TLC084-Q1 [TI]

汽车级四路 16V 10MHz 运算放大器;
TLC084-Q1
型号: TLC084-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级四路 16V 10MHz 运算放大器

放大器 运算放大器 放大器电路
文件: 总31页 (文件大小:778K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE-SUPPLY  
OPERATIONAL AMPLIFIERS  
Check for Samples: TLC080-Q1, TLC081-Q1, TLC082-Q1, TLC083-Q1, TLC084-Q1, TLC085-Q1  
1
FEATURES  
Low Input Noise Voltage...8.5 nVHz  
Input Offset Voltage...60 μV  
23  
Wide Bandwidth...10 MHz  
High Output Drive  
Ultra-Small Packages  
8- or 10-Pin MSOP (TLC080/081/082/083)  
(1)  
IOH...57 mA at VDD 1.5 V  
IOL...55 mA at 0.5 V  
Operational Amplifier  
High Slew Rate  
SR+...16 V/μs  
SR...19 V/μs  
+
Wide Supply Range...4.5 V to 16 V  
Supply Current...1.9 mA/Channel  
Ultralow-Power Shutdown Mode  
IDD...125 μ/Channel  
(1) TLC080/081/083 in Product Preview  
DESCRIPTION  
The first members of TIs new BiMOS general-purpose operational amplifier family are the TLC08x. The BiMOS  
family concept is simpleprovide an upgrade path for BiFET users who are moving away from dual-supply to  
single-supply systems and demand higher ac and dc performance. With performance rated from 4.5 V to 16 V  
across an automotive temperature range (40°C to 125°C), BiMOS suits a wide range of audio, automotive,  
industrial, and instrumentation applications. Familiar features, such as offset nulling pins, and new features, such  
as MSOP PowerPADpackages and shutdown modes, enable higher levels of performance in a variety of  
applications.  
Developed in TIs patented LBC3 BiCMOS process, the new BiMOS amplifiers combine a very high input  
impedance, low-noise CMOS front end with a high-drive bipolar output stage, thus providing the optimum  
performance features of both. AC performance improvements over the TL08x BiFET predecessors include a  
bandwidth of 10 MHz (an increase of 300%) and voltage noise of 8.5 nV/Hz (an improvement of 60%). DC  
improvements include an ensured VICR that includes ground, a factor of 4 reduction in input offset voltage down  
to 1.5 mV (maximum), and a power-supply rejection improvement of greater than 40 dB to 130 dB. Added to this  
list of impressive features is the ability to drive ±50-mA loads comfortably from an ultra-small-footprint MSOP  
PowerPAD package, which positions the TLC08x as the ideal high-performance general-purpose operational  
amplifier family.  
Table 1. FAMILY PACKAGES  
PACKAGE  
UNIVERSAL EVM  
BOARD  
DEVICE  
NO. OF CHANNELS  
SHUTDOWN  
MSOP  
SOIC  
8
TSSOP  
TLC080(1)  
TLC081(1)  
TLC082  
1
1
2
2
4
4
8
8
Yes  
8
Refer to the EVM  
Selection Guide  
(literature number  
SLOU060)  
8
8
TLC083(1)  
10  
14  
14  
16  
Yes  
TLC084  
TLC085(1)  
20  
20  
Yes  
(1) Product Preview  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
2
3
Parts, PSpice are trademarks of MicroSim Corporation.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 20062011, Texas Instruments Incorporated  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
Table 2. TLC080 and TLC081 AVAILABLE OPTIONS(1) (2)  
PACKAGED DEVICES  
TA  
SMALL OUTLINE  
(D)(3)  
SMALL OUTLINE  
(DGN)(3)  
TLC080QDRQ1  
TLC081QDRQ1  
TLC080QDGNRQ1  
TLC081QDGNRQ1  
40°C to 125°C  
(1) Product Preview  
(2) For the most current package and ordering information, see the Package Option Addendum at the end  
of this data sheet, or see the TI web site at www.ti.com.  
(3) This package is available taped and reeled.  
(1)  
Table 3. TLC082 and TLC083 AVAILABLE OPTIONS  
PACKAGED DEVICES  
TA  
SMALL OUTLINE  
(D)(2)  
MSOP  
MSOP  
(DGN)(2)  
(DGQ)(2)  
TLC082QDRQ1(3)  
40°C to 125°C  
TLC082QDGNRQ1  
TLC083QDGQRQ1(3)  
TLC083QDRQ1(3)  
(1) For the most current package and ordering information, see the Package Option Addendum at the end  
of this data sheet, or see the TI web site at www.ti.com.  
(2) This package is available taped and reeled.  
(3) Product Preview  
Table 4. TLC084 and TLC085 AVAILABLE OPTIONS(1)  
PACKAGED DEVICES  
TA  
SMALL OUTLINE  
(D)(2)  
TSSOP  
(PWP)(2)  
TLC084QDRQ1(3)  
TLC084QPWPRQ1  
40°C to 125°C  
TLC085QDRQ1(3)  
TLC085QPWPRQ1(3)  
(1) For the most current package and ordering information, see the Package Option Addendum at the end  
of this data sheet, or see the TI web site at www.ti.com.  
(2) This package is available taped and reeled.  
(3) Product Preview  
2
Copyright © 20062011, Texas Instruments Incorporated  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
Figure 1. TLC08x PACKAGE PINOUTS  
TLC080  
D OR DGN PACKAGE  
(TOP VIEW)  
TLC081  
D OR DGN PACKAGE  
(TOP VIEW)  
TLC082  
D OR DGN PACKAGE  
(TOP VIEW)  
NULL  
IN−  
IN+  
SHDN  
VDD  
OUT  
NULL  
IN−  
IN+  
NC  
1OUT  
1IN−  
1IN+  
GND  
VDD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
VDD  
OUT  
NULL  
2OUT  
2IN−  
2IN+  
GND  
NULL  
GND  
TLC084  
D PACKAGE  
(TOP VIEW)  
TLC083  
D PACKAGE  
(TOP VIEW)  
TLC083  
DGQ PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
VDD  
2IN+  
2IN−  
2OUT  
1OUT  
1IN−  
1IN+  
GND  
NC  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
1
1OUT  
1IN−  
1IN+  
GND  
1SHDN  
VDD  
10  
2OUT  
2IN−  
2IN+  
NC  
2
3
4
5
2OUT  
2IN−  
2IN+  
9
8
7
6
2SHDN  
1SHDN  
NC  
2SHDN  
NC  
8
8
TLC084  
TLC085  
TLC085  
PWP PACKAGE  
(TOP VIEW)  
PWP PACKAGE  
(TOP VIEW)  
D PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
3/4SHDN  
NC  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1OUT  
1IN−  
1IN+  
VDD  
2IN+  
2IN−  
2OUT  
NC  
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
NC  
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
2IN+  
VDD  
2IN+  
GND  
3IN+  
2IN−  
2IN−  
3IN−  
2OUT  
1/2SHDN  
NC  
2OUT  
1/2SHDN  
3OUT  
3/4SHDN  
NC  
NC  
NC  
NC  
NC  
NC  
NC − No internal connection  
Figure 2. Typical Pin 1 Indicators  
Pin 1  
Pin 1  
Pin 1  
Pin 1  
Printed or  
Molded Dot  
Stripe  
Bevel Edges  
Molded ”U” Shape  
Copyright © 20062011, Texas Instruments Incorporated  
3
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
17  
UNIT  
V
VDD  
VID  
Supply voltage(2)  
Differential input voltage  
±VDD  
V
See Dissipation  
Rating Table  
Continuous total power dissipation  
TJ  
Operating junction temperature range  
Operating ambient temperature range  
Maximum junction temperature  
40  
40  
125  
125  
150  
260  
°C  
°C  
°C  
°C  
TA  
TJ(max)  
Lead temperature 1,6 mm (1/16 in) from case for 10 s  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to GND .  
Dissipation Ratings  
θJC  
(°C/W)  
θJA  
(°C/W)  
TA 25°C  
POWER RATING  
PACKAGE  
D (8)  
D (14)  
38.3  
26.9  
25.7  
4.7  
176  
122.3  
114.7  
52.7  
710 mW  
1022 mW  
1090 mW  
2.37 W  
D (16)  
DGN (8)  
DGQ (10)  
PWP (20)  
4.7  
52.3  
2.39 W  
1.4  
26.1  
4.79 W  
Recommended Operating Conditions  
MIN  
MAX  
16  
UNIT  
V
Single supply  
Split supply  
4.5  
±2.25  
GND  
2
VDD  
Supply voltage  
±8  
VICR  
Common-mode input voltage  
Shutdown on/off voltage level(1)  
Operating junction temperature  
V
DD 2  
V
VIH  
VIL  
V
0.8  
TJ  
40  
125  
°C  
(1) Relative to the voltage on the GND terminal of the device  
4
Copyright © 20062011, Texas Instruments Incorporated  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
Electrical Characteristics  
VDD = 5 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TJ  
MIN  
TYP  
MAX  
1900  
3300  
UNIT  
25°C  
390  
VDD = 5 V, VIC = 2.5 V,  
VO = 2.5 V, RS = 50 Ω  
VIO  
αVIO  
IIO  
Input offset voltage  
μV  
Full range  
Temperature coefficient of input  
offset voltage  
VDD = 5 V, VIC = 2.5 V,  
VO = 2.5 V, RS = 50 Ω  
1.2  
1.9  
μV/°C  
25°C  
Full range  
25°C  
50  
700  
50  
VDD = 5 V, VIC = 2.5 V,  
VO = 2.5 V, RS = 50 Ω  
Input offset current  
pA  
3
VDD = 5 V, VIC = 2.5 V,  
VO = 2.5 V, RS = 50 Ω  
IIB  
Input bias current  
pA  
V
Full range  
25°C  
700  
0 to 3 0 to 3.5  
0 to 3 0 to 3.5  
VICR  
Common-mode input voltage  
RS = 50 Ω  
Full range  
25°C  
4.1  
3.9  
3.7  
3.5  
3.4  
3.2  
3.2  
3
4.3  
IOH = 1 mA  
Full range  
25°C  
4
IOH = 20 mA  
VIC = 2.5 V  
Full range  
25°C  
VOH  
High-level output voltage  
V
3.8  
IOH = 35 mA  
Full range  
25°C  
3.6  
IOH = 50 mA  
Full range  
25°C  
0.18  
0.35  
0.43  
0.45  
0.25  
0.35  
0.39  
0.45  
0.55  
0.7  
IOL = 1 mA  
Full range  
25°C  
IOL = 20 mA  
VIC = 2.5 V  
Full range  
25°C  
VOL  
Low-level output voltage  
V
IOL = 35 mA  
Full range  
25°C  
0.63  
0.7  
IOL = 50 mA  
Full range  
Sourcing  
100  
100  
57  
IOS  
Short-circuit output current  
Output current  
25°C  
25°C  
mA  
mA  
dB  
Sinking  
VOH = 1.5 V from positive rail  
VOL = 0.5 V from negative rail  
IO  
55  
25°C  
Full range  
25°C  
100  
100  
120  
Large-signal differential voltage  
amplification  
AVD  
VO(PP) = 3 V, RL = 10 kΩ  
rj(d)  
CIC  
ZO  
Differential input resistance  
1000  
22.9  
0.25  
110  
GΩ  
pF  
Common-mode input capacitance  
Closed-loop output impedance  
f = 10 kHz  
25°C  
f = 10 kHz, AV = 10  
25°C  
25°C  
70  
70  
80  
80  
CMRR  
kSVR  
IDD  
Common-mode rejection ratio  
VIC = 0 to 3 V, RS = 50 Ω  
dB  
dB  
Full range  
25°C  
100  
1.8  
Supply voltage rejection ratio  
VDD = 4.5 V to 16 V,  
VIC = VDD/2, No load  
(ΔVDD/ΔVIO  
)
Full range  
25°C  
2.5  
3.5  
Supply current (per channel)  
VO = 2.5 V, No load  
mA  
Full range  
25°C  
Supply current in shutdown mode  
125  
200  
IDD(SHDN) (per channel) (TLC080, TLC083,  
TLC085)  
SHDN 0.8 V  
μA  
Full range  
250  
(1) Full range is 40°C to 125°C.  
Copyright © 20062011, Texas Instruments Incorporated  
5
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
Operating Characteristics  
VDD = 5 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TJ  
MIN  
10  
9
TYP  
MAX  
UNIT  
25°C  
Full range  
25°C  
16  
Positive slew rate at unity  
gain  
SR+  
VO(PP) = 0.8 V, CL = 50 pF, RL = 10 kΩ  
VO(PP) = 0.8 V, CL = 50 pF, RL = 10 kΩ  
V/μs  
11  
8.5  
19  
Negative slew rate at unity  
gain  
SR–  
V/μs  
Full range  
f = 100 Hz  
f = 1 kHz  
12  
8.5  
Equivalent input noise  
voltage  
Vn  
In  
25°C  
25°C  
nV/Hz  
fA/Hz  
Equivalent input noise current f = 1 kHz  
0.6  
AV = 1  
0.002  
0.012  
0.085  
0.15  
1.3  
VO(PP) = 3 V,  
RL = 10 kand 250 ,  
f = 1 kHz  
Total harmonic distortion plus  
noise  
THD+N  
AV = 10  
AV = 100  
25°C  
%
t(on)  
t(off)  
Amplifier turn-on time(2)  
Amplifier turn-off time(2)  
Gain-bandwidth product  
RL = 10 kΩ  
25°C  
25°C  
25°C  
μs  
μs  
RL = 10 kΩ  
f = 10 kHz, RL = 10 kΩ  
10  
MHz  
0.1%  
0.18  
0.39  
0.18  
0.39  
32  
V(STEP)PP = 1 V, AV = 1,  
CL = 10 pF, RL = 10 kΩ  
0.01%  
ts  
Settling time  
25°C  
μs  
0.1%  
V(STEP)PP = 1 V, AV = 1,  
CL = 47 pF, RL = 10 kΩ  
0.01%  
CL = 50 pF  
CL = 0 pF  
CL = 50 pF  
CL = 0 pF  
φm  
Phase margin  
Gain margin  
RL = 10 kΩ  
RL = 10 kΩ  
25°C  
25°C  
deg  
dB  
40  
2.2  
3.3  
(1) Full range is 40°C to 125°C.  
(2) Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the  
supply current has reached half its final value.  
6
Copyright © 20062011, Texas Instruments Incorporated  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
Electrical Characteristics  
VDD = 12 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TJ  
MIN  
TYP  
MAX  
1900  
3300  
UNIT  
25°C  
390  
VDD = 12 V, VIC = 6 V,  
VO = 6 V, RS = 50 Ω  
VIO  
αVIO  
IIO  
Input offset voltage  
μV  
Full range  
Temperature coefficient of input  
offset voltage  
VDD = 12 V, VIC = 6 V,  
VO = 6 V, RS = 50 Ω  
1.2  
1.5  
μV/°C  
25°C  
Full range  
25°C  
50  
700  
50  
VDD = 12 V, VIC = 6 V,  
VO = 6 V, RS = 50 Ω  
Input offset current  
pA  
3
VDD = 12 V, VIC = 6 V,  
VO = 6 V, RS = 50 Ω  
IIB  
Input bias current  
pA  
V
Full range  
25°C  
700  
0 to 10 0 to 10.5  
0 to 10 0 to 10.5  
VICR  
Common-mode input voltage  
RS = 50 Ω  
Full range  
25°C  
11.1  
11  
11.2  
IOH = 1 mA  
Full range  
25°C  
10.8  
10.7  
10.6  
10.3  
10.3  
10.1  
11  
IOH = 20 mA  
VIC = 6 V  
Full range  
25°C  
VOH  
High-level output voltage  
V
10.7  
10.5  
0.17  
0.35  
0.4  
IOH = 35 mA  
Full range  
25°C  
IOH = 50 mA  
Full range  
25°C  
0.25  
0.35  
0.45  
0.55  
0.52  
0.6  
IOL = 1 mA  
Full range  
25°C  
IOL = 20 mA  
Full range  
25°C  
VOL  
Low-level output voltage  
VIC = 6 V  
V
IOL = 35 mA  
Full range  
25°C  
0.45  
0.6  
IOL = 50 mA  
Full range  
0.7  
Sourcing  
150  
150  
57  
IOS  
Short-circuit output current  
Output current  
25°C  
25°C  
mA  
mA  
dB  
Sinking  
