TLC2274EPWRQ1 [TI]

TLC2274-HT Advanced LinCMOS Rail-to-Rail Operational Amplifier;
TLC2274EPWRQ1
型号: TLC2274EPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLC2274-HT Advanced LinCMOS Rail-to-Rail Operational Amplifier

放大器 光电二极管
文件: 总29页 (文件大小:1159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLC2274-HT  
SGLS416 JANUARY 2015  
TLC2274-HT Advanced LinCMOS™ Rail-to-Rail Operational Amplifier  
1 Features  
3 Description  
The TLC2274 is a quadruple operational amplifier  
from Texas Instruments. The device exhibits rail-to-  
rail output performance for increased dynamic range  
in single- or split-supply applications. The TLC2274  
offers 2 MHz of bandwidth and 3 V/μs of slew rate for  
higher speed applications. These device offers  
comparable ac performance while having better  
noise, input offset voltage, and power dissipation than  
existing CMOS operational amplifiers. The TLC2274  
has a noise voltage of 9nV/Hz, two times lower than  
competitive solutions.  
1
Qualified for Automotive Applications  
Qualified in Accordance With AEC-Q100  
Output Swing Includes Both Supply Rails  
Low Noise: 9 nV/Hz Typ at ƒ = 1 kHz  
Low Input Bias Current: 1 pA Typical  
Fully Specified for Both Single-Supply and Split-  
Supply Operation  
Common-Mode Input Voltage Range Includes  
Negative Rail  
High-Gain Bandwidth: 2.2 MHz Typical  
The TLC2274, exhibiting high input impedance and  
low noise, is excellent for small-signal conditioning for  
high-impedance sources, such as piezoelectric  
transducers. Because of the micropower dissipation  
levels, this device works well in hand-held monitoring  
and remote-sensing applications. In addition, the rail-  
to-rail output feature, with single- or split-supplies,  
makes this device a great choice when interfacing  
with analog-to-digital converters (ADCs). This family  
is fully characterized at 5 V and ±5 V.  
High Slew Rate: 3.6 V/μs Typical  
Low Input Offset Voltage 2500-μV Max at TA =  
25°C  
Macromodel Included  
2 Applications  
Supports Extreme Temperature Applications:  
Controlled Baseline  
It offers increased output dynamic range, lower noise  
voltage, and lower input offset voltage. This  
enhanced feature set allows the device to be used in  
a wider range of applications.  
One Assembly and Test Site  
One Fabrication Site  
Available in Extreme (–40°C to 150°C)  
Temperature Range  
(1)  
Device Information(1)  
Extended Product Life Cycle  
Extended Product-Change Notification  
Product Traceability  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TLC2274-HT  
TSSOP (14)  
6.60 mm × 5.10 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Texas Instruments' high temperature products  
use highly-optimized silicon (die) solutions with  
design and process enhancements to  
Maximum Peak-to-Peak Output Voltage  
vs Supply Voltage  
16  
maximize performance over extended  
temperatures. All devices are characterized  
and qualified for 1000 hours continuous  
operating life at maximum rated temperature.  
T
A
= 25°C  
14  
12  
10  
8
I
= 50 µA  
O
I
O
= 500 µA  
6
4
10  
| − Supply Voltage (V)  
DD  
12  
14  
16  
6
8
4
|V  
(1) Custom temperature ranges available  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
Table of Contents  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 17  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application ................................................. 19  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics, VDD = 5 V......................... 5  
6.6 Operating Characteristics, VDD = 5 V ....................... 6  
6.7 Electrical Characteristics, VDD± = ±5 V ..................... 7  
6.8 Operating Characteristics, VDD± = ±5 V.................... 8  
6.9 Typical Characteristics............................................ 10  
Detailed Description ............................................ 17  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 Device and Documentation Support ................. 23  
11.1 Trademarks........................................................... 23  
11.2 Electrostatic Discharge Caution............................ 23  
11.3 Glossary................................................................ 23  
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 23  
7
4 Revision History  
DATE  
REVISION  
NOTES  
January 2015  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
 
