TLC1542 [TI]

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS; 10位模拟数字转换器带串行控制和11个模拟输入
TLC1542
型号: TLC1542
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
10位模拟数字转换器带串行控制和11个模拟输入

转换器 输入元件
文件: 总27页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
10-Bit Resolution A/D Converter  
DB, DW, J, OR N PACKAGE  
(TOP VIEW)  
11 Analog Input Channels  
Three Built-In Self-Test Modes  
Inherent Sample-and-Hold Function  
Total Unadjusted Error . . . ±1 LSB Max  
On-Chip System Clock  
A0  
A1  
V
CC  
EOC  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
A2  
I/O CLOCK  
ADDRESS  
DATA OUT  
A3  
A4  
End-of-Conversion (EOC) Output  
Terminal Compatible With TLC542  
CMOS Technology  
A5  
15 CS  
14  
13  
12  
11  
A6  
REF+  
REF–  
A10  
A7  
A8  
description  
GND  
A9  
The TLC1542C, TLC1542I, TLC1542M, TLC1542Q,  
TLC1543C, TLC1543I, and TLC1543Q are CMOS  
10-bit switched-capacitor successive-approximation  
analog-to-digital converters. These devices have three  
inputs and a 3-state output [chip select (CS),  
input-output clock (I/O CLOCK), address input  
(ADDRESS), and data output (DATA OUT)] that  
provide a direct 4-wire interface to the serial port of a  
host processor. These devices allow high-speed data  
transfers from the host.  
FK OR FN PACKAGE  
(TOP VIEW)  
3
2
1
20 19  
18  
I/O CLOCK  
ADDRESS  
DATA OUT  
CS  
A3  
A4  
A5  
A6  
A7  
4
5
6
7
8
17  
16  
15  
14  
REF+  
In addition to a high-speed A/D converter and versatile  
control capability, these devices have an on-chip  
14-channel multiplexer that can select any one of 11  
analog inputs or any one of three internal self-test  
voltages. The sample-and-hold function is automatic.  
At the end of A/D conversion, the end-of-conversion  
(EOC) output goes high to indicate that conversion is  
complete. The converter incorporated in the devices  
features differential high-impedance reference inputs  
that facilitate ratiometric conversion, scaling, and  
isolation of analog circuitry from logic and supply noise.  
A switched-capacitor design allows low-error conver-  
sion over the full operating free-air temperature range.  
9 10 11 12 13  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
AVAILABLE OPTIONS  
PACKAGE  
SMALL  
OUTLINE  
(DB)  
T
A
SMALL OUTLINE  
(DW)  
CHIP CARRIER  
(FN)  
PLASTIC DIP  
(N)  
CHIP CARRIER  
(FK)  
CERAMIC DIP  
(J)  
TLC1542CDW  
TLC1543CDW  
TLC1542IDW  
TLC1543IDW  
TLC1542QDW  
TLC1543QDW  
TLC1542CFN  
TLC1543CFN  
TLC1542IFN  
TLC1543IFN  
TLC1542QFN  
TLC1543QFN  
TLC1542CN  
TLC1543CN  
TLC1542IN  
TLC1543IN  
TLC1542QN  
TLC1543QN  
0°C to 70°C  
TLC1543CDB  
40°C to 85°C  
TLC1543IDB  
TLC1542QDB  
TLC1543QDB  
40°C to 125°C  
55°C to 125°C  
TLC1542MFK  
TLC1542MJ  
functional block diagram  
REF+  
14  
REF–  
13  
1
A0  
10-Bit  
Analog-to-Digital  
Converter  
2
Sample and  
Hold  
A1  
3
A2  
4
(switched capacitors)  
A3  
5
A4  
6
14-Channel  
A5  
10  
7
8
Analog  
Multiplexer  
A6  
A7  
Output  
Data  
Register  
10-to-1 Data  
Selector and  
Driver  
10  
16  
9
DATA  
OUT  
A8  
11  
12  
4
A9  
Input Address  
Register  
A10  
4
3
System  
Clock,  
Control Logic,  
and I/O  
Self-Test  
Reference  
19  
EOC  
Counters  
17  
ADDRESS  
18  
15  
I/O CLOCK  
CS  
typical equivalent inputs  
INPUT CIRCUIT IMPEDANCE DURING SAMPLING MODE  
INPUT CIRCUIT IMPEDANCE DURING HOLD MODE  
1 kTYP  
A0A10  
A0A10  
C = 60 pF TYP  
i
(equivalent input  
capacitance)  
5 MTYP  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
ADDRESS  
17  
I
Serial address input. A 4-bit serial address selects the desired analog input or test voltage that is to  
be converted next. The address data is presented with the MSB first and shifts in on the first four rising  
edges of I/O CLOCK. After the four address bits have been read into the address register, this input  
is ignored for the remainder of the current conversion period.  
A0A10  
CS  
1–9, 11, 12  
15  
I
I
Analogsignalinputs.The11analoginputsareappliedtotheseterminalsandareinternallymultiplexed.  
The driving source impedance should be less than or equal to 1 k.  
Chip select. A high-to-low transition on this input resets the internal counters and controls and enables  
DATA OUT, ADDRESS, and I/O CLOCK within a maximum of a setup time plus two falling edges of  
the internal system clock. A low-to-high transition disables ADDRESS and I/O CLOCK within a setup  
time plus two falling edges of the internal system clock.  
DATA OUT  
16  
O
The 3-state serial output for the A/D conversion result. This output is in the high-impedance state when  
CS is high and active when CS is low. With a valid chip select, DATA OUT is removed from the  
high-impedance state and is driven to the logic level corresponding to the MSB value of the previous  
conversionresult. ThenextfallingedgeofI/OCLOCKdrivesthisoutputtothelogiclevelcorresponding  
to the next most significant bit, and the remaining bits shift out in order with the LSB appearing on the  
ninth falling edge of I/O CLOCK. On the tenth falling edge of I/O CLOCK, DATA OUT is driven to a low  
logic level so that serial interface data transfers of more than ten clocks produce zeroes as the unused  
LSBs.  
EOC  
19  
10  
18  
O
I
End of conversion. This output goes from a high to a low logic level on the trailing edge of the tenth I/O  
CLOCK and remains low until the conversion is complete and data are ready for transfer.  
GND  
The ground return terminal for the internal circuitry. Unless otherwise noted, all voltage measurements  
are with respect to this terminal.  
I/O CLOCK  
I
Input/output clock. This terminal receives the serial I/O CLOCK input and performs the following four  
functions:  
1) It clocks the four input address bits into the address register on the first four rising edges of the I/O  
CLOCK with the multiplex address available after the fourth rising edge.  
2) On the fourth falling edge of I/O CLOCK, the analog input voltage on the selected multiplex input  
begins charging the capacitor array and continues to do so until the tenth falling edge of  
I/O CLOCK.  
3) It shifts the nine remaining bits of the previous conversion data out on DATA OUT.  
4) It transfers control of the conversion to the internal state controller on the falling edge of the tenth  
clock.  
REF+  
REF–  
14  
I
The upper reference voltage value (nominally V ) is applied to this terminal. The maximum input  
CC  
voltage range is determined by the difference between the voltage applied to this terminal and the  
voltage applied to the REFterminal.  
13  
20  
I
I
The lower reference voltage value (nominally ground) is applied to this terminal.  
Positive supply voltage  
V
CC  
detailed description  
With chip select (CS) inactive (high), the ADDRESS and I/O CLOCK inputs are initially disabled and DATA OUT  
is in the high-impedance state. When the serial interface takes CS active (low), the conversion sequence begins  
with the enabling of I/O CLOCK and ADDRESS and the removal of DATA OUT from the high-impedance state.  
The serial interface then provides the 4-bit channel address to ADDRESS and the I/O CLOCK sequence to I/O  
CLOCK. During this transfer, the serial interface also receives the previous conversion result from DATA OUT.  
I/O CLOCK receives an input sequence that is between 10 and 16 clocks long from the host serial interface.  
The first four I/O clocks load the address register with the 4-bit address on ADDRESS, selecting the desired  
analog channel, and the next six clocks providing the control timing for sampling the analog input.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
detailed description (continued)  
Therearesixbasicserial-interfacetimingmodesthatcanbeusedwiththedevice. Thesemodesaredetermined  
by the speed of I/O CLOCK and the operation of CS as shown in Table 1. These modes are (1) a fast mode with  
a 10-clock transfer and CS inactive (high) between conversion cycles, (2) a fast mode with a 10-clock transfer  
andCSactive(low)continuously, (3)afastmodewithan11-to16-clocktransferand CSinactive(high)between  
conversion cycles, (4) a fast mode with a 16-clock transfer and CS active (low) continuously, (5) a slow mode  
with an 11- to 16-clock transfer and CS inactive (high) between conversion cycles, and (6) a slow mode with  
a 16-clock transfer and CS active (low) continuously.  
The MSB of the previous conversion appears at DATA OUT on the falling edge of CS in mode 1, mode 3, and  
mode 5, on the rising edge of EOC in mode 2 and mode 4, and following the sixteenth clock falling edge in  
mode 6. The remaining nine bits are shifted out on the next nine falling edges of I/O CLOCK. Ten bits of data  
are transmitted to the host-serial interface through DATA OUT. The number of serial clock pulses used also  
depends on the mode of operation, but a minimum of ten clock pulses is required for conversion to begin. On  
the tenth clock falling edge, the EOC output goes low and returns to the high logic level when conversion is  
complete and the result can be read by the host. Also, on the tenth clock falling edge, the internal logic takes  
DATA OUT low to ensure that the remaining bit values are zero when the I/O CLOCK transfer is more than ten  
clocks long.  
Table 1 lists the operational modes with respect to the state of CS, the number of I/O serial transfer clocks that  
can be used, and the timing edge on which the MSB of the previous conversion appears at the output.  
Table 1. Mode Operation  
NO. OF  
I/O CLOCKS  
TIMING  
DIAGRAM  
MODES  
MSB AT DATA OUT  
CS  
Mode 1 High between conversion cycles  
Mode 2 Low continuously  
10  
10  
CS falling edge  
EOC rising edge  
CS falling edge  
EOC rising edge  
CS falling edge  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Fast Modes  
Mode 3 High between conversion cycles  
Mode 4 Low continuously  
11 to 16  
16  
Mode 5 High between conversion cycles  
Mode 6 Low continuously  
11 to 16  
Slow Modes  
16  
16th clock falling edge  
These edges also initiate serial-interface communication.  
No more than 16 clocks should be used.  
fast modes  
The device is in a fast mode when the serial I/O CLOCK data transfer is completed before the conversion is  
completed. With a 10-clock serial transfer, the device can only run in a fast mode since a conversion does not  
begin until the falling edge of the tenth I/O CLOCK.  
mode 1: fast mode, CS inactive (high) between conversion cycles, 10-clock transfer  
In this mode, CS is inactive (high) between serial I/O CLOCK transfers and each transfer is ten clocks long. The  
falling edge of CS begins the sequence by removing DATA OUT from the high-impedance state. The rising edge  
of CS ends the sequence by returning DATA OUT to the high-impedance state within the specified delay time.  
Also, the rising edge of CS disables the I/O CLOCK and ADDRESS terminals within a setup time plus two falling  
edges of the internal system clock.  
mode 2: fast mode, CS active (low) continuously, 10-clock transfer  
In this mode, CS is active (low) between serial I/O CLOCK transfers and each transfer is ten clocks long. After  
the initial conversion cycle, CS is held active (low) for subsequent conversions; the rising edge of EOC then  
begins each sequence by removing DATA OUT from the low logic level, allowing the MSB of the previous  
conversion to appear immediately on this output.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
mode 3: fast mode, CS inactive (high) between conversion cycles, 11- to 16-clock transfer  
In this mode, CS is inactive (high) between serial I/O CLOCK transfers, and each transfer can be 11 to 16 clocks  
long. The falling edge of CS begins the sequence by removing DATA OUT from the high-impedance state. The  
rising edge of CS ends the sequence by returning DATA OUT to the high-impedance state within the specified  
delay time. Also, the rising edge of CS disables the I/O CLOCK and ADDRESS terminals within a setup time  
plus two falling edges of the internal system clock.  
mode 4: fast mode, CS active (low) continuously, 16-clock transfer  
In this mode, CS is active (low) between serial I/O CLOCK transfers and each transfer must be exactly 16 clocks  
long. After the initial conversion cycle, CS is held active (low) for subsequent conversions; the rising edge of  
EOC then begins each sequence by removing DATA OUT from the low logic level, allowing the MSB of the  
previous conversion to appear immediately on this output.  
slow modes  
In a slow mode, the conversion is completed before the serial I/O CLOCK data transfer is completed. A slow  
mode requires a minimum 11-clock transfer into I/O CLOCK, and the rising edge of the eleventh clock must  
occur before the conversion period is complete; otherwise, the device loses synchronization with the host-serial  
interface and CS has to be toggled to initialize the system. The eleventh rising edge of the I/O CLOCK must  
occur within 9.5 µs after the tenth I/O clock falling edge.  
mode 5: slow mode, CS inactive (high) between conversion cycles, 11- to 16-clock transfer  
In this mode, CS is inactive (high) between serial I/O CLOCK transfers and each transfer can be 11 to 16 clocks  
long. The falling edge of CS begins the sequence by removing DATA OUT from the high-impedance state. The  
rising edge of CS ends the sequence by returning DATA OUT to the high-impedance state within the specified  
delay time. Also, the rising edge of CS disables the I/O CLOCK and ADDRESS terminals within a setup time  
plus two falling edges of the internal system clock.  
mode 6: slow mode, CS active (low) continuously, 16-clock transfer  
In this mode, CS is active (low) between serial I/O CLOCK transfers and each transfer must be exactly 16 clocks  
long. After the initial conversion cycle, CS is held active (low) for subsequent conversions. The falling edge of  
the sixteenth I/O CLOCK then begins each sequence by removing DATA OUT from the low state, allowing the  
MSB of the previous conversion to appear immediately at DATA OUT. The device is then ready for the next  
16-clock transfer initiated by the serial interface.  
address bits  
The 4-bit analog channel-select address for the next conversion cycle is presented to the ADDRESS terminal  
(MSB first) and is clocked into the address register on the first four leading edges of I/O CLOCK. This address  
selects one of 14 inputs (11 analog inputs or three internal test inputs).  
analog inputs and test modes  
The 11 analog inputs and the three internal test inputs are selected by the 14-channel multiplexer according  
to the input address as shown in Tables 2 and 3. The input multiplexer is a break-before-make type to reduce  
input-to-input noise injection resulting from channel switching.  
Sampling of the analog input starts on the falling edge of the fourth I/O CLOCK, and sampling continues for six  
I/O CLOCK periods. The sample is held on the falling edge of the tenth I/O CLOCK. The three test inputs are  
applied to the multiplexer, sampled, and converted in the same manner as the external analog inputs.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
analog inputs and test modes (continued)  
Table 2. Analog-Channel-Select Address  
VALUE SHIFTED INTO  
ANALOG INPUT  
SELECTED  
ADDRESS INPUT  
BINARY  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
HEX  
0
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
1
2
3
4
5
6
7
1000  
1001  
1010  
8
9
A
Table 3. Test-Mode-Select Address  
INTERNAL  
SELF-TEST  
VOLTAGE  
VALUE SHIFTED INTO  
ADDRESS INPUT  
OUTPUT RESULT (HEX)  
SELECTED  
BINARY  
HEX  
V
ref+  
– V  
ref–  
1011  
B
200  
2
V
1100  
1101  
C
D
000  
3FF  
ref–  
V
ref+  
V
isthevoltageappliedtotheREF+input,andV isthevoltageappliedtotheREF–  
ref–  
ref+  
input.  
The output results shown are the ideal values and vary with the reference stability and  
with internal offsets.  
converter and analog input  
The CMOS threshold detector in the successive-approximation conversion system determines each bit by  
examining the charge on a series of binary-weighted capacitors (see Figure 1). In the first phase of the  
conversion process, the analog input is sampled by closing the S switch and all S switches simultaneously.  
C
T
This action charges all the capacitors to the input voltage.  
In the next phase of the conversion process, all S and S switches are opened and the threshold detector  
T
C
begins identifying bits by identifying the charge (voltage) on each capacitor relative to the reference (REF)  
voltage. In the switching sequence, ten capacitors are examined separately until all ten bits are identified and  
then the charge-convert sequence is repeated. In the first step of the conversion phase, the threshold detector  
looks at the first capacitor (weight = 512). Node 512 of this capacitor is switched to the REF+ voltage, and the  
equivalent nodes of all the other capacitors on the ladder are switched to REF. If the voltage at the summing  
node is greater than the trip point of the threshold detector (approximately one-half V ), a 0 bit is placed in  
CC  
the output register and the 512-weight capacitor is switched to REF. If the voltage at the summing node is less  
than the trip point of the threshold detector, a 1 bit is placed in the register and the 512-weight capacitor remains  
connected to REF+ through the remainder of the successive-approximation process. The process is repeated  
for the 256-weight capacitor, the 128-weight capacitor, and so forth down the line until all bits are counted.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
converter and analog input (continued)  
With each step of the successive-approximation process, the initial charge is redistributed among the  
capacitors. The conversion process relies on charge redistribution to count and weigh the bits from MSB to LSB.  
S
C
Threshold  
Detector  
To Output  
Latches  
512  
Node 512  
256  
128  
16  
8
4
2
1
1
REF+  
REF+  
REF+  
REF+  
REF+  
REF+  
REF+  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
S
S
S
S
S
S
S
S
S
T
T
T
T
T
T
T
T
T
V
I
Figure 1. Simplified Model of the Successive-Approximation System  
chip-select operation  
The trailing edge of CS starts all modes of operation, and CS can abort a conversion sequence in any mode.  
A high-to-low transition on CS within the specified time during an ongoing cycle aborts the cycle, and the device  
returns to the initial state (the contents of the output data register remain at the previous conversion result).  
Exercise care to prevent CS from being taken low close to completion of conversion because the output data  
can be corrupted.  
reference voltage inputs  
Therearetworeferenceinputsusedwiththedevice:REF+andREF. Thesevoltagevaluesestablishtheupper  
and lower limits of the analog input to produce a full-scale and zero reading respectively. The values of REF+,  
REF, and the analog input should not exceed the positive supply or be lower than GND consistent with the  
specified absolute maximum ratings. The digital output is at full scale when the input signal is equal to or higher  
than REF+ and at zero when the input signal is equal to or lower than REF.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 6.5 V  
CC  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
+ 0.1 V  
I
CC  
CC  
CC  
Output voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
O
Positive reference voltage, V  
Negative reference voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
ref+  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1 V  
ref–  
Peak input current (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
Peak total input current (all inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
Operating free-air temperature range, T : TLC1542C, TLC1543C . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLC1542I, TLC1543I . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
TLC1542Q, TLC1543Q . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
TLC1542M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to digital ground with REFand GND wired together (unless otherwise noted).  
recommended operating conditions  
MIN NOM  
MAX  
5.5  
UNIT  
V
Supply voltage, V  
4.5  
5
CC  
Positive reference voltage, V  
(see Note 2)  
(see Note 2)  
– V (see Note 2)  
V
V
ref+  
Negative reference voltage, V  
CC  
0
V
ref–  
Differential reference voltage, V  
2.5  
0
V
CC  
V +0.2  
CC  
V
ref+  
ref–  
Analog input voltage (see Note 2)  
High-level control input voltage, V  
V
CC  
V
V
V
= 4.5 V to 5.5 V  
= 4.5 V to 5.5 V  
2
V
IH  
CC  
Low-level control input voltage, V  
0.8  
V
IL  
CC  
Setup time, address bits at data input before I/O CLOCK, t  
(see Figure 4)  
100  
0
ns  
ns  
ns  
µs  
MHz  
ns  
ns  
µs  
µs  
su(A)  
(see Figure 4)  
Hold time, address bits after I/O CLOCK, t  
h(A)  
Hold time, CS low after last I/O CLOCK, t  
(see Figure 5)  
0
h(CS)  
Setup time, CS low before clocking in first address bit, t  
Clock frequency at I/O CLOCK (see Note 4)  
(see Note 3 and Figure 5)  
1.425  
0
su(CS)  
2.1  
Pulse duration, I/O CLOCK high, t  
190  
190  
wH(I/O)  
Pulse duration, I/O CLOCK low, t  
wL(I/O)  
Transition time, I/O CLOCK, t  
(see Note 5 and Figure 6)  
t(CS)  
1
10  
70  
85  
t(I/O)  
Transition time, ADDRESS and CS, t  
TLC1542C, TLC1543C  
0
40  
40  
55  
TLC1542I, TLC1543I  
TLC1542Q, TLC1543Q  
TLC1542M  
Operating free-air temperature, T  
°C  
A
125  
125  
NOTES: 2. Analog input voltages greater than that applied to REF+ convert as all ones (1111111111), while input voltages less than that applied  
to REF– convert as all zeros (0000000000). The device is functional with reference voltages down to 1 V (V  
the electrical specifications are no longer applicable.  
– V ); however,  
ref–  
ref+  
3. To minimize errors caused by noise at CS, the internal circuitry waits for a setup time plus two falling edges of the internal system  
clock after CSbefore responding to control input signals. Therefore, no attempt should be made to clock in an address until the  
minimum CS setup time has elapsed.  
4. For 11- to 16-bit transfers, after the tenth I/O CLOCK falling edge (2 V) at least 1 I/O CLOCK rising edge (2 V) must occur within  
9.5 µs.  
5. This is the time required for the clock input signal to fall from V min to V max or to rise from V max to V min. In the vicinity of  
IH  
IL  
IL  
IH  
normal room temperature, the devices function with input clock transition time as slow as 1 µs for remote data-acquisition  
applications where the sensor and the A/D converter are placed several feet away from the controlling microprocessor.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
electrical characteristics over recommended operating free-air temperature range,  
V
= V  
= 4.5 V to 5.5 V, I/O CLOCK frequency = 2.1 MHz (unless otherwise noted)  
CC  
ref+  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
I
I
I
I
= –1.6 mA  
= 20 µA  
= 1.6 mA  
= 20 µA  
2.4  
OH  
OH  
OL  
OL  
V
High-level output voltage  
Low-level output voltage  
V
OH  
= 4.5 V to 5.5 V,  
= 4.5 V,  
V
0.1  
CC  
0.4  
0.1  
V
OL  
V
= 4.5 V to 5.5 V,  
Off-state  
(high-impedance-state)  
output current  
V
O
V
O
= V  
,
CS at V  
10  
CC  
CC  
CC  
I
µA  
OZ  
= 0,  
CS at V  
10  
I
I
I
High-level input current  
Low-level input current  
Operating supply current  
V = V  
CC  
0.005  
0.005  
0.8  
2.5  
2.5  
2.5  
µA  
µA  
IH  
I
V = 0  
I
IL  
CS at 0 V  
mA  
CC  
Selected channel leakage  
current TLC1542/TLC1543  
C, I, or Q  
Selected channel at V  
,
,
Unselected channel at 0 V  
Unselected channel at V  
1
CC  
Selected channel at 0 V,  
Selected channel at V  
µA  
–1  
CC  
Unselected channel at 0 V,  
CC  
1
T
= 25°C  
A
Selected channel at 0 V,  
= 25°C  
Unselected channel at V  
,
CC  
Selected channel leakage  
current TLC1542M  
–1  
µA  
T
A
Selected channel at V  
CC  
,
Unselected channel at 0 V  
Unselected channel at V  
2.5  
Selected channel at 0 V,  
2.5  
CC  
Maximum static analog  
reference current into REF+  
V
ref+  
= V  
,
V = GND  
ref–  
10  
µA  
CC  
Analog inputs  
Control inputs  
7
5
Input  
capacitance  
C
pF  
i
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
operating characteristics over recommended operating free-air temperature range,  
V
= V  
= 4.5 V to 5.5 V, I/O CLOCK frequency = 2.1 MHz (unless otherwise noted)  
CC  
ref+  
TEST CONDITIONS  
MIN TYP  
MAX  
±0.5  
±1  
UNIT  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
TLC1542C, I, or Q  
TLC1543C, I, or Q  
TLC1542M  
E
L
Linearity error (see Note 6)  
±1  
TLC1542C, I, or Q  
TLC1543C, I, or Q  
TLC1542M  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
±1  
E
Zero-scale error (see Note 7)  
Full-scale error (see Note 7)  
Total unadjusted error (see Note 8)  
±1  
ZS  
±1  
TLC1542C, I, or Q  
TLC1543C, I, or Q  
TLC1542M  
±1  
E
FS  
±1  
±1  
TLC1542C, I, or Q  
TLC1543C, I, or Q  
TLC1542M  
±1  
±1  
±1  
ADDRESS = 1011  
ADDRESS = 1100  
ADDRESS = 1101  
See timing diagrams  
512  
0
Self-test output code (see Table 3 and Note 9)  
1023  
t
t
Conversion time  
21  
µs  
µs  
conv  
21  
See timing diagrams  
and Note 10  
+10 I/O  
CLOCK  
periods  
Total cycle time (access, sample, and conversion)  
c
I/O  
CLOCK  
periods  
See timing diagrams  
and Note 10  
t
Channel acquisition time (sample)  
6
acq  
t
t
t
t
Valid time, DATA OUT remains valid after I/O CLOCK↓  
Delay time, I/O CLOCKto DATA OUT valid  
Delay time, tenth I/O CLOCKto EOC↓  
See Figure 6  
See Figure 6  
See Figure 7  
See Figure 8  
10  
ns  
ns  
ns  
ns  
v
240  
240  
100  
d(I/O-DATA)  
d(I/O-EOC)  
70  
Delay time, EOCto DATA OUT (MSB)  
d(EOC-DATA)  
All typical values are at T = 25°C.  
A
NOTES: 2. Analog input voltages greater than that applied to REF+ convert as all ones (1111111111), while input voltages less than that applied  
to REFconvert as all zeros (0000000000). The device is functional with reference voltages down to 1 V (V  
the electrical specifications are no longer applicable.  
– V ); however,  
ref–  
ref+  
6. Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.  
7. Zero-scale error is the difference between 0000000000 and the converted output for zero input voltage; full-scale error is the  
difference between 1111111111 and the converted output for full-scale input voltage.  
8. Total unadjusted error comprises linearity, zero-scale, and full-scale errors.  
9. Both the input address and the output codes are expressed in positive logic.  
10. I/O CLOCK period = 1/(I/O CLOCK frequency) (see Figure 6)  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
operating characteristics over recommended operating free-air temperature range,  
V
= V  
= 4.5 V to 5.5 V, I/O CLOCK frequency = 2.1 MHz (unless otherwise noted) (continued)  
CC  
ref+  
TEST CONDITIONS  
See Figure 3  
See Figure 3  
See Figure 8  
See Figure 7  
See Figure 6  
See Figure 6  
MIN TYP  
MAX  
1.3  
UNIT  
µs  
t
t
t
t
t
t
, t  
Enable time, CSto DATA OUT (MSB driven)  
Disable time, CSto DATA OUT (high impedance)  
Rise time, EOC  
PZH PZL  
, t  
150  
300  
300  
300  
300  
ns  
PHZ PLZ  
ns  
r(EOC)  
f(EOC)  
r(DATA)  
f(DATA)  
Fall time, EOC  
ns  
Rise time, data bus  
ns  
Fall time, data bus  
ns  
Delay time, tenth I/O CLOCKto CSto abort conversion  
(see Note 11)  
t
9
µs  
d(I/O-CS)  
All typical values are at T = 25°C.  
A
NOTE 11. Any transitions of CS are recognized as valid only if the level is maintained for a setup time plus two falling edges of the internal clock  
(1.425 µs) after the transition.  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
V
CC  
Test Point  
Test Point  
R
= 2.18 kΩ  
R
= 2.18 kΩ  
L
L
DATA OUT  
EOC  
12 kΩ  
12 kΩ  
C
= 50 pF  
C = 100 pF  
L
L
Figure 2. Load Circuits  
Address  
Valid  
2 V  
2 V  
0.8 V  
CS  
ADDRESS  
0.8 V  
t
, t  
PZH PZL  
t
t
, t  
h(A)  
PHZ PLZ  
t
su(A)  
2.4 V  
0.4 V  
90%  
10%  
I/O CLOCK  
DATA  
OUT  
0.8 V  
Figure 3. DATA OUT Enable and Disable  
Voltage Waveforms  
Figure 4. ADDRESS Setup and Hold TIme  
Voltage Waveforms  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
PARAMETER MEASUREMENT INFORMATION  
2 V  
CS  
0.8 V  
t
su(CS)  
t
h(CS)  
I/O CLOCK  
First  
Clock  
Last  
Clock  
0.8 V  
0.8 V  
Figure 5. I/O CLOCK Setup and Hold Time Voltage Waveforms  
t
t(I/O)  
t
t(I/O)  
2 V  
2 V  
0.8 V  
I/O CLOCK  
0.8 V  
0.8 V  
I/O CLOCK Period  
t
d(I/O-DATA)  
t
v
2.4 V  
0.4 V  
2.4 V  
0.4 V  
DATA OUT  
t
, t  
r(DATA) f(DATA)  
Figure 6. I/O CLOCK and DATA OUT Voltage Waveforms  
I/O CLOCK  
10th  
0.8 V  
Clock  
t
d(I/O-EOC)  
2.4 V  
0.4 V  
EOC  
t
f(EOC)  
Figure 7. I/O CLOCK and EOC Voltage Waveforms  
t
r(EOC)  
2.4 V  
EOC  
0.4 V  
t
d(EOC-DATA)  
2.4 V  
0.4 V  
DATA OUT  
Valid MSB  
Figure 8. EOC and DATA OUT Voltage Waveforms  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
PARAMETER MEASUREMENT INFORMATION  
timing diagrams  
CS  
(see Note A)  
I/O  
CLOCK  
1
2
3
4
5
6
7
8
9
10  
1
Access Cycle B  
Sample Cycle B  
Hi-Z State  
DATA  
OUT  
A9  
A8  
B2  
A7  
B1  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
B9  
Previous Conversion Data  
MSB  
LSB  
ADDRESS  
EOC  
B3  
MSB  
B0  
LSB  
C3  
Shift in New Multiplexer Address;  
Simultaneously Shift Out Previous  
Conversion Value  
A/D Conversion  
Interval  
Initialize  
Initialize  
NOTE A: To minimize errors caused by noise at CS, the internal circuitry waits for a setup time plus two falling edges of the internal system clock  
after CSbefore responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum  
CS setup time has elapsed.  
Figure 9. Timing for 10-Clock Transfer Using CS  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
PARAMETER MEASUREMENT INFORMATION  
timing diagrams (continued)  
Must be High on Power Up  
CS  
(see Note A)  
I/O  
CLOCK  
1
2
3
4
5
6
7
8
9
10  
1
Access Cycle B  
Sample Cycle B  
DATA  
OUT  
A9  
A8  
B2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
B9  
Low Level  
Previous Conversion Data  
MSB  
LSB  
ADDRESS  
EOC  
B3  
MSB  
B1  
B0  
LSB  
C3  
Shift in New Multiplexer Address;  
Simultaneously Shift Out Previous  
Conversion Value  
A/D Conversion  
Interval  
Initialize  
Initialize  
NOTE A: To minimize errors caused by noise at CS, the internal circuitry waits for a setup time plus two falling edges of the internal system clock  
after CSbefore responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum  
CS setup time has elapsed.  
Figure 10. Timing for 10-Clock Transfer Not Using CS  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
PARAMETER MEASUREMENT INFORMATION  
timing diagrams (continued)  
See Note B  
CS  
(see Note A)  
I/O  
CLOCK  
1
2
3
4
5
6
7
8
9
10  
11  
16  
1
Access Cycle B  
Sample Cycle B  
Low  
Level  
Hi-Z  
DATA  
OUT  
A9  
A8  
B2  
A7  
B1  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
B9  
Previous Conversion Data  
MSB  
LSB  
ADDRESS  
EOC  
B3  
MSB  
B0  
LSB  
C3  
Shift in New Multiplexer Address;  
Simultaneously Shift Out Previous  
Conversion Value  
A/D Conversion  
Interval  
Initialize  
Initialize  
NOTES: A. To minimize errors caused by noise at CS, the internal circuitry waits for a setup time plus two falling edges of the internal system  
clock after CSbefore responding to control input signals. Therefore, no attempt should be made to clock in an address until the  
minimum CS setup time has elapsed.  
B. A low-to-high transition of CS disables ADDRESS and the I/O CLOCK within a maximum of a setup time plus two falling edges of  
the internal system clock.  
Figure 11. Timing for 11- to 16-Clock Transfer Using CS (Serial Transfer Interval Shorter Than Conversion)  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
PARAMETER MEASUREMENT INFORMATION  
timing diagrams (continued)  
Must Be High on Power Up  
CS  
(see Note A)  
I/O  
CLOCK  
1
2
3
4
5
6
7
8
9
10  
14  
15  
16  
1
Access Cycle B  
Sample Cycle B  
See Note B  
DATA  
OUT  
Low Level  
A9  
A8  
B2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
B9  
C3  
Previous Conversion Data  
MSB  
LSB  
ADDRESS  
EOC  
B3  
MSB  
B1  
B0  
LSB  
Shift in New Multiplexer Address;  
Simultaneously Shift Out Previous  
Conversion Value  
A/D Conversion  
Interval  
Initialize  
Initialize  
NOTES: A. To minimize errors caused by noise at CS, the internal circuitry waits for a setup time plus two falling edges of the internal system  
clock after CSbefore responding to control input signals. Therefore, no attempt should be made to clock in an address until the  
minimum CS setup time has elapsed.  
B. The first I/O CLOCK must occur after the rising edge of EOC.  
Figure 12. Timing for 16-Clock Transfer Not Using CS (Serial Transfer Interval Shorter Than Conversion)  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
PARAMETER MEASUREMENT INFORMATION  
timing diagrams (continued)  
CS  
(see Note A)  
I/O  
CLOCK  
1
2
3
4
5
6
7
8
9
10  
11  
16  
1
See Note B  
Access Cycle B  
Sample Cycle B  
Hi-Z State  
Low  
Level  
DATA  
OUT  
A9  
A8  
B2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
B9  
Previous Conversion Data  
MSB  
LSB  
ADDRESS  
EOC  
B3  
MSB  
B1  
B0  
LSB  
C3  
Shift in New Multiplexer Address;  
Simultaneously Shift Out Previous  
Conversion Value  
A/D Conversion  
Interval  
Initialize  
Initialize  
NOTES: A. To minimize errors caused by noise at CS, the internal circuitry waits for a setup time plus two falling edges of the internal system  
clock after CSbefore responding to control input signals. Therefore, no attempt should be made to clock in an address until the  
minimum CS setup time has elapsed.  
B. The 11th rising edge of the I/O CLOCK sequence must occur before the conversion is complete to prevent losing serial interface  
synchronization.  
Figure 13. Timing for 11- to 16-Clock Transfer Using CS (Serial Transfer Interval Longer Than Conversion)  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
PARAMETER MEASUREMENT INFORMATION  
timing diagrams (continued)  
Must be High on Power Up  
CS  
(see Note A)  
I/O  
CLOCK  
1
2
3
4
5
6
7
8
9
10  
14  
15  
16  
1
Access Cycle B  
Sample Cycle B  
See Note B  
Low Level  
See Note C  
DATA  
OUT  
A9  
A8  
B2  
A7  
B1  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
B9  
Previous Conversion Data  
MSB  
LSB  
ADDRESS  
EOC  
B3  
MSB  
B0  
C3  
LSB  
Shift in New Multiplexer Address;  
Simultaneously Shift Out Previous  
Conversion Value  
A/D Conversion  
Interval  
Initialize  
NOTES: A. To minimize errors caused by noise at CS, the internal circuitry waits for a setup time plus two falling edges of the internal system  
clock after CSbefore responding to control input signals. Therefore, no attempt should be made to clock in an address until the  
minimum CS setup time has elapsed.  
B. The 11th rising edge of the I/O CLOCK sequence must occur before the conversion is complete to prevent losing serial interface  
synchronization.  
C. The I/O CLOCK sequence is exactly 16 clock pulses long.  
Figure 14. Timing for 16-Clock Transfer Not Using CS (Serial Transfer Interval Longer Than Conversion)  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
APPLICATION INFORMATION  
1023  
1111111111  
1111111110  
1111111101  
See Notes A and B  
1022  
1021  
V
FS  
V
FT  
= V  
– 1/2 LSB  
FS  
513  
512  
1000000001  
1000000000  
V
ZT  
=V  
+ 1/2 LSB  
ZS  
511  
0111111111  
V
ZS  
2
1
0
0000000010  
0000000001  
0000000000  
0
0.0048 0.0096  
2.4528 2.4576 2.4624  
V – Analog Input Voltage – V  
4.9056  
4.9104 4.9152  
I
NOTES: A. This curve is based on the assumption that V  
ref+  
and V have been adjusted so that the voltage at the transition from digital 0  
ref–  
to 1 (V ) is 0.0024 V and the transition to full scale (V ) is 4.908 V. 1 LSB = 4.8 mV.  
ZT FT  
B. The full-scale value (V ) is the step whose nominal midstep value has the highest absolute value. The zero-scale value (V ) is  
FS  
ZS  
the step whose nominal midstep value equals zero.  
Figure 15. Ideal Conversion Characteristics  
TLC1542/43  
15  
18  
17  
1
2
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
CS  
I/O CLOCK  
ADDRESS  
3
Control  
Circuit  
4
Processor  
5
16  
19  
DATA OUT  
EOC  
6
Analog  
Inputs  
7
8
9
14  
13  
5-V DC Regulator  
REF+  
REF–  
11  
12  
GND  
10  
To Source  
Ground  
Figure 16. Serial Interface  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
APPLICATION INFORMATION  
simplified analog input analysis  
Using the equivalent circuit in Figure 17, the time required to charge the analog input capacitance from 0 to V  
within 1/2 LSB can be derived as follows:  
S
The capacitance charging voltage is given by  
–t /R C  
c
t i  
(1)  
V = V 1e  
(
)
C
S
where  
R = R + r  
i
t
s
The final voltage to 1/2 LSB is given by  
V (1/2 LSB) = V – (V /2048)  
(2)  
C
S
S
Equating equation 1 to equation 2 and solving for time t gives  
c
–t /R C  
c
t i  
V (V /2048) = V 1e  
(3)  
(4)  
(
)
S
S
S
and  
t (1/2 LSB) = R × C × ln(2048)  
c
t
i
Therefore, with the values given the time for the analog input signal to settle is  
t (1/2 LSB) = (R + 1 k) × 60 pF × ln(2048)  
(5)  
c
s
This time must be less than the converter sample time shown in the timing diagrams.  
Driving Source  
TLC1542/3  
R
r
i
s
V
I
V
S
V
C
1 kMAX  
C
i
50 pF MAX  
V
V
= Input Voltage at A0A10  
= External Driving Source Voltage  
I
S
s
R = Source Resistance  
r
= Input Resistance  
i
C = Equivalent Input Capacitance  
i
Driving source requirements:  
Noise and distortion for the source must be equivalent to the  
resolution of the converter.  
R must be real at the input frequency.  
s
Figure 17. Equivalent Input Circuit Including the Driving Source  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
MECHANICAL DATA  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
28 PIN SHOWN  
0,38  
0,65  
28  
M
0,15  
0,22  
15  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°8°  
1,03  
0,63  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
14  
PINS **  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
6,90  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
9,90  
12,30  
4040065 /D 02/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PIN SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
0.610  
DIM  
0.410  
0.510  
A MAX  
(10,41) (12,95) (15,49)  
0.400  
0.500  
0.600  
A MIN  
(10,16) (12,70) (15,24)  
4040000/D 02/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
MECHANICAL DATA  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
MECHANICAL DATA  
J (R-GDIP-T**)  
CERAMIC DUAL-IN-LINE PACKAGE  
14 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
A MAX  
B
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
A MIN  
B MAX  
B MIN  
C MAX  
C MIN  
14  
8
0.785  
0.785  
0.910  
0.975  
(19,94) (19,94) (23,10) (24,77)  
C
0.755  
(19,18) (19,18)  
0.755  
0.930  
(23,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
1
7
0.065 (1,65)  
0.045 (1,14)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.100 (2,54)  
0.070 (1,78)  
0.020 (0,51) MIN  
A
0.200 (5,08) MAX  
Seating Plane  
0.130 (3,30) MIN  
0.100 (2,54)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.014 (0,36)  
0.008 (0,20)  
4040083/D 08/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC1542C, TLC1542I, TLC1542M, TLC1542Q, TLC1543C, TLC1543I, TLC1543Q  
10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH  
SERIAL CONTROL AND 11 ANALOG INPUTS  
SLAS052E – MARCH 1992 – OCTOBER 1998  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23.37)  
0.975  
(24,77)  
A MAX  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21.59)  
0.940  
(23,88)  
A MIN  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.020 (0,51) MIN  
0.310 (7,87)  
0.290 (7,37)  
0.035 (0,89) MAX  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
14/18 PIN ONLY  
4040049/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLC1542C

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542CDW

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542CDWG4

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542CDWR

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542CDWRG4

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542CFN

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542CFNG3

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542CN

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542CNE4

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542I

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542IDW

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI

TLC1542IDWG4

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
TI