TLA2528IRTER [TI]

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC) | RTE | 16 | -40 to 85;
TLA2528IRTER
型号: TLA2528IRTER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC) | RTE | 16 | -40 to 85

转换器 模数转换器
文件: 总39页 (文件大小:1857K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLA2528  
ZHCSJS9 MAY 2019  
TLA2528 小型 8 通道 12 ADC,具有 I2C 接口 及 GPIO  
1 特性  
2 应用  
1
小封装尺寸:  
3mm × 3mm WQFN  
8 通道,可配置为以下任意组合:  
最多 8 个模拟输入、数字输入或数字输出  
用于 I/O 扩展的 GPIO:  
开漏、推挽数字输出  
宽工作范围:  
监控功能  
便携式仪表  
电信基础设施  
电源监控  
3 说明  
TLA2528 是一款易于使用的 8 通道多路复用 12 位逐  
次逼近寄存器模数转换器 (SAR ADC)8 个通道可独  
立配置为模拟输入、数字输入或数字输出。该器件具有  
一个用于执行 ADC 转换过程的内部振荡器。  
AVDD2.35V 5.5V  
DVDD1.65V 5.5V  
温度范围:–40°C +85°C  
I2C 接口:  
TLA2528 通过 I2C 兼容接口进行通信,支持标准模式  
(100kHz)、快速模式 (400kHz)、快速模式+ (1MHz) 和  
高速模式 (3.4MHz)。通过在 ADDR 引脚上连接一个电  
阻,可为 TLA2528 选择最多 8 I2C 地址。  
高达 3.4MHz(高速)  
8 个可配置 I2C 地址  
可编程均值滤波器:  
用于求平均值的可编程样本大小  
利用内部转换求平均值  
器件信息(1)  
部件名称  
TLA2528  
封装  
封装尺寸(标称值)  
用于计算平均输出的 16 位分辨率  
WQFN (16)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
TLA2528 方框图和 应用  
Example Applications  
Device Block Diagram  
AVDD (VREF  
)
AIN / GPIO  
AIN / GPIO  
AVDD  
DECAP  
AIN / GPIO  
AIN / GPIO  
AIN / GPIO  
AIN / GPIO  
I2C  
DVDD  
ADDR  
Controller  
TLA2528  
AIN0 / GPIO0  
AIN1 / GPIO1  
AIN2 / GPIO2  
AIN3 / GPIO3  
AIN4 / GPIO4  
AIN5 / GPIO5  
AIN6 / GPIO6  
AIN7 / GPIO7  
Programmable  
Averaging Filter  
I2C Interface  
ADC  
SDA  
SCL  
AIN / GPIO  
AIN / GPIO  
MUX  
VSIGNAL + noise  
Sequencer  
Pin CFG  
Reduced  
noise  
R1  
R2  
GND  
GPO Write  
GPI Read  
Controller  
TLA2528  
TLA2528  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS961  
 