VOH = 1.5 V from positive rail  
VOL = 0.5 V from negative rail  
IO  
55  
25°C  
Full range  
25°C  
110  
110  
130  
Large-signal differential voltage  
amplification  
AVD  
VO(PP) = 8 V, RL = 10 kΩ  
rj(d)  
CIC  
ZO  
Differential input resistance  
1000  
21.6  
0.25  
110  
GΩ  
pF  
Common-mode input capacitance  
Closed-loop output impedance  
f = 10 kHz  
25°C  
f = 10 kHz, AV = 10  
25°C  
25°C  
80  
80  
80  
80  
CMRR  
kSVR  
IDD  
Common-mode rejection ratio  
VIC = 0 to 10 V, RS = 50 Ω  
dB  
dB  
Full range  
25°C  
100  
1.9  
Supply voltage rejection ratio  
VDD = 4.5 V to 16 V,  
VIC = VDD/2, No load  
(ΔVDD/ΔVIO  
)
Full range  
25°C  
2.9  
3.5  
Supply current (per channel)  
VO = 7.5 V, No load  
mA  
Full range  
25°C  
Supply current in shutdown mode  
125  
200  
IDD(SHDN) (per channel) (TLC080, TLC083,  
TLC085)  
SHDN 0.8 V  
μA  
Full range  
250  
(1) Full range is 40°C to 125°C.  
Copyright © 20062011, Texas Instruments Incorporated  
7
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
Operating Characteristics  
VDD = 12 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TJ  
MIN  
10  
TYP  
MAX  
UNIT  
25°C  
Full range  
25°C  
16  
Positive slew rate at unity  
gain  
SR+  
VO(PP) = 2 V, CL = 50 pF, RL = 10 kΩ  
VO(PP) = 2 V, CL = 50 pF, RL = 10 kΩ  
V/μs  
9.5  
12.5  
10  
19  
Negative slew rate at unity  
gain  
SR–  
V/μs  
Full range  
f = 100 Hz  
f = 1 kHz  
14  
8.5  
Equivalent input noise  
voltage  
Vn  
In  
25°C  
25°C  
nV/Hz  
fA/Hz  
Equivalent input noise current f = 1 kHz  
0.6  
AV = 1  
0.002  
0.005  
0.022  
0.47  
2.5  
VO(PP) = 8 V,  
RL = 10 kand 250 ,  
f = 1 kHz  
Total harmonic distortion plus  
noise  
THD+N  
AV = 10  
AV = 100  
25°C  
%
t(on)  
t(off)  
Amplifier turn-on time(2)  
Amplifier turn-off time(2)  
Gain-bandwidth product  
RL = 10 kΩ  
25°C  
25°C  
25°C  
μs  
μs  
RL = 10 kΩ  
f = 10 kHz, RL = 10 kΩ  
10  
MHz  
0.1%  
0.17  
0.22  
0.17  
0.29  
37  
V(STEP)PP = 1 V, AV = 1,  
CL = 10 pF, RL = 10 kΩ  
0.01%  
ts  
Settling time  
25°C  
μs  
0.1%  
V(STEP)PP = 1 V, AV = 1,  
CL = 47 pF, RL = 10 kΩ  
0.01%  
CL = 50 pF  
CL = 0 pF  
CL = 50 pF  
CL = 0 pF  
φm  
Phase margin  
Gain margin  
RL = 10 kΩ  
RL = 10 kΩ  
25°C  
25°C  
deg  
dB  
42  
3.1  
4
(1) Full range is 40°C to 125°C.  
(2) Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the  
supply current has reached half its final value.  
8
Copyright © 20062011, Texas Instruments Incorporated  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
TYPICAL CHARACTERISTICS  
Table 5. Table of Graphs  
FIGURE  
VIO  
Input offset voltage  
Input offset current  
Input bias current  
vs Common-mode input voltage  
1, 2  
3, 4  
IIO  
vs Free-air temperature  
vs Free-air temperature  
vs High-level output current  
vs Low-level output current  
vs Frequency  
IIB  
3, 4  
VOH  
VOL  
ZO  
High-level output voltage  
Low-level output voltage  
Output impedance  
Supply current  
5, 7  
6, 8  
9
IDD  
vs Supply voltage  
vs Frequency  
10  
PSRR  
CMRR  
Vn  
Power supply rejection ratio  
Common-mode rejection ratio  
Equivalent input noise voltage  
Peak-to-peak output voltage  
Crosstalk  
11  
vs Frequency  
12  
vs Frequency  
13  
VO(PP)  
vs Frequency  
14, 15  
16  
vs Frequency  
Differential voltage gain  
Phase  
vs Frequency  
17, 18  
17, 18  
19, 20  
21, 22  
23  
vs Frequency  
φm  
Phase margin  
vs Load capacitance  
vs Load capacitance  
vs Supply voltage  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
Gain margin  
Gain-bandwidth product  
24  
SR  
Slew rate  
25, 26  
27, 28  
29, 30  
31, 32  
33  
THD+N  
Total harmonic distortion plus noise  
vs Peak-to-peak output voltage  
Large-signal follower pulse response  
Small-signal follower pulse response  
Large-signal inverting pulse response  
Small-signal inverting pulse response  
Shutdown forward isolation  
34, 35  
36  
vs Frequency  
37, 38  
39, 40  
41  
Shutdown reverse isolation  
vs Frequency  
vs Supply voltage  
vs Free-air temperature  
Shutdown supply current  
Shutdown pulse  
42  
43, 44  
Copyright © 20062011, Texas Instruments Incorporated  
9
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
INPUT OFFSET VOLTAGE  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT  
vs  
INPUT OFFSET VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
1000  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
1500  
1300  
1100  
900  
V
= 12 V  
DD  
= 25° C  
300  
250  
V
= 5 V  
DD  
T = 25° C  
A
T
A
800  
600  
400  
200  
0
V
= 5 V  
DD  
200  
150  
700  
500  
300  
100  
50  
I
IB  
100  
−100  
−300  
−500  
−200  
−400  
−600  
0
I
IO  
−50  
0
1
2
3
4
5
6
7
8
9 10 11 12  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
−100  
−55 −40 −25 −10  
5 20 35 50 65 80 95 110 125  
V
− Common-Mode Input Voltage − V  
ICR  
V
− Common-Mode Input Voltage − V  
ICR  
T
A
− Free-Air Temperature − °C  
Figure 3.  
Figure 4.  
Figure 5.  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
20  
0
V
= 5 V  
DD  
V
= 5 V  
DD  
I
IO  
T
A
= 70°C  
−20  
−40  
T
A
= 25°C  
T
A
= 125°C  
−60  
T
= 70°C  
A
T
A
= −40°C  
T
A
= 25°C  
−80  
T
A
= 125°C  
−100  
−120  
−140  
T
A
= −40°C  
I
IB  
V
= 12 V  
DD  
−160  
−55 −40 −25 −10  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
5 20 35 50 65 80 95 110 125  
I
- High-Level Output Current - mA  
I
- Low-Level Output Current - mA  
OL  
OH  
T
A
− Free-Air Temperature − °C  
Figure 6.  
Figure 7.  
Figure 8.  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
OUTPUT IMPEDANCE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
1000  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V
= 5 V and 12 V  
T
= 125°C  
DD  
A
T
A
= 25°C  
T
= 70°C  
A
100  
10  
T
= 125°C  
A
T
A
= 70°C  
A
= 100  
V
T
= 25°C  
A
T
A
= −40°C  
T
A
= 25°C  
1
0.10  
0.01  
A
A
= 1  
V
T
A
= −40°C  
= 10  
V
V
= 12 V  
DD  
V
= 12 V  
DD  
9.0  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
100  
1k  
10k  
100k  
1M  
10M  
I
- High-Level Output Current - mA  
I
- Low-Level Output Current - mA  
OL  
f - Frequency - Hz  
OH  
Figure 9.  
Figure 10.  
Figure 11.  
10  
Copyright © 20062011, Texas Instruments Incorporated  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
POWER-SUPPLY REJECTION RATIO  
SUPPLY CURRENT  
vs  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
140  
FREQUENCY  
SUPPLY VOLTAGE  
140  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
V
= 5 V and 12 V  
= 25°C  
DD  
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
A
120  
100  
80  
60  
40  
20  
0
T
A
V
= 12 V  
DD  
T
= −40°C  
A
T
A
= 125°C  
T
A
= 70°C  
V
= 5 V  
DD  
A
= 1  
V
SHDN = V  
DD  
Per Channel  
1.0  
4
0
10 100  
1k  
10k 100k 1M 10M  
5
6
7
8
9 10 11 12 13 14 15  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
V
− Supply Voltage - V  
f - Frequency - Hz  
DD  
Figure 12.  
Figure 13.  
Figure 14.  
PEAK-TO-PEAK OUTPUT  
VOLTAGE  
PEAK-TO-PEAK OUTPUT  
VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
vs  
vs  
40  
FREQUENCY  
FREQUENCY  
12  
10  
8
12  
10  
8
35  
30  
25  
20  
V
= 12 V  
DD  
V
= 12 V  
DD  
6
6
15  
10  
5
V
= 12 V  
DD  
V
= 5 V  
DD  
V
= 5 V  
DD  
4
4
V
= 5 V  
DD  
THD+N 5%  
THD+N 5%  
2
2
R = 10 kΩ  
R
T
= 600 Ω  
= 25°C  
L
L
0
10  
T
A
= 25°C  
A
100  
1k  
10k  
100k  
0
0
f − Frequency − Hz  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 15.  
Figure 16.  
Figure 17.  
DIFFERENTIAL VOLTAGE GAIN AND  
DIFFERENTIAL VOLTAGE GAIN AND  
CROSSTALK  
vs  
FREQUENCY  
PHASE  
vs  
PHASE  
vs  
FREQUENCY  
FREQUENCY  
0
−20  
80  
70  
0
80  
70  
0
V
A
= 5 V and 12 V  
DD  
= 1  
V
R
= 10 k  
= 2 V  
L
Gain  
60  
50  
−45  
60  
50  
Gain  
−45  
−40  
V
I(PP)  
For All Channels  
−60  
Phase  
Phase  
40  
−90  
40  
−90  
−80  
30  
30  
20  
−135  
−180  
−225  
20  
−135  
−180  
−225  
−100  
−120  
−140  
−160  
10  
10  
V
R
C
T
= ±2.5 V  
= 10 kΩ  
= 0 pF  
V
= ±6 V  
= 10 kΩ  
= 0 pF  
DD  
DD  
0
0
R
C
T
L
L
L
L
−10  
−10  
= 25°C  
= 25°C  
A
A
−20  
1k  
−20  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 18.  
Figure 19.  
Figure 20.  
Copyright © 20062011, Texas Instruments Incorporated  
11  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
PHASE MARGIN  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
vs  
LOAD CAPACITANCE  
40°  
45°  
4
R
null  
= 0  
R
R
= 0 Ω  
null  
R
null  
= 0 Ω  
40°  
35°  
= 100 Ω  
3.5  
3
35°  
30°  
null  
R
null  
= 100 Ω  
R
null  
= 50 Ω  
30°  
25°  
20°  
2.5  
R
V
= 100 Ω  
25°  
20°  
15°  
null  
R
null  
= 50 Ω  
2
R
null  
= 50 Ω  
R
null  
= 20 Ω  
R
= 20 Ω  
null  
1.5  
15°  
1
0.5  
0
10°  
= 12 V  
V
= 5 V  
DD  
V
= 5 V  
DD  
DD  
10°  
5°  
R
null  
= 20 Ω  
R
T
= 10 kΩ  
= 25°C  
R
T
= 10 kΩ  
= 25°C  
R
T
= 10 kΩ  
= 25°C  
L
L
L
5°  
0°  
A
A
A
0°  
10  
100  
10  
100  
10  
100  
C
L
− Load Capacitance − pF  
C
L
− Load Capacitance − pF  
C
L
− Load Capacitance − pF  
Figure 21.  
Figure 22.  
Figure 23.  
GAIN-BANDWIDTH PRODUCT  
GAIN MARGIN  
vs  
SLEW RATE  
vs  
vs  
LOAD CAPACITANCE  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
5
10.0  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
R
null  
= 0 Ω  
C
= 11 pF  
L
R
= 600 and 10 kΩ  
= 50 pF  
= 1  
4.5  
4
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
L
L
C
A
T
= 25°C  
A
R
null  
= 100 Ω  
V
3.5  
3
R
L
= 10 kΩ  
Slew Rate −  
2.5  
2
R
= 50 Ω  
null  
R
= 600 Ω  
L
R
null  
= 20 Ω  
Slew Rate +  
1.5  
V
= 12 V  
DD  
1
0.5  
0
R
T
= 10 kΩ  
= 25°C  
L
A
4
5
6
7
8
9
10 11 12 13 14 15 16  
10  
100  
4
5
6
7
8
9 10 11 12 13 14 15 16  
V
- Supply Voltage - V  
DD  
C
L
− Load Capacitance − pF  
V
- Supply Voltage - V  
DD  
Figure 24.  
Figure 25.  
Figure 26.  
SLEW RATE  
vs  
SLEW RATE  
vs  
TOTAL HARMONIC DISTORTION  
PLUS NOISE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
25  
20  
15  
10  
5
25  
FREQUENCY  
V
= 5 V  
DD  
L
L
V
1
R = 600 and 10 kΩ  
Slew Rate −  
C
A
= 50 pF  
= 1  
V
V
R
= 5 V  
= 2 V  
DD  
O(PP)  
= 10 k  
Slew Rate −  
20  
15  
10  
5
L
A
= 100  
V
0.1  
0.01  
Slew Rate +  
Slew Rate +  
A
A
= 10  
= 1  
V
V
V
= 12 V  
DD  
L
L
V
R = 600 and 10 kΩ  
C
A
= 50 pF  
= 1  
0
0
−55 −35 −15  
5
25 45 65 85 105 125  
−55 −35 −15  
5
25 45 65 85 105 125  
0.001  
T
A
- Free-Air Temperature - °C  
T
A
- Free-Air Temperature - °C  
100  
1k  
10k  
100k  
f − Frequency − Hz  
Figure 27.  
Figure 28.  
Figure 29.  
12  
Copyright © 20062011, Texas Instruments Incorporated  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
TOTAL HARMONIC DISTORTION  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
PLUS NOISE  
vs  
PLUS NOISE  
vs  
PLUS NOISE  
vs  
FREQUENCY  
PEAK-TO-PEAK OUTPUT VOLTAGE  
PEAK-TO-PEAK OUTPUT VOLTAGE  
0.1  
10  
10  
V
A
=
5
V
V
A
= 12 V  
DD  
= 1  
V
V
V
= 12 V  
DD  
= 1  
DD  
R
L
= 250  
= 8 V  
V
O(PP)  
f = 1 kHz  
f = 1 kHz  
R
L
= 10 k  
1
1
A
= 100  
R
L
= 250  
V
0.1  
0.1  
0.01  
R
L
= 600 Ω  
R = 600 Ω  
L
A
A
= 10  
= 1  
0.01  
0.01  
V
V
R
L
= 10 kΩ  
0.001  
0.001  
R
L
= 10 kΩ  
0.001  
0.0001  
0.0001  
100  
1k  
10k  
100k  
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75  
0.5  
2.5  
4.5  
6.5  
8.5  
10.5  
f − Frequency − Hz  
V
− Peak-to-Peak Output Voltage − V  
V
− Peak-to-Peak Output Voltage − V  
O(PP)  
O(PP)  
Figure 30.  
Figure 31.  
Figure 32.  
SMALL-SIGNAL FOLLOWER PULSE  
RESPONSE  
LARGE-SIGNAL FOLLOWER  
PULSE RESPONSE  
LARGE-SIGNAL FOLLOWER  
PULSE RESPONSE  
V
(1 V/Div)  
I
V
(5 V/Div)  
I
V (100mV/Div)  
I
V
(2 V/Div)  
O
V
(500 mV/Div)  
O
V
(50mV/Div)  
O
V
R
= 5 V  
= 600  
DD  
V
R
= 12 V  
= 600  
and 10 kΩ  
= 8 pF  
DD  
L
L
and 10 kΩ  
C
T
A
V
R
C
= 5 V and 12 V  
= 600 and 10 kΩ  
= 8 pF  
DD  
= 8 pF  
= 25°C  
L
L
L
C
T
A
L
= 25°C  
T
A
= 25°C  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 33.  
Figure 34.  
Figure 35.  
LARGE-SIGNAL INVERTING  
PULSE RESPONSE  
LARGE-SIGNAL INVERTING  
PULSE RESPONSE  
SMALL-SIGNAL INVERTING  
PULSE RESPONSE  
V (5 V/div)  
I
V (2 V/div)  
I
V (100 mV/div)  
I
V
R
C
= 5 V and 12 V  
= 600 and 10 kΩ  
= 8 pF  
DD  
L
L
V
= 5 V  
V
= 12 V  
DD  
DD  
R
= 600  
R
L
= 600  
and 10 kΩ  
L
T
A
= 25°C  
and 10 kΩ  
C
T
A
= 8 pF  
= 25°C  
C
T
= 8 pF  
= 25°C  
L
L
A
V
(50 mV/Div)  
O
V
(2 V/Div)  
O
V
(500 mV/Div)  
O
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 36.  
Figure 37.  
Figure 38.  
Copyright © 20062011, Texas Instruments Incorporated  
13  
 
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
SHUTDOWN REVERSE  
SHUTDOWN FORWARD  
SHUTDOWN FORWARD  
ISOLATION  
ISOLATION  
vs  
ISOLATION  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
140  
140  
120  
100  
80  
140  
120  
100  
80  
V
= 5 V  
DD  
C = 0 pF  
V
= 5 V  
DD  
C = 0 pF  
V
= 12 V  
DD  
C = 0 pF  
L
L
120  
100  
80  
L
T
A
= 25°C  
T = 25°C  
A
T
A
= 25°C  
V
= 0.1, 2.5, and 5 V  
I(PP)  
V
= 0.1, 2.5, and 5 V  
I(PP)  
V
= 0.1, 8, 12 V  
I(PP)  
R
L
= 600 Ω  
R
L
= 600 Ω  
R
L
= 600 Ω  
60  
60  
R
L
= 10 kΩ  
60  
R
L
= 10 kΩ  
R
L
= 10 kΩ  
40  
40  
40  
20  
20  
20  
100  
1k  
10k 100k 1M  
f - Frequency - Hz  
10M  
100M  
100  
1k  
10k 100k 1M  
f - Frequency - Hz  
10M  
100M  
100  
1k  
10k 100k 1M  
f - Frequency - Hz  
10M  
100M  
Figure 39.  
Figure 40.  
Figure 41.  
SHUTDOWN REVERSE  
ISOLATION  
SHUTDOWN SUPPLY CURRENT  
SHUTDOWN SUPPLY CURRENT  
vs  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
136  
180  
160  
140  
120  
100  
80  
FREQUENCY  
A
V
= 1  
= V  
V
IN  
Shutdown On  
140  
120  
100  
80  
134  
132  
130  
128  
126  
124  
122  
120  
118  
DD/2  
R
= open  
L
V
= 12 V  
DD  
C = 0 pF  
V
= V  
DD/2  
IN  
L
T
A
= 25°C  
V
= 0.1, 8, 12 V  
I(PP)  
V
= 12 V  
DD  
R
L
= 600 Ω  
V
= 5 V  
DD  
60  
R
L
= 10 kΩ  
40  
60  
4
5
6
7
8
9
10 11 12 13 14 15 16  
−55  
−25  
5
35  
65  
95  
125  
20  
V
- Supply Voltage - V  
T
A
- Free-Air Temperature - °C  
DD  
100  
1k  
10k 100k 1M  
f - Frequency - Hz  
10M  
100M  
Figure 42.  
Figure 43.  
Figure 44.  
SHUTDOWN PULSE  
SHUTDOWN PULSE  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
4
6
4
SD Off  
SD Off  
Shutdown Pulse  
Shutdown Pulse  
2
0
2
0
V
= 5 V  
V
= 12 V  
DD  
C = 8 pF  
DD  
C = 8 pF  
L
L
T
A
= 25°C  
T = 25°C  
A
I
R
L
= 10 kΩ  
I
R
= 10 kΩ  
= 600 Ω  
DD  
DD  
L
−2  
−4  
−6  
−2  
−4  
−6  
I
R
L
= 600 Ω  
I
R
DD L  
DD  
0
10 20 30 40 50 60 70 80  
t - Time - µs  
0
10 20 30 40 50 60 70 80  
t - Time - µs  
Figure 45.  
Figure 46.  
14  
Copyright © 20062011, Texas Instruments Incorporated  
 
 
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
PARAMETER MEASUREMENT INFORMATION  
R
null  
_
+
R
L
C
L
Figure 47.  
Copyright © 20062011, Texas Instruments Incorporated  
15  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
APPLICATION INFORMATION  
Input Offset Voltage Null Circuit  
The TLC080 and TLC081 have an input offset nulling function (see Figure 48).  
IN−  
OUT  
+
N2  
IN+  
N1  
100 k  
R1  
V
DD−  
A. R1 = 5.6 kfor offset voltage adjustment of ±10 mV  
R1 = 20 kfor offset voltage adjustment of ±3 mV  
Figure 48. Input Offset Voltage Null Circuit  
Driving a Capacitive Load  
When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device  
phase margin, leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10  
pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in  
Figure 49. A minimum value of 20 should work well for most applications.  
R
F
R
G
_
R
NULL  
Input  
Output  
+
C
LOAD  
Figure 49. Driving a Capacitive Load  
Offset Voltage  
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times  
the corresponding gains. The schematic and formula in Figure 50 can be used to calculate the output offset  
voltage.  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
Figure 50. Output Offset Voltage Model  
16  
Copyright © 20062011, Texas Instruments Incorporated  
 
 
 
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
High-Speed CMOS Input Amplifiers  
The TLC08x is a family of high-speed low-noise CMOS input operational amplifiers that has an input capacitance  
on the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function equivalent to  
the input capacitance multiplied by the combination of source resistance and feedback resistance. For example,  
a gain of 10, a source resistance of 1 k, and a feedback resistance of 10 kadd an additional pole at  
approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their greater  
input capacitance.  
This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their  
unity-gain bandwidth. However, the TLC08x with its 10-MHz bandwidth means that this pole normally occurs at  
frequencies where there is on the order of 5-dB gain left and the phase shift adds considerably.  
The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the  
feedback resistance is increased, the gain peaking increases at a lower frequency and the 180° phase shift  
crossover point also moves down in frequency, decreasing the phase margin.  
For the TLC08x, the maximum feedback resistor recommended is 5 k; larger resistances can be used but a  
capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance  
pole.  
The TLC083 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when  
configured as a unity gain buffer and with a 10-kfeedback resistor. By adding a 10-pF capacitor in parallel with  
the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much  
faster settling time (see Figure 51). The 10-pF capacitor was chosen for convenience only.  
Load capacitance had little effect on these measurements due to the excellent output drive capability of the  
TLC08x.  
2
V
10 pF  
IN  
1
0
With  
10 k  
C
F
= 10 pF  
1.5  
−1  
_
+
1
IN  
V
A
R
R
C
= ±5 V  
= +1  
= 10 kΩ  
= 600 Ω  
= 22 pF  
0.5  
DD  
V
F
L
L
600 Ω  
22 pF  
V
OUT  
50 Ω  
0
−0.5  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6  
t - Time - µs  
Figure 51. 1-V Step Response  
Copyright © 20062011, Texas Instruments Incorporated  
17  
 
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
General Configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required.  
The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see  
Figure 52).  
R
G
R
F
+
V
1
O
V
I
R1  
V
C1  
f
+
–3dB  
2pR1C1  
R
O
F
1
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
V
R
1 ) sR1C1  
I
G
Figure 52. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is eight to ten times the filter frequency  
bandwidth. Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
R
G
=
1
R
F
2 −  
)
(
R
G
Q
Figure 53. 2-Pole Low-Pass Sallen-Key Filter  
Shutdown Function  
Three members of the TLC08x family (TLC080/3/5) have a shutdown (SHDN) terminal for conserving battery life  
in portable applications. When SHDN is tied low, the supply current is reduced to 125 μA/channel, the amplifier is  
disabled, and the outputs are placed in a high-impedance mode. To enable the amplifier, SHDN can either be left  
floating or pulled high. When SHDN is left floating, care should be taken to ensure that parasitic leakage current  
at SHDN does not inadvertently place the operational amplifier into shutdown. SHDN threshold is always  
referenced to the voltage on the GND terminal of the device. Therefore, when operating the device with split  
supply voltages (e.g. ±2.5 V), SHDN needs to be pulled to VDD(not system ground) to disable the operational  
amplifier.  
The amplifiers output with a shutdown pulse is shown in Figure 45 and Figure 46. The amplifier is powered with  
a single 5-V supply and is configured as noninverting with a gain of 5. The amplifier turn-on and turn-off times  
are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for  
the single, dual, and quad are listed in the data tables.  
Figure 39 through Figure 42 show the amplifiers forward and reverse isolation in shutdown. The operational  
amplifier is configured as a voltage follower (AV = 1). The isolation performance is plotted across frequency using  
0.1-VPP, 2.5-VPP, and 5-VPP input signals at ±2.5-V supplies and 0.1-VPP, 8-VPP, and 12-VPP input signals at ±6-V  
supplies.  
18  
Copyright © 20062011, Texas Instruments Incorporated  
 
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
Circuit Layout Considerations  
To achieve the levels of high performance of the TLC08x, follow proper printed circuit board (PCB) design  
techniques. A general set of guidelines is given in the following.  
Ground planes It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and output,  
the ground plane can be removed to minimize the stray capacitance.  
Proper power-supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor  
on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the  
application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier.  
In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance  
increases, the inductance in the connecting trace makes the capacitor less effective. The designer should  
strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.  
Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the PCB is the best  
implementation.  
Short trace runs/compact part placements Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the  
amplifier. Its length should be kept as short as possible. This helps minimize stray capacitance at the input of  
the amplifier.  
Surface-mount passive components Using surface-mount passive components is recommended for  
high-performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept  
as short as possible.  
General PowerPAD Design Considerations  
The TLC08x is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset leadframe upon which the die is mounted [see Figure 54(a) and Figure 54(b)]. This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see  
Figure 54(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance  
can be achieved by providing a good thermal path away from the thermal pad.  
DIE  
Thermal  
Pad  
Side View (a)  
DIE  
Bottom View (c)  
End View (b)  
NOTE A: The thermal pad is electrically isolated from all terminals in the package.  
Figure 54. Views of Thermally-Enhanced DGN Package  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
Soldering the PowerPAD to the PCB is always required, even with applications that have low power  
dissipation. This soldering provides the necessary thermal and mechanical connection between the lead frame  
die pad and the PCB.  
Although there are many ways to properly heatsink the PowerPAD package, the following steps list the  
recommended approach.  
Copyright © 20062011, Texas Instruments Incorporated  
19  
 
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
The PowerPAD must be connected to the most negative supply voltage (GND pin potential) of the device.  
1. Prepare the PCB with a top-side etch pattern (see the landing patterns at the end of this data sheet). There  
should be etch for the leads, as well as etch for the thermal pad.  
2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils in  
diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.  
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the TLC08x IC. These additional vias may be larger than the 13-mil diameter  
vias directly under the thermal pad. They can be larger because they are not in the thermal-pad area to be  
soldered, so that wicking is not a problem.  
4. Connect all holes to the internal plane that is at the same potential as the ground pin of the device.  
5. When connecting these holes to this internal plane, do not use the typical web or spoke via connection  
methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In  
this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the  
holes under the TLC08x PowerPAD package should make their connection to the internal ground plane with  
a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask should leave the terminals of the package and the thermal-pad area with its five  
holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes  
of the thermal-pad area. This prevents solder from being pulled away from the thermal-pad area during the  
reflow process.  
7. Apply solder paste to the exposed thermal-pad area and all of the IC terminals.  
8. With these preparatory steps in place, the TLC08x IC is simply placed in position and run through the solder  
reflow operation as any standard surface-mount component. This results in a part that is properly installed.  
For a given θJA, the maximum power dissipation is shown in Figure 55 and is calculated by the following formula:  
TMAX * TA  
qJA  
P + ǒ Ǔ  
D
Where:  
P
= Maximum power dissipation of TLC08x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
= Thermal coefficient from case to ambient air (°C/W)  
JC  
CA  
(1)  
20  
Copyright © 20062011, Texas Instruments Incorporated  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
www.ti.com  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
7
6
5
4
3
2
PWP Package  
Low-K Test PCB  
T
= 150°C  
J
θ
= 29.7°C/W  
JA  
SOT-23 Package  
Low-K Test PCB  
= 324°C/W  
θ
JA  
DGN Package  
Low-K Test PCB  
θ
= 52.3°C/W  
JA  
SOIC Package  
Low-K Test PCB  
θ
= 176°C/W  
JA  
PDIP Package  
Low-K Test PCB  
θ
= 104°C/W  
JA  
1
0
−55 −40 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
A. Results are with no airflow and using JEDEC Standard Low-K test PCB.  
Figure 55. Maximum Power Dissipation vs Free-Air Temperature  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the device,  
especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat  
dissipation is at low output voltages with high output currents.  
The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The  
PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a  
copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other  
hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the  
device, θJA decreases and the heat dissipation capability increases. The currents and voltages shown in Typical  
Characteristics are for the total package. For the dual or quad amplifier packages, the sum of the RMS output  
currents and voltages should be used to choose the proper package.  
Macromodel Information  
Macromodel information provided was derived using Microsim Parts, the model generation software used with  
Microsim PSpice. The Boyle macromodel(1) and subcircuit in Figure 56 are generated using the TLC08x typical  
electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following  
key parameters can be generated to a tolerance of 20% (in most cases):  
(1) G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers,"  
IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
Open-loop voltage amplification  
Copyright © 20062011, Texas Instruments Incorporated  
21  
TLC080-Q1, TLC081-Q1  
TLC082-Q1, TLC083-Q1  
TLC084-Q1, TLC085-Q1  
SLOS510B SEPTEMBER 2006REVISED MAY 2011  
www.ti.com  
99  
DLN  
3
EGND  
+
V
DD  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
GND  
+
4
VE  
OUT  
*DEVICE=TLC08X_5V, OPAMP, PJF, INT  
ga  
6
0
0
3
0
6
6
11 12 402.12E−6  
10 99 1.5735E−6  
dc 1.212E−6  
gcm  
ioff  
iss  
* TLC08X_5V − 5V operational amplifier ”macromodel” subcir-  
cuit  
10 dc 130.40E−6  
* created using Parts release 8.0 on 12/16/99 at 14:03  
hlim 90  
0
vlim 1K  
10 jx1  
10 jx2  
* Parts is a MicroSim product.  
*
j1  
11  
12  
6
2
j2  
1
* connections:  
non-inverting input  
inverting input  
r2  
9
100.00E3  
*
*
*
*
*
rd1  
rd2  
ro1  
ro2  
rp  
4
11  
12  
5
2.4868E3  
2.4868E3  
positive power supply  
negative power supply  
output  
4
8
10  
7
99 10  
4
3
2.8249E3  
1.5337E6  
0
.subckt TLC08X_5V 1 2 3 4 5  
*
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
10 99  
9
3
0 dc  
53 dc 1.5537  
c1  
11 12 4.6015E−12  
8.0000E−12  
c2  
6
7
54  
7
4
8
0
dc .84373  
dc  
dc 117.60  
css  
dc  
de  
dlp  
dln  
dp  
10 99 986.29E−15  
0
5
54  
53 dy  
dy  
91  
0
5
92 dc 117.60  
90 91 dx  
92 90 dx  
.model dx D(Is=800.00E−18)  
.model dy D(Is=800.00E−18 Rs=1m Cjo=10p)  
.model jx1 PJF(Is=80.000E−15 Beta=1.2401E−3 Vto=−1)  
.model jx2 PJF(Is=80.000E−15 Beta=1.2401E−3 Vto=−1)  
.ends  
4
3
0
dx  
egnd 99  
fb  
poly(2) (3,0) (4,0) 0 .5 .5  
7
99 poly(5) vb vc ve vlp vln 0 13.984E6 −1E3 1E3  
14E6 −14E6  
Figure 56. Boyle Macromodel and Subcircuit  
22  
Copyright © 20062011, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jun-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLC082QDGNRQ1  
TLC084QPWPRQ1  
ACTIVE  
ACTIVE  
MSOP-  
PowerPAD  
DGN  
PWP  
8
2500  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
HTSSOP  
20  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLC082-Q1, TLC084-Q1 :  
Catalog: TLC082, TLC084  
NOTE: Qualified Version Definitions:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jun-2011  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jun-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC082QDGNRQ1  
MSOP-  
Power  
PAD  
DGN  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jun-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
MSOP-PowerPAD DGN  
SPQ  
Length (mm) Width (mm) Height (mm)  
358.0 335.0 35.0  
TLC082QDGNRQ1  
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TLC084A

四路、16V、10MHz、1.4mV 失调电压、输入接近 V- 的运算放大器
TI

TLC084AID

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AIDG4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AIDR

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AIDRG4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AIN

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AINE4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AIPWP

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AIPWPG4

FAMILY OF WIDE-BANDWIDTH HIGH-OUPTUP-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AIPWPR

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC084AIPWPR

QUAD OP-AMP, 2000uV OFFSET-MAX, 10MHz BAND WIDTH, PDSO20, GREEN, PLASTIC, HTSSOP-20
ROCHESTER

TLC084AIPWPRG4

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI