TLC2264A-Q1 [TI]

Advanced LinCMOS™ RAIL-TO-RAIL OPERATIONAL ANPLIFIERS; 高级LinCMOSâ ?? ¢轨到轨运算ANPLIFIERS
TLC2264A-Q1
型号: TLC2264A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanced LinCMOS™ RAIL-TO-RAIL OPERATIONAL ANPLIFIERS
高级LinCMOSâ ?? ¢轨到轨运算ANPLIFIERS

文件: 总37页 (文件大小:614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
D
Qualified for Automotive Applications  
D
D
D
Low Power . . . 500 µA Max  
Common-Mode Input Voltage Range  
Includes Negative Rail  
D
ESD Protection Exceeds 2000 V Per  
MIL-STD-883, Method 3015; Exceeds 200 V  
Using Machine Model (C = 200 pF, R = 0)  
Low Input Offset Voltage  
D
D
D
D
Output Swing includes Both Supply Rails  
Low Noise . . . 12 nV/Hz Typ at f = 1 kHz  
Low Input Bias Current . . . 1 pA Typ  
950 µV Max at T = 25°C (TLC2262A)  
A
D
Macromodel Included  
D
Performance Upgrade for the TS27M2/M4  
and TLC27M2/M4  
Fully Specified for Both Single-Supply and  
Split-Supply Operation  
EQUIVALENT INPUT NOISE VOLTAGE  
description  
vs  
FREQUENCY  
The TLC2262 and TLC2264 are dual and  
60  
quadruple operational amplifiers from Texas  
Instruments. Both devices exhibit rail-to-rail  
output performance for increased dynamic range  
in single- or split-supply applications. The  
TLC226x family offers a compromise between the  
micropower TLC225x and the ac performance of  
the TLC227x. It has low supply current for  
battery-powered applications, while still having  
adequate ac performance for applications that  
demand it. The noise performance has been  
dramatically improved over previous generations  
of CMOS amplifiers. Figure 1 depicts the low level  
of noise voltage for this CMOS amplifier, which  
has only 200 µA (typ) of supply current per  
amplifier.  
V
R
T
A
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
50  
40  
30  
20  
10  
0
The TLC226x, exhibiting high input impedance  
and low noise, are excellent for small-signal  
conditioning for high-impedance sources, such as  
piezoelectric transducers. Because of the micro-  
power dissipation levels, these devices work well  
in hand-held monitoring and remote-sensing  
2
3
4
10  
10  
10  
10  
f − Frequency − Hz  
Figure 1  
applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great  
choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xA  
family is available and has a maximum input offset voltage of 950 µV. This family is fully characterized at 5 V  
and 5 V.  
The TLC2262/4 also makes great upgrades to the TLC27M2/L4 or TS27M2/L4 in standard designs. They offer  
increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set  
allows them to be used in a wider range of applications. For applications that require higher output drive and  
wider input voltage range, see the TLV2432 and TLV2442. If your design requires single amplifiers, please see  
the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package.  
Their small size and low power consumption, make them ideal for high density, battery-powered equipment.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments.  
ꢀꢐ  
Copyright 2008 Texas Instruments Incorporated  
ꢢ ꢐ ꢣ ꢢꢑ ꢎꢬ ꢟꢞ ꢍ ꢧꢧ ꢥꢍ ꢠ ꢍ ꢡ ꢐ ꢢ ꢐ ꢠ ꢣ ꢨ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
ORDERING INFORMATION  
V
max  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
IO  
}
T
PACKAGE  
A
AT 25°C  
950 µV  
2.5 mV  
950 µV  
2.5 mV  
950 µV  
2.5 mV  
950 µV  
2.5 mV  
§
SOIC (D)  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
TLC2262AQDRQ1  
2262AQ1  
§
SOIC (D)  
TLC2262QDRQ1  
TLC2262AQPWRQ1  
2262Q1  
2262AQ1  
2262Q1  
2264AQ1  
2264Q1  
2264AQ1  
2264Q1  
§
TSSOP (PW)  
TSSOP (PW)  
SOIC (D)  
§
TLC2262QPWRQ1  
TLC2264AQDRQ1  
TLC2264QDRQ1  
40°C to 125°C  
SOIC (D)  
TSSOP (PW)  
TSSOP (PW)  
TLC2264AQPWRQ1  
TLC2264QPWRQ1  
For the most current package and ordering information, see the Package Option Addendum at the end of this document,  
or see the TI web site at http://www.ti.com.  
Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.  
Product Preview.  
§
TLC2262, TLC2262A  
D OR PW PACKAGE  
(TOP VIEW)  
TLC2264, TLC2264A  
D OR PW PACKAGE  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
V
DD+  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
2OUT  
2IN−  
2IN+  
V
/GND  
DD−  
V
V
/GND  
DD+  
DD−  
2IN+  
2IN−  
2OUT  
3IN+  
3IN−  
3OUT  
8
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
equivalent schematic (each amplifier)  
V
DD+  
Q3  
Q6  
Q9  
Q12  
Q14  
Q16  
IN+  
IN−  
OUT  
C1  
R5  
Q1  
Q4  
Q13  
Q15  
Q17  
D1  
Q2  
R3  
Q5  
R4  
Q7  
Q8  
Q10  
Q11  
R1  
R2  
V
DD−/GND  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
Transistors  
TLC2262  
TLC2264  
38  
28  
9
76  
56  
18  
6
Resistors  
Diodes  
Capacitors  
3
Includes both amplifiers and all ESD, bias, and trim circuitry  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8 V  
DD+  
DD−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
ID  
Input voltage, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
− 0.3 V to V  
I
DD−  
DD+  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
DD+  
DD−  
Total current out of V  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or PW package . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V .  
DD+  
DD −  
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if input is brought below V  
− 0.3 V.  
DD−  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D−8  
D−14  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
6.0 mW/°C  
464 mW  
377 mW  
145 mW  
950 mW  
608 mW  
494 mW  
190 mW  
PW−14  
750 mW  
480 mW  
389 mW  
150 mW  
recommended operating conditions  
MIN  
MAX  
UNIT  
Supply voltage, V  
DD  
2.2  
8
V
V
Input voltage range, V  
V
V
V
V
1.5  
1.5  
I
DD−  
DD+  
Common-mode input voltage, V  
IC  
V
DD−  
−40  
DD+  
125  
Operating free-air temperature, T  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TLC2262 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC2262-Q1  
TLC2262A-Q1  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
300 2500  
3000  
MIN  
TYP MAX  
25°C  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
α
VIO  
Full range  
5
5
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
2.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
= 0,  
IC  
25°C  
0.003  
0.003  
0.5  
µV/mo  
O
25°C  
125°C  
25°C  
0.5  
800  
1
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
800  
800  
1
IB  
125°C  
800  
0.3  
to 4.2  
0.3  
to 4.2  
25°C  
0 to 4  
0 to 4  
Common-mode input  
voltage range  
V
R
= 50 Ω,  
|V | 5 mV  
IO  
V
V
ICR  
OH  
S
0 to  
3.5  
0 to  
3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.94  
4.99  
4.94  
OH  
4.85  
4.82  
4.7  
4.85  
4.82  
4.7  
= 100 µA  
High-level output  
voltage  
OH  
Full range  
25°C  
V
4.85  
4.85  
I
= 400 µA  
= 2.5 V,  
OH  
Full range  
25°C  
4.5  
4.5  
V
I
I
= 50 µA  
0.01  
0.01  
0.09  
IC  
IC  
OL  
25°C  
0.09  
0.8  
0.15  
0.15  
1
0.15  
0.15  
1
V
= 2.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
V
V
OL  
0.7  
170  
550  
V
IC  
= 2.5 V,  
I
= 4 mA  
OL  
Full range  
25°C  
1.2  
1.2  
80  
50  
100  
80  
50  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
550  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
P package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
= 10  
240  
83  
240  
83  
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode  
rejection ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
= 2.5 V,  
O
IC  
S
CMRR  
dB  
95  
95  
Supply-voltage rejection  
V
V
= 4.4 V to 16 V,  
DD  
IC  
k
dB  
SVR  
ratio (V  
DD  
/V  
IO  
)
= V  
/2,  
No load  
Full range  
25°C  
DD  
400  
500  
500  
400  
500  
500  
I
Supply current  
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is −40°C to 125°C for Q suffix.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TLC2262 operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2262-Q1  
TLC2262A-Q1  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX MIN  
TYP  
MAX  
0.35  
0.55  
0.35  
0.55  
25°C  
Slew rate at unity  
gain  
V
C
= 0.5 V to 3.5 V,  
= 100 pF  
R
= 50 k,  
O
L
L
SR  
V/µs  
Full  
range  
0.25  
0.25  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
40  
12  
40  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.3  
0.7  
1.3  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fAHz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.017%  
0.03%  
0.017%  
0.03%  
O
V
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.82  
185  
0.82  
185  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
= 50 k,  
A
V
= 1,  
O(PP)  
L
B
OM  
C = 100 pF  
L
A
= 1,  
V
To 0.1%  
6.4  
6.4  
Step = 0.5 V to 2.5 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
14.1  
14.1  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
56°  
56°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is −40°C to 125°C for Q suffix.  
Referenced to 2.5 V  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TLC2262 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC2262-Q1  
TLC2262A-Q1  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX  
2500  
3000  
MIN  
TYP  
MAX  
950  
25°C  
300  
300  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient of  
input offset voltage  
α
Full range  
5
5
µV/°C  
µV/mo  
VIO  
Input offset voltage long-  
term drift (see Note 4)  
V
R
= 0,  
= 50 Ω  
V
O
= 0,  
IC  
S
25°C  
0.003  
0.5  
0.003  
0.5  
25°C  
125°C  
25°C  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
800  
800  
800  
800  
1
1
IB  
125°C  
−5  
to 4  
5.3  
to 4  
−5  
5.3  
25°C  
to 4 to 4.2  
Common-mode input  
voltage range  
V
R
= 50 Ω,  
|V | ≤ 5 mV  
IO  
V
V
ICR  
S
−5  
to 3.5  
−5  
to 3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.94  
4.99  
4.94  
O
4.85  
4.82  
4.7  
4.85  
4.82  
4.7  
= 100 µA  
Maximum positive peak  
output voltage  
O
Full range  
25°C  
V
OM+  
4.85  
4.85  
I
O
= 400 µA  
Full range  
25°C  
4.5  
4.5  
V
= 0,  
= 0,  
I
I
= 50 µA  
4.99  
4.99  
IC  
IC  
O
25°C  
4.85 4.91  
4.85 4.91  
4.85  
V
= 500 µA  
Maximum negative peak  
output voltage  
O
Full range 4.85  
V
OM−  
V
25°C  
Full range  
25°C  
−4  
3.8  
80  
4.3  
200  
−4  
3.8  
80  
4.3  
V
= 0,  
I
O
= 4 mA  
IC  
O
200  
R
R
= 50 kΩ  
= 1 MΩ  
Large-signal differential  
voltage amplification  
L
L
Full range  
25°C  
50  
50  
A
VD  
V
=
4 V  
V/mV  
1000  
1000  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
P package  
= 10  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
220  
88  
220  
88  
25°C  
Full range  
25°C  
75  
75  
80  
80  
75  
75  
80  
80  
Common-mode  
rejection ratio  
V
V
= 5 V to 2.7 V,  
= 0,  
IC  
O
CMRR  
dB  
R = 50 Ω  
S
95  
95  
Supply-voltage rejection  
V
DD  
V
IC  
= 4.4 V to 16 V,  
k
dB  
SVR  
ratio (V  
DD  
/V  
IO  
)
= V  
/2, No load  
Full range  
25°C  
DD  
425  
500  
500  
425  
500  
500  
I
Supply current  
V
O
= 0,  
No load  
µA  
DD  
Full range  
Full range is −40°C to 125°C for Q suffix.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TLC2262 operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2262-Q1  
TLC2262A-Q1  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX MIN  
TYP  
MAX  
25°C 0.35  
0.55  
0.35  
0.55  
Slew rate at unity  
gain  
V
C
=
2 V,  
R
= 50 k,  
L
O
L
SR  
V/µs  
Full  
= 100 pF  
0.25  
0.25  
range  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
43  
12  
43  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.8  
1.3  
0.8  
1.3  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fAHz  
n
Total harmonic  
distortion plus  
noise  
V
=
2.3 V,  
R = 50 kΩ,  
L
A
= 1  
0.014%  
0.024%  
0.014%  
0.024%  
O
V
THD + N  
A
V
= 10  
f = 20 kHz  
Gain-bandwidth  
product  
f =10 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.73  
85  
0.73  
85  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 4.6 V,  
A
= 1,  
= 100 pF  
L
O(PP)  
= 50 k,  
V
B
OM  
C
L
A
= 1,  
V
To 0.1%  
7.1  
7.1  
Step = 2.3 V to 2.3 V,  
R
C
t
s
Settling time  
25°C  
µs  
= 50 k,  
= 100 pF  
L
L
To 0.01%  
16.5  
16.5  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
57°  
57°  
R
= 50 k,  
C = 100 pF  
L
L
Gain margin  
11  
11  
dB  
Full range is −40°C to 125°C for Q suffix.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TLC2264 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC2264-Q1  
TLC2264A-Q1  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
300 2500  
3000  
MIN  
TYP MAX  
25°C  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
α
VIO  
Full range  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
2.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
= 0,  
IC  
25°C  
0.003  
0.003  
0.5  
µV/mo  
O
25°C  
125°C  
25°C  
0.5  
800  
1
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
800  
800  
1
IB  
125°C  
800  
0.3  
to 4 to 4.2  
0
0
0.3  
to 4 to 4.2  
25°C  
Common-mode input  
voltage range  
V
R
= 50 Ω,  
|V | 5 mV  
IO  
V
V
ICR  
OH  
S
0
0
Full range  
to 3.5  
to 3.5  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.94  
4.99  
4.94  
OH  
4.85  
4.82  
4.7  
4.85  
4.82  
4.7  
= 100 µA  
OH  
Full range  
25°C  
V
High-level output voltage  
Low-level output voltage  
4.85  
4.85  
I
= 400 µA  
= 2.5 V,  
OH  
Full range  
25°C  
4.5  
4.5  
V
I
I
= 50 µA  
0.01  
0.09  
0.01  
0.09  
IC  
IC  
OL  
25°C  
0.15  
0.15  
1
0.15  
0.15  
1
V
= 2.5 V,  
= 500 µA  
OL  
Full range  
25°C  
V
V
OL  
0.8  
100  
550  
0.7  
170  
550  
V
IC  
= 2.5 V,  
I
= 4 mA  
OL  
Full range  
25°C  
1.2  
1.2  
80  
50  
80  
50  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
N package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
= 10  
240  
83  
240  
83  
25°C  
70  
70  
70  
70  
Common-mode rejection  
ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
O
= 2.5 V,  
IC  
S
CMRR  
dB  
dB  
Full range  
Supply-voltage rejection  
k
25°C  
80  
95  
80  
95  
SVR  
ratio (V  
DD  
/V )  
IO  
V
DD  
= 4.4 V to 16 V,  
25°C  
0.8  
1
1
0.8  
1
1
Supply current  
(four amplifiers)  
I
V
O
= 2.5 V,  
No load  
mA  
DD  
Full range  
Full range is −40°C to 125°C for Q suffix.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TLC2264 operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2264-Q1  
TLC2264A-Q1  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX MIN TYP MAX  
0.35  
0.55  
0.35  
0.25  
0.55  
25°C  
Slew rate at unity  
gain  
V
= 0.5 V to 3.5 V,  
R
= 50 k,  
L
O
SR  
V/µs  
Full  
range  
C = 100 pF  
L
0.25  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
40  
12  
40  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.3  
0.7  
1.3  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.017%  
0.03%  
0.017%  
0.03%  
O
V
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.71  
185  
0.71  
185  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
= 50 k,  
A
V
= 1,  
O(PP)  
L
B
OM  
C = 100 pF  
L
A
= 1,  
V
To 0.1%  
6.4  
6.4  
Step = 0.5 V to 2.5 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
14.1  
14.1  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
56°  
56°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is −40°C to 125°C for Q suffix.  
Referenced to 2.5 V  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TLC2264 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC2264-Q1  
TLC2264A-Q1  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
300 2500  
3000  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
µV/°C  
Input offset voltage  
long-term drift (see Note 4)  
V
R
= 0,  
= 50 Ω  
V
O
= 0,  
IC  
S
25°C  
0.003  
0.003  
0.5  
µV/mo  
25°C  
125°C  
25°C  
0.5  
1
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
800  
800  
800  
800  
1
IB  
125°C  
−5  
5.3  
−5  
5.3  
25°C  
to 4 to 4.2  
to 4 to 4.2  
Common-mode input  
voltage range  
R
= 50 Ω,  
IO  
S
V
V
V
ICR  
|V | 5 mV  
−5  
to 3.5  
−5  
to 3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.94  
4.99  
4.94  
O
4.85  
4.82  
4.7  
4.85  
4.82  
4.7  
= 100 µA  
Maximum positive peak  
output voltage  
O
Full range  
25°C  
V
OM+  
4.85  
4.85  
I
O
= 400 µA  
Full range  
25°C  
4.5  
4.5  
V
= 0,  
= 0,  
I
I
= 50 µA  
4.99  
4.99  
IC  
IC  
O
25°C  
4.85 4.91  
4.85 4.91  
4.85  
V
= 500 µA  
Maximum negative peak  
output voltage  
O
Full range 4.85  
V
OM−  
V
25°C  
Full range  
25°C  
−4  
3.8  
80  
4.3  
200  
−4  
3.8  
80  
4.3  
V
= 0,  
I
O
= 4 mA  
IC  
O
200  
R
R
= 50 kΩ  
= 1 MΩ  
Large-signal differential  
voltage amplification  
L
L
Full range  
25°C  
50  
50  
A
VD  
V
=
4 V  
V/mV  
1000  
1000  
12  
10  
12  
10  
r
r
Differential input resistance  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
25°C  
25°C  
25°C  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
N package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
= 10  
220  
88  
220  
88  
V
V
V
V
= 5 V to 2.7 V,  
25°C  
Full range  
25°C  
75  
75  
80  
80  
75  
75  
80  
80  
Common-mode  
rejection ratio  
IC  
CMRR  
dB  
dB  
= 0,  
R
= 50 Ω  
O
S
=
ā2.2 V to ā8 V,  
95  
95  
Supply-voltage rejection  
DD  
k
SVR  
ratio (V  
DD  
/V )  
IO  
= V  
/2, No load  
Full range  
25°C  
IC  
O
DD  
0.85  
1
1
0.85  
1
1
Supply current  
(four amplifiers)  
I
V
= 0,  
No load  
mA  
DD  
Full range  
Full range is −40°C to 125°C for Q suffix.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TLC2264 operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2264-Q1  
TLC2264A-Q1  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX MIN  
TYP  
MAX  
25°C  
0.35  
0.55  
0.35  
0.55  
Slew rate at unity  
gain  
V
=
2 V,  
C = 100 pF  
L
R
= 50 k,  
L
O
SR  
V/µs  
Full  
range  
0.25  
0.25  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
43  
12  
43  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.8  
1.3  
0.8  
1.3  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
R
=
2.3 V,  
A
= 1  
0.014%  
0.024%  
0.014%  
0.024%  
O
V
= 50 kΩ,  
THD + N  
L
A
V
= 10  
f = 20 kHz  
Gain-bandwidth  
product  
f =10 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.73  
70  
0.73  
70  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 4.6 V,  
A
= 1,  
= 100 pF  
L
O(PP)  
= 50 k,  
V
B
OM  
C
L
A
= 1,  
V
To 0.1%  
7.1  
7.1  
Step = 2.3 V to 2.3 V,  
R
C
t
s
Settling time  
25°C  
µs  
= 50 k,  
= 100 pF  
L
L
To 0.01%  
16.5  
16.5  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
57°  
57°  
R
= 50 k,  
C = 100 pF  
L
L
Gain margin  
11  
11  
dB  
Full range is −40°C to 125°C for Q suffix.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Distribution  
vs Common-mode input voltage  
2 − 5  
V
Input offset voltage  
IO  
6, 7  
8 − 11  
12  
α
VIO  
Input offset voltage temperature coefficient  
Input bias and input offset currents  
Distribution  
I
/I  
vs Free-air temperature  
IB IO  
vs Supply voltage  
vs Free-air temperature  
13  
14  
V
I
Input voltage range  
V
V
V
V
V
High-level output voltage  
vs High-level output current  
vs Low-level output current  
vs Output current  
15  
16, 17  
18  
OH  
Low-level output voltage  
OL  
Maximum positive output voltage  
Maximum negative output voltage  
Maximum peak-to-peak output voltage  
OM+  
OM−  
O(PP)  
vs Output current  
19  
vs Frequency  
20  
vs Supply voltage  
vs Free-air temperature  
21  
22  
I
Short-circuit output current  
OS  
V
O
Output voltage  
Differential gain  
vs Differential input voltage  
vs Load resistance  
23, 24  
25  
vs Frequency  
vs Free-air temperature  
26, 27  
28, 29  
A
Large-signal differential voltage amplification  
Output impedance  
VD  
z
vs Frequency  
30, 31  
o
vs Frequency  
vs Free-air temperature  
32  
33  
CMRR  
Common-mode rejection ratio  
vs Frequency  
vs Free-air temperature  
34, 35  
36  
k
Supply-voltage rejection ratio  
Supply current  
SVR  
vs Supply voltage  
vs Free-air temperature  
37, 38  
39, 40  
I
DD  
vs Load capacitance  
vs Free-air temperature  
41  
42  
SR  
Slew rate  
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
43, 44  
45, 46  
47, 48  
49, 50  
51, 52  
53  
V
V
O
vs Frequency  
n
Noise voltage (referred to input)  
Over a 10-second period  
vs Frequency  
Integrated noise voltage  
54  
THD + N  
Total harmonic distortion plus noise  
vs Frequency  
55  
vs Supply voltage  
vs Free-air temperature  
56  
57  
Gain-bandwidth product  
vs Frequency  
vs Load capacitance  
26, 27  
58  
φ
m
Phase margin  
Gain margin  
vs Load capacitance  
59  
B
1
Unity-gain bandwidth  
vs Load capacitance  
vs Load capacitance  
60  
61  
Overestimation of phase margin  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC2262  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC2262  
INPUT OFFSET VOLTAGE  
25  
20  
15  
25  
20  
15  
1274 Amplifiers From 2 Wafer Lots  
1274 Amplifiers From 2 Wafer Lots  
V
T
=
2.5 V  
V
DD  
=
5 V  
T = 25°C  
A
DD  
= 25°C  
A
10  
5
10  
5
0
1.6  
0
1.6  
0.8  
0
0.8  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 2  
Figure 3  
DISTRIBUTION OF TLC2264  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC2264  
INPUT OFFSET VOLTAGE  
20  
16  
12  
20  
2272 Amplifiers From 2 Wafer Lots  
2272 Amplifiers From 2 Wafer Lots  
V
T
=
2.5 V  
V
T
=
5 V  
DD  
DD  
= 25°C  
= 25°C  
A
A
16  
12  
8
8
4
0
4
0
1.6  
0.8  
0
0.8  
1.6  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 4  
Figure 5  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
1
1
V
R
T
= 5 V  
= 50 Ω  
= 25°C  
V
= 5 V  
= 50 Ω  
= 25°C  
DD  
S
A
DD  
S
R
T
A
0.5  
0.5  
0
0
0.5  
−1  
0.5  
−1  
−6 −5 −4 −3 −2 −1  
0
1
2
3
4
5
−1  
0
1
2
3
4
5
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
For curves where V  
= 5 V, all loads are referenced to 2.5 V.  
DD  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC2262 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLC2262 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
128 Amplifiers From 2 Wafer Lots  
128 Amplifiers From 2 Wafer Lots  
V
=
2.5 V  
P Package  
= 25°C to 125°C  
V
DD  
=
5 V  
P Package  
T = 25°C to 125°C  
A
DD  
T
A
0
0
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
α
α
− Temperature Coefficient − µV/°C  
− Temperature Coefficient − µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC2264 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLC2264 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
128 Amplifiers From  
2 Wafer Lots  
128 Amplifiers From  
2 Wafer Lots  
V
=
5 V  
N Package  
= 25°C  
V
=
2.5 V  
N Package  
= 25°C to 125°C  
DD  
DD  
T
A
T
A
to 125°C  
5
0
5
0
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
α
VIO  
− Temperature Coefficient of  
Input Offset Voltage − µV/°C  
α
VIO  
− Temperature Coefficient of  
Input Offset Voltage − µV/°C  
Figure 10  
Figure 11  
INPUT BIAS AND INPUT OFFSET CURRENTS  
INPUT VOLTAGE RANGE  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
450  
400  
350  
300  
250  
200  
150  
100  
50  
10  
V
V
V
= 2.5 V  
= 0 V  
= 0  
DD  
IC  
O
R
T
A
= 50 Ω  
= 25°C  
S
8
6
R
= 50 Ω  
S
4
2
I
IB  
0
| V | 5 mV  
IO  
−2  
−4  
−6  
−8  
I
IO  
10  
0
25  
45  
65  
85  
105  
125  
2
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
| V  
DD  
| − Supply Voltage − V  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
†‡  
INPUT VOLTAGE RANGE  
vs  
†‡  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
6
5
4
3
V
DD  
= 5 V  
V
= 5 V  
DD  
T
A
= 125°C  
= 25°C  
T
= 55°C  
A
| V | 5 mV  
IO  
T
A
2
1
0
T
A
= 40°C  
0
−1  
75 55 35 15  
5
25 45 65 85 105 125  
0
500  
1000 1500 2000 2500 3000 3500  
T
A
− Free-Air Temperature − °C  
|I  
OH  
| − High-Level Output Current − µA  
Figure 14  
Figure 15  
†‡  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1.4  
1.2  
1.2  
1
V
V
= 5 V  
DD  
= 2.5 V  
V
T
A
= 5 V  
= 25°C  
DD  
IC  
T
A
= 125°C  
V
= 1.25 V  
IC  
V
= 0  
IC  
1
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
A
V
= 2.5 V  
IC  
T
= 40°C  
A
T
A
= 55°C  
0.2  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
I − Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
MAXIMUM POSITIVE OUTPUT VOLTAGE  
MAXIMUM NEGATIVE OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
3.8  
−4  
6
V
V
= 5 V  
DD  
= 0  
V
= 5 V  
DD  
IC  
5
4
3
T
A
= 55°C  
T
A
= 125°C  
4.2  
4.4  
T
A
= 25°C  
T
A
= 125°C  
T
= 40°C  
A
T
A
= 55°C  
T
A
= 25°C  
4.6  
4.8  
−5  
2
1
0
T
A
= 40°C  
0
1
2
3
4
5
6
0
500  
1000 1500 2000 2500 3000 3500  
I
O
− Output Current − mA  
| I | − Output Current − µA  
O
Figure 19  
Figure 18  
SHORT-CIRCUIT OUTPUT CURRENT  
†‡  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
12  
10  
9
R
T
= 10 kΩ  
= 25°C  
L
A
V
= 5 V  
DD  
10  
8
V
ID  
= 100 mV  
8
7
6
V
T
A
= 0  
= 25°C  
6
4
2
0
O
V
DD  
= 5 V  
5
4
3
2
V
ID  
= 100 mV  
−2  
−4  
1
0
2
3
4
5
6
7
8
3
10  
4
5
10  
6
10  
10  
| V  
DD  
| − Supply Voltage − V  
f − Frequency − Hz  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
13  
12  
11  
10  
9
5
4
3
2
V
V
= 0  
V
R
= 5 V  
= 50 kΩ  
= 2.5 V  
O
DD  
L
=
5 V  
DD  
V
T
IC  
A
= 25°C  
V
ID  
= 100 mV  
8
7
1
0
−1  
−2  
V
ID  
= 100 mV  
1
0
−3  
−4  
75 50  
25  
0
25  
50  
75 100 125  
0
250 500 750 1000  
1000 750 500 250  
T
A
− Free-Air Temperature − °C  
V
ID  
− Differential Input Voltage − µV  
Figure 22  
Figure 23  
DIFFERENTIAL GAIN  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
vs  
LOAD RESISTANCE  
4
10  
5
3
V
V
= 5 V  
DD  
= 0 V  
V
T
= 2 V  
O(PP)  
IC  
= 25°C  
R
T
= 50 kΩ  
= 25°C  
A
L
A
3
V
DD  
=
5 V  
DD  
10  
10  
1
V
= 5 V  
2
−1  
10  
−3  
−5  
1
10  
3
4
10  
5
10  
6
10  
0
250 500 750 1000  
1000 750 500 250  
R
− Load Resistance − kΩ  
L
V
ID  
− Differential Input Voltage − µV  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
= 5 V  
DD  
C = 100 pF  
L
T
A
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
20  
40  
45°  
90°  
3
4
5
6
7
10  
10  
10  
10  
10  
f − Frequency − Hz  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
Figure 26  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
C
T
A
= 5 V  
= 100 pF  
= 25°C  
DD  
L
40  
20  
90°  
45°  
Phase Margin  
Gain  
0
20  
40  
0°  
45°  
90°  
3
4
5
6
7
10  
10  
10  
10  
10  
f − Frequency − Hz  
Figure 27  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
†‡  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3
4
10  
10  
10  
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
V
V
V
= 5 V  
= 0 V  
DD  
IC  
O
DD  
IC  
O
=
4 V  
R
= 1 MΩ  
L
R
= 1 MΩ  
L
3
10  
R
= 50 kΩ  
L
R
= 50 kΩ  
L
2
1
2
10  
10  
10  
R
= 10 kΩ  
L
R
= 10 kΩ  
L
1
10  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 28  
Figure 29  
OUTPUT IMPEDANCE  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
= 5 V  
= 25°C  
V
T
= 5 V  
DD  
A
DD  
= 25°C  
A
A
= 100  
V
A
V
= 100  
A
= 10  
= 1  
V
A
= 10  
= 1  
V
1
1
A
V
A
V
0.1  
10  
0.1  
10  
2
3
10  
4
5
10  
6
10  
2
3
10  
4
5
10  
6
10  
10  
f − Frequency − Hz  
10  
f − Frequency − Hz  
Figure 30  
Figure 31  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
†‡  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
90  
100  
V
DD  
= 5 V  
V
DD  
= 5 V  
80  
60  
40  
20  
0
88  
86  
84  
V
DD  
= 5 V  
V
DD  
= 5 V  
82  
80  
1
10  
2
10  
3
10  
4
10  
5
10  
6
10  
75 50 −25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 32  
Figure 33  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
V
T
A
= 5 V  
= 25°C  
DD  
V
T
A
=
5 V  
DD  
= 25°C  
k
k
SVR+  
SVR+  
k
k
SVR−  
SVR−  
0
0
20  
20  
1
2
10  
3
10  
4
10  
5
10  
6
10  
10  
1
2
10  
3
10  
4
10  
5
10  
6
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 34  
Figure 35  
For curves where V  
= 5 V, all loads are referenced to 2.5 V.  
DD  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
TLC2262  
SUPPLY CURRENT  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
600  
500  
400  
300  
200  
100  
0
110  
105  
V
= 0  
O
V
V
=
2.2 V to 8 V  
DD  
= 0  
No Load  
O
T
= 55°C  
A
T
= 25°C  
A
T
= 125°C  
A
T
= 40°C  
A
100  
95  
90  
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75  
100 125  
| V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 36  
Figure 37  
TLC2264  
SUPPLY CURRENT  
TLC2262  
SUPPLY CURRENT  
vs  
†‡  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
1200  
1000  
800  
600  
400  
200  
0
600  
500  
400  
300  
200  
100  
0
V
= 0  
O
No Load  
V
= 5 V  
DD  
= 0  
T
= 55°C  
V
O
A
T
= 25°C  
A
T
= 125°C  
V
V
= 5 V  
A
DD  
= 2.5 V  
T
= 40°C  
A
O
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75 100 125  
| V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 38  
Figure 39  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
TLC2264  
SUPPLY CURRENT  
vs  
†‡  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
LOAD CAPACITANCE  
1
1200  
1000  
800  
600  
400  
200  
0
V
= 5 V  
DD  
= 1  
A
V
A
T
= 25°C  
V
V
=
5 V  
DD  
= 0  
0.8  
0.6  
O
SR−  
V
V
= 5 V  
DD  
= 2.5 V  
O
SR+  
0.4  
0.2  
0
1
2
10  
3
10  
4
10  
75 50 25  
0 25  
50  
75 100 125  
10  
T
A
− Free-Air Temperature − °C  
C
− Load Capacitance − pF  
L
Figure 40  
Figure 41  
†‡  
SLEW RATE  
INVERTING LARGE-SIGNAL PULSE  
vs  
RESPONSE  
FREE-AIR TEMPERATURE  
5
4
1.2  
1
V
R
C
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
A
V
A
T
= 25°C  
SR−  
SR+  
0.8  
0.6  
0.4  
0.2  
0
3
2
V
R
C
= 5 V  
DD  
L
L
1
0
= 50 kΩ  
= 100 pF  
= 1  
A
V
0
2
4
6
8
10 12 14 16 18 20  
75 50 25  
0
25  
50  
75  
100 125  
t − Time − µs  
T
A
− Free-Air Temperature − °C  
Figure 42  
Figure 43  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
INVERTING LARGE-SIGNAL PULSE  
RESPONSE  
PULSE RESPONSE  
5
4
5
4
V
= 5 V  
V
= 5 V  
DD  
L
L
DD  
L
L
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
3
V
A
V
A
T
= 25°C  
T
= 25°C  
2
3
2
1
0
−1  
−2  
−3  
1
0
−4  
−5  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 44  
Figure 45  
INVERTING SMALL-SIGNAL  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
2.65  
2.6  
5
4
V
= 5 V  
V
R
= 5 V  
DD  
L
L
DD  
L
L
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
= 50 kΩ  
= 100 pF  
= 1  
C
A
3
V
A
V
A
T
= 25°C  
T
= 25°C  
2
2.55  
2.5  
1
0
−1  
−2  
−3  
2.45  
2.4  
−4  
−5  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 46  
Figure 47  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
100  
50  
0
2.65  
2.6  
V
= 5 V  
V
= 5 V  
DD  
L
L
DD  
L
L
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
V
A
V
A
T
= 25°C  
T
= 25°C  
2.55  
2.5  
50  
2.45  
2.4  
100  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 48  
Figure 49  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
FREQUENCY  
60  
50  
40  
30  
20  
10  
100  
50  
V
R
C
= 5 V  
V
= 5 V  
= 20 Ω  
= 25°C  
DD  
L
L
DD  
S
= 50 kΩ  
= 100 pF  
= 1  
R
T
A
A
V
A
T
= 25°C  
0
50  
0
10  
100  
1
2
10  
3
10  
4
10  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
f − Frequency − Hz  
Figure 50  
Figure 51  
For curves where V  
= 5 V, all loads are referenced to 2.5 V.  
DD  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE OVER  
vs  
A 10-SECOND PERIOD  
FREQUENCY  
1000  
750  
500  
250  
0
60  
50  
V
=
5 V  
DD  
S
R
T
= 20 Ω  
= 25°C  
A
40  
30  
250  
500  
20  
10  
0
V
= 5 V  
DD  
f = 0.1 Hz to 10 Hz  
750  
T
A
= 25°C  
1000  
0
2
4
6
8
10  
1
2
10  
3
10  
4
10  
10  
t − Time − s  
f − Frequency − Hz  
Figure 52  
Figure 53  
TOTAL HARMONIC DISTORTION PLUS NOISE  
INTEGRATED NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
0.1  
100  
Calculated Using Ideal Pass-Band Filter  
Low Frequency = 1 Hz  
A
V
= 100  
T
= 25°C  
A
10  
0.01  
A
= 10  
= 1  
V
1
A
V
V
R
T
A
= 5 V  
= 50 kΩ  
= 25°C  
DD  
L
0.001  
0.1  
10  
1
2
10  
3
4
10  
5
10  
10  
10  
f − Frequency − Hz  
0
1
10  
2
3
4
10  
5
10  
10  
10  
f − Frequency − Hz  
Figure 54  
Figure 55  
For curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
†‡  
GAIN-BANDWIDTH PRODUCT  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
1200  
1000  
940  
900  
860  
f = 10 kHz  
V
= 5 V  
DD  
f = 10 kHz  
= 100 pF  
R
C
T
= 50 kΩ  
L
L
= 100 pF  
C
L
= 25°C  
A
800  
600  
820  
780  
740  
400  
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75  
100 125  
| V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 56  
Figure 57  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
20  
15  
10  
75°  
T
A
= 25°C  
T
A
= 25°C  
60°  
45°  
30°  
R
= 100 Ω  
null  
R
= 100 Ω  
null  
R
= 50 Ω  
null  
R
= 50 Ω  
null  
R
= 20 Ω  
null  
50 kΩ  
R
= 20 Ω  
5
0
null  
V
15°  
0°  
DD +  
R
= 10 Ω  
null  
50 kΩ  
R
null  
V
+
I
R
= 10 Ω  
C
null  
L
R
= 0  
null  
V
R
= 0  
DD −  
null  
1
2
3
4
10  
10  
10  
10  
1
2
3
4
10  
10  
10  
10  
C
− Load Capacitance − pF  
L
C
− Load Capacitance − pF  
L
Figure 58  
Figure 59  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For curves where V = 5 V, all loads are referenced to 2.5 V.  
DD  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
vs  
OVERESTIMATION OF PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1000  
14°  
T
A
= 25°C  
T = 25°C  
A
12°  
10°  
8°  
R
= 100 Ω  
null  
800  
600  
400  
200  
R
= 50 Ω  
null  
6°  
4°  
2°  
0
R
= 10 Ω  
null  
R
= 20 Ω  
null  
1
10  
2
3
4
10  
1
10  
2
3
4
10  
10  
10  
10  
10  
C
− Load Capacitance − pF  
C
− Load Capacitance − pF  
L
L
Figure 60  
Figure 61  
See application information  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
APPLICATION INFORMATION  
driving large capacitive loads  
The TLC226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 58  
and Figure 59 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase  
margins (R  
= 0).  
null  
A smaller series resistor (R ) at the output of the device (see Figure 62) improves the gain and phase margins  
null  
when driving large capacitive loads. Figure 58 and Figure 59 show the effects of adding series resistances of  
10 , 20 , 50 , and 100 . The addition of this series resistor has two effects: the first is that it adds a zero  
to the transfer function and the second is that it reduces the frequency of the pole associated with the output  
load in the transfer function.  
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To  
calculate the improvement in phase margin, equation 1 can be used.  
–1  
ǒ2 × π × UGBW × R  
LǓ  
∆Θ  
+ tan  
× C  
(1)  
m1  
null  
Where :  
∆Θ  
+ improvement inphasemargin  
m1  
UGBW + unity-gainbandwidthfrequency  
R
+ output seriesresistance  
+ loadcapacitance  
null  
C
L
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 60). To  
use equation 1, UGBW must be approximated from Figure 60.  
Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 61. The  
overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing  
additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load  
is reduced by the factor calculated in equation 2.  
1
F +  
(2)  
1 ) g × R  
m
null  
Where :  
F + factor reducingfrequencyof pole  
–3  
g
+ small-signaloutput transconductance (typically 4.83 × 10 mhos)  
+ output series resistance  
m
R
null  
For the TLC226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value  
varies inversely with C : at C = 10 pF, use 70 MHz, at C = 1000 pF, use 700 kHz, and so on.  
L
L
L
Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results  
in an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3  
approximates the reduction in phase margin due to the movement of the pole associated with the load. The  
result of this equation can be subtracted from the result of the equation in equation 1 to better approximate the  
improvement in phase margin.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓ ꢗꢘꢕ ꢊꢀ ꢖꢓ ꢙꢊꢁ ꢊꢒ ꢗ ꢁꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
APPLICATION INFORMATION  
driving large capacitive loads (continued)  
ȱUGBW  
ȳ
UGBW  
–1  
–1ȧ  
ȧ
∆Θ  
+ tan  
– tan ǒ Ǔ  
(3)  
m2  
P
ǒF×P  
Ǔ
2
Ȳ
2 ȴ  
Where :  
∆Θ  
+ reduction in phase margin  
m2  
UGBW + unity-gain bandwidth frequency  
F + factor from equation 2  
P
+ unadjusted pole (70 MHz@10 pF, 7 MHz@100 pF, etc.)  
2
Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output  
series resistance to optimize the design of circuits driving large capacitive loads.  
50 kΩ  
V
DD+  
50 kΩ  
R
null  
V
I
+
C
L
V
DD−/GND  
Figure 62. Series-Resistance Circuit  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇꢈꢉ ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢓꢗ ꢘ ꢕꢊꢀ ꢖ ꢓꢙ ꢊ ꢁ ꢊꢒ ꢗꢁ ꢖ ꢚꢖ ꢘꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS189B − OCTOBER 2003 − REVISED APRIL 2008  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 63 are generated using  
the TLC226x typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
DLN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLC226x 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
VC  
VE  
60  
60  
8
11  
12  
5
21.22E3  
21.22E3  
120  
C1  
11  
6
12  
7
3.560E−12  
C2  
15.00E−12  
DC  
5
53  
5
DX  
DX  
DX  
DX  
DX  
7
99  
4
120  
DE  
54  
90  
92  
4
3
26.04E3  
24.24E6  
−.6  
DLP  
DLN  
DP  
91  
90  
3
10  
60  
9
99  
4
0
DC 0  
EGND  
FB  
99  
7
0
99  
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
3
53  
4
DC .65  
DC .65  
DC 0  
54  
7
+ VLN 0 21.04E6 −30E6 30E6 30E6 −30E6  
VLIM  
VLP  
VLN  
8
GA  
6
0
6
11  
10  
12 47.12E−6  
99 4.9E−9  
91  
0
0
DC 1.4  
DC 9.4  
GCM  
ISS  
HLIM  
J1  
0
92  
3
10  
0
DC 8.250E−6  
VLIM 1K  
10 JX  
10 JX  
100.0E3  
.MODEL DX D (IS=800.0E−18)  
90  
11  
12  
6
.MODEL JX PJF (IS=500.0E−15 BETA=281E−6  
2
1
+ VTO=.065)  
.ENDS  
J2  
R2  
9
Figure 63. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jul-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLC2264AQPWRG4Q1  
TLC2264AQPWRQ1  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Purchase Samples  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Purchase Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLC2264A-Q1 :  
Catalog: TLC2264A  
Military: TLC2264AM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jul-2010  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

TLC2264AID

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIDG4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIDR

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIDRG4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIN

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AINE4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIPW

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIPWG4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIPWLE

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIPWR

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AIPWRG4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2264AM

军用级、四路、16V、710kHz、低失调电压运算放大器
TI