 
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
7.5 Programming........................................................... 16  
7.6 TLA2528 Registers ................................................. 19  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Applications ................................................ 26  
Power Supply Recommendations...................... 28  
9.1 AVDD and DVDD Supply Recommendations......... 28  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 I2C Timing Requirements.......................................... 6  
6.7 Timing Requirements................................................ 6  
6.8 I2C Switching Characteristics.................................... 6  
6.9 Switching Characteristics.......................................... 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 9  
8
9
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Example .................................................... 29  
11 器件和文档支持 ..................................................... 30  
11.1 接收文档更新通知 ................................................. 30  
11.2 社区资源................................................................ 30  
11.3 ....................................................................... 30  
11.4 静电放电警告......................................................... 30  
11.5 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 5 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
5 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN  
Top View  
AIN2 / GPIO2  
1
2
3
4
12  
11  
10  
9
NC  
AIN3 / GPIO3  
AIN4 / GPIO4  
ADDR  
DVDD  
GND  
Thermal  
Pad  
AIN5 / GPIO5  
Pin Functions  
PIN  
FUNCTION(1)  
DESCRIPTION  
NAME  
NO.  
Channel 0; configurable as either an analog input (default) or a general-purpose  
input/output (GPIO)  
AIN0/GPIO0  
15  
AI, DI, DO  
AIN1/GPIO1  
AIN2/GPIO2  
AIN3/GPIO3  
AIN4/GPIO4  
AIN5/GPIO5  
AIN6/GPIO6  
AIN7/GPIO7  
16  
1
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
Channel 1; configurable as either an analog input (default) or a GPIO  
Channel 2; configurable as either an analog input (default) or a GPIO  
Channel 3; configurable as either an analog input (default) or a GPIO  
Channel 4; configurable as either an analog input (default) or a GPIO  
Channel 5; configurable as either an analog input (default) or a GPIO  
Channel 6; configurable as either an analog input (default) or a GPIO  
Channel 7; configurable as either an analog input (default) or a GPIO  
2
3
4
5
6
Input for selecting the device I2C address.  
Connect a resistor to this pin from DECAP pin or GND to select one of the eight  
addresses.  
ADDR  
11  
AI  
Analog supply input, also used as the reference voltage to the ADC; connect a  
1-µF decoupling capacitor to GND  
AVDD  
7
Supply  
DECAP  
DVDD  
8
Supply  
Supply  
Connect a decoupling capacitor to this pin for the internal power supply  
Digital I/O supply voltage; connect a 1-µF decoupling capacitor to GND  
10  
Ground for the power supply; all analog and digital signals are referred to this  
pin voltage  
GND  
9
Supply  
NC  
No connection  
DI, DO  
This pin must be left floating with no external connection  
Serial data input or output for the I2C interface  
Serial clock for the I2C interface  
SDA  
SCL  
14  
13  
DI  
(1) AI = analog input, DI = digital input, and DO = digital output.  
Copyright © 2019, Texas Instruments Incorporated  
3
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
5.5  
UNIT  
V
DVDD to GND  
AVDD to GND  
5.5  
V
AINx/GPOx(2)  
GND – 0.3 AVDD + 0.3  
V
ADDR  
GND – 0.3  
GND – 0.3  
–10  
2.1  
5.5  
10  
V
Digital inputs  
V
Current through any pin except supply pins(3)  
Junction temperature, TJ  
Storage temperature, Tstg  
mA  
°C  
°C  
–40  
125  
150  
–60  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) AINx/GPIOx refers to pins 1, 2, 3, 4, 5, 6, 15, and 16.  
(3) Pin current must be limited to 10mA or less.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
DVDD  
Analog supply voltage  
Digital supply voltage  
2.35  
1.65  
3.3  
3.3  
5.5  
5.5  
V
V
ANALOG INPUTS  
FSR  
VIN  
Full-scale input range  
Absolute input voltage  
AINX(1) - GND  
AINX - GND  
0
AVDD  
V
V
–0.1  
AVDD + 0.1  
TEMPERATURE RANGE  
TA Ambient temperature  
–40  
25  
85  
(1) AINx refers to AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.  
6.4 Thermal Information  
TLA2528  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
49.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
53.4  
24.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ΨJB  
24.7  
RθJC(bot)  
9.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
6.5 Electrical Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +85°C; typical values at TA = 25°C.  
PARAMETER  
ANALOG INPUTS  
CSH Sampling capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
12  
pF  
DC PERFORMANCE  
Resolution  
No missing codes  
12  
±0.3  
±0.5  
±0.5  
±5  
bits  
LSB  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
Input offset error  
LSB  
V(OS)  
Post offset calibration  
Post offset calibration  
LSB  
Input offset thermal drift  
Gain error  
ppm/°C  
%FSR  
ppm/°C  
GE  
±0.05  
±5  
Gain error thermal drift  
AC PERFORMANCE  
AVDD = 5 V, fIN = 2 kHz  
AVDD = 3 V, fIN = 2 kHz  
71.5  
70.5  
SINAD Signal-to-noise + distortion ratio  
dB  
µF  
DECAP Pin  
Decoupling capacitor on DECAP  
pin  
0.22  
1
DIGITAL INPUT/OUTPUT (SCL, SDA)  
VIH  
VIL  
Input high logic level  
Input low logic level  
All I2C modes  
All I2C modes  
0.7 x DVDD  
5.5  
0.3 x DVDD  
0.4  
V
V
–0.3  
0
Sink current = 2 mA, DVDD > 2 V  
Sink current = 2 mA, DVDD 2 V  
VOL  
Output low logic level  
V
0
0.2 x DVDD  
VOL = 0.4 V, standard and fast  
mode  
3
IOL  
Low-level output current (sink)  
mA  
VOL = 0.6 V, fast mode  
6
VOL = 0.4 V, fast mode plus  
20  
GPIOs  
VIH  
Input high logic level  
Input low logic level  
0.7 x AVDD  
–0.3  
AVDD + 0.3  
0.3 x AVDD  
V
V
VIL  
GPO_DRIVE_CFG = push-pull,  
ISOURCE = 2 mA  
VOH  
Output high logic level  
0.8 x AVDD  
0
AVDD  
V
VOL  
IOH  
IOL  
Output low logic level  
ISINK = 2 mA  
0.2 x AVDD  
V
Output high source current  
Output low sink current  
VOH > 0.7 x AVDD  
VOL < 0.3 x AVDD  
5
5
mA  
mA  
POWER SUPPLY CURRENTS  
I2C high-speed mode, AVDD = 5 V  
I2C fast mode plus, AVDD = 5 V  
I2C fast mode, AVDD = 5 V  
260  
83  
35  
10  
5
IAVDD  
Analog supply current  
µA  
I2C standard mode, AVDD = 5 V  
No conversion, AVDD = 5 V  
Copyright © 2019, Texas Instruments Incorporated  
5
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
6.6 I2C Timing Requirements  
MODE  
FAST MODE  
HIGH SPEED MODE  
UNIT  
MIN  
MAX  
MIN  
MAX  
fSCL  
SCL clock frequency(1)  
START condition setup time for repeated start  
Start condition hold time  
Clock low period  
1
3.4  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUSTA  
tHDSTA  
tLOW  
tHIGH  
tSUDAT  
tHDDAT  
tR  
260  
260  
500  
260  
50  
160  
160  
160  
60  
Clock high period  
Data in setup time  
10  
Data in hold time  
0
0
SCL rise time  
120  
120  
80  
80  
tF  
SCL fall time  
tSUSTO  
tBUF  
STOP condition hold time  
Bus free time before new transmission  
260  
500  
60  
300  
(1) Bus load (CB) consideration; CB 400 pF for fSCL 1 MHz; CB < 100 pF for fSCL = 3.4 MHz.  
6.7 Timing Requirements  
at AVDD = 2.35 V to 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and  
maximum values at TA = –40°C to +85°C; typical values at TA = 25°C.  
MIN  
MAX  
UNIT  
tACQ  
Acquisition time  
300  
ns  
6.8 I2C Switching Characteristics  
MODE  
HIGH-SPEED MODE  
FAST MODE  
MIN MAX  
UNIT  
MIN  
MAX  
200  
tVDDATA  
tVDACK  
SCL low to SDA data out valid  
450  
450  
ns  
ns  
SCL low to SDA acknowledge time  
200  
Clock stretch time in one-shot conversion mode; during ADC  
conversion  
tSTRETCH  
tSP  
1200  
50  
950  
10  
ns  
ns  
Noise supression time constant on SDA and SCL  
6
Copyright © 2019, Texas Instruments Incorporated  
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
6.9 Switching Characteristics  
at AVDD = 2.35 V to 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and  
maximum values at TA = –40°C to +85°C; typical values at TA = 25°C.  
PARAMETER  
CONVERSION CYCLE  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tCONV  
RESET  
tPU  
ADC conversion time  
tSTRETCH  
ns  
Power-up time for device  
AVDD 2.35 V  
5
5
ms  
ms  
Delay time; RST bit = 1b to device reset  
complete(1)  
tRST  
(1) RST bit is automatically reset to 0b after tRST  
.
9th clock  
tLOW  
tHIGH  
SCL  
tR  
tSUDAT  
tF  
tSUSTO  
tSTRETCH  
tHDSTA tHDDAT  
tSUSTA  
tSP  
SDA  
tBUF  
tVDDAT  
tVDACK  
P
S
Sr  
P
NOTE: S = start, Sr = repeated start, and P = stop.  
1. I2C Timing Diagram  
版权 © 2019, Texas Instruments Incorporated  
7
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLA2528 is a small, eight-channel, multiplexed, 12-bit, analog-to-digital converter (ADC) with an I2C-  
compatible serial interface. The eight channels of the TLA2528 can be individually configured as either analog  
inputs, digital inputs, or digital outputs. The device uses an internal oscillator for conversion. The analog input  
channel selection can be auto-sequenced to simplify the digital interface with the host.  
The device features a programmable averaging filter that outputs a 16-bit result for enhanced resolution.  
The I2C serial interface supports standard-mode, fast-mode, fast-mode plus, and high-speed mode.  
7.2 Functional Block Diagram  
DECAP  
AVDD  
DVDD  
ADDR  
AIN0 / GPIO0  
AIN1 / GPIO1  
AIN2 / GPIO2  
AIN3 / GPIO3  
AIN4 / GPIO4  
AIN5 / GPIO5  
AIN6 / GPIO6  
AIN7 / GPIO7  
Programmable  
Averaging Filter  
I2C Interface  
ADC  
SDA  
SCL  
MUX  
Sequencer  
Pin CFG  
GND  
GPO Write  
GPI Read  
TLA2528  
8
版权 © 2019, Texas Instruments Incorporated  
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
7.3 Feature Description  
7.3.1 Multiplexer and ADC  
The eight channels of the multiplexer can be independently configured as ADC inputs or general-purpose  
inputs/outputs (GPIOs). 2 shows that each input pin has electrostatic discharge (ESD) protection diodes to  
AVDD and GND. On power-up or after device reset, all eight multiplexer channels are configured as analog  
inputs.  
2 shows an equivalent circuit for pins configured as analog inputs. The ADC sampling switch is represented  
by an ideal switch (SW) in series with the resistor, RSW (typically 150 Ω), and the sampling capacitor, CSH  
(typically 12 pF).  
Pin CFG  
AVDD  
GPIO0  
AIN0 / GPIO0  
RSW  
SW  
MUX  
CSH  
AVDD  
ADC  
GPIO7  
AIN7 / GPIO7  
Multiplexer  
2. Analog Inputs, GPIOs, and ADC Connections  
During acquisition, the SW switch is closed to allow the signal on the selected analog input channel to charge the  
internal sampling capacitor. During conversion, the SW switch is opened to disconnect the analog input channel  
from the sampling capacitor.  
The multiplexer channels can be configured as GPIOs in the PIN_CFG register. The direction of a GPIO (either  
as an input or an output) can be set in the GPIO_CFG register. The logic level on the channels configured as  
digital inputs can be read from the GPI_VALUE register. The digital outputs can be accessed by writing to the  
GPO_OUTPUT_VALUE register. The digital outputs can be configured as either open-drain or push-pull in the  
GPO_DRIVE_CFG register.  
7.3.2 Reference  
The device uses the analog supply voltage (AVDD) as a reference for the analog-to-digital conversion process.  
TI recommends connecting a 1-µF, low-equivalent series resistance (ESR) ceramic decoupling capacitor  
between the AVDD and GND pins.  
7.3.3 ADC Transfer Function  
The ADC output is in straight binary format. 公式 1 computes the ADC resolution:  
1 LSB = VREF / 2N  
where:  
VREF = AVDD  
N = 12  
(1)  
3 and 1 detail the transfer characteristics for the device.  
版权 © 2019, Texas Instruments Incorporated  
9
 
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
Feature Description (接下页)  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
1 LSB  
AVDD/2 (AVDD/2 + 1 LSB)  
(AVDD œ 1 LSB)  
3. Ideal Transfer Characteristics  
1. Transfer Characteristics  
INPUT VOLTAGE  
1 LSB  
CODE  
NFSC  
DESCRIPTION  
IDEAL OUTPUT CODE  
Negative full-scale code  
000  
001  
800  
801  
FFF  
1 LSB to 2 LSBs  
NFSC + 1  
Mid code  
(AVDD / 2) to (AVDD / 2) + 1 LSB  
(AVDD / 2) + 1 LSB to (AVDD / 2) + 2 LSB  
AVDD – 1 LSB  
MC  
MC + 1  
PFSC  
Positive full-scale code  
7.3.4 ADC Offset Calibration  
The variation in ADC offset error resulting from changes in temperature or AVDD can be calibrated by setting the  
CAL bit in the GENERAL_CFG register. The CAL bit is reset to 0 after calibration. The host can poll the CAL bit  
to check the ADC offset calibration completion status.  
7.3.5 I2C Address Selector  
The I2C address for the device is determined by connecting external resistors on the ADDR pin. The device  
address is determined at power-up based on the resistor values. The device retains this address until the next  
power-up event, until the next device reset, or until the device receives a command to program its own address.  
4 shows a connection diagram for the ADDR pin and 2 lists the resistor values for selecting different  
addresses of the device.  
DECAP Pin  
R1  
ADDR  
R2  
4. External Resistor Connection Diagram for the ADDR Pin  
10  
版权 © 2019, Texas Instruments Incorporated  
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
2. I2C Address Selection  
RESISTORS  
ADDRESS  
R1(1)  
0 Ω  
R2(1)  
DNP(2)  
DNP(2)  
DNP(2)  
001 0111b (17h)  
001 0110b (16h)  
001 0101b (15h)  
001 0100b (14h)  
001 0000b (10h)  
001 0001b (11h)  
001 0010b (12h)  
001 0011b (13h)  
11 kΩ  
33 kΩ  
100 kΩ  
DNP(2)  
DNP(2)  
DNP(2)  
DNP(2)  
DNP(2)  
0 Ω or DNP(2)  
11 kΩ  
33 kΩ  
100 kΩ  
(1) Tolerance for R1, R2 ±5%.  
(2) DNP = Do not populate.  
7.3.6 Programmable Averaging Filter  
The ADS7138 features a built-in oversampling (OSR) function that can be used to average several samples. The  
averaging filter can be enabled by programming the OSR[2:0] bits in the OSR_CFG register. The averaging filter  
configuration is common to all analog input channels. 5 shows that the averaging filter module output is 16  
bits long. In the manual conversion mode and auto-sequence mode, only the first conversion for the selected  
analog input channel must be initiated by the host; see the Manual Mode and Auto-Sequence Mode sections. As  
shown in 5, any remaining conversions for the selected averaging factor are generated internally. The time  
required to complete the averaging operation is determined by the sampling speed and number of samples to be  
averaged. As shown in 5, the 16-bit result can be read out after the averaging operation completes.  
Sample AINX  
Sample AINX  
Sample AINX  
Sample AINX OSR_DONE = 1  
S
7-bit ADDR  
R
A
Bus idle or Poll OSR_DONE bit  
DATA[15:8]  
A
DATA[7:0]  
A
OSR_DONE = 0  
OSR_CFG[2:0] = 2  
Time = tCONV x OSR_CFG[2:0]  
Data from host to device  
Data from device to host  
5. Averaging Example  
In 5, SCL is stretched by the device after the start of conversions until the averaging operation is complete.  
If SCL stretching is not required during averaging, enable the statistics registers by setting STATS_EN to 1b and  
initiate conversions by writing 1b to the CNVST bit. The OSR_DONE bit in the SYSTEM_STATUS register can  
be polled to check the averaging completion status. When using the CNVST bit to initiate conversion, the result  
can be read in the RECENT_CHx_LSB and RECENT_CHx_MSB registers.  
公式 2 provides the LSB value of the 16-bit average result.  
AVDD  
216  
1 LSB =  
(2)  
7.3.7 General-Purpose I/Os (GPIOs)  
The eight channels of the TLA2528 can be independently configured as analog inputs, digital inputs, or digital  
outputs. 3 describes how the PIN_CFG and GPIO_CFG registers can be used to configure the channels.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
3. Configuring Channels as Analog Inputs or GPIOs  
GPO_DRIVE_CF  
PIN_CFG[7:0]  
GPIO_CFG[7:0]  
CHANNEL CONFIGURATION  
G[7:0]  
0
1
1
1
x
0
1
1
x
x
0
1
Analog input (default)  
Digital input  
Digital output; open-drain driver  
Digital output; push-pull driver  
The digital outputs can be configured to logic 1 or 0 by writing to the GPO_OUTPUT_VALUE register. Reading  
the GPI_VALUE register returns the logic level for all channels configured as digital inputs.  
7.3.8 Oscillator and Timing Control  
The device uses an internal oscillator for conversions. When using the averaging module, the host initiates the  
first conversion and all subsequent conversions are generated internally by the device. However, in the  
autonomous mode of operation, the start of the conversion signal is generated by the device. 4 shows that  
when the device generates the start of the conversion, the sampling rate is controlled by the OSC_SEL and  
CLK_DIV[3:0] register fields.  
4. Configuring Sampling Rate for Internal Conversion Start Control  
OSC_SEL = 0  
OSC_SEL = 1  
CLK_DIV[3:0]  
SAMPLING FREQUENCY,  
CYCLE TIME,  
tCYCLE (µs)  
SAMPLING FREQUENCY, fCYCLE  
(kSPS)  
CYCLE TIME, tCYCLE  
(µs)  
fCYCLE (kSPS)  
1000  
666.7  
500  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1
1.5  
2
31.25  
20.83  
15.63  
10.42  
7.81  
5.21  
3.91  
2.60  
1.95  
1.3  
32  
48  
64  
333.3  
250  
3
96  
4
128  
192  
256  
384  
512  
768  
1024  
1536  
2048  
3072  
166.7  
125  
6
8
83  
12  
16  
24  
32  
48  
64  
96  
62.5  
41.7  
31.3  
0.98  
0.65  
0.49  
0.33  
20.8  
15.6  
10.4  
The conversion time of the device (see tCONV in the Switching Characteristics table) is independent of the  
OSC_SEL and CLK_DIV[3:0] configuration.  
7.3.9 Output Data Format  
6 illustrates various I2C frames for reading data.  
Read the ADC conversion result: Two 8-bit I2C packets are required (frame A).  
Read the averaged conversion result: Two 8-bit I2C packets are required (frame B).  
Read data with the channel ID or status flags appended: The 4-bit channel ID or status flags can be  
appended to the 12-bit ADC result by configuring the APPEND_STATUS field in the GENERAL_CFG  
register. The status flags can be used to detect if a CRC error is detected and if an alert condition is detected  
by the digital window comparator. When the channel ID is or status flags are appended to the 12-bit ADC  
data, two I2C packets are required (frame C). If the channel ID is or status flags are appended to the 16-bit  
average result, three I2C frames are required (frame D).  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
Sample A  
Sample A + 1  
S
S
7-bit Slave Address  
R
A
D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
A
D3  
D7  
D2  
D6  
D1  
D5  
D0  
D4  
0
0
0
0
A
A
Frame A : Reading ADC data  
7-bit Slave Address  
7-bit Slave Address  
7-bit Slave Address  
R
A
D15 D14 D13 D12 D11 D10 D9  
D8  
A
D3  
D2  
D1  
D0  
Frame B : Reading ADC data with averaging enabled  
S
S
R
R
A
A
D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
A
D3  
D2  
D1  
D0  
4-bit Channel ID  
A
A
Frame C : Reading ADC data with channel ID appended  
D15 D14  
D8  
A
D7  
D6  
D0  
A
4-bit Channel ID  
0
0
0
0
Frame D : Reading ADC data with averaging enabled &  
channel ID appended  
Clock stretching for conversion time  
Data from host to device  
Data from device to host  
6. Data Frames for Reading Data  
7.3.10 I2C Protocol Features  
7.3.10.1 General Call  
On receiving a general call (00h), the device provides an acknowledge (ACK).  
7.3.10.2 General Call With Software Reset  
On receiving a general call (00h) followed by a software reset (06h), the device resets itself.  
7.3.10.3 General Call With a Software Write to the Programmable Part of the Slave Address  
On receiving a general call (00h) followed by 04h, the device reevaluates its own I2C address configured by the  
ADDR pin. During this operation, the device does not respond to other I2C commands except the general-call  
command.  
7.3.10.4 Configuring the Device for High-Speed I2C Mode  
The device can be configured in high-speed I2C mode by providing an I2C frame with one of these codes: 0x09,  
0x0B, 0x0D, or 0x0F.  
After receiving one of these codes, the device sets the I2C_HIGH_SPEED bit in the SYSTEM_STATUS register  
and remains in high-speed I2C mode until a STOP condition is received in an I2C frame.  
7.4 Device Functional Modes  
5 lists the functional modes supported by the TLA2528.  
5. Functional Modes  
FUNCTIONAL  
CONVERSION CONTROL  
MUX CONTROL  
SEQ_MODE[1:0]  
MODE  
Manual  
9th falling edge of SCL (ACK)  
9th falling edge of SCL (ACK)  
Register write to MANUAL_CHID  
Channel sequencer  
00b  
01b  
Auto-sequence  
版权 © 2019, Texas Instruments Incorporated  
13  
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
The device powers up in manual mode (see the Manual Mode section) and can be configured into any mode  
listed in 5 by writing the configuration registers for the desired mode.  
7.4.1 Device Power-Up and Reset  
On power-up, the device calculates the address from the resistors connected on the ADDR pin and the BOR bit  
is set, thus indicating a power-cycle or reset event.  
The device can be reset by an I2C general call (00h) followed by a software reset (06h), by setting the RST bit, or  
by recycling the power on the AVDD pin.  
7.4.2 Manual Mode  
Manual mode allows the external host processor to directly select the analog input channel. 7 lists the steps  
for operating the device in manual mode.  
Idle  
SEQ_MODE = 0  
Configure channels as AIN/GPIO using PIN_CFG  
Select Manual mode  
(SEQ_MODE = 00b)  
Configure desired Channel ID in MANUAL_CHID field  
Host provides Conversion Start Frame on I2C Bus  
Host provides Conversion Read Frame on I2C Bus  
No  
Yes  
Same  
Channel ID?  
Manual mode with channel selection using register write  
7. Device Operation in Manual Mode  
Provide an I2C start or restart frame to initiate a conversion, as shown in the conversion start frame of 8, after  
configuring the device registers. ADC data can be read in subsequent I2C frames. The number of I2C frames  
required to read conversion data depends on the output data frame size; see the Output Data Format section for  
more details. A new conversion is initiated on the ninth falling edge of SCL (ACK bit) when the last byte of output  
data is read.  
Sample A + 1  
Sample A  
S
7-bit Slave Address  
R
A
8 bit I2C frame  
A
8 bit I2C frame  
A
8 bit I2C frame  
A
8 bit I2C frame  
A
Clock stretching for conversion time  
Clock stretching for conversion time  
Data from host to device  
Data from device to host  
8. Starting a Conversion and Reading Data in Manual Mode  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
7.4.3 Auto-Sequence Mode  
In auto-sequence mode, the internal channel sequencer switches the multiplexer to the next analog input  
channel after every conversion. The desired analog input channels can be configured for sequencing in the  
AUTO_SEQ_CHSEL register. To enable the channel sequencer, set SEQ_START to 1b. After every conversion,  
the channel sequencer switches the multiplexer to the next analog input in ascending order. To stop the channel  
sequencer from selecting channels, set SEQ_START to 0b. 9 lists the conversion start and read frames for  
auto-sequence mode.  
Idle  
SEQ_MODE = 0  
Configure channels as AIN/GPIO using PIN_CFG  
Enable analog inputs for sequencing (AUTO_SEQ_CHSEL)  
Select Auto-sequence mode (SEQ_MODE = 01b)  
(optional) Configure alert conditions  
(optional) Append Channel ID to data using APPEND_STATUS  
Enable channel sequencing SEQ_START = 1  
Host provides Conversion Start Frame on I2C Bus  
Host provides Conversion Read Frame on I2C Bus  
Device selects next channel according to AUTO_SEQ_CHSEL  
Yes  
Continue?  
No  
Disable channel sequencing SEQ_START = 0  
Idle  
9. Device Operation in Auto-Sequence Mode  
版权 © 2019, Texas Instruments Incorporated  
15  
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
7.5 Programming  
6 provides the acronyms for different conditions in an I2C frame. 7 lists the various command opcodes.  
6. I2C Frame Acronyms  
SYMBOL  
DESCRIPTION  
Start condition for the I2C frame  
Restart condition for the I2C frame  
Stop condition for the I2C frame  
ACK (low)  
S
Sr  
P
A
N
R
W
NACK (high)  
Read bit (high)  
Write bit (low)  
7. Opcodes for Commands  
OPCODE  
0001 0000b  
0000 1000b  
0001 1000b  
0010 0000b  
0011 0000b  
0010 1000b  
COMMAND DESCRIPTION  
Single register read  
Single register write  
Set bit  
Clear bit  
Reading a continuous block of registers  
Writing a continuous block of registers  
7.5.1 Reading Registers  
The I2C master can either read a single register or a continuous block registers from the device, as described in  
the Single Register Read and Reading a Continuous Block of Registers sections.  
7.5.1.1 Single Register Read  
To read a single register from the device, the I2C master must provide an I2C command with three frames to set  
the register address for reading data. 7 lists the opcodes for different commands. After this command is  
provided, the I2C master must provide another I2C frame (as shown in 10) containing the device address and  
the read bit. After this frame, the device provides the register data. The device provides the same register data  
even if the host provides more clocks. To end the register read command, the master must provide a STOP or a  
RESTART condition in the I2C frame.  
Register  
Address  
S
7-bit Slave Address  
W
A
0001 0000b  
A
A
P/Sr  
S
7-bit Slave Address  
R
A
Register Data  
A
P/Sr  
Data from host to device  
Data from device to host  
NOTE: S = start, Sr = repeated start, and P = stop.  
10. Reading Register Data  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
7.5.1.2 Reading a Continuous Block of Registers  
To read a continuous block of registers, the I2C master must provide an I2C command to set the register  
address. The register address is the address of the first register in the block that must be read. After this  
command is provided, the I2C master must provide another I2C frame, as shown in 11, containing the device  
address and the read bit. After this frame, the device provides the register data. The device provides data for the  
next register when more clocks are provided. When data are read from addresses that do not exist in the register  
map of the device, the device returns zeros. If the device does not have any further registers to provide data on,  
the device provide zeros. To end the register read command, the master must provide a STOP or a RESTART  
condition in the I2C frame.  
1st Reg Address  
in the Block  
S
7-bit Slave Address  
W
A
0011 0000b  
A
A
P/Sr  
S
7-bit Slave Address  
R
A
Register Data  
A
P/Sr  
Data from host to device  
Data from device to host  
NOTE: S = start, Sr = repeated start, and P = stop.  
11. Reading a Continuous Block of Registers  
7.5.2 Writing Registers  
The I2C master can either write a single register or a continuous block of registers to the device, set a few bits in  
a register, or clear a few bits in a register.  
7.5.2.1 Single Register Write  
To write a single register from the device, as shown in 12, the I2C master must provide an I2C command with  
four frames. The register address is the address of the register that must be written and the register data is the  
value that must be written. 7 lists the opcodes for different commands. To end the register write command, the  
master must provide a STOP or a RESTART condition in the I2C frame.  
Register  
Address  
S
7-bit Slave Address  
W
A
0000 1000b  
A
A
Register Data  
A
P/Sr  
Data from host to device  
Data from device to host  
NOTE: S = start, Sr = repeated start, and P = stop.  
12. Writing a Single Register  
7.5.2.2 Set Bit  
The I2C master must provide an I2C command with four frames, as shown in 12, to set bits in a register  
without changing the other bits. The register address is the address of the register that the bits must set and the  
register data is the value representing the bits that must be set. Bits with a value of 1 in the register data are set  
and bits with a value of 0 in the register data are not changed. 7 lists the opcodes for different commands. To  
end this command, the master must provide a STOP or RESTART condition in the I2C frame.  
7.5.2.3 Clear Bit  
The I2C master must provide an I2C command with four frames, as shown in 12, to clear bits in a register  
without changing the other bits. The register address is the address of the register that the bits must clear and  
the register data is the value representing the bits that must be cleared. Bits with a value of 1 in the register data  
are cleared and bits with a value of 0 in the register data are not changed. 7 lists the opcodes for different  
commands. To end this command, the master must provide a STOP or a RESTART condition in the I2C frame.  
Copyright © 2019, Texas Instruments Incorporated  
17  
 
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
7.5.2.4 Writing a Continuous Block of Registers  
The I2C master must provide an I2C command, as shown in 13, to write a continuous block of registers. The  
register address is the address of the first register in the block that must be written. The I2C master must provide  
data for registers in subsequent I2C frames in an ascending order of register addresses. Writing data to  
addresses that do not exist in the register map of the device have no effect. 7 lists the opcodes for different  
commands. If the data provided by the I2C master exceeds the address space of the device, the device ignores  
the data beyond the address space. To end the register write command, the master must provide a STOP or a  
RESTART condition in the I2C frame.  
1st Reg Address  
in the block  
S
7-bit Slave Address  
W
A
0010 1000b  
A
A
Register Data  
A
P/Sr  
Data from host to device  
Data from device to host  
NOTE: S = start, Sr = repeated start, and P = stop.  
13. Writing a Continuous Block of Registers  
18  
Copyright © 2019, Texas Instruments Incorporated  
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
7.6 TLA2528 Registers  
Table 8 lists the TLA2528 registers. All register offset addresses not listed in Table 8 should be considered as  
reserved locations and the register contents should not be modified.  
Table 8. TLA2528 Registers  
Address  
Acronym  
Register  
Name  
Section  
0x0  
0x1  
SYSTEM_STATUS  
GENERAL_CFG  
DATA_CFG  
SYSTEM_STATUS Register (Address = 0x0) [reset = 0x80]  
GENERAL_CFG Register (Address = 0x1) [reset = 0x0]  
DATA_CFG Register (Address = 0x2) [reset = 0x0]  
OSR_CFG Register (Address = 0x3) [reset = 0x0]  
0x2  
0x3  
OSR_CFG  
0x4  
OPMODE_CFG  
PIN_CFG  
OPMODE_CFG Register (Address = 0x4) [reset = 0x0]  
PIN_CFG Register (Address = 0x5) [reset = 0x0]  
0x5  
0x7  
GPIO_CFG  
GPIO_CFG Register (Address = 0x7) [reset = 0x0]  
0x9  
GPO_DRIVE_CFG  
GPO_OUTPUT_VALUE  
GPI_VALUE_LSB  
SEQUENCE_CFG  
CHANNEL_SEL  
AUTO_SEQ_CHSEL  
GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]  
GPO_OUTPUT_VALUE Register (Address = 0xB) [reset = 0x0]  
GPI_VALUE_LSB Register (Address = 0xD) [reset = 0x0]  
SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]  
CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]  
AUTO_SEQ_CHSEL Register (Address = 0x12) [reset = 0x0]  
0xB  
0xD  
0x10  
0x11  
0x12  
Complex bit access types are encoded to fit into small table cells. Table 9 shows the codes that are used for  
access types in this section.  
Table 9. TLA2528 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups form  
a hierarchical structure and the  
array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address it refers to the value of a  
register array.  
7.6.1 SYSTEM_STATUS Register (Address = 0x0) [reset = 0x80]  
SYSTEM_STATUS is shown in Figure 14 and described in Table 10.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
19  
 
 
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
Figure 14. SYSTEM_STATUS Register  
7
6
5
4
3
2
1
0
RSVD  
SEQ_STATUS  
I2C_SPEED  
RESERVED  
OSR_DONE  
CRC_ERR_FU  
SE  
RESERVED  
BOR  
R-1b  
R-0b  
R-0b  
R-0b  
R/W-0b  
R-0b  
R-0b  
R/W-0b  
Table 10. SYSTEM_STATUS Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
1b  
Description  
RSVD  
This bit must read 1b.  
Sequencer Status  
6
SEQ_STATUS  
R
0b  
0b = Sequence stopped  
1b = Sequence in progress  
I2C high-speed status  
5
I2C_SPEED  
R
0b  
0b = Device is not in high speed mode  
1b = Device is in high speed mode  
Reserved. Reads return 0b.  
4
3
RESERVED  
OSR_DONE  
R
0b  
0b  
R/W  
OSR status. Clear this bit by writing 1b to this bit.  
0b = OSR in progress; data not ready.  
1b = OSR complete; data ready.  
2
CRC_ERR_FUSE  
R
0b  
Device fuse CRC check status. To re-evaluate this bit, software reset  
the device or power cycle AVDD.  
0b = Configuration is good.  
1b = Device configuration not loaded correctly.  
Reserved. Reads return 0b.  
1
0
RESERVED  
BOR  
R
0b  
0b  
R/W  
Brown out reset indicator. This bit is set if brown out condition occurs  
or device is power cycled. Write 1 to this bit to clear the flag.  
0b = No brown out from last time this bit was cleared.  
1b = Brown out condition detected or device power cycled.  
7.6.2 GENERAL_CFG Register (Address = 0x1) [reset = 0x0]  
GENERAL_CFG is shown in Figure 15 and described in Table 11.  
Return to the Summary Table.  
Figure 15. GENERAL_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CNVST  
W-0b  
CH_RST  
R/W-0b  
CAL  
RST  
W-0b  
R/W-0b  
Table 11. GENERAL_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-4  
3
RESERVED  
CNVST  
Reserved. Reads return 0b.  
W
0b  
Intiate start of conversion. Readback of this bit will return 0.  
0b = Normal operation.  
1b = Initiate start of conversion.  
2
1
CH_RST  
CAL  
R/W  
R/W  
0b  
0b  
Force all channels to be analog inputs.  
0b = Normal operation.  
1b = All channels will be set as analog inputs irrespective of  
configuration in other registers.  
Calibrate ADC offset.  
0b = Normal operation.  
1b = ADC offset will be calibrated. After calibration is complete, this  
bit will be set to 0.  
20  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
Table 11. GENERAL_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
RST  
W
0b  
Software reset all registers to default values.  
0b = Normal operation.  
1b = Device will be reset. After reset is complete, this bit will be set  
to 0.  
7.6.3 DATA_CFG Register (Address = 0x2) [reset = 0x0]  
DATA_CFG is shown in Figure 16 and described in Table 12.  
Return to the Summary Table.  
Figure 16. DATA_CFG Register  
7
6
5
4
3
2
1
0
FIX_PAT  
R/W-0b  
RESERVED  
R-0b  
APPEND_STATUS[1:0]  
R/W-0b  
RESERVED  
R-0b  
Table 12. DATA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FIX_PAT  
R/W  
0b  
Device outputs fixed data bits. Helpful for debugging device  
communication.  
0b = Normal operation.  
1b = Device outputs a fixed code 0xA5A repeatitively when reading  
ADC data.  
6
RESERVED  
R
0b  
0b  
Reserved. Reads return 0b.  
5-4  
APPEND_STATUS[1:0]  
R/W  
Append 4-bit channel ID to output data.  
0b = Flag is not appended to ADC data.  
1b = Channel ID is appended to ADC data.  
Reserved. Reads return 0b.  
3-0  
RESERVED  
R
0b  
7.6.4 OSR_CFG Register (Address = 0x3) [reset = 0x0]  
OSR_CFG is shown in Figure 17 and described in Table 13.  
Return to the Summary Table.  
Figure 17. OSR_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
OSR[2:0]  
R/W-0b  
Table 13. OSR_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-3  
2-0  
RESERVED  
OSR[2:0]  
Reserved. Reads return 0b.  
R/W  
0b  
Selects the oversampling ratio for ADC conversion result.  
0b = OSR = 0.  
1b = OSR = 2.  
10b = OSR = 4.  
11b = OSR = 8.  
100b = OSR = 16.  
101b = OSR = 32.  
110b = OSR = 64.  
111b = OSR = 128.  
Copyright © 2019, Texas Instruments Incorporated  
21  
 
 
 
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
7.6.5 OPMODE_CFG Register (Address = 0x4) [reset = 0x0]  
OPMODE_CFG is shown in Figure 18 and described in Table 14.  
Return to the Summary Table.  
Figure 18. OPMODE_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
OSC_SEL  
R/W-0b  
CLK_DIV[3:0]  
R/W-0b  
Table 14. OPMODE_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-5  
4
RESERVED  
OSC_SEL  
Reserved. Reads return 0b.  
R/W  
0b  
Selects the oscillator for internal timing generation.  
0b = High speed oscillator.  
1b = Low power oscillator.  
3-0  
CLK_DIV[3:0]  
R/W  
0b  
Sampling speed control. Refer to section on Oscillator and Timing  
Control for details.  
7.6.6 PIN_CFG Register (Address = 0x5) [reset = 0x0]  
PIN_CFG is shown in Figure 19 and described in Table 15.  
Return to the Summary Table.  
Figure 19. PIN_CFG Register  
7
6
5
4
3
2
1
0
PIN_CFG[7:0]  
R/W-0b  
Table 15. PIN_CFG Register Field Descriptions  
Bit  
7-0  
Field  
PIN_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure device channels CH7 through CH0 as analog input or  
GPIO.  
0b = Channel is configured as analog input.  
1b = Channel is configured as GPIO.  
7.6.7 GPIO_CFG Register (Address = 0x7) [reset = 0x0]  
GPIO_CFG is shown in Figure 20 and described in Table 16.  
Return to the Summary Table.  
Figure 20. GPIO_CFG Register  
7
6
5
4
3
2
1
0
GPIO_CFG[7:0]  
R/W-0b  
Table 16. GPIO_CFG Register Field Descriptions  
Bit  
7-0  
Field  
GPIO_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure GPIO7 through GPIO0 as either digital input or digital  
output.  
0b = GPIO is digital input.  
1b = GPIO is digital output.  
22  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
7.6.8 GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]  
GPO_DRIVE_CFG is shown in Figure 21 and described in Table 17.  
Return to the Summary Table.  
Figure 21. GPO_DRIVE_CFG Register  
7
6
5
4
3
2
1
0
GPO_DRIVE_CFG[7:0]  
R/W-0b  
Table 17. GPO_DRIVE_CFG Register Field Descriptions  
Bit  
7-0  
Field  
GPO_DRIVE_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure digital outputs GPO7 through GPO0 as open-drain or  
push-pull output.  
0b = Digital output is open-drain. Connect external pullup.  
1b = Digital output is push-pull.  
7.6.9 GPO_OUTPUT_VALUE Register (Address = 0xB) [reset = 0x0]  
GPO_OUTPUT_VALUE is shown in Figure 22 and described in Table 18.  
Return to the Summary Table.  
Figure 22. GPO_OUTPUT_VALUE Register  
7
6
5
4
3
2
1
0
GPO_OUTPUT_VALUE[7:0]  
R/W-0b  
Table 18. GPO_OUTPUT_VALUE Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO_OUTPUT_VALUE[7: R/W  
0]  
0b  
Logic level to be set on digital outputs GPO[7:0].  
0b = Digital output set to logic 0.  
1b = Digital output set to logic 1.  
7.6.10 GPI_VALUE_LSB Register (Address = 0xD) [reset = 0x0]  
GPI_VALUE_LSB is shown in Figure 23 and described in Table 19.  
Return to the Summary Table.  
Figure 23. GPI_VALUE_LSB Register  
7
6
5
4
3
2
1
0
GPI_VALUE[7:0]  
R-0b  
Table 19. GPI_VALUE_LSB Register Field Descriptions  
Bit  
7-0  
Field  
GPI_VALUE[7:0]  
Type  
Reset  
Description  
R
0b  
Readback the logic level on digital input.  
0b = Digital input is at logic 0.  
1b = Digital input is at logic 1.  
7.6.11 SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]  
SEQUENCE_CFG is shown in Figure 24 and described in Table 20.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
23  
 
 
 
 
 
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
Figure 24. SEQUENCE_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
SEQ_START  
R/W-0b  
RESERVED  
R-0b  
SEQ_MODE[1:0]  
R/W-0b  
Table 20. SEQUENCE_CFG Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
0b  
Description  
RESERVED  
SEQ_START  
Reserved. Reads return 0b.  
R/W  
0b  
Sequence start control when using auto sequence mode.  
0b = Stop auto sequencing.  
1b = Start auto sequencing from first enabled analog input channel  
starting from channel ID = 0 (ascending order).  
3-2  
1-0  
RESERVED  
R
0b  
0b  
Reserved. Reads return 0b.  
Selects the mode of scanning analog input channels.  
0b = Manual sequence mode.  
1b = Auto sequence mode.  
10b = Reserved.  
SEQ_MODE[1:0]  
R/W  
11b = Reserved.  
7.6.12 CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]  
CHANNEL_SEL is shown in Figure 25 and described in Table 21.  
Return to the Summary Table.  
Figure 25. CHANNEL_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
MANUAL_CHID[3:0]  
R/W-0b  
Table 21. CHANNEL_SEL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-4  
3-0  
RESERVED  
Reserved. Reads return 0b.  
MANUAL_CHID[3:0]  
R/W  
0b  
In manual mode, this field contains the 4-bit channel ID of the analog  
input channel for next ADC conversion. For valid ADC data, the  
channel ID must not be configured as GPIO.  
0b = CH0  
1b = CH5  
10b = CH6  
11b = CH3  
100b = CH4  
111b = CH7  
1000b = Reserved.  
7.6.13 AUTO_SEQ_CHSEL Register (Address = 0x12) [reset = 0x0]  
AUTO_SEQ_CHSEL is shown in Figure 26 and described in Table 22.  
Return to the Summary Table.  
Figure 26. AUTO_SEQ_CHSEL Register  
7
6
5
4
3
2
1
0
AUTO_SEQ_CHSEL[7:0]  
R/W-0b  
24  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
Table 22. AUTO_SEQ_CHSEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
AUTO_SEQ_CHSEL[7:0] R/W  
0b  
Enable analog input channels AIN7 through AIN0 in auto sequencing  
mode.  
0b = Analog input channel is not enabled in scanning sequence.  
1b = Analog input channel is enabled in scanning sequence.  
版权 © 2019, Texas Instruments Incorporated  
25  
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing the input driver circuit, reference driver circuit, and provides  
some application circuits designed for the TLA2528.  
8.2 Typical Applications  
8.2.1 Mixed-Channel Configuration  
AVDD (VREF  
)
Digital Output (open-drain)  
Digital Output (push-pull)  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
I2C  
Controller  
Device  
Digital Input  
Digital Input  
27. DAQ Circuit: Single-Supply DAQ  
8.2.1.1 Design Requirements  
The goal of this application is to configure some channels of the TLA2528 as digital inputs, open-drain digital  
outputs, and push-pull digital outputs.  
8.2.1.2 Detailed Design Procedure  
The TLA2528 can support GPIO functionality at each input pin. Any analog input pin can be independently  
configured as a digital input, a digital open-drain output, or a digital push-pull output though the PIN_CFG and  
GPIO_CFG registers; see 3.  
8.2.1.2.1 Digital Input  
The digital input functionality can be used to monitor a signal within the system. 28 illustrates that the state of  
the digital input can be read from the GPI_VALUE register.  
26  
版权 © 2019, Texas Instruments Incorporated  
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
Typical Applications (接下页)  
ADS7128  
From input device  
GPIx  
SW  
AVDD  
GPIx  
28. Digital Input  
8.2.1.2.2 Digital Open-Drain Output  
The channels of the TLA2528 can be configured as digital open-drain outputs supporting an output voltage up to  
5.5 V. An open-drain output, as shown in 29, consists of an internal FET (Q) connected to ground. The output  
is idle when not driven by the device, which means Q is off and the pull-up resistor, RPULL_UP, connects the  
GPOx node to the desired output voltage. The output voltage can range anywhere up to 5.5 V, depending on the  
external voltage that the GPIOx is pulled up to. When the device is driving the output, Q turns on, thus  
connecting the pull-up resistor to ground and bringing the node voltage at GPOx low.  
VPULL_UP  
Receiving Device  
ADS7128  
RPULL_UP  
GPOx  
ILOAD  
Q
29. Digital Open-Drain Output  
The minimum value of the pullup resistor, as calculated in 公式 3, is given by the ratio of VPULL_UP and the  
maximum current supported by the device digital output (5 mA).  
RMIN = (VPULL_UP / 5 mA)  
(3)  
The maximum value of the pullup resistor, as calculated in 公式 4, depends on the minimum input current  
requirement, ILOAD, of the receiving device driven by this GPIO.  
RMAX = (VPULL_UP / ILOAD  
)
(4)  
27  
Select RPULL_UP such that RMIN < RPULL_UP < RMAX  
.
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.3 Digital Push-Pull Output  
The channels of the TLA2528 can be configured as digital push-pull outputs supporting an output voltage up to  
AVDD. As shown in 30, a push-pull output consists of two mirrored opposite bipolar transistors, Q1 and Q2.  
The device can both source and sink current because only one transistor is on at a time (either Q2 is on and  
pulls the output low, or Q1 is on and sets the output high). A push-pull configuration always drives the line  
opposed to an open-drain output where the line is left floating.  
ADS7128  
AVDD  
Q1  
GPOx  
Digital  
output  
Q2  
30. Digital Push-Pull Output  
9 Power Supply Recommendations  
9.1 AVDD and DVDD Supply Recommendations  
The TLA2528 has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. For supplies greater than 2.35 V, AVDD and DVDD can be shorted externally if  
single-supply operation is desired. The AVDD supply also defines the full-scale input range of the device.  
Decouple the AVDD and DVDD pins individually, as shown in 31, with 1-µF ceramic decoupling capacitors.  
The minimum capacitor value required for AVDD and DVDD is 200 nF and 20 nF, respectively. If both supplies  
are powered from the same source, a minimum capacitor value of 220 nF is required for decoupling.  
AVDD  
AVDD  
GND  
1 mF  
1 mF  
DVDD  
DVDD  
31. Power-Supply Decoupling  
28  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLA2528  
www.ti.com.cn  
ZHCSJS9 MAY 2019  
10 Layout  
10.1 Layout Guidelines  
32 shows a board layout example for the TLA2528. Avoid crossing digital lines with the analog signal path and  
keep the analog input signals and the AVDD supply away from noise sources.  
Use 1-µF ceramic bypass capacitors in close proximity to the analog (AVDD) and digital (DVDD) power-supply  
pins. Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors. Connect the GND pin to  
the ground plane using short, low-impedance paths. The AVDD supply voltage also functions as the reference  
voltage for the TLA2528. Place the decoupling capacitor (CREF) for AVDD close to the device AVDD and GND  
pins and connect CREF to the device pins with thick copper tracks.  
10.2 Layout Example  
DECAP  
AVDD  
SCL  
SDA  
AIN/GPIO  
32. Example Layout  
版权 © 2019, Texas Instruments Incorporated  
29  
 
TLA2528  
ZHCSJS9 MAY 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLA2528IRTER  
TLA2528IRTET  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
2528  
2528  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLA2528IRTER  
TLA2528IRTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLA2528IRTER  
TLA2528IRTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLA2528IRTET

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC) | RTE | 16 | -40 to 85
TI

TLA25GMA

Uplink Far Field Noise Suppression & Downlink SNR Enhancing Microphone Amplifier with Earpiece Driver
TI

TLA290LP

Telecom Filter, 8 Function(s), DIP-16
TDK

TLA290LS

Telecom Filter, 8 Function(s)
TDK

TLA3700

Audio Line Matching Transformer
FILTRAN

TLA3700-1

Audio Line Matching Transformer
FILTRAN

TLA3700-2

Audio Line Matching Transformer
FILTRAN

TLA3700-2

General Purpose Audio Transformer
APITECH

TLA3853

Audio Line Matching Transformer
FILTRAN

TLA3853-1

Audio Line Matching Transformer
FILTRAN

TLA401S

Datacom Transformer, 10 BASE-T Application(s), 1CT:1CT
TDK

TLA402S

Datacom Transformer, 10 BASE-T Application(s), 1CT:1CT; 1CT:SQRT(2)CT
TDK