  
65  
65  
75  
75  
75  
Common-mode  
rejection ratio  
V
IC  
V
O
= V  
= 0,  
min,  
ICR  
CMRR  
R
= 50 Ω  
40°C  
85°C  
dB  
S
Full range is 40°C to 85°C.  
This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing  
or nontesting of other parameters  
§
Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at T = 150°C, extrapolated to  
A
T
= 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.  
A
At V  
CC±  
= ±5 V, V = ±2.3 V; at V = ±15 V, V = ±10 V.  
CC± O  
O
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL052I and TL052AI electrical characteristics at specified free-air temperature (continued)  
TL052I, TL052AI  
PARAMETER  
TEST CONDITIONS  
V
MIN  
75  
= ±5 V  
V
= ±15 V  
UNIT  
T
CC±  
TYP  
CC±  
A
MAX  
MIN  
75  
TYP  
99  
MAX  
25°C  
40°C  
85°C  
99  
98  
Supply-voltage rejection  
k
V
= 0,  
= 0,  
R = 50 Ω  
S
75  
75  
98  
dB  
SVR  
O
ratio (V /V )  
CC±  
IO  
75  
99  
75  
99  
25°C  
4.6  
4.5  
4.4  
120  
5.6  
6.4  
6.4  
4.8  
4.7  
4.6  
120  
5.6  
6.4  
6.4  
Supply current  
(two amplifiers)  
I
V
A
No load  
40°C  
85°C  
mA  
dB  
CC  
O
V /V  
O1 O2  
Crosstalk attenuation  
= 100  
25°C  
VD  
TL052I and TL052AI operating characteristics at specified free-air temperature  
TL052I, TL052AI  
PARAMETER  
TEST CONDITIONS  
V
= ±5 V  
V
= ±15 V  
UNIT  
T
A
CC±  
TYP  
CC±  
MIN  
MAX  
MIN  
9
TYP  
MAX  
25°C  
Full range  
25°C  
17.8  
15.4  
20.7  
SR+  
Slew rate at unity gain  
8
R
= 2 kΩ,  
C = 100 pF,  
L
L
V/µs  
See Figure 1  
9
17.8  
Negative slew rate at  
SR–  
unity gain  
Full range  
25°C  
8
55  
52  
56  
53  
t
Rise time  
40°C  
85°C  
r
f
64  
65  
ns  
%
25°C  
55  
57  
V
R
= ±10 mV,  
I(PP)  
= 2 kΩ,  
t
Fall time  
40°C  
85°C  
51  
53  
C = 100 pF,  
L
L
See Figures 1 and 2  
64  
65  
25°C  
24%  
24%  
24%  
71  
19%  
19%  
19  
Overshoot factor  
40°C  
85°C  
f = 10 Hz  
25°C  
71  
Equivalent input noise  
V
V
nV/Hz  
µV  
n
§
voltage  
R
= 20 ,  
f = 1 kHz  
25°C  
19  
19  
30  
S
See Figure 3  
Peak-to-peak equivalent  
input noise current  
f = 10 Hz to  
10 kHz  
25°C  
25°C  
25°C  
4
0.01  
4
0.01  
N(PP)  
Equivalent input noise  
current  
I
n
f = 1 kHz  
pA/Hz  
%
R
= 1 k,  
R
R
= 2 k,  
= 2 k,  
S
L
L
THD  
Total harmonic distortion  
0.003  
0.003  
f = 1 kHz  
25°C  
40°C  
85°C  
3
3.5  
2.5  
60  
3
3.6  
2.6  
63  
V = 10 mV,  
I
B
1
Unity-gain bandwidth  
MHz  
deg  
C
= 25 pF,  
See Figure 4  
L
25°C  
Phase margin at unity  
gain  
V = 10 mV,  
R = 2 k,  
L
See Figure 4  
I
φ
m
40°C  
85°C  
58  
61  
C
= 25 pF,  
L
60  
63  
§
Full range is 40°C to 85°C.  
For V = ±5 V, V = ±1 V; for V  
This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing  
or nontesting of other parameters.  
= ±15 V, V = ±5 V.  
I(PP)  
CC±  
I(PP)  
CC±  
For V  
= ±5 V, V  
= 1 V; for V  
= ±15 V, V  
= 6 V.  
CC±  
O(RMS)  
CC±  
O(RMS)  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL054C and TL054AC electrical characteristics at specified free-air temperature  
TL054C, TL054AC  
PARAMETER  
TEST CONDITIONS  
T
A
V
= ±5 V  
V
= ±15 V  
UNIT  
CC±  
TYP  
CC±  
MIN  
MAX  
5.5  
MIN  
TYP  
MAX  
25°C  
0.64  
0.57  
0.56  
4
6.2  
1.5  
3.7  
TL054C  
Full range  
25°C  
7.7  
V
IO  
Input offset voltage  
mV  
3.5  
0.5  
TL054AC  
Full range  
5.7  
V
V
R
= 0,  
= 0,  
O
IC  
25°C to  
70°C  
TL054C  
25  
24  
23  
23  
Temperature coefficient  
of input offset voltage  
= 50 Ω  
S
µV/°C  
V
IO  
25°C to  
70°C  
TL054AC  
Input offset-voltage  
long-term drift  
25°C  
0.04  
0.04  
5
µV/mo  
25°C  
70°C  
25°C  
70°C  
4
0.02  
20  
100  
1
100  
1
pA  
nA  
pA  
nA  
V
= 0,  
V
V
= 0,  
= 0,  
O
IC  
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
0.025  
30  
200  
4
200  
4
V
O
= 0,  
IC  
IB  
See Figure 5  
0.15  
0.2  
1  
to  
4
2.3  
to  
5.6  
11 12.3  
to  
to  
25°C  
11  
15.6  
Common-mode input  
voltage range  
V
V
V
ICR  
1  
to  
4
11  
to  
11  
Full range  
25°C  
Full range  
25°C  
3
3
4.2  
3.8  
13  
13  
13.9  
12.7  
R
R
R
R
= 10 kΩ  
= 2 kΩ  
= 10 kΩ  
= 2 kΩ  
L
L
L
L
Maximum positive peak  
output voltage swing  
V
V
OM+  
2.5  
2.5  
2.5  
2.5  
2.3  
2.3  
25  
11.5  
11.5  
Full range  
25°C  
3.5  
3.2  
12 13.2  
12  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
V
OM–  
11  
11  
50  
12  
Full range  
25°C  
72  
88  
57  
133  
173  
Large-signal differential  
A
VD  
R
= 2 kΩ  
0°C  
30  
60  
V/mV  
L
§
voltage amplification  
70°C  
20  
30  
85  
12  
12  
10  
r
Input resistance  
25°C  
10  
i
c
Input capacitance  
25°C  
10  
84  
12  
92  
pF  
i
25°C  
65  
65  
65  
75  
75  
75  
75  
75  
75  
75  
75  
75  
Common-mode  
rejection ratio  
V
V
= V  
= 0,  
min,  
ICR  
IC  
O
CMRR  
0°C  
84  
92  
dB  
dB  
R
= 50 Ω  
S
70°C  
84  
93  
25°C  
99  
99  
Supply-voltage rejection  
ratio (V /V  
V
V
= ±5 V to ±15 V,  
CC±  
k
0°C  
99  
99  
SVR  
)
= 0,  
R = 50 Ω  
S
CC± IO  
O
70°C  
99  
99  
25°C  
8.1  
8.2  
7.9  
120  
11.2  
12.8  
11.2  
8.4  
8.5  
8.2  
120  
11.2  
12.8  
11.2  
Supply current  
(four amplifiers)  
I
V
= 0,  
No load  
0°C  
mA  
dB  
CC  
O
70°C  
V
/V  
Crosstalk attenuation  
Full range is 0°C to 70°C.  
Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at T = 150°C, extrapolated to  
A
VD  
= 100  
25°C  
O1 O2  
A
T
For V  
= 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.  
A
§
= ±5 V, V = ±2.3 V, at V = ±15 V, V = ±10 V.B  
CC±  
O
CC± O  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL054C and TL054AC operating characteristics at specified free-air temperature  
TL054C, TL054C  
PARAMETER  
TEST CONDITIONS  
T
A
V
= ±5 V  
V
= ±15 V  
UNIT  
CC±  
TYP  
CC±  
MIN  
MAX  
MIN  
10  
8
TYP  
17.8  
17.9  
17.5  
15.9  
16.1  
15.5  
56  
MAX  
25°C  
0°C  
15.4  
15.7  
14.4  
13.9  
14.3  
13.3  
55  
Positive slew rate  
at unity gain  
SR+  
70°C  
25°C  
0°C  
8
R
= 2 k,  
See Figure 1 and Note 7  
C = 100 pF,  
L
L
V/µs  
10  
8
Negative slew rate at  
SR–  
unity gain  
Rise time  
Fall time  
70°C  
25°C  
0°C  
8
t
t
54  
55  
r
70°C  
25°C  
0°C  
63  
63  
ns  
%
V
R
C
= ±10 mV,  
= 2 k,  
I(PP)  
55  
57  
L
L
54  
56  
f
= 100 pF,  
See Figures 1 and 2  
70°C  
25°C  
0°C  
62  
64  
24%  
24%  
24%  
75  
19%  
19%  
19  
Overshoot factor  
70°C  
25°C  
25°C  
f = 10 Hz  
75  
Equivalent input noise  
nV/Hz  
µV  
V
V
I
n
§
voltage  
R
= 20 Ω,  
f = 1 kHz  
21  
21  
45  
S
See Figure 3  
Peak-to-peak equivalent  
input noise voltage  
f = 10 Hz to  
10 kHz  
25°C  
25°C  
25°C  
4
0.01  
4
0.01  
N(PP)  
Equivalent input  
noise current  
f = 1 kHz  
pA/Hz  
%
n
R
= 1 k,  
R = 2 k,  
L
Total harmonic  
S
THD  
0.003  
0.003  
f = 1 kHz  
distortion  
25°C  
0°C  
2.7  
3
2.7  
3
V = 10 mV,  
R
= 2 k,  
L
I
B
Unity-gain bandwidth  
MHz  
deg  
1
C
= 25 pF,  
See Figure 4  
L
70°C  
25°C  
0°C  
2.4  
61  
60  
61  
2.4  
64  
64  
63  
Phase margin at  
unity gain  
V = 10 mV,  
R = 2 k,  
L
See Figure 4  
I
L
φ
m
C
= 25 p
F
,  
70°C  
§
Full range is 0°C to 70°C.  
For V = ±5 V, V  
= ±1 V; for V  
CC±  
= ±15 V, V  
= ±5 V.  
I(PP)  
CC±  
I(PP)  
This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing  
or nontesting of other parameters.  
For V  
= ±5 V, V  
) = 1 V; for V  
O(RMS CC±  
= ±15 V, V  
= 6 V.  
O(RMS)  
CC±  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL054I and TL054AI electrical characteristics at specified free-air temperature  
TL054I, TL054AI  
= ±5 V  
PARAMETER  
TEST CONDITIONS  
V
V
= ±15 V  
UNIT  
T
A
CC±  
TYP  
CC±  
MIN  
MIN  
MAX  
5.5  
TYP  
MAX  
0.64  
0.56  
4
7.3  
1.5  
4.8  
25°C  
Full range  
25°C  
TL054I  
8.8  
V
IO  
Input offset voltage  
mV  
0.57  
3.5  
0.5  
TL054AI  
Full range  
6.8  
V
V
R
= 0,  
= 0,  
O
IC  
25°C to  
85°C  
TL054I  
25  
25  
24  
23  
Temperature coefficient of  
input offset voltage  
= 50 Ω  
S
µV/°C  
V
IO  
25°C to  
85°C  
TL054AI  
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
µV/mo  
25°C  
85°C  
25°C  
85°C  
4
0.06  
20  
100  
10  
5
0.07  
30  
100  
10  
pA  
nA  
pA  
nA  
V
= 0,  
V
= 0,  
= 0,  
O
IC  
IC  
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
200  
20  
200  
20  
V
O
= 0,  
V
IB  
See Figure 5  
0.6  
0.7  
1  
to  
4
2.3  
to  
5.6  
11 12.3  
to  
to  
25°C  
11  
15.6  
Common-mode input  
voltage range  
V
V
V
ICR  
1  
to  
4
11  
to  
11  
Full range  
25°C  
Full range  
25°C  
3
3
4.2  
3.8  
13  
13  
13.9  
12.7  
R
R
R
R
= 10 kΩ  
= 2 kΩ  
= 10 kΩ  
= 2 kΩ  
L
L
L
L
Maximum positive peak  
output voltage swing  
V
V
OM+  
2.5  
2.5  
2.5  
2.5  
2.3  
2.3  
25  
11.5  
11.5  
Full range  
25°C  
3.5  
3.2  
12 13.2  
12  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
V
OM–  
11  
11  
50  
12  
Full range  
25°C  
72  
101  
50  
133  
212  
70  
Large-signal differential  
A
VD  
R
= 2 kΩ  
40°C  
85°C  
30  
60  
V/mV  
L
§
voltage amplification  
20  
30  
12  
10  
12  
10  
r
Input resistance  
25°C  
i
c
Input capacitance  
25°C  
10  
84  
12  
92  
pF  
i
25°C  
65  
65  
65  
75  
75  
75  
75  
75  
75  
75  
75  
75  
Common-mode  
rejection ratio  
V
V
= V  
= 0,  
min,  
ICR  
IC  
O
CMRR  
40°C  
85°C  
83  
92  
dB  
dB  
R
= 50 Ω  
S
84  
93  
25°C  
99  
99  
Supply-voltage rejection  
ratio (V /V  
V
V
= ±5 V to ±15 V,  
CC±  
k
40°C  
85°C  
98  
99  
SVR  
)
= 0,  
R = 50 Ω  
S
CC± IO  
O
99  
99  
25°C  
8.1  
7.9  
7.6  
120  
11.2  
12.8  
11.2  
8.4  
8.2  
7.9  
120  
11.2  
12.8  
11.2  
Supply current  
(four amplifiers)  
I
V
= 0,  
No load  
40°C  
85°C  
mA  
dB  
CC  
O
V
/V  
Crosstalk attenuation  
Full range is 40°C to 85°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C, extrapolated to  
A
VD  
= 100  
25°C  
O1 O2  
A
T
For V  
= 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.  
A
§
= ±5 V, V = ±2.3 V, at V = ±15 V, V = ±10 V.  
CC±  
O
CC± O  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TL054I and TL054AI operating characteristics at specified free-air temperature  
TL054I, TL054AI  
PARAMETER  
TEST CONDITIONS  
V
= ±5 V  
V
= ±15 V  
UNIT  
T
A
CC±  
TYP  
CC±  
MIN  
MAX  
MIN  
10  
8
TYP  
17.8  
18  
MAX  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
25°C  
25°C  
15.4  
16.4  
14  
Positive slew rate  
at unity gain  
SR+  
8
17.3  
15.9  
16.1  
15.3  
56  
R
= 2 k,  
C = 100 pF,  
L
L
V/µs  
See Figure 1  
13.9  
14.7  
13  
10  
8
Negative slew rate at  
SR–  
unity gain  
Rise time  
Fall time  
8
55  
t
t
52  
53  
r
64  
65  
ns  
%
55  
57  
V
C
= ±10 mV, R = 2 k,  
L
I(PP)  
= 100 pF,  
51  
53  
f
L
See Figures 1 and 2  
64  
65  
24  
19  
Overshoot factor  
24  
19  
24  
19  
f = 10 Hz  
75  
75  
Equivalent input noise  
nV/Hz  
µV  
V
V
n
§
voltage  
R
= 20 Ω,  
f = 1 kHz  
21  
21  
45  
S
See Figure 3  
Peak-to-peak equivalent  
input noise voltage  
f = 10 Hz to  
10 kHz  
25°C  
25°C  
25°C  
4
0.01  
4
0.01  
N(PP)  
Equivalent input  
noise current  
I
n
f = 1 kHz  
pA/Hz  
%
R
= 1 k,  
R = 2 k,  
L
S
THD  
0.003%  
0.003%  
Total harmonic distortion  
f = 1 kHz  
25°C  
40°C  
85°C  
2.7  
3.3  
2.3  
61  
2.7  
3.3  
2.4  
64  
V = 10 mV,  
R
= 2 k,  
L
I
B
Unity-gain bandwidth  
MHz  
deg  
1
C
= 25 pF,  
See Figure 4  
L
25°C  
Phase margin at  
unity gain  
V = 10 mV,  
R = 2 k,  
L
See Figure 4  
I
L
φ
m
40°C  
85°C  
59  
62  
C
= 25 p
F
,  
61  
64  
§
Full range is 40°C to 85°C.  
For V = ±5 V, V = ±1 V; for V  
This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing  
or nontesting of other parameters.  
= ±15 V, V = ±5 V.  
I(PP)  
CC±  
I(PP)  
CC±  
For V  
= ±5 V, V  
= 1 V; for V  
= ±15 V, V  
= 6 V.  
O(RMS)  
CC±  
O(RMS)  
CC±  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
PARAMETER MEASUREMENT INFORMATION  
V
CC+  
Overshoot  
V
O
+
90%  
V
I
V
CC–  
C
R
L
L
(see Note A)  
10%  
t
NOTE A: C includes fixture capacitance.  
L
r
Figure 1. Slew Rate, Rise/Fall Time,  
and Overshoot Test Circuit  
Figure 2. Rise-Time and Overshoot  
Waveform  
2 kΩ  
10 kΩ  
V
CC+  
V
CC+  
V
I
V
O
+
100 Ω  
V
O
+
V
CC–  
(see Note A)  
V
S
CC–  
C
R
L
L
R
R
S
NOTE A: C includes fixture capacitance.  
L
Figure 4. Unity-Gain Bandwidth and  
Phase-Margin Test Circuit  
Figure 3. Noise-Voltage Test Circuit  
V
typical values  
CC+  
Ground Shield  
Typical values, as presented in this data sheet  
represent the median (50% point) of device  
parametric performance.  
+
V
CC–  
pA  
pA  
input bias and offset current  
At the picoamp-bias-current level typical of the  
TL05x and TL05xA, accurate measurement of the  
bias current becomes difficult. Not only does this  
Figure 5. Input-Bias and Offset-Current Test Circuit  
measurement require  
a
picoammeter, but  
test-socket leakages easily can exceed the actual device bias currents. To accurately measure these small  
currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters  
with bias voltages applied, but with no device in the socket. The device then is inserted in the socket, and a  
second test that measures both the socket leakage and the device input bias current is performed. The two  
measurements then are subtracted algebraically to determine the bias current of the device.  
noise  
Because of the increasing emphasis on low noise levels in many of todays applications, the input noise voltage  
density is sample tested at f = 1 kHz. Texas Instruments also has additional noise-testing capability to meet  
specific application requirements. Please contact the factory for details.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
IO  
Input offset voltage  
Distribution  
611  
Temperature coefficient of input offset voltage  
Distribution  
12, 13, 14  
V
IO  
vs Common-mode input voltage  
vs Free-air temperature  
15  
16  
I
I
Input bias current  
IB  
Input offset current  
vs Free-air temperature  
16  
IO  
vs Supply voltage  
vs Free-air temperature  
17  
18  
V
V
Common-mode input voltage range limits  
Output voltage  
IC  
vs Differential input voltage  
19, 20  
O
vs Supply voltage  
21  
V
V
Maximum peak output voltage  
vs Output current  
vs Free-air temperature  
25, 26  
27, 28  
OM  
O(PP)  
Maximum peak-to-peak output voltage  
Large-signal differential voltage amplification  
vs Frequency  
22, 23, 24  
vs Load resistance  
vs Frequency  
vs Free-air temperature  
29  
30  
31, 32, 33  
A
VD  
vs Frequency  
vs Free-air temperature  
34, 35  
36  
CMRR Common-mode rejection ratio  
z
k
Output impedance  
vs Frequency  
37  
38  
o
Supply-voltage rejection ratio  
vs Free-air temperature  
SVR  
vs Supply voltage  
vs Time  
vs Free-air temperature  
39  
40  
41  
I
Short-circuit output current  
OS  
CC  
vs Supply voltage  
vs Free-air temperature  
42, 43, 44  
45, 46, 47  
I
Supply current  
Slew rate  
vs Load resistance  
vs Free-air temperature  
4853  
5459  
SR  
Overshoot factor  
vs Load capacitance  
vs Frequency  
60  
61, 62  
63  
V
n
Equivalent input noise voltage  
Total harmonic distortion  
THD  
vs Frequency  
vs Supply voltage  
vs Free-air temperature  
64, 65, 66  
67, 68, 69  
B
1
Unity-gain bandwidth  
vs Supply voltage  
vs Load capacitance  
vs Free-air temperature  
70, 71, 72  
73, 74, 75  
76, 77, 78  
φ
m
Phase margin  
Phase shift  
vs Frequency  
vs Time  
30  
79  
80  
Voltage-follower small-signal pulse response  
Voltage-follower large-signal pulse response  
vs Time  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TL051A  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TL051  
INPUT OFFSET VOLTAGE  
16  
20  
16  
12  
8
393 Units Tested From 1 Wafer Lot  
433 Units Tested From 1 Wafer Lot  
V
T
= ±15 V  
V
T
A
= ±15 V  
CC±  
= 25°C  
A
CC±  
= 25°C  
P Package  
P Package  
12  
8
4
4
0
0
900  
1.5 1.1 0.9 0.6 0.3  
0
0.3 0.6 0.9 1.1 1.5  
600  
300  
0
300  
600  
900  
V
IO  
Input Offset Voltage mV  
V
IO  
Input Offset Voltage µV  
Figure 6  
Figure 7  
DISTRIBUTION OF TL052  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TL052A  
INPUT OFFSET VOLTAGE  
20  
15  
10  
15  
12  
9
403 Amplifiers Tested From 1 Wafer Lot  
= ±15 V  
476 Amplifiers Tested From 1 Wafer Lot  
V
CC±  
= 25°C  
V
T
A
= ±15 V  
CC±  
= 25°C  
T
A
P Package  
P Package  
6
5
0
3
0
900  
600  
300  
0
300  
600  
900  
1.5 1.2 0.9 0.6 0.3  
0
0.3 0.6 0.9 1.2 1.5  
V
IO  
Input Offset Voltage mV  
V
IO  
Input Offset Voltage µV  
Figure 8  
Figure 9  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TL054A  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TL054  
INPUT OFFSET VOLTAGE  
30  
15  
12  
9
1048 Amplifiers Tested From 3 Wafer Lots  
1140 Amplifiers Tested From 3 Wafer Lots  
V
T
= ±15 V  
CC±  
= 25°C  
V
T
A
= ±15 V  
CC±  
= 25°C  
25  
20  
A
N Package  
N Package  
15  
10  
5
6
3
0
4  
0
1.8  
3  
2  
1  
0
1
2
3
4
1.2  
0.6  
0
0.6  
1.2  
1.8  
V
IO  
Input Offset Voltage mV  
V
IO  
Input Offset Voltage mV  
Figure 10  
Figure 11  
DISTRIBUTION OF TL052  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TL051  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
20  
15  
10  
20  
172 Amplifiers Tested From 2 Wafer Lots  
120 Units Tested From 2 Wafer Lots  
V
T
A
= ±15 V  
CC±  
= 25°C to 125°C  
V
T
A
= ±15 V  
CC±  
= 25°C to 125°C  
16  
12  
8
P Package  
Outlier: One Unit at 34.6 µV/°C  
P Package  
5
0
4
0
25 20 15 10 5  
0
5
10 15 20 25  
30  
20  
10  
0
10  
20  
30  
Temperature Coefficient µV/°C  
Temperature Coefficient µV/°C  
V
V
IO  
IO  
Figure 12  
Figure 13  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
DISTRIBUTION OF TL054  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
50  
40  
30  
20  
10  
324 Amplifiers Tested From 3 Wafer Lots  
V
CC±  
= ±15 V  
V
= ±15 V  
CC±  
T
A
= 25°C to 125°C  
T = 25°C  
A
N Package  
5
0
5  
10  
0
10  
15  
60  
40  
20  
0
20  
40  
60  
10  
5  
0
5
10  
15  
Temperature Coefficient µV/°C  
V
IC  
Common-Mode Input Voltage V  
V
IO  
Figure 14  
Figure 15  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT  
COMMON-MODE  
INPUT VOLTAGE RANGE LIMITS  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
16  
12  
8
100  
V
V
V
= ±15 V  
= 0  
= 0  
CC±  
O
IC  
T
A
= 25°C  
10  
1
Positive Limit  
Negative Limit  
I
IB  
4
0
I
IO  
0.1  
4  
8  
0.01  
12  
16  
0.001  
25  
45  
65  
85  
105  
125  
0
2
4
6
8
10  
12  
14  
16  
T
A
Free-Air Temperature °C  
|V | Supply Voltage V  
CC±  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
COMMON-MODE  
INPUT VOLTAGE RANGE LIMITS  
vs  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
5
4
20  
15  
10  
V
T
A
= ±5 V  
CC±  
= 25°C  
V
= ±15 V  
CC±  
Positive Limit  
3
2
5
0
1
0
1  
2  
3  
R
R
= 600 Ω  
= 1 kΩ  
L
L
5  
10  
15  
20  
Negative Limit  
R
R
= 2 kΩ  
= 10 kΩ  
L
L
4  
5  
200  
100  
0
100  
200  
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
V
ID  
Differential Input Voltage µV  
Figure 18  
Figure 19  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
15  
10  
16  
12  
8
V
T
A
= ±15 V  
CC±  
= 25°C  
V
OM+  
T
A
= 25°C  
R
= 10 kΩ  
L
5
R
= 2 kΩ  
L
4
0
0
4  
8  
R
R
R
R
= 600 Ω  
= 1 kΩ  
= 2 kΩ  
= 10 kΩ  
5  
L
L
L
L
R
= 2 kΩ  
L
R
= 10 kΩ  
10  
15  
L
12  
16  
V
OM–  
400  
200  
0
200  
400  
0
2
4
6
8
10  
12  
14  
16  
V
ID  
Differential Input Voltage µV  
|V | Supply Voltage V  
CC±  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
30  
25  
30  
R
= 2 kΩ  
R
T
A
= 2 kΩ  
= 25°C  
L
L
V = ±15 V  
CC±  
V
CC±  
= ±15 V  
25  
20  
15  
20  
15  
T
= 125°C  
= ±5 V  
A
T
A
= 55°C  
10  
10  
V
CC±  
= ±5 V  
V
CC±  
5
0
5
0
10 k  
100 k  
1 M  
10 M  
10 k  
100 k  
1 M  
10 M  
f Frequency Hz  
f Frequency Hz  
Figure 22  
Figure 23  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
FREQUENCY  
OUTPUT CURRENT  
30  
5
4
3
2
1
0
V
R
= ±5 V  
= 10 kΩ  
= 25°C  
CC±  
L
R
T
A
= 10 kΩ  
= 25°C  
L
T
A
25  
20  
V
CC±  
= ±15 V  
V
15  
10  
OM+  
V
OM–  
V
CC±  
= ±5 V  
5
0
10 k  
100 k  
1 M  
10 M  
0
2
4
6
8
10 12  
14 16 18 20  
f Frequency Hz  
|I | Output Current mA  
O
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
OUTPUT CURRENT  
16  
14  
12  
5
4
R
= 10 kΩ  
V
OM+  
L
V
= ±15 V  
CC±  
= 10 kΩ  
R
L
R
= 2 kΩ  
L
T
A
= 25°C  
3
2
V
OM+  
10  
8
1
V
CC±  
= ±5 V  
0
V
OM–  
1  
6
4
2
0
2  
3  
V
OM–  
R
= 2 kΩ  
L
4  
5  
R
= 10 kΩ  
L
75 50 25  
0
25  
50  
75 100 125  
0
5
10 15 20 25 30 35 40 45 50  
|I | Output Current mA  
O
T
A
Free-Air Temperature °C  
Figure 26  
Figure 27  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
AMPLIFICATION  
vs  
LOAD RESISTANCE  
vs  
FREE-AIR TEMPERATURE  
16  
12  
250  
200  
150  
100  
R
= 10 kΩ  
L
V
T
A
= ±1 V  
= 25°C  
O
R
= 2 kΩ  
V
L
OM+  
V
CC±  
= ±15 V  
8
4
V
CC±  
= ±15 V  
0
V
CC±  
= ±5 V  
4  
8  
V
OM–  
R
= 2 kΩ  
L
50  
0
12  
16  
R
= 10 kΩ  
L
125  
75 50 25  
0
25  
50  
75 100  
0.4  
1
4
10  
40  
100  
T
A
Free-Air Temperature °C  
R
Load Resistance kΩ  
L
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
6
5
10  
V
= ±15 V  
CC±  
= 2 kΩ  
10  
R
0°  
L
C
= 25 pF  
L
T
A
= 25°C  
4
3
30°  
10  
A
VD  
60°  
10  
90°  
2
1
10  
Phase Shift  
120°  
150°  
180°  
10  
1
0.1  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f Frequency Hz  
Figure 30  
TL054  
TL051 AND TL052  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1000  
400  
1000  
400  
V
= ±5 V  
V
= ±5 V  
CC±  
= ±2.3 V  
CC±  
= ±2.3 V  
V
V
O
O
R
= 10 kΩ  
= 2 kΩ  
L
R
= 10 kΩ  
= 2 kΩ  
L
100  
40  
100  
40  
R
L
R
L
10  
10  
75 50 25  
0
25  
50  
75 100  
125  
75 50 25  
0
25  
50  
75 100  
125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 31  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
COMMON-MODE REJECTION RATIO  
AMPLIFICATION  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
1000  
400  
100  
V
V
= ±15 V  
V
= ±5 V  
CC±  
= 10 V  
CC±  
= 25°C  
90  
80  
70  
60  
50  
40  
30  
O
T
A
R
= 10 kΩ  
L
100  
40  
R
= 2 kΩ  
L
20  
10  
10  
0
125  
75 50 25  
0
25  
50  
75 100  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
T
A
Free-Air Temperature °C  
f Frequency Hz  
Figure 33  
Figure 34  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
100  
95  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
T
A
= ±15 V  
V
IC  
= V  
Min  
ICR  
CC±  
= 25°C  
V
= ±15 V  
CC±  
90  
85  
80  
V
CC±  
= ±5 V  
75  
70  
75 50 25  
0
25  
50  
75 100 125  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
f Frequency Hz  
T
A
Free-Air Temperature °C  
Figure 35  
Figure 36  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
OUTPUT IMPEDANCE  
vs  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
110  
106  
100  
40  
V
CC±  
= ±5 V to ±15 V  
A
VD  
= 100  
10  
4
A
VD  
= 10  
102  
98  
1
A
VD  
= 1  
0.4  
94  
V
T
A
± = ±15 V  
= 25°C  
CC  
r
(open loop) 250 Ω  
o
0.1  
90  
75 50 25  
0
25  
50  
75 100 125  
1 k  
10 k  
100 k  
1 M  
f Frequency Hz  
T
A
Free-Air Temperature °C  
Figure 37  
Figure 38  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
TIME  
SUPPLY VOLTAGE  
60  
40  
60  
40  
V
ID  
= 100 mV  
V
T
A
= 0  
= 25°C  
O
V
ID  
= 100 mV  
20  
20  
0
20  
40  
60  
0
20  
40  
60  
V
ID  
= 100 mV  
V
= 100 mV  
ID  
V
= ±15 V  
= 25°C  
CC±  
T
A
16  
0
2
4
6
8
10  
12  
14  
0
10  
20  
30  
40  
50  
60  
|V | Supply Voltage V  
CC±  
t Time s  
Figure 39  
Figure 40  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL051  
SUPPLY CURRENT  
vs  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
60  
40  
20  
3
V
= ±15 V  
CC±  
CC±  
2.5  
V
ID  
= 100 m V  
T
= 25°C  
A
V
= ±5 V  
T
A
= 55°C  
= 125°C  
2
T
A
1.5  
0
20  
40  
60  
V
= ±5 V  
CC±  
1
V
ID  
= 100 m V  
V
CC±  
= ±15 V  
0.5  
V
= 0  
O
V
O
= 0  
No Load  
0
0
2
4
6
8
10  
12  
14 16  
75 50 25  
0
25  
50  
75 100 125  
T
A
Free-Air Temperature °C  
|V | Supply Voltage V  
CC±  
Figure 41  
Figure 42  
TL052  
SUPPLY CURRENT  
vs  
TL054  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
5
4
3
2
1
0
10  
8
T
T
= 25°C  
= 55°C  
A
A
T
= 25°C  
A
T
A
= 125°C  
T
= 55°C  
A
6
T
= 125°C  
A
4
2
V
= 0  
V
= 0  
O
O
No Load  
No Load  
0
0
2
4
|V  
6
8
10  
12 14  
0
2
4
6
8
10  
12  
14 16  
16  
| Supply Voltage V  
|V  
CC±  
| Supply Voltage V  
CC±  
Figure 43  
Figure 44  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL052  
SUPPLY CURRENT  
vs  
TL051  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5
4
3
2
1
0
3
2.5  
2
V
V
= ±15 V  
= ±5 V  
CC±  
V
V
= ±15 V  
= ±5 V  
CC±  
CC±  
CC±  
1.5  
1
0.5  
0
V
= 0  
No Load  
V
= 0  
O
O
No Load  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 45  
Figure 46  
TL051  
SLEW RATE  
vs  
TL054  
SUPPLY CURRENT  
vs  
LOAD RESISTANCE  
FREE-AIR TEMPERATURE  
10  
8
25  
SR+  
V
= ±15 V  
= ±5 V  
CC±  
20  
15  
10  
V
CC±  
SR–  
6
4
2
V
C
T
= ±5 V  
= 100 pF  
= 25°C  
CC±  
L
A
5
0
V
= 0  
O
See Figure 1  
No Load  
0
0.4  
1
4
10  
40  
100  
75 50 25  
0
25  
50  
75 100 125  
T
A
Free-Air Temperature °C  
R
Load Resistance kΩ  
L
Figure 47  
Figure 48  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL052  
SLEW RATE  
vs  
TL054  
SLEW RATE  
vs  
LOAD RESISTANCE  
LOAD RESISTANCE  
25  
20  
15  
10  
5
25  
20  
15  
10  
SR+  
SR+  
SR–  
SR–  
V
C
T
= ±5 V  
= 100 pF  
= 25°C  
V
C
T
= ±5 V  
= 100 pF  
= 25°C  
CC±  
L
A
CC±  
L
A
5
0
See Figure 1  
See Figure 1  
0
0.4  
1
4
10  
40  
100  
0.4  
1
4
10  
40 100  
R Load Resistance kΩ  
L
R
Load Resistance kΩ  
L
Figure 49  
Figure 50  
TL052  
SLEW RATE  
vs  
TL051  
SLEW RATE  
vs  
LOAD RESISTANCE  
LOAD RESISTANCE  
25  
30  
SR+  
SR+  
25  
20  
20  
15  
10  
5
SR–  
SR–  
15  
10  
V
C
T
= ±15 V  
= 100 pF  
= 25°C  
CC±  
L
A
V
C
= ±15 V  
= 100 pF  
= 25°C  
CC±  
L
5
0
T
A
See Figure 1  
See Figure 1  
0
0.4  
1
4
10  
40 100  
0.4  
1
4
10  
40 100  
R
Load Resistance kΩ  
R
Load Resistance kΩ  
L
L
Figure 51  
Figure 52  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL054  
SLEW RATE  
vs  
TL051  
SLEW RATE  
vs  
LOAD RESISTANCE  
FREE-AIR TEMPERATURE  
25  
20  
15  
10  
5
30  
25  
20  
15  
SR+  
SR+  
SR–  
SR–  
10  
5
V
C
T
A
= ±5 V  
= 100 pF  
= 25°C  
CC±  
L
V
R
= ±5 V  
CC±  
= 2 kΩ  
L
See Figure 1  
0
0.4  
0
1
4
10  
40 100  
75 50 25  
0
25  
50  
75  
100 125  
R
Load Resistance kΩ  
T
A
Free-Air Temperature °C  
L
Figure 53  
Figure 54  
TL052  
SLEW RATE  
TL054  
SLEW RATE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
20  
25  
20  
15  
SR+  
SR+  
15  
10  
5
SR–  
SR–  
10  
5
V
R
C
= ±5 V  
= 2 kΩ  
= 100 pF  
V
CC±  
= ±5 V  
CC±  
L
L
R
C
= 2 kΩ  
= 100 pF  
L
L
See Figure 1  
See Figure 1  
0
0
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50 75 100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 55  
Figure 56  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL051  
SLEW RATE  
vs  
TL052  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
30  
25  
20  
15  
10  
5
25  
20  
15  
SR+  
SR+  
SR–  
SR–  
10  
5
V
= ±15 V  
V
R
C
= ±15 V  
= 2 kΩ  
= 100 pF  
CC±  
CC±  
L
L
R
= 2 kΩ  
L
L
C
= 100 pF  
See Figure 1  
See Figure 1  
0
0
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50 75 100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 57  
Figure 58  
TL054  
SLEW RATE  
OVERSHOOT FACTOR  
vs  
LOAD CAPACITANCE  
vs  
FREE-AIR TEMPERATURE  
50  
40  
20  
15  
SR+  
SR–  
V
CC±  
= ±5 V  
30  
20  
10  
5
V
= ±15 V  
CC±  
V
R
= ±10 mV  
= 2 kΩ  
I(PP)  
L
V
R
C
= ±15 V  
= 2 kΩ  
= 100 pF  
10  
0
CC±  
L
L
T
A
= 25°C  
See Figure 1  
See Figure 1  
0
0
50  
100  
150  
200  
250  
300  
75 50 25  
0
25  
50 75 100 125  
T
A
Free-Air Temperature °C  
C
Load Capacitance pF  
L
Figure 59  
Figure 60  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL052 AND TL054  
EQUIVALENT INPUT NOISE VOLTAGE  
TL051  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
70  
100  
70  
V
= ±15 V  
CC±  
= 20 Ω  
V
= ±15 V  
CC±  
= 20 Ω  
R
T
A
S
R
T
A
S
= 25°C  
= 25°C  
See Figure 3  
See Figure 3  
50  
40  
50  
40  
30  
20  
30  
20  
10  
10  
100 k  
10  
100  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
f Frequency Hz  
f Frequency Hz  
Figure 61  
Figure 62  
TL051  
TOTAL HARMONIC DISTORTION  
UNITY-GAIN BANDWIDTH  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
1
3.2  
V
= ±15 V  
= 1  
CC±  
A
VD  
0.4  
V
= 6 V  
O(RMS)  
= 25°C  
3.1  
3
T
A
0.1  
0.04  
2.9  
2.8  
2.7  
0.01  
V = 10 mV  
I
R
= 2 kΩ  
= 25 pF  
= 25°C  
L
L
0.004  
C
T
A
See Figure 4  
0.001  
100  
1 k  
10 k  
100 k  
0
2
4
6
8
10  
12 14 16  
f Frequency Hz  
|V  
CC±  
| Supply Voltage V  
Figure 63  
Figure 64  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL052  
UNITY-GAIN BANDWIDTH  
vs  
TL054  
UNITY-GAIN BANDWIDTH  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.9  
V = 10 mV  
V = 10 mV  
I
I
R
C
T
A
= 2 kΩ  
= 25 pF  
= 25°C  
R
= 2 kΩ  
= 25 pF  
= 25°C  
L
L
L
L
A
C
T
2.8  
2.7  
2.5  
2.4  
See Figure 4  
See Figure 4  
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V | Supply Voltage V  
CC±  
|V | Supply Voltage V  
CC±  
Figure 65  
Figure 66  
TL051  
TL052  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
4
3
2
1
0
4
3
2
V
= ±15 V  
= ±5 V  
CC±  
V
CC±  
V
= ±5 V to ±15 V  
CC±  
V = 10 mV  
I
V = 10 mV  
I
R
C
T
= 2 kΩ  
= 25 pF  
= 25°C  
L
L
A
1
0
R
C
= 2 kΩ  
L
= 25 pF  
L
See Figure 4  
See Figure 4  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 67  
Figure 68  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL051  
PHASE MARGIN  
vs  
TL054  
UNITY-GAIN BANDWIDTH  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
65°  
63°  
61°  
59°  
57°  
55°  
4
3
2
V
= ±5 V to ±15 V  
CC±  
V = 10 mV  
I
V = 10 mV  
I
R
C
= 2 kΩ  
= 25 pF  
= 25°C  
L
L
1
0
R
C
= 2 kΩ  
= 25 pF  
= 25°C  
L
L
T
A
T
A
See Figure 4  
See Figure 4  
0
2
4
6
8
10  
12 14 16  
75 50 25  
0
25  
50  
75 100 125  
T
A
Free-Air Temperature °C  
|V | Supply Voltage V  
CC±  
Figure 69  
Figure 70  
TL052  
PHASE MARGIN  
vs  
TL054  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
65°  
63°  
61°  
59°  
57°  
55°  
65°  
63°  
61°  
59°  
57°  
55°  
V = 10 mV  
V = 10 mV  
I
I
R
C
= 2 kΩ  
= 25 pF  
= 25°C  
R
= 2 kΩ  
= 25 pF  
= 25°C  
L
L
L
L
T
A
C
T
A
See Figure 4  
See Figure 4  
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V | Supply Voltage V  
CC±  
|V | Supply Voltage V  
CC±  
Figure 71  
Figure 72  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL051  
PHASE MARGIN  
vs  
TL052  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
70°  
65°  
70°  
65°  
V = 10 mV  
V = 10 mV  
I
I
R
T
= 2 kΩ  
= 25°C  
R
T
= 2 kΩ  
= 25°C  
L
A
L
A
See Figure 4  
See Figure 4  
60°  
55°  
50°  
45°  
40°  
V
= ±15 V  
V
= ±15 V  
CC±  
60°  
55°  
50°  
45°  
CC±  
See Note A  
See Note A  
V
= ±5 V  
V
= ±5 V  
CC±  
CC±  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
C
Load Capacitance pF  
C
Load Capacitance pF  
L
L
Figure 73  
Figure 74  
TL054  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
70°  
65°  
V = 10 mV  
I
R
T
A
= 2 kΩ  
= 25°C  
L
See Figure 4  
V
CC±  
= ±15 V  
60°  
See Note A  
V
= ±5 V  
55°  
50°  
45°  
CC±  
0
10 20 30 40 50 60 70 80 90 100  
C
Load Capacitance pF  
L
Figure 75  
Values of phase margin below a load capacitance of 25 pF were estimated.  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
TL051  
PHASE MARGIN  
vs  
TL052  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
65°  
63°  
61°  
59°  
57°  
55°  
65°  
63°  
61°  
59°  
57°  
55°  
V = 10 mV  
I
V = 10 mV  
I
R
= 2 kΩ  
L
R
= 2 kΩ  
L
C
= 25 pF  
L
C
= 25 pF  
L
See Figure 4  
See Figure 4  
V
= ±15 V  
V
= ±15 V  
CC±  
CC±  
V
CC±  
= ±5 V  
V
= ±5 V  
CC±  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 76  
Figure 77  
TL054  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
65°  
63°  
61°  
59°  
57°  
55°  
V
= ±15 V  
CC±  
V
= ±5 V  
CC±  
V = 10 mV  
I
L
R
= 2 kΩ  
C
= 25 pF  
L
See Figure 4  
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
Figure 78  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
16  
12  
8
8
6
4
4
2
V
R
= ±15 V  
= 2 kΩ  
CC±  
L
V
R
= ±15 V  
= 2 kΩ  
CC±  
L
0
0
C
= 100 pF  
L
C
= 100 pF  
L
T
= 25°C  
A
T
= 25°C  
A
See Figure 1  
4  
8  
12  
16  
2  
4  
6  
8  
See Figure 1  
0
0.2 0.4  
0.6  
0.8  
1.0  
1.2  
0
1
2
3
4
5
6
t Time µs  
t Time µs  
Figure 79  
Figure 80  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
output characteristics  
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance.  
The TL05x and TL05xA drive higher capacitive loads; however, as the load capacitance increases, the resulting  
response pole occurs at lower frequencies, causing ringing, peaking, or even oscillation. The value of the load  
capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to  
oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the  
problem. Capacitive loads of 1000 pF, and larger, may be driven if enough resistance is added in series with  
the output (see Figure 81 and Figure 82).  
(a) C = 100 pF, R = 0  
L
(b) C = 300 pF, R = 0  
L
(c) C = 350 pF, R = 0  
L
(d) C = 1000 pF, R = 0  
L
(f) C = 1000 pF, R = 2 kΩ  
(e) C = 1000 pF, R = 50 Ω  
L
L
Figure 81. Effect of Capacitive Loads  
15 V  
R
V
O
5 V  
+
5 V  
15 V  
C
L
2 kΩ  
(see Note A)  
NOTE A: C includes fixture capacitance.  
L
Figure 82. Test Circuit for Output Characteristics  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
input characteristics  
The TL05x and TL05xA are specified with a minimum and a maximum input voltage that, if exceeded at either  
input, could cause the device to malfunction.  
Because of the extremely high input impedance and resulting low-bias current requirements, the TL05x and  
TL05xA are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and  
sockets easily can exceed bias current requirements and cause degradation in system performance. It is good  
practice to include guard rings around inputs (see Figure 83). These guards should be driven from a  
low-impedance source at the same voltage level as the common-mode input.  
Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.  
+
V
I
V
O
V
I
V
O
+
V
O
+
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 83. Use of Guard Rings  
noise performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input-bias current requirements of the TL05x and TL05xA result in a very low  
current noise. This feature makes the devices especially favorable over bipolar devices when using values of  
circuit impedance greater than 50 k.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
phase meter  
The phase meter in Figure 84 produces an output voltage of 10 mV per degree of phase delay between the two  
inputsignalsV andV . ThereferencesignalV mustbethesamefrequencyasV . TheTLC3702comparators  
A
B
A
B
(U1) convert these two input sine waves into ±5-V square waves. Then, R1 and R4 provide level shifting prior  
to the SN74HC109 dual J-K flip flops.  
Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at one-half the frequency of V .  
B
Flip-flop U2A also produces a square wave at one-half the input frequency. The pulse duration of U2A varies  
from zero to one-half the period, where zero corresponds to zero phase delay between V and V and one-half  
A
B
the period corresponds to V lagging V by 360 degrees.  
B
A
The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL05x (U4) integrator capacitors C1  
and C2. As the phase delay approaches 360 degrees, the output of U4A approximates a square wave, and U2A  
has an output of almost 2.5 V. U4B acts as a noninverting amplifier with a gain of 1.44 in order to scale the  
0- to 2.5-V integrator output to a 0- to 3.6-V output range.  
R8 and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz  
frequency range.  
+5 V  
R2  
100 kΩ  
C2  
0.016 µF  
+5 V  
R7  
R6  
S
1J  
C1  
+
U4A  
V
A
U3  
U2A  
R1  
10 kΩ  
10 kΩ  
+
U4B  
U1A  
100 kΩ  
V
O
C1  
0.016 µF  
R5  
10 kΩ  
1K  
R
NC  
R9  
20 kΩ  
R3  
100 kΩ  
S
2J  
R8  
50 kΩ  
+5 V  
NC  
U2B  
C1  
Gain  
2K  
R
R4  
100 kΩ  
R10  
10 kΩ  
Zero  
V
B
U1B  
5 V  
NOTE A: U1 = TLC3702; V  
= ±5 V  
CC±  
U2 = SN74HC109  
U3 = TLC4066  
U4, U5 = TL05x; V  
= ±5 V  
CC±  
Figure 84. Phase Meter  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
precision constant-current source over temperature  
A precision current source (see Figure 85) benefits from the high input impedance and stability of Texas  
Instruments enhanced-JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input  
and the output of the TL05x. The negative feedback then forces 2.5 V across the current-setting resistor R;  
therefore, the current to the load simply is 2.5 V divided by R.  
Possible choices for the shunt regulator include the LT1004, LT1009, and LM385. If the regulators cathode  
connects to the operational amplifier output, this circuit sources load current. Similarly, if the cathode connects  
totheinvertinginput, thecircuitsinkscurrentfromtheload. Tominimizeoutputcurrentchangewithtemperature,  
R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be operated with  
split-voltage supplies.  
150 pF  
150 pF  
U2  
U2  
+15 V  
+15 V  
100 kΩ  
100 kΩ  
U1  
+
U1  
+
I
O
I
I
15 V  
15 V  
Load  
V = 0 to 10 V  
Load  
V = 0 to 10 V  
R
R
(a) SOURCE CURRENT LOAD  
NOTE A: U1 = 1/2 TL05x  
(b) SINK CURRENT LOAD  
U2 = LM385, LT1004, or LT1009 voltage reference  
2.5 V  
R
, R = Low-temperature-coefficient metal-film resistor  
I =  
Figure 85. Precision Constant-Current Source  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
instrumentation amplifier with adjustable gain/null  
The instrumentation amplifier in Figure 86 benefits greatly from the high input impedance and stable input offset  
voltage of the TL05xA. Amplifiers U1A, U1B, and U2A form the actual instrumentation amplifier, while U2B  
provides offset null. Potentiometer R1 provides gain adjustment. With R1 = 2 k, the circuit gain equals 100,  
while with R1 = 200 k, the circuit gain equals two. The following equation shows the instrumentation amplifier  
gain as a function of R1:  
R2 R3  
AV  
1
R1  
Readjusting the offset null is necessary when the circuit gain is changed. If U2B is needed for another  
application, R7 can be terminated at ground. The low input offset voltage of the TL05xA minimizes the dc error  
of the circuit. For best matching, all resistors should be one-percent tolerance. The matching between R4, R5,  
R6, and R7 controls the CMRR of this application.  
The following equation shows the output voltages when the input voltage equals zero. This dc error can be  
nulled by adjusting the offset null potentiometer; however, any change in offset voltage over time or temperature  
also creates an error. To calculate the error from changes in offset, consider the three offset components in the  
equationasdeltaoffsets, ratherthaninitialoffsets. TheimprovedstabilityofTexasInstrumentsenhancedJFETs  
minimizes the error resulting from change in input offset voltage with time. Assuming V equals zero, V can  
I
O
be shown as a function of the offset voltage:  
R3  
R1  
R6  
R4  
R6  
R2  
R1 R4  
R7  
R5 R7  
V
V
1
1
O
IO2  
R3  
R6  
R4  
R6  
R4  
R6  
R4  
R7  
R2  
R1  
V  
1
1
V
1
IO1  
IO3  
R1 R5 R7  
V
I–  
+
R6  
R4  
U1A  
10 kΩ  
10 kΩ  
100 kΩ  
R2  
200 kΩ  
10 turn  
10 MΩ  
V
O
U2A  
+
A
V
= 2 to 100  
10 MΩ  
R1  
2 kΩ  
V
CC+  
R3  
100 kΩ  
82 kΩ  
R7  
R5  
U1B  
+
U2B  
Offset Null  
+
10 kΩ  
10 kΩ  
1 kΩ  
V
I+  
0.1 µF  
82 kΩ  
V
CC–  
NOTE A: U1 and U2 = TL05xA; V  
CC±  
= ±15 V.  
Figure 86. Instrumentation Amplifier  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
high input impedance log amplifier  
The low input offset voltage and high input impedance of the TL05xA creates a precision log amplifier (see  
Figure 87). IC1 is a 2.5-V, low-current precision, shunt regulator. Transistors Q1 and Q2 must be a closely  
matched npn pair. For best performance over temperature, R4 should be a metal-film resistor with a low  
temperature coefficient.  
In this circuit, U1A serves as a high-impedance unity-gain buffer. Amplifier U1B converts the input voltage to  
a current through R1 and Q1. Amplifier U1C, IC1, and R4 form a 1-µA temperature-stable current source that  
sets the base-emitter voltage of Q2. U1D amplifies the difference between the base-emitter voltage of Q1 and  
Q2 (see Figure 88). The output voltage is given by the following equation:  
V
23  
, q  
19  
R6  
R5  
kT  
q
I
where k  
1.38  
10  
1.602 10  
,
V
1  
In  
O
6  
10  
and T is Kelvin temperature  
R1  
1
Q1  
Q2  
R4  
2.5 MΩ  
2N2484  
+
+
R2  
10 kΩ  
U1C  
V
O
_
U1D  
15 V  
_
(see equation above)  
R1  
+
C1  
+
U1A  
_
R6  
V
I
U1B  
10 kΩ  
_
150 pF  
IC1  
10 kΩ  
R3  
R5  
10 kΩ  
270 kΩ  
15V  
NOTE A: U1A through U1D = TL05xA. IC1 = LM385, LT1004, or LT1009 voltage reference  
Figure 87. Log Amplifier  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0
1
2
3
4
5
6
7
8
9
10  
f Frequency Hz  
Figure 88. Output Voltage vs Input Voltage for Log Amplifier  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
analog thermometer  
By combining a current source that does not vary over temperature with an instrumentation amplifier, a precise  
analog thermometer can be built (see Figure 89). Amplifier U1A and IC1 establish a constant current through  
the temperature-sensing diode D1. For this section of the circuit to operate correctly, the TL05x must use split  
supplies, and R3 must be a metal-film resistor with a low temperature coefficient.  
The temperature-sensitive voltage from the diode is compared to a temperature-stable voltage reference set  
by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature.  
Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains  
constant.  
AmplifiersU1B, U2A, andU2Bformtheinstrumentationamplifierthatconvertsthedifferencebetweenthediode  
and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier gain  
equals 5 and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the amplifier  
gainis9andtheoutputisproportionaltotemperatureindegreesFahrenheit. EverytimeS1ischanged, R4must  
be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree (C or F).  
IC1  
+
R9  
R12  
C1  
U1B  
10 kΩ  
10 kΩ  
150 pF  
R6  
R1  
10 kΩ  
+15 V  
100 kΩ  
U1A  
+
R7  
R5  
5 kΩ  
5 kΩ  
10 kΩ  
R3  
U2B  
+
V
O
(see Note B)  
S1  
(see Note D)  
(see Note C)  
D1  
15 V  
(see Note A)  
+15 V  
R8  
10 kΩ  
100 kΩ  
R2  
R10  
U2A  
+
10 kΩ  
IC2  
R4  
R11  
10 kΩ  
50 kΩ  
NOTES: A. Temperature-sensing diode (2 mV/°C)  
B. Metal-film resistor (low temperature coefficient)  
C. Switch open for °F and closed for °C  
D.  
V
α temperature; 10 mV/°C or 10 mV/°F  
O
E. U1, U2 = TL05x. IC1, IC2 = LM385, LT1004, or LT1009 voltage reference  
Figure 89. Analog Thermometer  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
voltage-ratio-to-dB converter  
The application in Figure 90 measures the amplitude ratio of two signals, then converts the ratio to decibels (see  
Figure 91). The output voltage provides a resolution of 100 mV/dB. The two inputs can be either dc or sinusoidal  
ac signals. When using ac signals, both signals should be the same frequency or output glitches will occur. For  
measuring two input signals of different frequencies, extra filtering should be added after the rectifiers.  
The circuit contains three low-offset TL05xA devices. Two of these devices provide the rectification and  
logarithmic conversion of the inputs. The third TL05xA forms an instrumentation amplifier. The stage performing  
the logarithmic conversion also requires two well-matched npn transistors.  
The input signal first passes through a high-impedance unity-gain buffer U1A (U2A). Then U1B (U2B) rectifies  
the input signal at a gain of 0.5, and U1C (U2C) provides a noninverting gain of 2, so that the system gain is  
still one. U1D (U2D), R6 (R13), and Q1 (Q2) perform the logarithmic conversion of the rectified input signal. The  
instrumentation amplifier formed by U3A, U3B, U3D scales the difference of the two logarithmic voltages by a  
gain of 33.6. As a result, the output voltage equals 100 mV/dB. The 1-kpotentiometer on the input of U3C  
calibrates the zero-dB reference level. The following equations are used to derive the relationship between the  
input voltage ratio, expressed in decibels, and the output voltage.  
In V  
V  
V
V
A
B
A
B
X dB  
X dB  
20 log  
20  
In (10)  
8.686 In V  
In V  
A
B
V
V
kT  
q
A
I
kT  
q
B
I
V
In  
V
In  
BE(Q1)  
BE(Q2)  
kT  
R
R
S
S
V
V
V  
In V  
In V  
q
BE  
BE(Q1)  
BE(Q2)  
A
B
8.686  
kT q  
X dB  
V
V  
336  
V
V  
at 25°C  
BE(Q1)  
BE(Q2)  
BE(Q1)  
BE(Q2)  
where  
23  
, q  
19  
k
1.38 10  
1.602 10  
, and T is Kelvin temperature  
This gives a resolution of 1 V/dB. Therefore, the gain of the instrumentation amplifier is set at 33.6 to obtain  
100 mV/dB.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
R2  
2N2484  
Q1  
R1  
10 kΩ  
+
V
A
+
U1A  
_
R6  
+
U1B  
20 kΩ  
_
R7  
+
U1C  
D1  
_
R18  
R20  
+
U1D  
10 kΩ  
_
U3A  
R5  
10 kΩ  
_
10 kΩ  
10 kΩ  
R16  
10 kΩ  
R4  
10 kΩ  
+
V
O
R3  
30 kΩ  
U3D  
_
16.3 kΩ  
R9  
10 kΩ  
R76  
2N2484  
R8  
+
V
B
16.3 kΩ  
+
U2A  
_
R13  
R19  
+
+
20 kΩ  
U2B  
_
Q2  
+
U2C  
U3B  
R14  
10 kΩ  
_
_
D2  
U2D  
10 kΩ  
10 kΩ  
_
R12  
R21  
10 kΩ  
15 V  
10 kΩ  
R11  
10 kΩ  
R10  
30 kΩ  
82 kΩ  
+
U3C  
_
1 kΩ  
C1  
82 kΩ  
15 V  
NOTE A: U1A through U3D = TL05xA, V  
CC±  
= ±15 V. D1 and D2 = 1N914.  
Figure 90. Voltage Ratio-to-dB Converter  
2
1
0
1  
2  
0
1
2
3
4
5
6
7
8
9
10  
Ratio V /V  
A
B
Figure 91. Output Voltage vs the Ratio of the Input Voltages for Voltage-to-dB Converter  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL05x, TL05xA  
ENHANCED-JFET LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts , the model-generation software used  
with Microsim PSpice . The Boyle macromodel (see Note 6 and subcircuit Figure 92) are generated using the  
TL05x typical electrical and operating characteristics at T = 25°C. Using this information, output simulations  
A
of the following key parameters can be generated to a tolerance of 20% (in most cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, andJ. E. Solomon, MacromodelingofIntegratedCircuitOperationalAmplifiers, IEEEJournal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
DLN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN–  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
IN+  
3
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC–  
+
4
VE  
OUT  
.SUBCKT TL05x 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
4
11  
12  
5
99  
4
99  
0
53  
4
3.422E3  
3.422E3  
125  
C1  
C2  
DC  
DE  
11  
6
5
12  
7
53  
5
3.988E12  
15.00E12  
4
8
7
3
DX  
DX  
DX  
DX  
DX  
125  
54  
11.11E3  
666.7E6  
DC 0  
DC 3  
DC 3.7  
DC 0  
DLP 90  
DLN 92  
91  
90  
3
0
99  
RSS 10  
VB  
VC  
VE  
9
3
54  
DP  
EGND99  
FB  
4
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
7
VLIM 7  
8
+ VLN 0 2.875E6 3E6 3E6 3E6 3E6  
VLP 91  
0
92  
DC 28  
DC 28  
GA  
GCM 0  
ISS  
HLIM 90  
6
0
6
10  
0
2
11  
10  
12 292.2E6  
99 6.542E9  
VLN  
0
.MODEL DX D (IS=800.0E18)  
.MODEL JX PJF (IS=15.00E12 BETA=185.2E6  
+ VTO=.1)  
.ENDS  
3
DC 300.0E6  
VLIM 1K  
10 JX  
J1  
J2  
R2  
11  
12  
6
1
10 JX  
9
100.0E3  
Figure 92. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
Macromodels, simulation models, or other models provided by TI,  
directly or indirectly, are not warranted by TI as fully representing all  
of the specification and operating characteristics of the  
semiconductor product to which the model relates.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
TL051ACD  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
051AC  
TL051ACDE4  
TL051ACDG4  
TL051ACP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
P
P
75  
75  
50  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
051AC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
051AC  
Pb-Free  
(RoHS)  
0 to 70  
TL051ACP  
TL051ACP  
TL051ACPE4  
Pb-Free  
(RoHS)  
0 to 70  
TL051AID  
TL051AIP  
TL051CD  
OBSOLETE  
OBSOLETE  
ACTIVE  
SOIC  
PDIP  
SOIC  
D
P
D
8
8
8
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
0 to 70  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TL051C  
TL051C  
TL051C  
TL051C  
TL051C  
TL051C  
TL051CP  
TL051CP  
TL051CDE4  
TL051CDG4  
TL051CDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
D
D
P
P
8
8
8
8
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
75  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
TL051CDRE4  
TL051CDRG4  
TL051CP  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Pb-Free  
(RoHS)  
TL051CPE4  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TL051ID  
TL051IDR  
TL051IP  
OBSOLETE  
OBSOLETE  
OBSOLETE  
SOIC  
SOIC  
PDIP  
D
D
8
8
8
0
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
P
TL052-W  
ACTIVE WAFERSALE  
YS  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TL052ACD  
TL052ACDE4  
TL052ACDG4  
TL052ACDR  
TL052ACDRE4  
TL052ACDRG4  
TL052ACP  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
052AC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
D
D
D
P
P
D
D
D
D
D
D
P
P
75  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
052AC  
052AC  
052AC  
052AC  
052AC  
TL052ACP  
TL052ACP  
052AI  
Green (RoHS  
& no Sb/Br)  
0 to 70  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Pb-Free  
(RoHS)  
0 to 70  
TL052ACPE4  
TL052AID  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TL052AIDE4  
TL052AIDG4  
TL052AIDR  
75  
Green (RoHS  
& no Sb/Br)  
052AI  
75  
Green (RoHS  
& no Sb/Br)  
052AI  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
052AI  
TL052AIDRE4  
TL052AIDRG4  
TL052AIP  
Green (RoHS  
& no Sb/Br)  
052AI  
Green (RoHS  
& no Sb/Br)  
052AI  
Pb-Free  
(RoHS)  
TL052AIP  
TL052AIP  
TL052AIPE4  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TL052AMFKB  
TL052AMJGB  
TL052CD  
OBSOLETE  
OBSOLETE  
ACTIVE  
LCCC  
CDIP  
SOIC  
FK  
JG  
D
20  
8
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
0 to 70  
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TL052C  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TL052CDE4  
TL052CDG4  
TL052CDR  
TL052CDRE4  
TL052CDRG4  
TL052CP  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TL052C  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
75  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TL052C  
TL052C  
TL052C  
TL052C  
TL052CP  
TL052CP  
T052  
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
P
Pb-Free  
(RoHS)  
0 to 70  
TL052CPE4  
TL052CPSR  
TL052CPSRE4  
TL052CPSRG4  
TL052ID  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
PS  
PS  
PS  
D
2000  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
SO  
Green (RoHS  
& no Sb/Br)  
0 to 70  
T052  
SO  
Green (RoHS  
& no Sb/Br)  
0 to 70  
T052  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TL052I  
TL052I  
TL052I  
TL052I  
TL052I  
TL052I  
TL052IP  
TL052IP  
TL052IDE4  
TL052IDG4  
TL052IDR  
D
75  
Green (RoHS  
& no Sb/Br)  
D
75  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
TL052IDRE4  
TL052IDRG4  
TL052IP  
D
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
P
Pb-Free  
(RoHS)  
TL052IPE4  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TL052MFKB  
TL052MJG  
TL052MJGB  
TL054ACD  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
LCCC  
CDIP  
CDIP  
SOIC  
FK  
JG  
JG  
D
20  
8
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
-55 to 125  
0 to 70  
8
Call TI  
Call TI  
14  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TL054AC  
TL054ACDE4  
TL054ACDG4  
TL054ACDR  
TL054ACDRE4  
TL054ACDRG4  
TL054ACN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
N
N
D
D
D
D
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
TL054AC  
TL054AC  
TL054AC  
TL054AC  
TL054AC  
TL054ACN  
TL054ACN  
TL054AI  
TL054AI  
TL054AI  
TL054AI  
TL054AI  
TL054AI  
50  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Pb-Free  
(RoHS)  
0 to 70  
TL054ACNE4  
TL054AID  
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TL054AIDE4  
TL054AIDG4  
TL054AIDR  
50  
Green (RoHS  
& no Sb/Br)  
50  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TL054AIDRE4  
TL054AIDRG4  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TL054AMFKB  
TL054AMJB  
TL054CD  
OBSOLETE  
OBSOLETE  
ACTIVE  
LCCC  
CDIP  
SOIC  
FK  
J
20  
14  
14  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
0 to 70  
D
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TL054C  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TL054CDE4  
TL054CDG4  
TL054CDR  
TL054CDRE4  
TL054CDRG4  
TL054CN  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TL054C  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
50  
2500  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TL054C  
TL054C  
TL054C  
TL054C  
TL054CN  
TL054CN  
TL054  
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
N
Pb-Free  
(RoHS)  
0 to 70  
TL054CNE4  
TL054CNSR  
TL054CNSRE4  
TL054CNSRG4  
TL054ID  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
NS  
NS  
NS  
D
2000  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
SO  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TL054  
SO  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TL054  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TL054I  
TL054I  
TL054I  
TL054I  
TL054I  
TL054I  
TL054IN  
TL054IN  
TL054IDE4  
TL054IDG4  
TL054IDR  
D
50  
Green (RoHS  
& no Sb/Br)  
D
50  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
TL054IDRE4  
TL054IDRG4  
TL054IN  
D
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
N
Pb-Free  
(RoHS)  
TL054INE4  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
Addendum-Page 5  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TL054MFKB  
TL054MJ  
OBSOLETE  
OBSOLETE  
OBSOLETE  
LCCC  
CDIP  
CDIP  
FK  
J
20  
14  
14  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
-55 to 125  
TL054MJB  
J
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 6  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TL051CDR  
TL052ACDR  
TL052AIDR  
TL052CDR  
TL052CPSR  
TL052IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
8
8
2500  
2500  
2500  
2500  
2000  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
16.4  
16.4  
16.4  
16.4  
6.4  
6.4  
6.4  
6.4  
8.2  
6.4  
6.5  
6.5  
6.5  
6.5  
5.2  
5.2  
5.2  
5.2  
6.6  
5.2  
9.0  
9.0  
9.0  
9.0  
2.1  
2.1  
2.1  
2.1  
2.5  
2.1  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
D
8
D
8
PS  
D
8
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
TL054ACDR  
TL054AIDR  
TL054CDR  
TL054IDR  
D
14  
14  
14  
14  
D
D
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TL051CDR  
TL052ACDR  
TL052AIDR  
TL052CDR  
TL052CPSR  
TL052IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
8
8
2500  
2500  
2500  
2500  
2000  
2500  
2500  
2500  
2500  
2500  
340.5  
340.5  
340.5  
340.5  
367.0  
340.5  
333.2  
333.2  
333.2  
333.2  
338.1  
338.1  
338.1  
338.1  
367.0  
338.1  
345.9  
345.9  
345.9  
345.9  
20.6  
20.6  
20.6  
20.6  
38.0  
20.6  
28.6  
28.6  
28.6  
28.6  
D
8
D
8
PS  
D
8
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
TL054ACDR  
TL054AIDR  
TL054CDR  
TL054IDR  
D
14  
14  
14  
14  
D
D
D
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TL054CDE4

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL054CDE4

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
STMICROELECTR

TL054CDG4

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL054CDG4

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
STMICROELECTR

TL054CDR

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL054CDR

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
STMICROELECTR

TL054CDR

QUAD OP-AMP, 7700uV OFFSET-MAX, 2.7MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14
ROCHESTER

TL054CDRE4

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL054CDRE4

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
STMICROELECTR

TL054CDRG4

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL054CDRG4

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
STMICROELECTR

TL054CN

ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS
TI