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
5 Pin Configuration and Functions  
V
DD+  
Q3  
Q6  
Q9  
Q12  
Q14  
Q16  
IN+  
IN−  
OUT  
C1  
R5  
Q1  
Q4  
Q13  
Q15  
Q17  
D1  
Q2  
R3  
Q5  
R4  
Q7  
Q8  
Q10  
Q11  
R1  
R2  
V
DD−  
Figure 1. Equivalent Schematic (Each Amplifier)  
Table 1. Actual Device Component Count(1)  
COMPONENT  
Transistors  
Resistors  
TLC2274  
76  
52  
18  
6
Diodes  
Capacitors  
(1) Includes both amplifiers and all ESD, bias, and trim circuitry  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
8
UNIT  
V
VDD+  
VDD–  
VID  
VI  
Supply voltage(2)  
Supply voltage(2)  
Differential input voltage(3)  
Input voltage(2)  
–8  
V
–16  
VDD– – 0.3  
–5  
16  
V
Any input  
Any input  
VDD+  
5
V
II  
Input current  
mA  
mA  
mA  
mA  
IO  
Output current  
–50  
50  
Total current into VDD+  
Total current out of VDD−  
Duration of short-circuit current at (or below) 25°C(4)  
Operating free-air temperature  
–50  
50  
–50  
50  
Unlimited  
TA  
–40  
–65  
150  
260  
150  
°C  
°C  
°C  
Lead temperature 1.6 mm (1/16 inch) from case for 10 s  
Storage temperature  
Tstg  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD–  
.
(3) Differential voltages are at IN+ with respect to IN–. Excessive current will flow if input is brought below VDD– – 0.3 V.  
(4) The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation  
rating is not exceeded.  
6.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
All pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±2.2  
VDD−  
VDD−  
40  
MAX  
UNIT  
VDD±  
VI  
Supply voltage  
±8  
DD+ 1.5  
DD+ 1.5  
150  
V
V
Input voltage  
V
V
VIC  
TA  
Common-mode input voltage  
Operating free-air temperature  
V
°C  
6.4 Thermal Information  
TLC2274  
PW  
THERMAL METRIC(1)  
UNIT  
14 PINS  
106.0  
35.5  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
47.6  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.4  
ψJB  
47.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
6.5 Electrical Characteristics, VDD = 5 V  
at specified free-air temperature, VDD = 5 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
2500  
3000  
UNIT  
25°C  
300  
VIO  
Input offset voltage  
μV  
Full range  
Temperature coefficient of  
input offset voltage  
αVIO  
25°C to 125°C  
25°C  
2
μV/°C  
Input offset voltage long-term  
drift(2)  
VIC = 0 V,  
VO = 0 V,  
VDD± = ±2.5 V,  
RS = 50 Ω  
0.002  
0.5  
μV/mo  
25°C  
Full range  
25°C  
60  
IIO  
Input offset current  
Input bias current  
pA  
pA  
V
7000  
1
IIB  
Full range  
25°C  
0 to 4  
0.3 to 4.2  
Common-mode input voltage  
range  
VICR  
RS = 50 Ω  
|VIO| 5 mV  
Full range  
25°C  
0 to 3.5  
IOH = 20 μA  
IOH = 200 μA  
4.99  
4.93  
25°C  
4.85  
4.84  
4.25  
4.20  
VOH  
High-level output voltage  
Low-level output voltage  
Full range  
25°C  
V
4.65  
IOH = 1 mA  
VIC = 2.5 V,  
VIC = 2.5 V,  
Full range  
25°C  
IOL = 50 μA  
0.01  
0.09  
25°C  
0.15  
0.16  
1.5  
IOL = 500 μA  
VOL  
Full range  
25°C  
V
0.9  
35  
VIC = 2.5 V,  
IOL = 5 mA  
Full range  
25°C  
1.6  
10  
8
RL = 10 kΩ(3)  
RL = 1 MΩ(3)  
Large-signal differential voltage VIC = 2.5 V,  
amplification  
AVD  
Full range  
25°C  
V/mV  
VO = 1 V to 4 V,  
175  
1012  
Differential input resistance  
rid  
ri  
25°C  
Ω
Ω
Common-mode input  
resistance  
1012  
8
25°C  
25°C  
Common-mode input  
capacitance  
f = 10 kHz,  
N package  
ci  
pF  
zo  
Closed-loop output impedance f = 1 MHz,  
AV = 10  
25°C  
25°C  
140  
75  
Ω
VIC = 0 V to 2.7 V,  
VO = 2.5 V,  
RS = 50 Ω  
70  
69  
80  
80  
CMRR Common-mode rejection ratio  
dB  
dB  
Full range  
25°C  
VDD = 4.4 V to 16 V,  
VIC = VDD/2,  
95  
Supply voltage rejection ratio  
kSVR  
(ΔVDD/ΔVIO  
)
No load  
No load  
Full range  
25°C  
4.4  
6
6
IDD  
Supply current  
VO = 2.5 V,  
mA  
Full range  
(1) Full range is 40°C to 150°C for thisl part.  
(2) Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to  
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
(3) Referenced to 2.5 V  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
6.6 Operating Characteristics, VDD = 5 V  
at specified free-air temperature, VDD = 5 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
2.3  
TYP  
MAX  
UNIT  
VO = 0.5 V to 2.5 V,  
RL = 10 kΩ(2)  
25°C  
Full range  
25°C  
3.6  
CL = 100 pF(2)  
SR  
Vn  
Slew rate at unity gain  
V/μs  
1.2  
f = 10 Hz  
50  
9
Equivalent input noise voltage  
nV/Hz  
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
1
Peak-to-peak equivalent input  
noise voltage  
VN(pp)  
In  
μV  
25°C  
1.4  
Equivalent input noise current  
25°C  
0.6  
fA/Hz  
VO = 0.5V to 2.5V,  
AV = 1  
0.0013%  
0.004%  
0.03%  
RL = 10 kΩ,  
THD + Total harmonic distortion plus  
AV = 10  
25°C  
(2)  
f = 20 kHz  
N
noise  
AV = 100  
RL = 10 kΩ(2)  
Gain-bandwidth product  
f = 10 kHz,  
25°C  
25°C  
2.18  
MHz  
MHz  
CL = 100 pF(2)  
BOM  
Maximum output-swing  
bandwidth  
VO(PP) = 2V,  
AV = 1,  
1
RL = 10 kΩ(2)  
CL = 100 pF(2)  
AV = -1,  
To 0.1%  
1.5  
Step = 0.5V to 2.5V,  
RL = 10 kΩ(2)  
CL = 100 pF(2)  
ts  
Settling time  
25°C  
μs  
To 0.01%  
2.6  
φm  
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
50°  
10  
RL = 10 kΩ  
CL = 100 pF(2)  
dB  
(1) Full range is 40°C to 150°C for this part.  
(2) Referenced to 2.5 V  
6
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
6.7 Electrical Characteristics, VDD± = ±5 V  
at specified free-air temperature, VDD± = ±5 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
2500  
3000  
UNIT  
25°C  
300  
VIO  
Input offset voltage  
μV  
Full range  
Temperature coefficient of  
input offset voltage  
αVIO  
25°C to 125°C  
25°C  
2
μV/°C  
Input offset voltage long-  
term drift(2)  
VIC = 0 V,  
RS = 50 Ω  
0.002  
0.5  
μV/mo  
VO = 0 V  
25°C  
Full range  
25°C  
60  
7000  
60  
IIO  
Input offset current  
Input bias current  
pA  
pA  
V
1
IIB  
Full range  
25°C  
7000  
5 to 4  
5.3 to 4.2  
Common-mode input  
voltage range  
VICR  
RS = 50 Ω  
|VIO| 5 mV  
Full range  
25°C  
5 to 3.5  
IO = 20 μA  
4.99  
4.93  
25°C  
4.85  
4.84  
4.25  
4.20  
IO = 200 μA  
Maximum positive peak  
output voltage  
VOM+  
Full range  
25°C  
V
4.65  
IO = 1 mA  
VIC = 0 V,  
VIC = 0 V,  
Full range  
25°C  
IO = 50 μA  
4.99  
4.91  
25°C  
4.85  
4.85  
3.5  
3.45  
20  
IO = 500 μA  
Maximum negative peak  
output voltage  
VOM-  
Full range  
25°C  
V
4.1  
VIC = 0 V,  
VO = ±4 V,  
IO = 5 mA  
Full range  
25°C  
50  
RL = 10 kΩ  
RL = 1 MΩ  
Large-signal differential  
voltage amplification  
AVD  
Full range  
25°C  
16  
V/mV  
300  
Differential input  
resistance  
1012  
rid  
ri  
25°C  
25°C  
25°C  
25°C  
Ω
Ω
Common-mode input  
resistance  
1012  
8
Common-mode input  
capacitance  
f = 10 kHz,  
f = 1 MHz,  
N package  
AV = 10  
ci  
pF  
Ω
Closed-loop output  
impedance  
zo  
130  
80  
VIC = -5 V to 2.7 V,  
VO = 0 V,  
RS = 50 Ω  
25°C  
Full range  
25°C  
75  
73  
80  
80  
Common-mode rejection  
ratio  
CMRR  
kSVR  
IDD  
dB  
dB  
VDD = ±2.2 V to ±8 V,  
VIC = 0V,  
95  
Supply voltage rejection  
ratio (ΔVDD/ΔVIO  
)
No load  
No load  
Full range  
25°C  
4.4  
6
6
Supply current  
VO = 0 V,  
mA  
Full range  
(1) Full range is 40°C to 150°C for this part.  
(2) Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to  
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
6.8 Operating Characteristics, VDD± = ±5 V  
at specified free-air temperature, VDD± = ±5 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
2.3  
TYP  
MAX  
UNIT  
VO = ±2.3 V,  
RL = 10 kΩ  
CL = 100 pF  
25°C  
Full range  
25°C  
3.6  
SR  
Vn  
Slew rate at unity gain  
V/μs  
1.2  
f = 10 Hz  
50  
9
Equivalent input noise  
voltage  
nV/Hz  
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
1
Peak-to-peak equivalent  
input noise voltage  
VN(pp)  
μV  
25°C  
1.4  
Equivalent input noise  
current  
In  
25°C  
0.6  
fA/Hz  
AV = 1  
0.0011%  
0.004%  
0.03%  
VO = ±2.3 V,  
f = 20 kHz,  
RL = 10 kΩ  
Total harmonic distortion  
plus noise  
THD + N  
AV = 10  
25°C  
AV = 100  
RL = 10 kΩ  
f = 10 kHz,  
CL = 100 pF  
Gain-bandwidth product  
25°C  
25°C  
2.25  
MHz  
MHz  
BOM  
Maximum output-swing  
bandwidth  
VO(PP) = 4.6 V,  
RL = 10 kΩ  
AV = 1,  
CL = 100 pF  
0.54  
1.5  
AV = -1,  
To 0.1%  
Step = -2.3 V to 2.3 V,  
RL = 10 kΩ  
CL = 100 pF  
ts  
Settling time  
25°C  
μs  
To 0.01%  
3.2  
φm  
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
52°  
10  
RL = 10 kΩ,  
CL = 100 pF  
dB  
(1) Full range is 40°C to 150°C for this part.  
1000  
500  
Electromigration Fail Mode  
300  
200  
100  
50  
30  
20  
10  
5
3
2
1
110  
120  
130  
140  
150  
160  
170  
180  
D006  
Continuous TJ (°C)  
A. See data sheet for Absolute Maximum Ratings and minimum Recommended Operating Conditions.  
B. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect  
life).  
Figure 2. TLC2274EPWRQ1 Operating Life Derating Chart  
8
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
R2 = 0.831049146721252  
Continuous TJ (°C)  
Figure 3. Estimated Wire Bond Life  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
6.9 Typical Characteristics  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.  
1
0.5  
0
20  
15  
10  
V
= 5 V  
992 Amplifiers From  
2 Wafer Lots  
DD  
T
= 25°C  
R = 50 Ω  
S
A
V
DD  
=
2.5 V  
−0.5  
−1  
5
0
−1  
0
1
2
3
4
5
−1.6 −1.2 −0.8 −0.4  
0
0.4  
0.8  
1.2  
1.6  
V
IC  
− Common-Mode Voltage − V  
V
IO  
− Input Offset V oltage − mV  
Figure 5. Input Offset Voltage vs Common-Mode Voltage  
Figure 4. Distribution of TLC2274 Input Offset Voltage  
1
12  
T
= 25°C  
= 50 Ω  
A
V
= 5 V  
DD  
10  
8
R
S
T
A
= 25°C  
= 50 Ω  
R
S
0.5  
6
4
2
0
|V | 5mV  
IO  
0
− 2  
− 4  
−0.5  
−1  
− 6  
− 8  
− 10  
−6 −5 −4 −3 −2 −1  
0
1
2
3
4
5
2
3
4
5
6
7
8
V
IC  
− Common-Mode Voltage − V  
|V  
| − Supply Voltage − V  
DD  
Figure 6. Input Offset Voltage vs Common-Mode Voltage  
Figure 7. Input Voltage vs Supply Voltage  
6
5
V
DD  
= 5 V  
V
DD  
= 5 V  
4
3
5
4
3
|V | 5mV  
IO  
2
1
2
0
1
0
−1  
−75 − 50 − 25  
0
25  
50  
75  
100 125  
0
1
2
3
4
T
A
− Free-Air Temperature − °C  
I
− High-Level Output Current − mA  
OH  
TA = 25°C  
Figure 9. High-Level Output Voltage vs High-Level Output  
Current  
Figure 8. Input Voltage vs Free-Air Temperature  
10  
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
 
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
Typical Characteristics (continued)  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.  
1.4  
1.2  
1
1.2  
V
V
= 5 V  
DD  
V
= 5 V  
DD  
= 2.5 V  
IC  
T
A
= 25°C  
1
V
IC  
= 0 V  
0.8  
0.6  
0.4  
0.2  
0
V
IC  
= 1.25 V  
0.8  
0.6  
0.4  
0.2  
0
V
IC  
= 2.5 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
I
OL  
− Low-Level Output Current − mA  
I
OL  
− Low-Level Output Current − mA  
TA = 25°C  
Figure 11. Low-Level Output Voltage vs Low-Level Output  
Current  
Figure 10. Low-Level Output Voltage vs Low-Level Output  
Current  
5
−3.8  
V
DD  
= 5 V  
V
V
=
5 V  
DD  
= 0 V  
IC  
−4  
4
−4.2  
−4.4  
−4.6  
3
2
−4.8  
−5  
1
0
1
2
3
4
5
6
0
1
2
3
4
5
I
O
− Output Current − mA  
|I | − Output Current − mA  
O
TA = 25°C  
TA = 25°C  
Figure 13. Maximum Negative Peak Output Voltage vs  
Output Current  
Figure 12. Maximum Positive Peak Output Voltage vs  
Output Current  
16  
10  
R
= 10 kΩ  
= 25°C  
L
V
ID  
= −100 mV  
9
8
7
6
5
4
3
2
1
T
A
12  
8
V
DD  
= 5 V  
4
V
DD  
= 5 V  
0
V
ID  
= 100 mV  
−4  
−8  
V
= 0 V  
O
T
A
= 25°C  
0
10 k  
100 k  
1 M  
10 M  
2
3
4
5
6
7
8
f − Frequency − Hz  
|V  
| − Supply Voltage − V  
DD  
Figure 14. Maximum Peak-to-Peak Output Voltage vs  
Frequency  
Figure 15. Short-Circuit Output Current vs Supply Voltage  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
Typical Characteristics (continued)  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.  
5
4
3
2
5
V
DD  
= 5 V  
V
= 5 V  
DD  
T = 25°C  
A
T
A
= 25°C  
= 10 kΩ  
= 2.5 V  
R
L
= 10 kΩ  
R
V
L
V
IC  
= 0 V  
3
IC  
1
−1  
1
−3  
−5  
0
−800  
0
250 500 750 1000  
−1000 −750 −500 −250  
800  
− Differential Input V oltage − µV  
1200  
−400  
0
400  
V
ID  
− Differential Input V oltage − µV  
V
ID  
Figure 17. Output Voltage vs Differential Input Voltage  
Figure 16. Output Voltage vs Differential Input Voltage  
1000  
80  
180°  
V
DD  
= 5 V  
V
=
1 V  
O
R
C
= 10 kΩ  
= 100 pF  
= 25°C  
L
T
A
= 25°C  
L
135°  
90°  
45°  
0°  
60  
40  
T
A
100  
10  
1
V
DD  
= 5 V  
20  
V
DD  
= 5 V  
0
−20  
−40  
−45°  
−90°  
0.1  
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
R
L
− Load Resistance − k Ω  
f − Frequency − Hz  
Figure 18. Large-Signal Differential Voltage Amplification vs  
Load Resistance  
Figure 19. Large-Signal Differential Voltage Amplification  
and Phase Margin vs Frequency  
80  
100  
70  
180°  
V
= 5 V  
DD  
R
C
= 10 kΩ  
= 100 pF  
= 25°C  
L
50  
135°  
90°  
45°  
0°  
L
60  
40  
20  
T
A
30  
20  
10  
7
5
0
3
2
−20  
−45°  
−90°  
1
−40  
-50 -25  
0
25  
50  
75 100 125 150 175 200  
1 k  
10 k  
100 k  
1 M  
10 M  
Free-Air Temperature, TA (°C)  
f − Frequency − Hz  
D003  
VDD = 5 V  
VIC = 2.5 V  
VO = 1 to 4 V  
RL = 10 kΩ  
Figure 20. Large-Signal Differential Voltage Amplification  
and Phase Margin vs Frequency  
Figure 21. Large-Signal Differential Voltage Amplification vs  
Free-Air Temperature  
12  
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
Typical Characteristics (continued)  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.  
1000  
100  
V
= 5 V  
DD  
70  
50  
T
A
= 25°C  
30  
20  
100  
10  
A
= 100  
V
10  
7
A
= 10  
= 1  
V
5
3
2
1
A
V
1
0.1  
-50 -25  
0
25  
50  
75 100 125 150 175 200  
100  
1 k  
10 k 100 k  
f − Frequency − Hz  
1 M  
Free-Air Temperature, TA (°C)  
D004  
VDD = ±5 V  
VIC = 2.5 V  
VO = ±4 V  
RL = 10 kΩ  
Figure 23. Output Impedance vs Frequency  
Figure 22. Large-Signal Differential Voltage Amplification vs  
Free-Air Temperature  
1000  
100  
80  
60  
40  
20  
0
T
A
= 25°C  
V
= 5 V  
DD  
T
A
= 25°C  
V
= 5 V  
DD  
100  
10  
V
= 5 V  
DD  
A
V
= 100  
A
A
= 10  
= 1  
V
1
V
0.1  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 25. Common-Mode Rejection Ratio vs Frequency  
Figure 24. Output Impedance vs Frequency  
102  
100  
98  
100  
V
T
= 5 V  
VDD = 5 V  
VDD = ±5 V  
DD  
= 25°C  
A
80  
60  
40  
20  
0
96  
k
SVR+  
94  
92  
k
SVR−  
90  
88  
86  
-50  
−20  
10  
0
50  
100  
150  
200  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
Free-Air Temperature, TA (°C)  
D005  
f − Frequency − Hz  
Figure 26. Common-Mode Rejection Ratio vs Free-Air  
Temperature  
Figure 27. Supply-Voltage Rejection Ratio vs Frequency  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
Typical Characteristics (continued)  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.  
100  
80  
60  
40  
20  
0
110  
105  
100  
95  
V
=
5 V  
DD  
T
A
= 25°C  
k
SVR+  
k
SVR−  
90  
-50  
−20  
10  
0
50  
100  
150  
200  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
Free-Air Temperature, TA (°C)  
D002  
f − Frequency − Hz  
VDD± = ±2.2 to ±8 V  
VO = 0 V  
Figure 29. Supply-Voltage Rejection Ratio vs Free-Air  
Temperature  
Figure 28. Supply-Voltage Rejection Ratio vs Frequency  
5
5
4
3
2
1
0
V
A
= 5 V  
DD  
65±  
SR+  
= −1  
V
T
A
= 25°C  
4
3
2
SR −  
SR +  
1
0
-50  
0
50  
100  
150  
200  
10  
100  
1 k  
10 k  
Free-Air Temperature, TA (°C)  
C
L
− Load Capacitance − pF  
D001  
VDD = 5 V  
RL = 10 kΩ  
CL = 100 pF  
AV = 1  
Figure 30. Slew Rate vs Load Capacitance  
Figure 31. Slew Rate vs Free-Air Temperature  
5
5
V
= 5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
= −1  
V
= 5 V  
DD  
DD  
R
C
T
R
C
T
= 10 kΩ  
= 100 pF  
= 25°C  
= −1  
4
3
L
L
L
L
4
3
2
A
A
A
V
A
V
2
1
0
− 1  
− 2  
1
0
− 3  
− 4  
− 5  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
t − Time − µs  
t − Time − µs  
Figure 33. Inverting Large-Signal Pulse Response  
Figure 32. Inverting Large-Signal Pulse Response  
14  
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
Typical Characteristics (continued)  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.  
5
4
3
2
5
4
3
2
1
0
V
= 5 V  
DD  
V
= 5 V  
= 10 kΩ  
= 100 pF  
= 1  
DD  
R
C
T
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
L
R
C
L
L
L
A
A
V
A
V
T
A
= 25°C  
−1  
−2  
−3  
−4  
1
0
−5  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
t − Time − µs  
t − Time − µs  
Figure 35. Voltage-Follower Large-Signal Pulse Response  
Figure 34. Voltage-Follower Large-Signal Pulse Response  
100  
2.65  
V
= 5 V  
DD  
V
= 5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
= −1  
DD  
R
C
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
L
R
C
L
L
L
2.6  
2.55  
2.5  
T
A
T
A
A
V
50  
A
V
0
−50  
2.45  
2.4  
−100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4.5  
5 5.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
t − Time − µs  
t − Time − µs  
Figure 36. Inverting Small-Signal Pulse Response  
Figure 37. Inverting Small-Signal Pulse Response  
100  
2.65  
V
DD  
= 5 V  
V
= 5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
DD  
R
C
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
R
C
T
L
L
L
L
T
A
2.6  
2.55  
2.5  
A
A
V
50  
0
A
V
−50  
2.45  
2.4  
−100  
0
0.5  
t − Time − µs  
1
1.5  
0
0.5  
1
1.5  
t − Time − µs  
Figure 39. Voltage-Follower Small-Signal Pulse Response  
Figure 38. Voltage-Follower Small-Signal Pulse Response  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
Typical Characteristics (continued)  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= 5 V  
DD  
V
= 5 V  
DD  
T
A
= 25°C  
= 20 Ω  
T
A
= 25°C  
= 20 Ω  
R
S
R
S
10  
100  
1 k  
10 k  
10  
100  
1 k  
10 k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 40. Equivalent Input Noise Voltage vs Frequency  
Figure 41. Equivalent Input Noise Voltage vs Frequency  
1000  
100  
V
= 5 V  
DD  
Calculated Using  
Ideal Pass-Band Filter  
Lower Frequency = 1 Hz  
f = 0.1 Hz to 10 Hz  
= 25°C  
750  
500  
250  
0
T
A
T = 25°C  
A
10  
−250  
−500  
1
−750  
0.1  
−1000  
1
10  
100  
1 k  
10 k  
100 k  
0
2
4
6
8
10  
f − Frequency − Hz  
t − Time − s  
Figure 42. Noise Voltage Over a 10-s Period  
Figure 43. Integrated Noise Voltage vs Frequency  
1
2.5  
f = 10 kHz  
V
T
= 5 V  
DD  
R
C
= 10 kΩ  
= 100 pF  
= 25°C  
= 25°C  
= 10 kΩ  
L
A
R
L
L
2.4  
2.3  
2.2  
T
A
0.1  
0.01  
A
= 100  
V
A
= 10  
= 1  
V
A
V
0.001  
2.1  
2
0.0001  
0
1
2
3
4
5
6
7
8
100  
1 k  
10 k  
100 k  
|V  
| − Supply Voltage − V  
DD  
f − Frequency − Hz  
Figure 45. Gain-Bandwidth Product vs Supply Voltage  
Figure 44. Total Harmonic Distortion Plus Noise vs  
Frequency  
16  
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
7 Detailed Description  
7.1 Overview  
The TLC2274 device exhibits rail-to-rail output performance for increased dynamic range in single- or split -  
supply applications. These device offers comparable ac performance while having better noise, input offset  
voltage and power dissipation than existing CMOS operational amplifiers. The TLC2274 device, exhibiting high  
input impedance and low noise, is excellent for small signal conditioning for high-impedance sources, such as  
piezoelectric transducers. It offers increased output dynamic range, lower noise voltage, and lower input offset  
voltage. This enhanced feature set allows the device to be used in a wider range of applications.  
7.2 Functional Block Diagram  
Vsupply+  
Vin+  
+
Vout  
Vin±  
±
Vsupply±  
7.3 Feature Description  
These devices use the Texas Instruments silicon gate LinCMOS™ process, giving them stable input offset  
voltages, very high input impedances, and extremely low input offset and bias currents. In addition, the rail-to-rail  
output feature with single- or split-supplies, makes this device a great choice when interfacing with analog-to-  
digital converters (ADCs).  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Macromodel Information  
Macromodel information provided was derived using Microsim Parts, the model generation software used with  
(1)  
Microsim PSpice. The Boyle macromodel and subcircuit in Figure 46 are generated using the TLC227x typical  
electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following  
key parameters can be generated to a tolerance of 20% (in most cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
Open-loop voltage amplification  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
(1) G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE  
Journal of Solid-State Circuits, SC-9, 353 (1974).  
18  
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
Application Information (continued)  
99  
DIN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
+
VIP  
90  
RSS  
ISS  
RO2  
+
+
VB  
DIP  
RP  
2
VIN  
HLIM  
+
10  
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLC227x 1 2 3 4 5  
RD1  
60  
60  
8
7
3
10  
60  
9
112.653E3  
122.653E3  
550  
C1  
C2  
11  
6
1214E−12  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
VC 3 53 DC .78  
VE  
VLIM  
VLP  
VLN  
760.00E−12  
53DX  
5DX  
91DX  
90DX  
3DX  
0POLY (2) (3,0) (4,) 0 .5 .5  
0POLY (5) VB VC VE VLP VLN 0  
DC  
DE  
DLP  
DLN  
DP  
5
9950  
54  
90  
92  
4
44.310E3  
99925.9E3  
4−.5  
0DC 0  
EGND  
FB  
99  
99  
54  
7
91  
0
4DC .78  
8DC 0  
0DC 1.9  
92DC 9.4  
+ 984.9E3 −1E6 1E6 1E6 −1E6  
GA 011 12 377.0E−6  
GCM 0 6 10 99 134E−9  
6
ISS  
HLIM  
J1  
J2  
R2  
3
10DC 216.OE−6  
0VLIM 1K  
210 JX  
110 JX  
9100.OE3  
.MODEL DX D (IS=800.0E−18)  
.MODEL JX PJF (IS=1.500E−12BETA=1.316E-3  
+ VTO=−.270)  
.ENDS  
90  
11  
12  
6
Figure 46. Boyle Macromodels and Subcircuit  
8.2 Typical Application  
The TLC2274 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 48 and  
Figure 49 show its ability to drive loads up to 1000 pF while maintaining good gain and phase margins (Rnull =  
0).  
50 kΩ  
V
DD+  
50 kΩ  
R
null  
V
I
+
C
L
V
DD−/GND  
Figure 47. Typical Application Schematic  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLC2274-HT  
 
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
Typical Application (continued)  
8.2.1 Design Requirements  
As per Equation 1:  
Table 2. Design Parameters  
Improvement in Phase Margin  
UGBW (kHz)  
1000  
R null (Ω)  
CL (pF)  
1000  
0
0
7.15  
17.43  
32.12  
1000  
20  
1000  
1000  
50  
1000  
1000  
100  
1000  
8.2.2 Detailed Design Procedure  
A smaller series resistor (Rnull) at the output of the device (see Figure 47) improves the gain and phase margins  
when driving large capacitive loads. Figure 48 and Figure 49 show the effects of adding series resistances of 10  
Ω, 50 Ω, 100 Ω, 200 Ω, and 500 Ω. The addition of this series resistor has two effects: the first is that it adds a  
zero to the transfer function and the second is that it reduces the frequency of the pole associated with the  
output load in the transfer function.  
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To  
calculate the improvement in phase margin, Equation 1 can be used.  
Δφm1 = tan–1 (2 × π × UGBW × Rnull × CL)  
where  
Δφm1 = Improvement in phase margin  
UGBW = Unity-gain bandwidth frequency  
Rnull = Output series resistance  
CL = Load capacitance  
(1)  
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 47). To use  
equation 1, UGBW must be approximated from Figure 47. Using Equation 1 alone overestimates the  
improvement in phase margin, as illustrated in Figure 51. The overestimation is caused by the decrease in the  
frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall  
improvement in phase margin. Using Figure 47, with Equation 1 enables the designer to choose the appropriate  
output series resistance to optimize the design of circuits driving large capacitance loads.  
8.2.3 Application Curves  
TA = 25°C  
75°  
60°  
15  
12  
9
V
=
5 V  
DD  
V
A
= 5 V  
DD  
T
A
= 25°C  
= 1  
= 10 kΩ  
= 25°C  
V
R
= 100 Ω  
= 50 Ω  
null  
R
L
T
A
R
null  
45°  
30°  
R
= 20 Ω  
null  
6
10 kΩ  
V
15°  
0°  
3
DD +  
10 kΩ  
R
null  
R
= 0  
null  
V
I
C
L
R
= 10 Ω  
null  
V
DD −  
0
10  
100  
1000  
10000  
10  
100 1000  
− Load Capacitance − pF  
10000  
C
L
C
L
− Load Capacitance − pF  
Figure 49. Gain Margin vs Load Capacitance  
Figure 48. Phase Margin vs Load Capacitance  
20  
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
 
 
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
TA = 25°C  
25  
20  
15  
200  
175  
150  
R
= 500  
null  
125  
100  
R
= 100 Ω  
null  
10  
5
R
= 200 Ω  
null  
75  
50  
R
= 50 Ω  
= 10 Ω  
null  
R
null  
25  
0
0
10  
1
2
3
4
5
10  
1
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
C
− Load Capacitance (pF)  
L
C
L
− Load Capacitance (pF)  
Figure 51. Overestimation of Phase Margin vs Load  
Capacitance  
Figure 50. Unity-Gain Bandwidth vs Load Capacitance  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
SGLS416 JANUARY 2015  
www.ti.com  
9 Power Supply Recommendations  
TLC2274 operates from ±2.2- to ±8-V. In addition, key parameters are assured over the specified temperature  
range, –55°C to 125°C. Parameters which vary significantly with operating voltage or temperature are shown in  
the Typical Characteristics.  
10 Layout  
10.1 Layout Guidelines  
The TLC2274 has very-low offset voltage and drift. To achieve highest performance, optimize circuit layout and  
mechanical conditions. Offset voltage and drift can be degraded by small thermoelectric potentials at the  
operational amplifier inputs. Connections of dissimilar metals generate thermal potential, which can degrade the  
ultimate performance of the TLC2274. Cancel these thermal potentials by assuring that they are equal in both  
input terminals.  
Keep the thermal mass of the connections made to the two input terminals similar.  
Locate heat sources as far as possible from the critical input circuitry.  
Shield operational amplifier and input circuitry from air currents such as cooling fans.  
10.2 Layout Example  
Figure 52. Board Layout Example  
22  
Submit Documentation Feedback  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: TLC2274-HT  
TLC2274-HT  
www.ti.com  
SGLS416 JANUARY 2015  
11 Device and Documentation Support  
11.1 Trademarks  
LinCMOS is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLC2274-HT  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jun-2015  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
TLC2274EPWRQ1  
ACTIVE  
TSSOP  
PW  
14  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 150  
2274EQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jun-2015  
OTHER QUALIFIED VERSIONS OF TLC2274-HT :  
Catalog: TLC2274  
Automotive: TLC2274-Q1  
Enhanced Product: TLC2274-EP  
Military: TLC2274M  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jan-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC2274EPWRQ1  
TSSOP  
PW  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jan-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TLC2274EPWRQ1  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2015, Texas Instruments Incorporated  

相关型号:

TLC2274ID

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IDG4

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IDR

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IDRG4

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IN

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274INE4

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IPW

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IPWG4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IPWLE

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IPWR

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274IPWRG4

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274M

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI