TLC085AIPWP [TI]

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS; 家庭宽带宽高输出驱动单电源运算放大器
TLC085AIPWP
型号: TLC085AIPWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
家庭宽带宽高输出驱动单电源运算放大器

运算放大器 放大器电路 光电二极管 输出元件 驱动
文件: 总51页 (文件大小:1485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊ ꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
D
D
Wide Bandwidth . . . 10 MHz  
High Output Drive  
Operational Amplifier  
− I  
− I  
. . . 57 mA at V  
. . . 55 mA at 0.5 V  
− 1.5 V  
OH  
OL  
DD  
D
High Slew Rate  
− SR+ . . . 16 V/µs  
− SR− . . . 19 V/µs  
+
D
D
D
Wide Supply Range . . . 4.5 V to 16 V  
Supply Current . . . 1.9 mA/Channel  
Ultralow Power Shutdown Mode  
I
. . . 125 µA/Channel  
DD  
D
D
D
Low Input Noise Voltage . . . 8.5 nVHz  
Input Offset Voltage . . . 60 µV  
Ultra-Small Packages  
− 8 or 10 Pin MSOP (TLC080/1/2/3)  
description  
The first members of TI’s new BiMOS general-purpose operational amplifier family are the TLC08x. The BiMOS  
family concept is simple: provide an upgrade path for BiFET users who are moving away from dual-supply to  
single-supply systems and demand higher ac and dc performance. With performance rated from 4.5 V to 16  
V across commercial (0°C to 70°C) and an extended industrial temperature range (−40°C to 125°C), BiMOS  
suits a wide range of audio, automotive, industrial, and instrumentation applications. Familiar features like offset  
nulling pins, and new features like MSOP PowerPADpackages and shutdown modes, enable higher levels  
of performance in a variety of applications.  
Developed in TI’s patented LBC3 BiCMOS process, the new BiMOS amplifiers combine a very high input  
impedance, low-noise CMOS front end with a high-drive bipolar output stage, thus providing the optimum  
performance features of both. AC performance improvements over the TL08x BiFET predecessors include a  
bandwidth of 10 MHz (an increase of 300%) and voltage noise of 8.5 nV/Hz (an improvement of 60%). DC  
improvements include an ensured V  
that includes ground, a factor of 4 reduction in input offset voltage down  
ICR  
to 1.5 mV (maximum) in the standard grade, and a power supply rejection improvement of greater than 40 dB  
to 130 dB. Added to this list of impressive features is the ability to drive 50-mA loads comfortably from an  
ultrasmall-footprint MSOP PowerPAD package, which positions the TLC08x as the ideal high-performance  
general-purpose operational amplifier family.  
FAMILY PACKAGE TABLE  
PACKAGE TYPES  
NO. OF  
CHANNELS  
UNIVERSAL  
EVM BOARD  
DEVICE  
SHUTDOWN  
MSOP  
PDIP  
8
SOIC  
8
TSSOP  
TLC080  
TLC081  
TLC082  
TLC083  
TLC084  
TLC085  
1
1
2
2
4
4
8
8
Yes  
8
8
Refer to the EVM  
Selection Guide  
(Lit# SLOU060)  
8
8
8
Yes  
10  
14  
14  
16  
14  
14  
16  
20  
20  
Yes  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
ꢀꢪ  
Copyright 2000−2004 Texas Instruments Incorporated  
ꢦ ꢪ ꢧ ꢦꢟ ꢠꢳ ꢢꢡ ꢥ ꢭꢭ ꢫꢥ ꢣ ꢥ ꢤ ꢪ ꢦ ꢪ ꢣ ꢧ ꢯ  
1
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TLC080 and TLC081 AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
SMALL OUTLINE  
SMALL OUTLINE  
PLASTIC DIP  
(P)  
SYMBOL  
(D)  
(DGN)  
TLC080CD  
TLC081CD  
TLC080CDGN  
TLC081CDGN  
xxTIACW  
xxTIACY  
TLC080CP  
TLC081CP  
0°C to 70°C  
TLC080ID  
TLC081ID  
TLC080IDGN  
TLC081IDGN  
xxTIACX  
xxTIACZ  
TLC080IP  
TLC081IP  
40°C to 125°C  
TLC080AID  
TLC081AID  
TLC080AIP  
TLC081AIP  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC080CDR).  
TLC082 and TLC083 AVAILABLE OPTIONS  
PACKAGED DEVICES  
SMALL  
PLASTIC  
DIP  
PLASTIC  
DIP  
MSOP  
T
A
OUTLINE  
SYMBOL  
(DGN)  
SYMBOL  
(DGQ)  
(D)  
(N)  
(P)  
TLC082CD  
TLC083CD  
TLC082CDGN  
xxTIADZ  
xxTIAEB  
TLC082CP  
0°C to 70°C  
TLC083CDGQ  
TLC083CN  
TLC082ID  
TLC083ID  
TLC082IDGN  
xxTIAEA  
xxTIAEC  
TLC082IP  
TLC083IDGQ  
TLC083IN  
40°C to 125°C  
TLC082AID  
TLC083AID  
TLC082AIP  
TLC083AIN  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC082CDR).  
xx represents the device date code.  
TLC084 and TLC085 AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
SMALL OUTLINE  
PLASTIC DIP  
(N)  
TSSOP  
(PWP)  
(D)  
TLC084CD  
TLC085CD  
TLC084CN  
TLC085CN  
TLC084CPWP  
TLC085CPWP  
0°C to 70°C  
TLC084ID  
TLC085ID  
TLC084IN  
TLC085IN  
TLC084IPWP  
TLC085IPWP  
40°C to 125°C  
TLC084AID  
TLC085AID  
TLC084AIN  
TLC085AIN  
TLC084AIPWP  
TLC085AIPWP  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g.,  
TLC084CDR).  
2
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TLC08x PACKAGE PINOUTS  
TLC080  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
TLC081  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
TLC082  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
NULL  
IN−  
SHDN  
NULL  
NC  
1OUT  
1IN−  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
IN−  
IN+  
V
2OUT  
2IN−  
2IN+  
DD  
DD  
IN+  
OUT  
OUT  
GND  
NULL  
GND  
NULL  
TLC084  
TLC083  
D OR N PACKAGE  
TLC083  
D OR N PACKAGE  
DGQ PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
1OUT  
1IN−  
1IN+  
GND  
NC  
V
DD  
2OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
1
1OUT  
1IN−  
1IN+  
GND  
1SHDN  
V
10  
DD  
2
3
4
5
2OUT  
2IN−  
2IN+  
9
8
7
6
2IN−  
2IN+  
NC  
V
DD  
2SHDN  
2IN+  
2IN−  
1SHDN  
NC  
2SHDN  
NC  
8
2OUT  
8
TLC085  
TLC084  
TLC085  
PWP PACKAGE  
PWP PACKAGE  
D OR N PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1OUT  
1IN−  
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
3/4SHDN  
NC  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1OUT  
1IN−  
1IN+  
VDD  
2IN+  
2IN−  
2OUT  
NC  
4OUT  
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
NC  
1IN+  
4IN+  
VDD  
V
GND  
DD  
2IN+  
2IN+  
2IN−  
3IN+  
2IN−  
3IN−  
2OUT  
1/2SHDN  
NC  
2OUT  
3OUT  
3/4SHDN  
1/2SHDN  
NC  
NC  
NC  
NC  
NC  
NC  
NC − No internal connection  
TYPICAL PIN 1 INDICATORS  
Pin 1  
Pin 1  
Pin 1  
Printed or  
Pin 1  
Bevel Edges  
Molded Dot  
Stripe  
Molded ”U” Shape  
3
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage range, V  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
ID  
DD  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values, except differential voltages, are with respect to GND.  
DISSIPATION RATING TABLE  
θ
θ
T 25°C  
A
POWER RATING  
JC  
JA  
PACKAGE  
(°C/W)  
(°C/W)  
D (8)  
38.3  
176  
710 mW  
D (14)  
D (16)  
26.9  
25.7  
4.7  
122.3  
114.7  
52.7  
52.3  
78  
1022 mW  
1090 mW  
2.37 W  
DGN (8)  
DGQ (10)  
N (14, 16)  
P (8)  
4.7  
2.39 W  
32  
1600 mW  
1200 mW  
4.79 W  
41  
104  
PWP (20)  
1.40  
26.1  
recommended operating conditions  
MIN  
4.5  
MAX  
16  
UNIT  
Single supply  
Split supply  
Supply voltage, V  
DD  
V
V
V
2.25  
GND  
2
8
Common-mode input voltage, V  
ICR  
V
−2  
DD  
V
V
IH  
Shutdown on/off voltage level  
0.8  
70  
IL  
C-suffix  
I-suffix  
0
Operating free-air temperature, T  
°C  
A
40  
125  
Relative to the voltage on the GND terminal of the device.  
4
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌ  
ꢁꢐ  
ꢑꢚ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1900  
3000  
1400  
2000  
T
A
UNIT  
25°C  
Full range  
25°C  
390  
TLC080/1/2/3,  
TLC084/5  
V
V
V
= 5 V,  
DD  
IC  
O
V
IO  
Input offset voltage  
µV  
390  
= 2.5 V,  
= 2.5 V,  
= 50 Ω  
TLC080/1/2/3A,  
TLC084/5A  
Full range  
R
S
Temperature coefficient of input  
offset voltage  
α
VIO  
1.2  
1.9  
µV/°C  
25°C  
50  
100  
700  
50  
TLC08XC  
TLC08XI  
I
IO  
Input offset current  
Input bias current  
pA  
V
DD  
= 5 V,  
= 2.5 V,  
Full range  
V
V
R
IC  
O
= 2.5 V,  
25°C  
3
= 50 Ω  
S
TLC08XC  
TLC08XI  
100  
700  
I
pA  
V
IB  
Full range  
0
to  
3.0  
0
to  
3.5  
25°C  
V
ICR  
Common-mode input voltage  
R
= 50 Ω  
S
0
to  
0
to  
Full range  
3.0  
3.5  
25°C  
Full range  
25°C  
4.1  
3.9  
3.7  
3.5  
3.4  
3.2  
3.2  
4.3  
4
I
I
I
= 1 mA  
= 20 mA  
= 35 mA  
OH  
OH  
OH  
Full range  
25°C  
V
OH  
High-level output voltage  
V
= 2.5 V  
V
3.8  
3.6  
IC  
Full range  
25°C  
I
= 50 mA  
−40°C to  
85°C  
OH  
3
25°C  
Full range  
25°C  
0.18  
0.35  
0.43  
0.45  
0.25  
0.35  
0.39  
0.45  
0.55  
0.7  
I
I
I
= 1 mA  
OL  
OL  
OL  
= 20 mA  
= 35 mA  
Full range  
25°C  
V
OL  
Low-level output voltage  
V
IC  
= 2.5 V  
V
Full range  
25°C  
0.63  
I
= 50 mA  
−40°C to  
85°C  
OL  
0.7  
Sourcing  
Sinking  
25°C  
25°C  
25°C  
25°C  
100  
100  
57  
I
I
Short-circuit output current  
Output current  
mA  
mA  
OS  
V
V
= 1.5 V from positive rail  
= 0.5 V from negative rail  
OH  
O
55  
OL  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
5
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
electrical characteristics at specified free-air temperature, V  
(continued)  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
100  
100  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
120  
Large-signal differential voltage  
amplification  
A
VD  
V
= 3 V,  
dB  
GΩ  
pF  
R
= 10 kΩ  
O(PP)  
L
r
Differential input resistance  
1000  
22.9  
i(d)  
Common-mode input  
capacitance  
C
f = 10 kHz  
f = 10 kHz,  
25°C  
IC  
z
Closed-loop output impedance  
Common-mode rejection ratio  
Supply voltage rejection ratio  
A
V
= 10  
25°C  
25°C  
0.25  
110  
o
80  
80  
80  
80  
CMRR  
V
V
= 0 to 3 V,  
R
= 50 Ω  
dB  
dB  
IC  
S
Full range  
25°C  
100  
1.8  
= 4.5 V to 16 V,  
V
IC  
= V /2,  
DD  
DD  
k
SVR  
(V  
DD  
/V  
IO  
)
No load  
Full range  
25°C  
2.5  
3.5  
I
Supply current (per channel)  
V
O
= 2.5 V,  
No load  
mA  
DD  
Full range  
Supply current in shutdown  
mode (per channel)  
(TLC080, TLC083, TLC085)  
25°C  
125  
200  
250  
I
µA  
SHDN 0.8 V  
DD(SHDN)  
Full range  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
6
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌ  
ꢁꢐ  
ꢙꢘ  
ꢑꢚ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
operating characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
TYP  
MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
16  
V
R
= 0.8 V,  
= 10 kΩ  
C
= 50 pF,  
O(PP)  
L
L
L
SR+  
SR−  
Positive slew rate at unity gain  
V/µs  
9.5  
12.5  
10  
19  
V
R
= 0.8 V,  
= 10 kΩ  
C
= 50 pF,  
O(PP)  
Negative slew rate at unity gain  
V/µs  
Full range  
25°C  
L
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
12  
8.5  
nV/Hz  
fA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
25°C  
25°C  
0.6  
n
A
= 1  
0.002%  
0.012%  
0.085%  
0.15  
V
V
R
= 3 V,  
= 10 kand 250 ,  
O(PP)  
L
A
V
= 10  
= 100  
THD + N Total harmonic distortion plus noise  
25°C  
f = 1 kHz  
A
V
t
t
Amplifier turnon time  
Amplifier turnoff time  
25°C  
25°C  
25°C  
µs  
µs  
(on)  
R
= 10 kΩ  
L
1.3  
(off)  
Gain-bandwidth product  
10  
MHz  
f = 10 kHz,  
R
= 10 kΩ  
L
V
= 1 V,  
= 1 V,  
(STEP)PP  
0.1%  
0.18  
0.39  
0.18  
0.39  
A
= −1,  
V
C
R
= 10 pF,  
= 10 kΩ  
L
L
0.01%  
0.1%  
t
s
Settling time  
25°C  
µs  
V
(STEP)PP  
A
= −1,  
V
C
R
= 47 pF,  
= 10 kΩ  
L
L
0.01%  
32°  
40°  
2.2  
3.3  
R
R
R
R
= 10 k,  
= 10 k,  
= 10 k,  
= 10 k,  
C
C
C
C
= 50 pF  
= 0 pF  
= 50 pF  
= 0 pF  
L
L
L
L
L
L
L
L
φ
m
Phase margin  
Gain margin  
25°C  
25°C  
dB  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current  
has reached half its final value.  
7
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
electrical characteristics at specified free-air temperature, V  
= 12 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1900  
3000  
1400  
2000  
T
A
UNIT  
25°C  
Full range  
25°C  
390  
TLC0841/2/3,  
TLC084/5  
V
V
V
= 12 V  
DD  
IC  
O
V
IO  
Input offset voltage  
µV  
390  
= 6 V,  
= 6 V,  
= 50 Ω  
TLC0841/2/3A,  
TLC084/5A  
Full range  
R
S
Temperature coefficient of input  
offset voltage  
α
VIO  
1.2  
1.5  
µV/°C  
25°C  
50  
100  
700  
50  
TLC08xC  
TLC08xI  
I
IO  
Input offset current  
Input bias current  
pA  
V
DD  
= 12 V  
Full range  
V
V
R
= 6 V,  
= 6 V,  
IC  
O
25°C  
2
= 50 Ω  
S
TLC08xC  
TLC08xI  
100  
700  
I
pA  
V
IB  
Full range  
0
to  
10.0  
0
to  
10.5  
25°C  
V
ICR  
Common-mode input voltage  
R
= 50 Ω  
S
0
to  
0
to  
Full range  
10.0  
10.5  
25°C  
Full range  
25°C  
11.1  
11  
11.2  
11  
I
I
I
= 1 mA  
= 20 mA  
= 35 mA  
OH  
OH  
OH  
10.8  
10.7  
10.6  
10.3  
10.3  
Full range  
25°C  
V
OH  
High-level output voltage  
V
= 6 V  
V
10.7  
10.5  
IC  
Full range  
25°C  
I
= 50 mA  
−40°C to  
85°C  
OH  
10.2  
25°C  
Full range  
25°C  
0.17  
0.35  
0.4  
0.25  
0.35  
0.45  
0.5  
I
I
I
= 1 mA  
OL  
OL  
OL  
= 20 mA  
= 35 mA  
Full range  
25°C  
V
OL  
Low-level output voltage  
V
IC  
= 6 V  
V
0.52  
0.6  
Full range  
25°C  
0.45  
0.6  
I
= 50 mA  
−40°C to  
85°C  
OL  
0.65  
Sourcing  
Sinking  
25°C  
25°C  
25°C  
25°C  
150  
150  
57  
I
I
Short-circuit output current  
Output current  
mA  
mA  
OS  
V
V
= 1.5 V from positive rail  
= 0.5 V from negative rail  
OH  
O
55  
OL  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
8
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌ  
ꢁꢐ  
ꢙꢘ  
ꢑꢚ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
electrical characteristics at specified free-air temperature, V  
(continued)  
= 12 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
120  
120  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
140  
Large-signal differential voltage  
amplification  
A
VD  
V
= 8 V,  
dB  
GΩ  
pF  
R
= 10 kΩ  
O(PP)  
L
r
Differential input resistance  
1000  
21.6  
i(d)  
Common-mode input  
capacitance  
C
f = 10 kHz  
f = 10 kHz,  
25°C  
IC  
z
Closed-loop output impedance  
Common-mode rejection ratio  
Supply voltage rejection ratio  
A
V
= 10  
25°C  
25°C  
0.25  
110  
o
80  
80  
80  
80  
CMRR  
V
V
= 0 to 10 V,  
R
= 50 Ω  
dB  
dB  
IC  
S
Full range  
25°C  
100  
1.9  
= 4.5 V to 16 V,  
V
IC  
= V /2,  
DD  
DD  
k
SVR  
(V  
DD  
/V  
IO  
)
No load  
Full range  
25°C  
2.9  
3.5  
I
Supply current (per channel)  
V
O
= 7.5 V,  
No load  
mA  
DD  
Full range  
Supply current in shutdown  
mode (TLC080, TLC083,  
TLC085) (per channel)  
25°C  
125  
200  
250  
I
µA  
SHDN 0.8 V  
DD(SHDN)  
Full range  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
9
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
operating characteristics at specified free-air temperature, V  
= 12 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
TYP  
MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
16  
V
R
= 2 V,  
= 10 kΩ  
C
= 50 pF,  
O(PP)  
L
L
L
SR+  
SR−  
Positive slew rate at unity gain  
V/µs  
9.5  
12.5  
10  
19  
V
R
= 2 V,  
= 10 kΩ  
C
= 50 pF,  
O(PP)  
Negative slew rate at unity gain  
V/µs  
Full range  
25°C  
L
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
14  
8.5  
nV/Hz  
fA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
25°C  
25°C  
0.6  
n
A
= 1  
0.002%  
0.005%  
0.022%  
0.47  
V
V
R
= 8 V,  
= 10 kand 250 ,  
O(PP)  
L
A
V
= 10  
= 100  
THD + N Total harmonic distortion plus noise  
25°C  
f = 1 kHz  
A
V
t
t
Amplifier turnon time  
Amplifier turnoff time  
25°C  
25°C  
25°C  
µs  
µs  
(on)  
R
= 10 kΩ  
L
2.5  
(off)  
Gain-bandwidth product  
10  
MHz  
f = 10 kHz,  
R
= 10 kΩ  
L
V
= 1 V,  
= 1 V,  
(STEP)PP  
0.1%  
0.17  
0.22  
0.17  
0.29  
A
= −1,  
V
C
R
= 10 pF,  
= 10 kΩ  
L
L
0.01%  
0.1%  
t
s
Settling time  
25°C  
µs  
V
(STEP)PP  
A
= −1,  
V
C
R
= 47 pF,  
= 10 kΩ  
L
L
0.01%  
37°  
42°  
3.1  
4
R
R
R
R
= 10 k,  
= 10 k,  
= 10 k,  
= 10 k,  
C
C
C
C
= 50 pF  
= 0 pF  
= 50 pF  
= 0 pF  
L
L
L
L
L
L
L
L
φ
m
Phase margin  
Gain margin  
25°C  
25°C  
dB  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current  
has reached half its final value.  
10  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input offset current  
Input bias current  
vs Common-mode input voltage  
vs Free-air temperature  
1, 2  
3, 4  
3, 4  
5, 7  
6, 8  
9
IO  
I
I
IO  
vs Free-air temperature  
vs High-level output current  
vs Low-level output current  
vs Frequency  
IB  
V
V
High-level output voltage  
Low-level output voltage  
Output impedance  
OH  
OL  
o
Z
I
Supply current  
vs Supply voltage  
vs Frequency  
10  
DD  
PSRR  
CMRR  
Power supply rejection ratio  
Common-mode rejection ratio  
Equivalent input noise voltage  
Peak-to-peak output voltage  
Crosstalk  
11  
vs Frequency  
12  
V
V
vs Frequency  
13  
n
vs Frequency  
14, 15  
16  
O(PP)  
vs Frequency  
Differential voltage gain  
Phase  
vs Frequency  
17, 18  
17, 18  
19, 20  
21, 22  
23  
vs Frequency  
φ
m
Phase margin  
vs Load capacitance  
vs Load capacitance  
vs Supply voltage  
Gain margin  
Gain-bandwidth product  
vs Supply voltage  
vs Free-air temperature  
24  
25, 26  
SR  
Slew rate  
vs Frequency  
27, 28  
29, 30  
31, 32  
33  
THD + N  
Total harmonic distortion plus noise  
vs Peak-to-peak output voltage  
Large-signal follower pulse response  
Small-signal follower pulse response  
Large-signal inverting pulse response  
Small-signal inverting pulse response  
Shutdown forward isolation  
34, 35  
36  
vs Frequency  
37, 38  
39, 40  
41  
Shutdown reverse isolation  
vs Frequency  
vs Supply voltage  
vs Free-air temperature  
Shutdown supply current  
Shutdown pulse  
42  
43, 44  
11  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT  
vs  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
1000  
1500  
300  
250  
V
T
= 12 V  
V
T
= 5 V  
DD  
= 25° C  
DD  
= 25° C  
V
= 5 V  
DD  
1300  
1100  
900  
800  
600  
400  
200  
0
A
A
200  
150  
700  
500  
300  
100  
50  
I
IB  
100  
−100  
−300  
−500  
0
−200  
−400  
−600  
I
IO  
−50  
−100  
−55 −40 −25 −10 5 20 35 50 65 80 95 110 125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
1
2
3
4
5
6
7
8
9 10 11 12  
V
− Common-Mode Input Voltage − V  
V
− Common-Mode Input Voltage − V  
T − Free−Air Temperature °C  
A
ICR  
ICR  
Figure 1  
Figure 2  
Figure 3  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
20  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V
= 5 V  
I
DD  
V
= 5 V  
DD  
IO  
T
= 70°C  
−20  
−40  
A
T
= 25°C  
A
T
= 125°C  
A
−60  
T
= 70°C  
A
T
= −40°C  
A
T
= 25°C  
A
−80  
T
= 125°C  
A
−100  
−120  
−140  
I
IB  
T
= −40°C  
A
V
= 12 V  
DD  
−160  
−55 −40 −25 −10 5 20 35 50 65 80 95 110 125  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
- Low-Level Output Current - mA  
Figure 6  
T
− Free-Air Temperature − °C  
I
- High-Level Output Current - mA  
I
A
OH  
OL  
Figure 4  
Figure 5  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
OUTPUT IMPEDANCE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1000  
V
V
= 5 V and 12  
T
= 125°C  
DD  
A
T
= 70°C  
A
100  
10  
T
= 25°C  
A
T
= 125°C  
A
T
= 70°C  
A
A
= 100  
V
T
= 25°C  
A
T
= −40°C  
A
T
= 25°C  
A
1
0.10  
0.01  
A
= 1  
V
T
= −40°C  
A
A
= 10  
V
V
= 12 V  
DD  
V
= 12 V  
DD  
5
9.0  
0
5
10 15 20 25 30 35 40 45 50  
- High-Level Output Current - mA  
Figure 7  
0
10 15 20 25 30 35 40 45 50  
- Low-Level Output Current - mA  
Figure 8  
100  
1k  
10k  
100k  
1M  
10M  
I
I
f - Frequency - Hz  
OH  
OL  
Figure 9  
12  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
vs  
FREQUENCY  
140  
vs  
FREQUENCY  
140  
SUPPLY VOLTAGE  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
V
= 5 V and 12 V  
DD  
= 25°C  
T
= 25°C  
120  
A
120  
100  
80  
60  
40  
20  
0
T
A
V
= 12 V  
DD  
T
= −40°C  
100  
80  
60  
40  
20  
0
A
T
= 125°C  
A
T
= 70°C  
A
V
= 5 V  
DD  
A
= 1  
V
SHDN = V  
Per Channel  
DD  
4
5
6
7
8
9
10 11 12 13 14 15  
0
10 100  
1k  
10k 100k 1M 10M  
100  
1k  
10k  
100k  
1M  
10M  
V
− Supply Voltage - V  
f − Frequency − Hz  
f - Frequency - Hz  
DD  
Figure 10  
Figure 11  
Figure 12  
PEAK-TO-PEAK OUTPUT  
PEAK-TO-PEAK OUTPUT  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
VOLTAGE  
vs  
VOLTAGE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
40  
12  
10  
8
12  
10  
8
35  
30  
25  
20  
15  
V
= 12 V  
DD  
V
= 12 V  
DD  
6
6
V
= 5 V  
DD  
V
= 5 V  
V
= 12 V  
DD  
DD  
4
4
10  
5
V
= 5 V  
THD+N < = 5%  
THD+N < = 5%  
DD  
2
2
R = 10 kΩ  
R
T
= 600 Ω  
= 25°C  
L
A
L
T
= 25°C  
A
0
0
0
10  
100  
1k  
10k  
100k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 13  
Figure 14  
Figure 15  
CROSSTALK  
vs  
FREQUENCY  
0
V
A
R
V
= 5 V and 12 V  
= 1  
DD  
V
L
−20  
= 10 kΩ  
−40  
−60  
−80  
= 2 V  
I(PP)  
For All Channels  
−100  
−120  
−140  
−160  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
Figure 16  
13  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE GAIN AND  
DIFFERENTIAL VOLTAGE GAIN AND  
PHASE  
vs  
PHASE  
vs  
FREQUENCY  
FREQUENCY  
80  
70  
0
80  
70  
0
Gain  
60  
50  
−45  
60  
50  
Gain  
−45  
Phase  
Phase  
40  
−90  
40  
−90  
30  
30  
20  
−135  
−180  
−225  
20  
−135  
−180  
−225  
10  
10  
V
=
2.5 V  
V
R
C
= 6 V  
= 10 kΩ  
= 0 pF T  
A
DD  
L
L
DD  
L
L
0
0
R
C
T
= 10 kΩ  
= 0 pF  
= 25°C  
−10  
−10  
= 25°C  
A
−20  
−20  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 17  
Figure 18  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
45°  
40°  
35°  
4
R
R
= 0 Ω  
= 100 Ω  
R
= 0 Ω  
null  
null  
null  
R
= 0 Ω  
null  
40°  
35°  
3.5  
3
R
= 100 Ω  
null  
30°  
R
= 50 Ω  
null  
30°  
25°  
20°  
2.5  
25°  
20°  
15°  
R
= 100 Ω  
null  
R
= 50 Ω  
null  
2
R
= 50 Ω  
null  
R
= 20 Ω  
R
= 20 Ω  
null  
null  
1.5  
15°  
10°  
1
0.5  
0
V
= 5 V  
V
R
= 12 V  
V
= 5 V  
DD  
DD  
DD  
10°  
5°  
R
= 20 Ω  
null  
R
= 10 kΩ  
= 25°C  
= 10 kΩ  
= 25°C  
R
= 10 kΩ  
= 25°C  
L
L
L
5°  
0°  
T
T
T
A
A
A
0°  
10  
10  
100  
100  
10  
100  
C
− Load Capacitance − pF  
C
− Load Capacitance − pF  
C − Load Capacitance − pF  
L
L
L
Figure 19  
Figure 20  
Figure 21  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
GAIN BANDWIDTH PRODUCT  
SLEW RATE  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
5
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
R
= 0 Ω  
null  
4.5  
4
R
= 600 and 10 kΩ  
C
= 11 pF  
L
L
L
C
A
= 50 pF  
= 1  
R
= 100 Ω  
null  
T
= 25°C  
A
V
3.5  
3
Slew Rate −  
R
= 10 kΩ  
L
2.5  
2
R
= 50 Ω  
null  
R
= 20 Ω  
null  
R
= 600 Ω  
L
Slew Rate +  
1.5  
V
= 12 V  
DD  
1
0.5  
0
R
T
= 10 kΩ  
= 25°C  
L
A
10  
100  
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
C
− Load Capacitance − pF  
L
V
- Supply Voltage - V  
V
DD  
- Supply Voltage - V  
DD  
Figure 22  
Figure 23  
Figure 24  
14  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
SLEW RATE  
vs  
SLEW RATE  
vs  
PLUS NOISE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
FREQUENCY  
1
25  
20  
15  
10  
5
25  
V
= 5 V  
V
V
R
= 5 V  
= 2 V  
DD  
DD  
O(PP)  
= 10 kΩ  
R = 600 and 10 kΩ  
L
Slew Rate −  
C
A
= 50 pF  
= 1  
L
V
Slew Rate −  
L
20  
A
= 100  
V
0.1  
0.01  
15  
Slew Rate +  
Slew Rate +  
A
A
= 10  
= 1  
V
V
10  
V
= 12 V  
DD  
5
0
R = 600 and 10 kΩ  
L
C
A
= 50 pF  
= 1  
L
V
0
0.001  
−55 −35 −15  
5
25 45 65 85 105 125  
−55 −35 −15  
5
25 45 65 85 105 125  
100  
1k  
10k  
100k  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
A
f − Frequency − Hz  
A
Figure 25  
Figure 26  
Figure 27  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
PLUS NOISE  
vs  
FREQUENCY  
PLUS NOISE  
vs  
PEAK-TO-PEAK OUTPUT VOLTAGE  
PLUS NOISE  
vs  
PEAK-TO-PEAK OUTPUT VOLTAGE  
0.1  
10  
10  
V
A
= 12 V  
V
V
R
= 12 V  
= 8 V  
DD  
= 1  
V
A
= 5 V  
DD  
O(PP)  
= 10 kΩ  
DD  
= 1  
V
R
= 250 Ω  
L
V
f = 1 kHz  
f = 1 kHz  
L
1
1
A
= 100  
R
= 250 Ω  
V
L
0.1  
0.1  
0.01  
R
= 600 Ω  
L
R
= 600 Ω  
L
A
A
= 10  
= 1  
0.01  
V
V
0.01  
R
= 10 kΩ  
0.001  
L
R
= 10 kΩ  
0.001  
L
0.001  
0.0001  
0.0001  
100  
1k  
10k  
100k  
0.5  
2.5  
4.5  
6.5  
8.5  
10.5  
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75  
f − Frequency − Hz  
V
− Peak-to-Peak Output Voltage − V  
O(PP)  
V
− Peak-to-Peak Output Voltage − V  
O(PP)  
Figure 28  
Figure 30  
Figure 29  
LARGE SIGNAL FOLLOWER  
PULSE RESPONSE  
SMALL SIGNAL FOLLOWER PULSE  
RESPONSE  
LARGE SIGNAL FOLLOWER  
PULSE RESPONSE  
V (1 V/Div)  
I
V (5 V/Div)  
I
V (100mV/Div)  
I
V
(2 V/Div)  
O
V
(500 mV/Div)  
= 5 V  
O
V
(50mV/Div)  
O
V
V
= 12 V  
DD  
DD  
R
= 600 Ω  
R
= 600 Ω  
and 10 kΩ  
= 8 pF  
= 25°C  
L
L
V
R
C
= 5 V and 12 V  
= 600 and 10 kΩ  
= 8 pF  
and 10 kΩ  
C
T
A
DD  
L
L
= 8 pF  
= 25°C  
C
T
L
L
A
T
= 25°C  
A
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 31  
Figure 33  
Figure 32  
15  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS  
LARGE SIGNAL INVERTING  
PULSE RESPONSE  
LARGE SIGNAL INVERTING  
PULSE RESPONSE  
SMALL SIGNAL INVERTING  
PULSE RESPONSE  
V (5 V/div)  
I
V (2 V/div)  
I
V (100 mV/div)  
I
V
R
C
= 5 V and 12 V  
= 600 and 10 kΩ  
= 8 pF  
DD  
L
L
V
R
= 5 V  
= 600 Ω  
V
R
= 12 V  
= 600 Ω  
and 10 kΩ  
= 8 pF  
DD  
L
DD  
L
T
A
= 25°C  
and 10 kΩ  
C
T
A
= 8 pF  
= 25°C  
C
T
L
L
= 25°C  
A
V
(50 mV/Div)  
O
V
(2 V/Div)  
O
V
(500 mV/Div)  
O
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 34  
Figure 35  
Figure 36  
SHUTDOWN FORWARD  
ISOLATION  
SHUTDOWN FORWARD  
ISOLATION  
SHUTDOWN REVERSE  
ISOLATION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
140  
120  
100  
80  
V
= 5 V  
V
= 5 V  
DD  
C = 0 pF  
DD  
C = 0 pF  
V
= 12 V  
DD  
C = 0 pF  
L
L
L
T
A
= 25°C  
T
A
= 25°C  
T
A
= 25°C  
V
= 0.1, 2.5, and 5 V  
V
= 0.1, 2.5, and 5 V  
I(PP)  
I(PP)  
V
= 0.1, 8, 12 V  
I(PP)  
R
= 600 Ω  
L
R
= 600 Ω  
L
R
= 600 Ω  
L
60  
60  
R
= 10 kΩ  
60  
L
R
= 10 kΩ  
R
= 10 kΩ  
L
L
40  
40  
40  
20  
20  
20  
100  
1k  
10k 100k 1M  
f - Frequency - Hz  
10M  
100M  
100  
1k  
10k 100k 1M  
f - Frequency - Hz  
10M  
100M  
100  
1k  
10k 100k 1M  
f - Frequency - Hz  
10M  
100M  
Figure 37  
Figure 38  
Figure 39  
SHUTDOWN REVERSE  
ISOLATION  
SHUTDOWN SUPPLY CURRENT  
SHUTDOWN SUPPLY CURRENT  
vs  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
FREQUENCY  
140  
120  
100  
80  
136  
134  
132  
130  
128  
126  
124  
122  
120  
118  
180  
160  
140  
120  
100  
80  
A
V
= 1  
= V  
V
V
= 12 V  
Shutdown On  
DD  
C = 0 pF  
IN  
DD/2  
R
= open  
L
L
V
= V  
DD/2  
IN  
T
= 25°C  
A
V
= 0.1, 8, 12 V  
I(PP)  
V
= 12 V  
DD  
R
= 600 Ω  
L
V
= 5 V  
DD  
60  
R
= 10 kΩ  
L
40  
20  
60  
4
5
6
7
8
9
10 11 12 13 14 15 16  
−55  
−25  
5
35  
65  
95  
125  
100  
1k  
10k 100k 1M  
f - Frequency - Hz  
10M  
100M  
V
- Supply Voltage - V  
T
- Free-Air Temperature - °C  
A
DD  
Figure 40  
Figure 41  
Figure 42  
16  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌ  
ꢁꢐ  
ꢙꢘ  
ꢑꢚ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS  
SHUTDOWN PULSE  
SHUTDOWN PULSE  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
4
6
SD Off  
SD Off  
4
Shutdown Pulse  
Shutdown Pulse  
2
0
2
V
= 5 V  
V
= 12 V  
DD  
C = 8 pF  
DD  
C = 8 pF  
L
L
T
A
= 25°C  
T = 25°C  
A
0
I
R
= 10 kΩ  
I
R = 10 kΩ  
L
DD  
DD  
L
DD  
−2  
−4  
−6  
−2  
−4  
−6  
I
R
L
= 600 Ω  
I
R = 600 Ω  
L
DD  
0
10 20 30 40 50 60 70 80  
t - Time - µs  
0
10 20 30 40 50 60 70 80  
t - Time - µs  
Figure 43  
Figure 44  
PARAMETER MEASUREMENT INFORMATION  
R
_
+
null  
R
L
C
L
Figure 45  
APPLICATION INFORMATION  
input offset voltage null circuit  
The TLC080 and TLC081 has an input offset nulling function. Refer to Figure 46 for the diagram.  
IN−  
OUT  
+
N2  
IN+  
N1  
100 kΩ  
R1  
DD−  
V
NOTE A: R1 = 5.6 kfor offset voltage adjustment of 10 mV.  
R1 = 20 kfor offset voltage adjustment of 3 mV.  
Figure 46. Input Offset Voltage Null Circuit  
17  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the  
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10 pF, it is recommended that a resistor be placed in series (R  
) with the output of the amplifier, as  
NULL  
shown in Figure 47. A minimum value of 20 should work well for most applications.  
R
F
R
G
_
R
NULL  
Input  
Output  
LOAD  
+
C
Figure 47. Driving a Capacitive Load  
offset voltage  
The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
Figure 48. Output Offset Voltage Model  
18  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
high speed CMOS input amplifiers  
The TLC08x is a family of high-speed low-noise CMOS input operational amplifiers that has an input  
capacitance of the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function  
equivalent to the input capacitance multiplied by the combination of source resistance and feedback resistance.  
For example, a gain of −10, a source resistance of 1 k, and a feedback resistance of 10 kadd an additional  
pole at approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their  
greater input capacitance.  
This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their  
unity-gain bandwidth. However, the TLC08x with its 10-MHz bandwidth means that this pole normally occurs  
at frequencies where there is on the order of 5dB gain left and the phase shift adds considerably.  
The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the  
feedback resistance is increased, the gain peaking increases at a lower frequency and the 180_ phase shift  
crossover point also moves down in frequency, decreasing the phase margin.  
For the TLC08x, the maximum feedback resistor recommended is 5 k; larger resistances can be used but a  
capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance  
pole.  
The TLC083 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when  
configured as a unity gain buffer and with a 10-kfeedback resistor. By adding a 10-pF capacitor in parallel with  
the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much  
faster settling time (see Figure 49). The 10-pF capacitor was chosen for convenience only.  
Load capacitance had little effect on these measurements due to the excellent output drive capability of the  
TLC08x.  
2
V
10 pF  
IN  
1
0
With  
10 kΩ  
C
= 10 pF  
F
1.5  
−1  
_
+
1
IN  
V
A
R
R
C
=
= +1  
= 10 kΩ  
= 600 Ω  
= 22 pF  
5 V  
0.5  
DD  
V
F
L
L
600 Ω  
22 pF  
V
OUT  
50 Ω  
0
−0.5  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6  
t - Time - µs  
Figure 49. 1-V Step Response  
19  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 50).  
R
R
F
G
V
1
O
+
V
I
R1  
V
C1  
f
+
–3dB  
2pR1C1  
R
O
F
1
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
V
R
1 ) sR1C1  
I
G
Figure 50. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 −  
)
R
(
Q
G
Figure 51. 2-Pole Low-Pass Sallen-Key Filter  
20  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
shutdown function  
Three members of the TLC08x family (TLC080/3/5) have a shutdown terminal (SHDN) for conserving battery  
life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 125  
µA/channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. To enable the  
amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left  
floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not  
inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always  
referenced to the voltage on the GND terminal of the device. Therefore, when operating the device with split  
supply voltages (e.g. 2.5 V), the shutdown terminal needs to be pulled to V − (not system ground) to disable  
DD  
the operational amplifier.  
The amplifier’s output with a shutdown pulse is shown in Figures 43 and 44. The amplifier is powered with a  
single 5-V supply and is configured as noninverting with a gain of 5. The amplifier turnon and turnoff times are  
measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the  
single, dual, and quad are listed in the data tables.  
Figures 37, 38, 39, and 40 show the amplifier’s forward and reverse isolation in shutdown. The operational  
amplifier is configured as a voltage follower (A = 1). The isolation performance is plotted across frequency  
V
using 0.1 V , 2.5 V , and 5 V input signals at 2.5 V supplies and 0.1 V , 8 V , and 12 V input signals  
PP  
PP  
PP  
PP  
PP  
PP  
at 6 V supplies.  
circuit layout considerations  
To achieve the levels of high performance of the TLC08x, follow proper printed-circuit board design techniques.  
A general set of guidelines is given in the following.  
D
Ground planes − It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements − Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at  
the input of the amplifier.  
D
Surface-mount passive components − Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
21  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
general PowerPAD design considerations  
The TLC08x is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset leadframe upon which the die is mounted [see Figure 52(a) and Figure 52(b)]. This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see  
Figure 52(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance  
can be achieved by providing a good thermal path away from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of  
surface mount with the, heretofore, awkward mechanical methods of heatsinking.  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
NOTE B: The thermal pad is electrically isolated from all terminals in the package.  
Figure 52. Views of Thermally Enhanced DGN Package  
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the  
recommended approach.  
Thermal Pad Area  
Quad  
Single or Dual  
68 mils x 70 mils with 5 vias  
78 mils x 94 mils with 9 vias  
(Via diameter = 13 mils)  
(Via diameter = 13 mils)  
Figure 53. PowerPAD PCB Etch and Via Pattern  
22  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
1. Prepare the PCB with a top side etch pattern as shown in Figure 53. There should be etch for the leads as  
well as etch for the thermal pad.  
2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils  
in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.  
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the TLC08x IC. These additional vias may be larger than the 13-mil  
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad  
area to be soldered so that wicking is not a problem.  
4. Connect all holes to the internal ground plane.  
5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection  
methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier.  
In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore,  
the holes under the TLC08x PowerPAD package should make their connection to the internal ground plane  
with a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five  
holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes  
of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the  
reflow process.  
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
8. With these preparatory steps in place, the TLC08x IC is simply placed in position and run through the solder  
reflow operation as any standard surface-mount component. This results in a part that is properly installed.  
For a given θ , the maximum power dissipation is shown in Figure 54 and is calculated by the following formula:  
JA  
T
–T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of TLC08x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
23  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
7
6
5
4
3
2
PWP Package  
T
= 150°C  
J
Low-K Test PCB  
= 29.7°C/W  
θ
JA  
SOT-23 Package  
Low-K Test PCB  
= 324°C/W  
θ
JA  
DGN Package  
Low-K Test PCB  
θ
= 52.3°C/W  
JA  
SOIC Package  
Low-K Test PCB  
= 176°C/W  
θ
JA  
PDIP Package  
Low-K Test PCB  
θ
= 104°C/W  
JA  
1
0
−55 −40 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 54. Maximum Power Dissipation vs Free-Air Temperature  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the  
device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most  
of the heat dissipation is at low output voltages with high output currents.  
The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The  
PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a  
copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other  
hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around  
the device, θ decreases and the heat dissipation capability increases. The currents and voltages shown in  
JA  
these graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output  
currents and voltages should be used to choose the proper package.  
24  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 55 are generated using  
the TLC08x typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
PSpice and Parts are trademarks of MicroSim Corporation.  
25  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
ꢀꢘ  
ꢀꢕ  
ꢁꢐ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
APPLICATION INFORMATION  
99  
DLN  
3
EGND  
+
V
DD  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
GND  
+
4
VE  
OUT  
*DEVICE=TLC08X_5V, OPAMP, PJF, INT  
ga  
6
0
0
3
0
6
6
11 12 402.12E−6  
10 99 1.5735E−6  
dc 1.212E−6  
gcm  
ioff  
iss  
* TLC08X_5V − 5V operational amplifier ”macromodel” sub-  
circuit  
10 dc 130.40E−6  
* created using Parts release 8.0 on 12/16/99 at 14:03  
hlim 90 0 vlim 1K  
* Parts is a MicroSim product.  
*
j1  
11 2 10 jx1  
12 1 10 jx2  
j2  
* connections:  
non-inverting input  
inverting input  
r2  
6
4
4
8
7
3
9
100.00E3  
2.4868E3  
2.4868E3  
*
*
*
*
*
rd1  
rd2  
ro1  
ro2  
rp  
11  
12  
5
positive power supply  
negative power supply  
output  
10  
99 10  
4
2.8249E3  
1.5337E6  
0
.subckt TLC08X_5V 1 2 3 4 5  
*
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
10 99  
9
3
0 dc  
53 dc 1.5537  
c1  
11 12 4.6015E−12  
8.0000E−12  
10 99 986.29E−15  
53 dy  
c2  
6
7
54 4 dc .84373  
css  
dc  
7
8
dc  
91 0 dc 117.60  
92 dc 117.60  
0
5
de  
dlp  
dln  
dp  
54 5 dy  
90 91 dx  
92 90 dx  
0
.model dx D(Is=800.00E−18)  
.model dy D(Is=800.00E−18 Rs=1m Cjo=10p)  
.model jx1 PJF(Is=80.000E−15 Beta=1.2401E−3 Vto=−1)  
.model jx2 PJF(Is=80.000E−15 Beta=1.2401E−3 Vto=−1)  
.ends  
4
3 dx  
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5  
fb 99 poly(5) vb vc ve vlp vln 0 13.984E6 −1E3 1E3  
14E6 −14E6  
7
Figure 55. Boyle Macromodel and Subcircuit  
26  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
THERMAL PAD MECHANICAL DATA  
PowerPADt PLASTIC SMALL-OUTLINE  
DGQ (S−PDSO−G10)  
27  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
THERMAL PAD MECHANICAL DATA  
PowerPADt PLASTIC SMALL-OUTLINE  
DGN (S−PDSO−G8)  
Top View  
8
5
Exposed Pad  
1,73 MAX  
1
4
1,78 MAX  
Not to Scale  
PPTD041  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. For additional information on the PowerPADpackage and how to take advantage of its heat dissipating abilities, refer to  
Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application  
Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.  
PowerPAD is a trademark of Texas Instruments  
28  
WWW.TI.COM  
ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢇꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢈꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢉꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀꢁ ꢂꢃ ꢄꢋ ꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑ ꢍ ꢒ ꢏꢓꢔ ꢕꢖꢌꢗꢓꢒ ꢏ ꢓꢀ ꢘ ꢘꢏ ꢙꢘ ꢕꢑꢚ ꢀꢛ ꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞ ꢚꢛ ꢛ ꢁꢐ  
ꢑ ꢛꢔꢜ ꢌꢀ ꢏꢑ ꢗꢌꢁ ꢌꢎ ꢛ ꢁꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
THERMAL PAD MECHANICAL DATA  
PowerPADt PLASTIC SMALL−OUTLINE  
PWP (R−PDSO−G14)  
PPTD023  
29  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢆꢅ ꢀꢁ ꢂꢃ ꢄ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢈ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢉ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢊꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢋꢌ  
ꢍꢌꢎ ꢏ ꢁꢐ ꢑꢍ ꢒꢏ ꢓ ꢔ ꢕꢖꢌꢗꢓ ꢒ ꢏ ꢓꢀꢘ ꢘꢏ ꢙ ꢘꢕꢑ ꢚꢀ ꢛꢚꢀꢕꢓꢜꢏ ꢝꢔ ꢞꢏ ꢗꢙ ꢁ ꢔ ꢞꢚ ꢛꢛꢁꢐ  
ꢑꢛ ꢔ ꢜꢌꢀ ꢏ ꢑꢗ ꢌ ꢁ ꢌꢎ ꢛꢁ ꢏ ꢍꢏ ꢔꢜ ꢞ  
SLOS254D − JUNE 1999 − REVISED FEBRUARY 2004  
THERMAL PAD MECHANICAL DATA  
PWP (R−PDSO−G16)  
PowerPADt PLASTIC SMALL−OUTLINE  
PPTD024  
30  
WWW.TI.COM  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MSOI002B – JANUARY 1995 – REVISED SEPTEMBER 2001  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
8 PINS SHOWN  
0.020 (0,51)  
0.014 (0,35)  
0.050 (1,27)  
8
0.010 (0,25)  
5
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
4
0.010 (0,25)  
0°– 8°  
A
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.010 (0,25)  
0.069 (1,75) MAX  
0.004 (0,10)  
0.004 (0,10)  
PINS **  
8
14  
16  
DIM  
A MAX  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/E 09/01  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
TLC080AIDR  
TLC080AIP  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
PDIP  
SOIC  
P
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC080AIPE4  
TLC080CD  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC080CDGNR  
MSOP-  
Power  
PAD  
DGN  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC080CDGNRG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC080CDR  
TLC080CDRG4  
TLC080ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC080IDGNR  
MSOP-  
Power  
PAD  
DGN  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC080IDGNRG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC080IDR  
TLC080IDRG4  
TLC080IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC080IPE4  
TLC081AID  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC081AIDR  
TLC081AIDRG4  
TLC081AIP  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC081AIPE4  
TLC081CD  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC081CDG4  
TLC081CDGN  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PAD  
TLC081CDGNG4  
TLC081CDGNR  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGN  
DGN  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC081CDGNRG4  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC081CDR  
TLC081CDRG4  
TLC081CP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC081CPE4  
TLC081ID  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC081IDG4  
TLC081IDGNR  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGN  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC081IDGNRG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC081IDR  
TLC081IDRG4  
TLC081IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
D
D
P
P
D
D
D
D
P
P
D
D
8
8
8
8
8
8
8
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC081IPE4  
TLC082AID  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082AIDG4  
TLC082AIDR  
TLC082AIDRG4  
TLC082AIP  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC082AIPE4  
TLC082CD  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082CDG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TLC082CDGN  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082CDGNR  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082CDGNRG4  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082CDR  
TLC082CDRG4  
TLC082CP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
D
D
8
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC082CPE4  
TLC082ID  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082IDGN  
MSOP-  
Power  
PAD  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082IDGNR  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082IDGNRG4  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC082IDR  
TLC082IDRG4  
TLC082IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
PDIP  
PDIP  
SOIC  
D
D
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC082IPE4  
TLC083AID  
P
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
D
14  
14  
14  
14  
10  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC083AIN  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC083AINE4  
TLC083CD  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC083CDGQR  
MSOP-  
Power  
PAD  
DGQ  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC083CDGQRG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGQ  
10  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC083CDR  
ACTIVE  
ACTIVE  
SOIC  
D
D
14  
14  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC083CDRG4  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
TLC083CN  
TLC083CNE4  
TLC083ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
N
N
14  
14  
14  
10  
25  
25  
Pb-Free  
(RoHS)  
CU NIPD  
CU NIPD  
Level-NC-NC-NC  
Level-NC-NC-NC  
Pb-Free  
(RoHS)  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC083IDGQ  
MSOP-  
Power  
PAD  
DGQ  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC083IN  
TLC083INE4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
N
N
14  
14  
14  
14  
14  
14  
14  
14  
20  
20  
20  
14  
14  
14  
14  
14  
14  
20  
20  
20  
20  
25  
25  
Pb-Free  
(RoHS)  
CU NIPD  
CU NIPD  
Level-NC-NC-NC  
Level-NC-NC-NC  
PDIP  
Pb-Free  
(RoHS)  
TLC084AID  
SOIC  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC084AIDG4  
TLC084AIDR  
SOIC  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC084AIDRG4  
TLC084AIN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
TLC084AINE4  
TLC084AIPWP  
TLC084AIPWPR  
TLC084AIPWPRG4  
TLC084CD  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
PWP  
PWP  
PWP  
D
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC084CDG4  
TLC084CDR  
SOIC  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC084CDRG4  
TLC084CN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
TLC084CNE4  
TLC084CPWP  
TLC084CPWPG4  
TLC084CPWPR  
TLC084CPWPRG4  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2005  
Orderable Device  
TLC084ID  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
14  
14  
20  
20  
20  
16  
16  
16  
16  
16  
20  
16  
16  
16  
16  
16  
20  
16  
16  
20  
20  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC084IDR  
SOIC  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
D
PWP  
PWP  
PWP  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC084IPWP  
TLC084IPWPR  
TLC084IPWPRG4  
TLC085AID  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC085AIDR  
TLC085AIDRG4  
TLC085AIN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC085AINE4  
TLC085AIPWP  
TLC085CD  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
HTSSOP  
SOIC  
PWP  
D
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC085CDR  
TLC085CDRG4  
TLC085CN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLC085CNE4  
TLC085CPWP  
TLC085IDR  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
HTSSOP  
SOIC  
PWP  
D
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC085IDRG4  
TLC085IPWP  
TLC085IPWPG4  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
HTSSOP  
HTSSOP  
PWP  
PWP  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
70 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
Addendum-Page 5  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2005  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 6  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TLC085AIPWPG4

FAMILY OF WIDE-BANDWIDTH HIGH-OUPTUP-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085AIPWPR

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085AIPWPRG4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085CD

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085CD

QUAD OP-AMP, 3000uV OFFSET-MAX, 10MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, MS-012AC, SOIC-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLC085CDG4

FAMILY OF WIDE-BANDWIDTH HIGH-OUPTUP-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085CDR

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085CDRG4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085CN

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085CNE4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085CPWP

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC085CPWPG4

FAMILY OF WIDE-BANDWIDTH HIGH-OUPTUP-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI