TLC2254QDREP [TI]

VERY LOW-POWER OPERATIONAL AMPLIFIERS; 超低功耗运算放大器
TLC2254QDREP
型号: TLC2254QDREP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

VERY LOW-POWER OPERATIONAL AMPLIFIERS
超低功耗运算放大器

运算放大器 放大器电路 光电二极管
文件: 总37页 (文件大小:863K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
  
SGLS216 − NOVEMBER 2003  
D
Controlled Baseline  
− One Assembly/Test Site, One Fabrication  
Site  
D
Output Swing Includes Both Supply Rails  
Low Noise . . . 19 nV/Hz Typ at f = 1 kHz  
Low Input Bias Current . . . 1 pA Typ  
D
D
D
D
D
D
D
D
Extended Temperature Performance of  
−40°C to 125°C  
Enhanced Diminishing Manufacturing  
Sources (DMS) Support  
Fully Specified for Both Single-Supply and  
Split-Supply Operation  
D
Very Low Power . . . 35 µA Per Channel Typ  
Common-Mode Input Voltage Range  
Includes Negative Rail  
D
Enhanced Product-Change Notification  
Qualification Pedigree  
D
Low Input Offset Voltage  
ESD Protection Exceeds 2000 V Per  
850 µV Max at T = 25°C (TLC225xA)  
A
MIL-STD-883, Method 3015; Exceeds 150 V  
(TLC2252/52A) and 100 V (TLC2254/54A)  
Using Machine Model (C = 200 pF, R = 0)  
D
Macromodel Included  
D
Performance Upgrades for the TS27L2/L4  
and TLC27L2/L4  
Component qualification in accordance with JEDEC and industry  
standards to ensure reliable operation over an extended  
temperature range. This includes, but is not limited to, Highly  
Accelerated Stress Test (HAST) or biased 85/85, temperature  
cycle, autoclave or unbiased HAST, electromigration, bond  
intermetallic life, and mold compound life. Such qualification  
testing should not be viewed as justifying use of this component  
beyond specified performance and environmental limits.  
EQUIVALENT INPUT NOISE VOLTAGE  
description  
vs  
FREQUENCY  
60  
The TLC2252 and TLC2254 are dual and  
quadruple operational amplifiers from Texas  
Instruments. Both devices exhibit rail-to-rail  
output performance for increased dynamic range  
in single- or split-supply applications. The  
TLC225x family consumes only 35 µA of supply  
current per channel. This micropower operation  
makes them good choices for battery-powered  
applications. The noise performance has been  
dramatically improved over previous generations  
of CMOS amplifiers. Looking at Figure 1, the  
TLC225x has a noise level of 19 nV/Hz at 1kHz;  
four times lower than competitive micropower  
solutions.  
V
= 5 V  
= 20 Ω  
= 25°C  
DD  
R
T
A
S
50  
40  
30  
20  
10  
0
The TLC225x amplifiers, exhibiting high input  
impedance and low noise, are excellent for  
small-signal conditioning for high-impedance  
sources, such as piezoelectric transducers.  
Because of the micropower dissipation levels,  
these devices work well in hand-held monitoring  
and remote-sensing applications. In addition, the  
rail-to-rail output feature with single or split  
1
2
3
4
10  
10  
10  
10  
f − Frequency − Hz  
Figure 1  
supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For  
precision applications, the TLC225xA family is available and has a maximum input offset voltage of 850 µV. This  
family is fully characterized at 5 V and 5 V.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments.  
ꢀꢐ  
Copyright 2003 Texas Instruments Incorporated  
ꢣ ꢐ ꢤ ꢣꢑ ꢎꢭ ꢠꢟ ꢍ ꢨꢨ ꢦꢍ ꢡ ꢍ ꢢ ꢐ ꢣ ꢐ ꢡ ꢤ ꢩ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
description/ordering information (continued)  
The TLC2252/4 also makes great upgrades to the TLC27L2/L4 or TS27L2/L4 in standard designs. They offer  
increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set  
allows them to be used in a wider range of applications. For applications that require higher output drive and  
wider input voltage ranges, see the TLV2432 and TLV2442 devices. If the design requires single amplifiers,  
please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23  
package. Their small size and low power consumption, make them ideal for high density, battery-powered  
equipment.  
ORDERING INFORMATION  
V
max  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
IO  
PACKAGE  
T
A
AT 25°C  
850 µV  
SOIC (D)  
SOIC (D)  
SOIC (D)  
SOIC (D)  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
TLC2252AQDREP  
TLC2252QDREP  
TLC2254AQDREP  
TLC2254QDREP  
2252AE  
1550 µV  
850 µV  
2252EP  
40°C to 125°C  
TLC2254AEP  
TLC2254EP  
1550 µV  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available  
at www.ti.com/sc/package.  
TLC2254, TLC2254A  
D PACKAGE  
TLC2252, TLC2252A  
D PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
8
7
6
5
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
DD+  
2OUT  
2IN−  
2IN+  
V
/GND  
V
V
/GND  
DD−  
DD+  
DD−  
2IN+  
2IN−  
2OUT  
3IN+  
3IN−  
3OUT  
8
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
ꢕꢘ  
ꢊꢀ  
SGLS216 − NOVEMBER 2003  
equivalent schematic (each amplifier)  
V
DD+  
Q3  
Q6  
Q9  
Q12  
Q14  
Q16  
R6  
IN+  
IN−  
OUT  
C1  
R5  
Q1  
Q4  
Q13  
Q15  
Q17  
D1  
Q2  
R3  
Q5  
R4  
Q7  
Q8  
Q10  
Q11  
R1  
R2  
V
DD−/GND  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
Transistors  
TLC2252  
TLC2254  
38  
30  
9
76  
56  
18  
6
Resistors  
Diodes  
Capacitors  
3
Includes both amplifiers and all ESD, bias, and trim circuitry  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
SGLS216 − NOVEMBER 2003  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8 V  
DD+  
DD−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
ID  
Input voltage, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
I
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
DD+  
DD−  
Total current out of V  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V  
.
DD+  
DD −  
2. Differential voltages are at IN+ with respect to IN. Excessive current flows when input is brought below V  
− 0.3 V.  
DD−  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D−8  
724 mW  
5.8 mW/°C  
7.6 mW/°C  
464 mW  
377 mW  
144 mW  
D−14  
950 mW  
608 mW  
450 mW  
190 mW  
recommended operating conditions  
MIN  
MAX  
UNIT  
Supply voltage, V  
DD  
2.2  
8
V
V
Input voltage range, V  
V
V
V
V
1.5  
1.5  
I
DD−  
DD+  
Common-mode input voltage, V  
IC  
V
DD−  
40  
DD+  
125  
Operating free-air temperature, T  
°C  
A
Referenced to 2.5 V  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
ꢕꢘ  
ꢊꢀ  
SGLS216 − NOVEMBER 2003  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC2252-EP  
TLC2252A-EP  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
25°C  
200 1500  
1750  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
25°C  
to 125°C  
α
VIO  
0.5  
0.5  
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
2.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
= 0,  
IC  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
O
25°C  
Full range  
25°C  
60  
1000  
60  
60  
1000  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
Full range  
1000  
1000  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω,  
|V | 5 mV  
IO  
V
V
ICR  
OH  
OL  
S
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
I
= 20 µA  
= 75 µA  
25°C  
25°C  
4.98  
4.94  
4.98  
4.94  
OH  
OH  
OH  
4.9  
4.8  
4.8  
4.9  
4.8  
4.8  
High-level output  
voltage  
Full range  
25°C  
= 150 µA  
4.88  
0.01  
0.09  
4.88  
0.01  
0.09  
V
IC  
= 2.5 V,  
I
I
= 50 µA  
25°C  
OL  
25°C  
0.15  
0.15  
1
0.15  
0.15  
1
V
IC  
= 2.5 V,  
= 2.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
V
0.8  
350  
0.7  
350  
V
IC  
I
= 4 mA  
OL  
Full range  
25°C  
1.2  
1.2  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
1700  
1700  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
id  
ic  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
f = 10 kHz,  
8
8
pF  
ic  
o
Closed-loop output  
impedance  
A
V
= 10  
200  
83  
200  
83  
25°C  
70  
70  
70  
70  
Common-mode  
rejection ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
O
= 2.5 V,  
IC  
S
CMRR  
dB  
dB  
µA  
Full range  
Supply-voltage  
rejection ratio  
25°C  
80  
80  
95  
70  
80  
80  
95  
70  
V
V
= 4.4 V to 16 V,  
DD  
IC  
k
SVR  
= V  
/2,  
No load  
DD  
Full range  
(V  
/V )  
DD  
IO  
25°C  
125  
150  
125  
150  
I
Supply current  
V
O
= 2.5 V,  
No load  
DD  
Full range  
Full range is −40°C to 125°C for Q suffix.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
SGLS216 − NOVEMBER 2003  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2252-EP  
TLC2252A-EP  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
0.07  
0.12  
0.07  
0.12  
Slew rate at unity  
gain  
V
R
= 0.5 V to 3.5 V,  
= 100 k,  
O
L
SR  
V/µs  
Full  
range  
C
= 100 pF  
L
0.05  
0.05  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
36  
19  
36  
19  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.1  
0.7  
1.1  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fAHz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
V
f = 10 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.2  
30  
0.2  
30  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
C
= 100 pF  
L
L
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
dB  
Full range is −40°C to 125°C for Q suffix.  
Referenced to 2.5 V  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
ꢕꢘ  
ꢊꢀ  
SGLS216 − NOVEMBER 2003  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC2252-EP  
TLC2252A-EP  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
1500  
1750  
MIN  
TYP  
MAX  
25°C  
200  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient of  
input offset voltage  
25°C  
to 125°C  
α
0.5  
0.5  
µV/°C  
µV/mo  
VIO  
Input offset voltage long-  
term drift (see Note 4)  
V
= 0,  
= 50 Ω  
V
O
= 0,  
IC  
R
25°C  
0.003  
0.5  
0.003  
0.5  
S
25°C  
Full range  
25°C  
60  
1000  
60  
60  
1000  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
Full range  
1000  
1000  
−5  
to  
4
5.3  
to  
4.2  
−5  
to  
4
5.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω, |V | 5 mV  
S IO  
V
V
ICR  
−5  
to  
3.5  
−5  
to  
3.5  
Full range  
I
O
= 20 µA  
25°C  
25°C  
4.98  
4.93  
4.98  
4.93  
4.9  
4.7  
4.8  
4.9  
4.7  
4.8  
Maximum positive peak  
output voltage  
I
= 100 µA  
= 200 µA  
OM+  
OM−  
O
O
Full range  
25°C  
I
4.86  
4.86  
V
IC  
= 0,  
I
I
= 50 µA  
25°C  
4.99  
4.99  
O
25°C  
4.85 4.91  
4.85 4.91  
4.85  
V
IC  
= 0,  
= 500 µA  
Maximum negative  
peak output voltage  
O
Full range 4.85  
V
25°C  
Full range  
25°C  
−4  
3.8  
40  
4.3  
150  
−4  
3.8  
40  
4.3  
V
V
= 0,  
I
O
= 4 mA  
IC  
150  
R
R
= 100 kΩ  
= 1 MΩ  
Large-signal differential  
voltage amplification  
L
L
Full range  
25°C  
10  
10  
A
VD  
=
4 V  
V/mV  
O
3000  
3000  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
id  
ic  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
P package  
= 10  
8
8
pF  
ic  
o
Closed-loop output  
impedance  
A
V
190  
88  
190  
88  
25°C  
Full range  
25°C  
75  
75  
80  
80  
75  
75  
80  
80  
Common-mode  
rejection ratio  
V
IC  
V
O
= 5 V to 2.7 V,  
= 0,  
CMRR  
dB  
dB  
µA  
R = 50 Ω  
S
95  
80  
95  
80  
Supply-voltage rejection  
V
V
=
2.2 V to 8 V,  
DD  
IC  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
= 0, No load  
Full range  
25°C  
125  
150  
125  
150  
I
Supply current  
V
O
= 2.5 V, No load  
DD  
Full range  
Full range is −40°C to 125°C for Q suffix.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2252-EP  
TLC2252A-EP  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
0.07  
0.12  
0.07  
0.12  
V
C
=
2 V,  
R
= 100 k,  
L
O
L
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
= 100 pF  
0.05  
0.05  
f = 10 Hz  
25°C  
25°C  
25°C  
25°C  
38  
19  
38  
19  
Equivalent input noise  
voltage  
nV/Hz  
V
n
f = 1 kHz  
f = 0.1 Hz to 1 Hz  
0.8  
1.1  
0.8  
1.1  
Peak-to-peak equivalent  
input noise voltage  
V
I
µV  
N(PP)  
f = 0.1 Hz to 10 Hz  
Equivalent input noise  
current  
25°C  
0.6  
0.6  
fAHz  
n
V
R
=
2.3 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
L
V
Total harmonic distortion  
plus noise  
= 50 kΩ,  
THD + N  
25°C  
A
V
= 10  
f = 10 kHz  
f =10 kHz,  
R
= 50 k,  
L
Gain-bandwidth product  
25°C  
25°C  
0.21  
14  
0.21  
14  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-swing  
bandwidth  
V
R
= 4.6 V, A = 1,  
O(PP) V  
B
OM  
= 50 k,  
= 50 k,  
C
C
= 100 pF  
= 100 pF  
L
L
L
L
Phase margin at unity  
gain  
φ
m
25°C  
25°C  
63°  
63°  
R
Gain margin  
15  
15  
dB  
Full range is −40°C to 125°C for Q suffix.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
ꢕꢘ  
ꢙꢆ  
ꢊꢀ  
SGLS216 − NOVEMBER 2003  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC2254-EP  
TLC2254A-EP  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
25°C  
200 1500  
1750  
200  
0.5  
850  
V
Input offset voltage  
µV  
IO  
Full range  
1000  
Temperature  
coefficient of input  
offset voltage  
25°C  
to 125°C  
α
VIO  
0.5  
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
2.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
= 0,  
IC  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
O
25°C  
125°C  
25°C  
60  
1000  
60  
60  
1000  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
1000  
1000  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
R
= 50 Ω,  
|V | 5 mV  
IO  
V
V
ICR  
S
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
I
= 20 µA  
= 75 µA  
25°C  
25°C  
4.98  
4.94  
4.98  
4.94  
OH  
OH  
OH  
4.9  
4.8  
4.8  
4.9  
4.8  
4.8  
High-level output  
voltage  
V
V
OH  
Full range  
25°C  
= 150 µA  
4.88  
0.01  
0.09  
4.88  
0.01  
0.09  
V
IC  
= 2.5 V,  
I
I
= 50 µA  
25°C  
OL  
25°C  
0.15  
0.15  
1
0.15  
0.15  
1
V
IC  
= 2.5 V,  
= 2.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
V
OL  
0.8  
350  
0.7  
350  
V
IC  
I
= 4 mA  
OL  
Full range  
25°C  
1.2  
1.2  
100  
10  
100  
10  
Large-signal  
differential  
voltage amplification  
R
R
= 100 kΩ  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
1700  
1700  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
N package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
200  
83  
200  
83  
25°C  
70  
70  
70  
70  
Common-mode  
rejection ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
= 2.5 V,  
O
IC  
S
CMRR  
dB  
dB  
µA  
Full range  
Supply-voltage  
rejection ratio  
25°C  
80  
80  
95  
80  
80  
95  
V
V
= 4.4 V to 16 V,  
DD  
IC  
k
SVR  
= V  
/2,  
No load  
DD  
Full range  
(V  
/V )  
DD  
IO  
25°C  
Full range  
140  
250  
300  
140  
250  
300  
Supply current  
(four amplifiers)  
I
V
O
= 2.5 V,  
No load  
DD  
Full range is −40°C to 125°C for Q suffix.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2254-EP  
TLC2254A-EP  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
0.07  
0.12  
0.07  
0.12  
V
R
C
= 0.5 V to 3.5 V,  
O
L
L
Slew rate at unity  
gain  
SR  
V/µs  
= 100 k,  
Full  
range  
0.05  
0.05  
= 100 pF  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
36  
19  
36  
19  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.1  
0.7  
1.1  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
V
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.2  
30  
0.2  
30  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
C
= 100 pF  
L
L
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
dB  
Full range is −40°C to 125°C for Q suffix.  
Referenced to 2.5 V  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
ꢙꢆ  
ꢊꢀ  
SGLS216 − NOVEMBER 2003  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC2254-EP  
TLC2254A-EP  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
1500  
1750  
MIN  
TYP  
MAX  
25°C  
200  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient of  
input offset voltage  
25°C  
to 125°C  
α
0.5  
0.5  
µV/°C  
µV/mo  
VIO  
Input offset voltage  
long-term drift (see Note 4)  
V
= 0,  
= 50 Ω  
V
O
= 0,  
IC  
R
25°C  
0.003  
0.5  
0.003  
0.5  
S
25°C  
125°C  
25°C  
60  
1000  
60  
60  
1000  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
1000  
1000  
−5  
to  
4
5.3  
to  
4.2  
−5  
to  
4
5.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω, |V | 5 mV  
S IO  
V
V
ICR  
−5  
to  
3.5  
−5  
to  
3.5  
Full range  
I
O
= 20 µA  
25°C  
25°C  
4.98  
4.93  
4.98  
4.93  
4.9  
4.7  
4.8  
4.9  
4.7  
4.8  
Maximum positive peak  
output voltage  
I
= 100 µA  
= 200 µA  
OM+  
OM−  
O
O
Full range  
25°C  
I
4.86  
4.86  
V
IC  
= 0,  
I
= 50 µA  
25°C  
4.99  
4.99  
O
O
25°C  
4.85 4.91  
4.85 4.91  
4.85  
V
IC  
= 0,  
I
= 500 µA  
Maximum negative peak  
output voltage  
Full range 4.85  
V
25°C  
Full range  
25°C  
−4  
3.8  
40  
4.3  
150  
−4  
3.8  
40  
4.3  
V
V
= 0,  
I
O
= 4 mA  
IC  
150  
R
R
= 100 kΩ  
= 1 MΩ  
Large-signal differential  
voltage amplification  
L
L
Full range  
25°C  
10  
10  
A
VD  
=
4 V  
V/mV  
O
3000  
3000  
12  
10  
12  
10  
r
r
Differential input resistance  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
25°C  
25°C  
25°C  
Common-mode input  
capacitance  
c
z
f = 10 kHz, N package  
f = 25 kHz, = 10  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
190  
88  
190  
88  
25°C  
Full range  
25°C  
75  
75  
80  
80  
75  
75  
80  
80  
Common-mode rejection  
ratio  
V
IC  
V
O
= 5 V to 2.7 V,  
CMRR  
dB  
dB  
µA  
= 0,  
R = 50 Ω  
S
95  
95  
Supply-voltage rejection  
V
V
=
ā2.2 V to ā8 V,  
/2, No load  
DD  
IC  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
= V  
Full range  
25°C  
DD  
160  
250  
300  
160  
250  
300  
Supply current  
(four amplifiers)  
I
V
O
= 0,  
No load  
DD  
Full range  
Full range is −40°C to 125°C for Q suffix.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
SGLS216 − NOVEMBER 2003  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2254-EP  
TLC2254A-EP  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
0.07  
0.12  
0.07  
0.12  
V
C
=
2 V,  
R
= 100 k,  
L
O
L
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
= 100 pF  
0.05  
0.05  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
38  
19  
38  
19  
Equivalent input noise  
voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input noise  
voltage  
f = 0.1 Hz to 1 Hz  
25°C  
25°C  
0.8  
1.1  
0.8  
1.1  
V
I
µV  
N(PP)  
f = 0.1 Hz to 10 Hz  
Equivalent input noise  
current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
V
R
=
2.3 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
L
V
Total harmonic  
distortion plus noise  
= 50 kΩ,  
THD + N  
A
V
= 10  
f = 20 kHz  
f =10 kHz,  
R
= 50 k,  
L
Gain-bandwidth product  
25°C  
25°C  
0.21  
14  
0.21  
14  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-swing  
bandwidth  
V
R
= 4.6 V,  
= 50 k,  
A
= 1,  
= 100 pF  
O(PP)  
L
V
B
OM  
C
L
L
Phase margin at unity  
gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
dB  
Full range is −40°C to 125°C for Q suffix.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Distribution  
vs Common-mode input voltage  
2 − 5  
6, 7  
V
IO  
Input offset voltage  
α
Input offset voltage temperature coefficient  
Input bias and input offset currents  
Distribution  
8 − 11  
12  
VIO  
I
/I  
vs Free-air temperature  
IB IO  
vs Supply voltage  
vs Free-air temperature  
13  
14  
V
I
Input voltage range  
V
V
V
V
V
High-level output voltage  
vs High-level output current  
vs Low-level output current  
vs Output current  
15  
16, 17  
18  
OH  
Low-level output voltage  
OL  
Maximum positive peak output voltage  
Maximum negative peak output voltage  
Maximum peak-to-peak output voltage  
OM+  
OM−  
O(PP)  
vs Output current  
19  
vs Frequency  
20  
vs Supply voltage  
vs Free-air temperature  
21  
22  
I
Short-circuit output current  
OS  
V
O
Output voltage  
Differential gain  
vs Differential input voltage  
vs Load resistance  
23, 24  
25  
vs Frequency  
vs Free-air temperature  
26, 27  
28, 29  
A
Large-signal differential voltage amplification  
Output impedance  
VD  
z
vs Frequency  
30, 31  
o
vs Frequency  
vs Free-air temperature  
32  
33  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
Supply current  
vs Frequency  
vs Free-air temperature  
34, 35  
36  
k
SVR  
vs Supply voltage  
vs Free-air temperature  
37  
38  
I
DD  
vs Load capacitance  
vs Free-air temperature  
39  
40  
SR  
Slew rate  
V
O
V
O
V
O
V
O
V
n
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
41, 42  
43, 44  
45, 46  
47, 48  
49, 50  
51  
vs Frequency  
Noise voltage (referred to input)  
Over a 10-second period  
vs Frequency  
Integrated noise voltage  
52  
THD + N  
Total harmonic distortion plus noise  
vs Frequency  
53  
vs Free-air temperature  
vs Supply voltage  
54  
55  
Gain-bandwidth product  
vs Frequency  
vs Load capacitance  
26, 27  
56  
φ
Phase margin  
Gain margin  
m
A
B
vs Load capacitance  
57  
m
Unity-gain bandwidth  
vs Load capacitance  
vs Load capacitance  
58  
59  
1
Overestimation of phase margin  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC2252  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC2252  
INPUT OFFSET VOLTAGE  
35  
35  
682 Amplifiers From 1 Wafer Lots  
682 Amplifiers From 1 Wafer Lots  
V
=
2.5 V  
P Package  
= 25°C  
V
=
5 V  
P Package  
= 25°C  
DD  
DD  
30  
25  
20  
15  
30  
25  
20  
15  
T
A
T
A
10  
5
10  
5
0
1.6  
0
1.6  
0.8  
0
0.8  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 2  
Figure 3  
DISTRIBUTION OF TLC2254  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC2254  
INPUT OFFSET VOLTAGE  
20  
15  
25  
20  
15  
1020 Amplifiers From 1 Wafer Lot  
1020 Amplifiers From 1 Wafer Lot  
V
T
=
5 V  
V
T
=
2.5 V  
DD  
DD  
= 25°C  
= 25°C  
A
A
10  
10  
5
5
0
0
1.6  
0.8  
0
0.8  
1.6  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 4  
Figure 5  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
1
1
V
= 5 V  
= 50 Ω  
= 25°C  
DD  
V
R
T
A
= 5 V  
DD  
0.8  
R
S
0.8  
= 50 Ω  
= 25°C  
S
T
A
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
0
0
0.2  
0.4  
0.2  
0.4  
0.6  
0.8  
−1  
0.6  
0.8  
−1  
−1  
0
1
2
3
4
5
−6 −5 −4 −3 −2 −1  
0
1
2
3
4
5
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC2252 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLC2252 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
25  
20  
15  
25  
20  
15  
62 Amplifiers From  
P Package  
62 Amplifiers From  
1 Wafer Lot  
1 Wafer Lot  
T
A
= 25°C to 125°C  
V
= 2.5 V  
V
=
5 V  
DD  
DD  
P Package  
T
A
= 25°C to 125°C  
10  
5
10  
5
0
0
−1  
0
1
2
−1  
0
1
2
α
α
VIO  
− Temperature Coefficient − µV/°C  
− Temperature Coefficient − µV/°C  
VIO  
Figure 8  
Figure 9  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC2254 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLC2254 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
25  
20  
15  
25  
20  
15  
62 Amplifiers From  
1 Wafer Lot  
62 Amplifiers From  
1 Wafer Lot  
V
=
2.5 V  
DD  
V
=
5 V  
DD  
P Package  
P Package  
T
A
= 25°C to 125°C  
T
A
= 25°C to 125°C  
10  
5
10  
5
0
−2  
0
−1  
0
1
2
−2  
−1  
0
1
2
α
VIO  
− Temperature Coefficient of  
Input Offset Voltage − µV/°C  
α
− Temperature Coefficient of  
VIO  
Input Offset Voltage − µV/°C  
Figure 10  
Figure 11  
INPUT VOLTAGE RANGE  
vs  
INPUT BIAS AND INPUT OFFSET CURRENTS  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
10  
8
35  
30  
25  
R
T
A
= 50 Ω  
= 25°C  
V
V
V
= 2.5 V  
= 0  
= 0  
= 50 Ω  
S
DD  
IC  
O
6
4
R
S
I
IB  
2
20  
15  
0
| V | 5 mV  
IO  
−2  
−4  
I
IO  
10  
−6  
5
0
−8  
10  
2
3
4
5
6
7
8
25  
45  
65  
85  
105  
125  
| V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
†‡  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE RANGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
5
4
3
5
4
3
2
1
V
= 5 V  
DD  
V
DD  
= 5 V  
T
= 55°C  
A
T
A
= 40°C  
= 25°C  
T
A
2
1
0
T
A
= 125°C  
0
−1  
0
200  
400  
600  
800  
75 55 35 15  
5
25 45 65 85 105 125  
|I  
OH  
| − High-Level Output Current − µA  
T
A
− Free-Air Temperature − °C  
Figure 14  
Figure 15  
†‡  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1.4  
1.2  
1.2  
1
V
V
= 5 V  
DD  
= 2.5 V  
V
T
A
= 5 V  
= 25°C  
DD  
IC  
T
A
= 125°C  
V
= 1.25 V  
IC  
V
= 0  
IC  
1
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
A
V
= 2.5 V  
IC  
T
A
= 40°C  
T
A
= 55°C  
0.2  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
I − Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE  
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
5
4
3
3.8  
−4  
V
V
= 5 V  
DD  
= 0  
IC  
T
= 125°C  
A
4.2  
4.4  
T
A
= 25°C  
T
= 40°C  
A
T
A
= 25°C  
T
= 40°C  
= 55°C  
A
2
1
0
4.6  
4.8  
−5  
T
= 125°C  
T
A
T
= 55°C  
A
A
V
=
5 V  
DD  
0
200  
400  
600  
800  
0
1
2
3
4
5
6
I
O
− Output Current − µA  
I
O
− Output Current − mA  
Figure 18  
Figure 19  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
10  
9
10  
R
T
= 50 kΩ  
= 25°C  
L
A
V
= 5 V  
DD  
9
8
7
6
5
4
3
2
1
8
7
6
V
ID  
= 100 mV  
V
T
= 0  
= 25°C  
= 0  
O
A
V
IC  
V
DD  
= 5 V  
5
4
3
2
1
0
0
V
= 100 mV  
7
ID  
−1  
2
3
4
5
10  
10  
10  
10  
2
3
4
5
6
8
f − Frequency − Hz  
| V  
DD  
| − Supply Voltage − V  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
11  
5
4
3
2
V
R
= 5 V  
= 50 kΩ  
= 2.5 V  
DD  
L
V
V
= 0  
O
10  
9
=
5 V  
DD  
V
T
IC  
A
= 25°C  
V
ID  
= 100 mV  
8
7
6
5
4
3
2
1
0
1
V
ID  
= 100 mV  
0
−1  
0
250 500 750 1000  
75 50 25  
0
25  
50  
75  
100 125  
1000 750 500 250  
V
ID  
− Differential Input Voltage − µV  
T
A
− Free-Air Temperature − °C  
Figure 22  
Figure 23  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL GAIN  
vs  
DIFFERENTIAL INPUT VOLTAGE  
LOAD RESISTANCE  
4
10  
3
10  
2
10  
5
3
V
V
= 5 V  
V
T
= 2 V  
= 25°C  
DD  
= 0  
O (PP)  
A
IC  
R
T
= 50 kΩ  
= 25°C  
L
A
V
DD  
= 5 V  
1
V
DD  
= 5 V  
−1  
−3  
−5  
10  
1
10  
2
10  
3
10  
0
250 500 750 1000  
1000 750 500 250  
1
R
− Load Resistance − kΩ  
V
ID  
− Differential Input Voltage − µV  
L
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
R
= 5 V  
= 50 kΩ  
DD  
L
L
C = 100 pF  
T
A
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
20  
40  
45°  
90°  
3
4
5
6
7
10  
10  
10  
f − Frequency − Hz  
10  
10  
Figure 26  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
=
10 V  
DD  
L
L
R = 50 kΩ  
C = 100 pF  
T
A
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
20  
40  
45°  
90°  
3
4
5
6
7
10  
10  
10  
10  
f − Frequency − Hz  
10  
Figure 27  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
†‡  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3
4
3
10  
10  
10  
10  
V
V
V
=
= 0  
5 V  
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
DD  
IC  
O
IC  
O
=
4 V  
R
= 1 MΩ  
R
= 1 MΩ  
L
L
R
= 50 kΩ  
R
= 50 kΩ  
L
L
2
1
2
10  
10  
10  
1
10  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 28  
Figure 29  
OUTPUT IMPEDANCE  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
=
5 V  
V
T
= 5 V  
= 25°C  
DD  
A
DD  
A
= 25°C  
A
V
= 100  
A
= 100  
V
A
V
= 10  
A
= 10  
= 1  
V
1
1
A
V
A
V
= 1  
0.1  
10  
0.1  
10  
2
3
4
5
6
10  
2
3
4
5
6
10  
10  
10  
f − Frequency − Hz  
10  
10  
10  
10  
f − Frequency − Hz  
Figure 30  
Figure 31  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
†‡  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
100  
80  
94  
92  
90  
88  
86  
84  
V
= 5 V  
DD  
V
= 5 V  
DD  
V
DD  
= 5 V  
60  
V
DD  
= 5 V  
40  
20  
0
82  
80  
1
10  
2
3
4
5
6
16  
75 50 25  
0
25  
50  
75  
100 125  
10  
10  
10  
10  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 32  
Figure 33  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
V
T
= 5 V  
V
T
=
5 V  
= 25°C  
A
DD  
= 25°C  
DD  
k
SVR+  
k
SVR+  
A
k
SVR−  
k
SVR−  
0
0
20  
20  
1
2
3
4
5
6
1
2
3
4
5
6
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 34  
Figure 35  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
110  
105  
240  
200  
160  
120  
80  
V
V
=
2.2 V to 8 V  
DD  
= 0  
V
= 0  
O
O
No Load  
T
= 55°C  
A
T
A
= 25°C  
100  
95  
T
A
= 125°C  
T
= 40°C  
A
40  
90  
0
75 50 25  
0
25  
50  
75  
100 125  
0
1
2
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
| V  
DD  
| − Supply Voltage − V  
Figure 36  
Figure 37  
†‡  
SUPPLY CURRENT  
vs  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
LOAD CAPACITANCE  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
240  
200  
160  
120  
80  
V
= 5 V  
DD  
= 1  
A
V
T = 25°C  
V
V
=
= 0  
5 V  
A
DD  
O
SR−  
V
= 5 V  
DD  
= 2.5 V  
V
O
SR+  
0.08  
0.06  
0.04  
40  
0.02  
0
0
1
2
3
4
10  
75 50 25  
0
25  
50  
75 100 125  
10  
10  
10  
T
A
− Free-Air Temperature − °C  
C
− Load Capacitance − pF  
L
Figure 38  
Figure 39  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
†‡  
SLEW RATE  
vs  
INVERTING LARGE-SIGNAL PULSE  
RESPONSE  
FREE-AIR TEMPERATURE  
0.2  
5
4
V
= 5 V  
V
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
DD  
L
L
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
R
C
A
0.16  
0.12  
0.08  
0.04  
0
V
V
A
T
= 25°C  
SR−  
3
2
SR+  
1
0
0
10 20 30 40 50 60 70 80 90 100  
75 50 25  
0
25  
50  
75  
100 125  
t − Time − µs  
T
A
− Free-Air Temperature − °C  
Figure 40  
Figure 41  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
INVERTING LARGE-SIGNAL PULSE  
RESPONSE  
PULSE RESPONSE  
5
5
V
R
C
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
V
R
C
= 5 V  
DD  
L
L
4
3
= 50 kΩ  
= 100 pF  
= 1  
4
3
2
A
V
A
A
V
A
T
= 25°C  
T
= 25°C  
2
1
0
−1  
−2  
−3  
1
0
−4  
−5  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 42  
Figure 43  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
INVERTING SMALL-SIGNAL  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
2.65  
2.6  
5
4
V
= 5 V  
V
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
DD  
L
L
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
R
C
A
3
V
A
V
A
T
= 25°C  
T
= 25°C  
2
2.55  
2.5  
1
0
−1  
−2  
−3  
2.45  
2.4  
−4  
−5  
0
10  
20  
30  
40  
50  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 44  
Figure 45  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
0.1  
2.65  
2.6  
V
= 5 V  
V
DD  
= 5 V  
DD  
L
L
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
L
L
V
V
A
0.05  
0
T
= 25°C  
T
A
= 25°C  
2.55  
2.5  
0.05  
0.1  
2.45  
2.4  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
t − Time − µs  
t − Time − µs  
Figure 46  
Figure 47  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
vs  
FREQUENCY  
0.1  
60  
50  
40  
30  
20  
V
R
C
= 5 V  
DD  
L
L
V
R
T
A
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
= 50 kΩ  
= 100 pF  
= 1  
A
V
A
T
= 25°C  
0.05  
0
0.05  
0.1  
10  
0
0
10  
20  
30  
40  
50  
1
2
3
4
10  
10  
10  
10  
t − Time − µs  
f − Frequency − Hz  
Figure 48  
Figure 49  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE OVER  
vs  
A 10-SECOND PERIOD  
FREQUENCY  
1000  
750  
500  
250  
0
60  
V
=
5 V  
V
= 5 V  
DD  
S
DD  
f = 0.1 Hz to 10 Hz  
R
T
= 20 Ω  
= 25°C  
T
A
= 25°C  
50  
A
40  
30  
250  
500  
20  
10  
0
750  
1000  
1
2
3
4
10  
0
2
4
6
8
10  
10  
10  
10  
f − Frequency − Hz  
t − Time − s  
Figure 50  
Figure 51  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
INTEGRATED NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
1
100  
Calculated Using Ideal Pass-Band Filter  
Low Frequency = 1 Hz  
A
V
= 100  
T
= 25°C  
A
10  
0.1  
A
V
= 10  
1
0.01  
A
V
= 1  
V
R
T
A
= 5 V  
= 50 kΩ  
= 25°C  
DD  
L
0.001  
0.1  
1
2
3
4
5
10  
10  
10  
10  
10  
1
10  
2
3
4
5
10  
1
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 52  
Figure 53  
†‡  
GAIN-BANDWIDTH PRODUCT  
vs  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
280  
250  
230  
210  
T
A
= 25°C  
V
= 5 V  
DD  
f = 10 kHz  
R
C
= 50 kΩ  
= 100 pF  
L
L
240  
200  
160  
120  
80  
190  
170  
150  
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
| V  
DD  
| − Supply Voltage − V  
Figure 54  
Figure 55  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
20  
15  
10  
75°  
60°  
45°  
R
= 200 Ω  
T
A
= 25°C  
null  
R
= 500 Ω  
null  
R
= 500 Ω  
null  
R
= 200 Ω  
= 100 Ω  
null  
R
= 100 Ω  
R
null  
null  
R
= 50 Ω  
= 10 Ω  
null  
R
= 50 Ω  
= 10 Ω  
null  
30°  
R
null  
R
null  
50 kΩ  
5
0
V
15°  
0°  
DD +  
R
= 0  
null  
3
50 kΩ  
R
null  
R
= 0  
V
+
null  
I
C
L
T
= 25°C  
A
V
DD −  
1
2
3
4
5
10  
1
2
4
5
10  
10  
10  
10  
10  
10  
C
10  
10  
10  
C
− Load Capacitance − pF  
L
− Load Capacitance − pF  
L
Figure 56  
Figure 57  
OVERESTIMATION OF PHASE MARGIN  
UNITY-GAIN BANDWIDTH  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
25  
200  
175  
150  
T
= 25°C  
A
T
A
= 25°C  
R
= 500 Ω  
null  
20  
15  
10  
5
125  
100  
R
= 100 Ω  
null  
R
= 200 Ω  
null  
75  
50  
R
= 50 Ω  
= 10 Ω  
null  
R
null  
25  
0
10  
0
10  
1
2
3
4
5
10  
1
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
C
− Load Capacitance − pF  
L
C
− Load Capacitance − pF  
L
Figure 58  
Figure 59  
See application information  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢗꢇ ꢕꢘ ꢁ ꢓ ꢙꢆꢈꢓ ꢙ ꢇꢕ ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢚꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢛꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS216 − NOVEMBER 2003  
APPLICATION INFORMATION  
driving large capacitive loads  
The TLC225x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56  
and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins  
(R  
= 0).  
null  
A smaller series resistor (R ) at the output of the device (see Figure 60) improves the gain and phase margins  
null  
when driving large capacitive loads. Figure 56 and Figure 57 show the effects of adding series resistances of  
10 , 50 , 100 , 200 , and 500 . The addition of this series resistor has two effects: the first is that it adds  
a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the  
output load in the transfer function.  
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To  
calculate the improvement in phase margin, equation 1 can be used.  
–1  
ǒ2 × π × UGBW × R  
LǓ  
∆φ  
+ tan  
× C  
(1)  
m1  
null  
Where :  
∆φ  
+ Improvement in phase margin  
m1  
UGBW + Unity-gain bandwidth frequency  
R
+ Output series resistance  
+ Load capacitance  
null  
C
L
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To  
use equation 1, UGBW must be approximated from Figure 58.  
Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 59. The  
overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing  
additional phase shift and reducing the overall improvement in phase margin.  
Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to  
optimize the design of circuits driving large capacitance loads.  
50 kΩ  
V
DD+  
50 kΩ  
R
null  
V
I
+
C
L
V
DD−/GND  
Figure 60. Series-Resistance Circuit  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢗ ꢇꢕꢘ ꢁ ꢓꢙꢆꢈ ꢓꢙꢇ ꢕ ꢓ ꢈꢇ ꢕꢊꢀꢖ ꢓ ꢚꢊ ꢁ ꢊꢒ ꢈꢁ ꢖꢛ ꢖꢇ ꢕꢔ  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS216 − NOVEMBER 2003  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using MicroSim Parts, the model generation software used  
with MicroSim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using  
the TLC225x typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
DLN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLC225x 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
VC  
VE  
60  
60  
8
11  
12  
5
37.23E3  
37.23E3  
84  
C1  
11  
6
12  
7
6.369E−12  
C2  
25.00E−12  
DC  
5
53  
5
DX  
DX  
DX  
DX  
DX  
7
99  
4
84  
DE  
54  
90  
92  
4
3
71.43E3  
64.52E6  
−.5  
DLP  
DLN  
DP  
91  
90  
3
10  
60  
9
99  
4
0
DC 0  
EGND  
FB  
99  
7
0
99  
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
3
53  
4
DC .605  
DC .605  
DC 0  
54  
7
+ VLN 0 57.62E6 −60E6 60E6 60E6 −60E6  
VLIM  
VLP  
VLN  
8
GA  
6
0
6
11  
10  
12 26.86E−6  
99 2.686E−9  
91  
0
0
DC −.235  
DC 7.5  
GCM  
ISS  
HLIM  
J1  
0
92  
3
10  
0
DC 3.1E−6  
VLIM 1K  
10 JX  
10 JX  
100.0E3  
.MODEL DX D (IS=800.0E−18)  
90  
11  
12  
6
.MODEL JX PJF (IS=500.0E−15 BETA=139E−6  
2
1
+ VTO=−.05)  
.ENDS  
J2  
R2  
9
Figure 61. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
TLC2252AQDREP  
TLC2252QDREP  
TLC2254AQDREP  
TLC2254QDREP  
V62/04682-01XE  
V62/04682-02XE  
V62/04682-03YE  
V62/04682-04YE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
14  
14  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
14  
14  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLC2252-EP, TLC2252A-EP, TLC2254-EP, TLC2254A-EP :  
Catalog: TLC2252, TLC2252A, TLC2254, TLC2254A  
Automotive: TLC2252-Q1, TLC2252A-Q1, TLC2254-Q1, TLC2254A-Q1  
Military: TLC2252M, TLC2252AM, TLC2254M, TLC2254AM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TLC2252AQDREP  
TLC2252QDREP  
TLC2254AQDREP  
TLC2254QDREP  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
16.4  
16.4  
6.4  
6.4  
6.5  
6.5  
5.2  
5.2  
9.0  
9.0  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
14  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC2252AQDREP  
TLC2252QDREP  
TLC2254AQDREP  
TLC2254QDREP  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
2500  
2500  
2500  
2500  
346.0  
346.0  
333.2  
333.2  
346.0  
346.0  
345.9  
345.9  
29.0  
29.0  
28.6  
28.6  
14  
14  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

TLC2254QDRG4

Advanced LinCMOS⑩ RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC2254QDRG4Q1

Automotive Catalog Advanced LinCMOS Rail-to-Rail Very Low-Power Operational Amplifier 14-SOIC -40 to 125
TI

TLC2254QDRQ1

advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC2254QPWRG4Q1

Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC2254QPWRQ1

advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC225X

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC225X-EP

VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC225X-Q1

advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC225X-Q1_16

Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC225XA

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC225XA-Q1

ADVANCED LINCMOS RAIL-TO-RAIL
TI

TLC225X_01

Advanced LinCMOS TM RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI