TLC2274MDREP [TI]

Advanced LinCMOS RAIL-TO-RAIL OPWEATIONAL AMPLIFIERS; 高级LinCMOS轨到轨放大器OPWEATIONAL
TLC2274MDREP
型号: TLC2274MDREP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanced LinCMOS RAIL-TO-RAIL OPWEATIONAL AMPLIFIERS
高级LinCMOS轨到轨放大器OPWEATIONAL

运算放大器 放大器电路 光电二极管
文件: 总34页 (文件大小:678K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
SGLS131B − JULY 2002 − REVISED DECEMBER 2003  
D
Controlled Baseline  
− One Assembly/Test Site, One Fabrication  
Site  
D
D
D
D
D
D
D
Low Noise . . . 9 nV/Hz Typ at f = 1 kHz  
Low Input Bias Current . . . 1 pA Typ  
Fully Specified for Both Single-Supply and  
Split-Supply Operation  
D
D
Extended Temperature Performance of  
−55°C to 125°C  
Enhanced Diminishing Manufacturing  
Sources (DMS) Support  
Common-Mode Input Voltage Range  
Includes Negative Rail  
High-Gain Bandwidth . . . 2.2 MHz Typ  
High Slew Rate . . . 3.6 V/µs Typ  
Low Input Offset Voltage  
D
D
D
Enhanced Product Change Notification  
Qualification Pedigree  
Output Swing Includes Both Supply Rails  
950 µV Max at T = 25°C  
A
Component qualification in accordance with JEDEC and industry  
standards to ensure reliable operation over an extended  
temperature range. This includes, but is not limited to, Highly  
Accelerated Stress Test (HAST) or biased 85/85, temperature  
cycle, autoclave or unbiased HAST, electromigration, bond  
intermetallic life, and mold compound life. Such qualification  
testing should not be viewed as justifying use of this component  
beyond specified performance and environmental limits.  
D
Macromodel Included  
D
Performance Upgrades for the TS272,  
TS274, TLC272, and TLC274  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
description  
16  
T
A
= 25°C  
The TLC2272A and TLC2274A are dual and  
quadruple operational amplifiers from Texas  
Instruments. Both devices exhibit rail-to-rail  
output performance for increased dynamic range  
in single- or split-supply applications. The  
TLC227xA family offers 2 MHz of bandwidth and  
3 V/µs of slew rate for higher speed applications.  
These devices offer comparable ac performance  
while having better noise, input offset voltage, and  
power dissipation than existing CMOS  
operational amplifiers. The TLC227xA has a noise  
voltage of 9 nV/Hz, two times lower than  
competitive solutions.  
14  
12  
10  
8
I
O
= 50 µA  
I
O
=
500 µA  
6
The TLC227xA, exhibiting high input impedance  
and low noise, is excellent for small-signal  
conditioning for high-impedance sources, such as  
piezoelectric transducers. Because of the micro-  
power dissipation levels, these devices work well  
in hand-held monitoring and remote-sensing  
applications. In addition, the rail-to-rail output  
feature, with single- or split-supplies, makes this  
4
4
6
8
10  
12  
14  
16  
|V  
DD  
| − Supply Voltage − V  
family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the  
TLC227xA family has a maximum input offset voltage of 950 µV. This family is fully characterized at 5 V and  
5 V.  
The TLC2272/4 also makes great upgrades to the TLC272/4 or TS272/4 in standard designs. They offer  
increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set  
allows them to be used in a wider range of applications.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments.  
ꢀꢐ  
CopyrighCtopy2r0ig0h2t 22000033, Texas Instruments Incorporated  
ꢠ ꢐ ꢡ ꢠꢑ ꢎꢪ ꢝꢜ ꢍ ꢥꢥ ꢣꢍ ꢞ ꢍ ꢟ ꢐ ꢠ ꢐ ꢞ ꢡ ꢦ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
IO  
max At  
25°C  
SMALL  
OUTLINE  
(D)  
T
A
TSSOP  
(PW)  
950 µV  
2.5 mV  
TLC2272AMDREP  
TLC2272MDREP  
TLC2272AMPWREP  
TLC2272MPWREP  
−55°C to 125°C  
−55°C to 125°C  
950 µV  
2.5 mV  
TLC2274AMDREP  
TLC2274MDREP  
TLC2274AMPWREP  
TLC2274MPWREP  
TLC2272  
D OR PW PACKAGE  
(TOP VIEW)  
TLC2274  
D OR PW PACKAGE  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
1OUT  
1IN−  
1IN+  
/GND  
V
4OUT  
4IN−  
4IN+  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
DD+  
2OUT  
2IN−  
2IN+  
V
V
V
DD+  
DD−  
DD−  
2IN+  
2IN−  
3IN+  
3IN−  
3OUT  
2OUT  
8
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
equivalent schematic (each amplifier)  
V
DD+  
Q3  
Q6  
Q9  
Q12  
Q14  
Q16  
IN+  
IN−  
OUT  
C1  
R5  
Q1  
Q4  
Q13  
Q15  
Q17  
D1  
Q2  
R3  
Q5  
R4  
Q7  
Q8  
Q10  
Q11  
R1  
R2  
V
DD−  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
Transistors  
TLC2272  
TLC2274  
38  
26  
9
76  
52  
18  
6
Resistors  
Diodes  
Capacitors  
3
Includes both amplifiers and all ESD, bias, and trim circuitry  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8 V  
DD+  
DD−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
ID  
− 0.3 V to V  
I
DD−  
DD+  
Input current, I (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
DD+  
DD−  
Total current out of V  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
A
Storage temperature range (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or PW package . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V  
.
DD+  
DD −  
2. Differential voltages are at IN+ with respect to IN. Excessive current will flow if input is brought below V  
− 0.3 V.  
DD−  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
4. Long term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction  
of overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
D-8  
D-14  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
4.2 mW/°C  
5.6 mW/°C  
464 mW  
608 mW  
336 mW  
448 mW  
337 mW  
494 mW  
273 mW  
364 mW  
145 mW  
190 mW  
105 mW  
950 mW  
PW-8  
PW-14  
525 mW  
700 mW  
recommended operating conditions  
MIN  
MAX  
UNIT  
V
Supply voltage, V  
DD  
2.2  
8
Input voltage, V  
V
V
V
V
1.5  
V
I
DD−  
DD+  
Common-mode input voltage, V  
IC  
1.5  
V
DD−  
−55  
DD+  
Operating free-air temperature, T  
125  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TLC2272-EP electrical characteristics at specified free-air temperature, V  
otherwise noted)  
= 5 V (unless  
DD  
TLC2272-EP  
TLC2272A-EP  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP MAX  
300 2500  
3000  
25°C  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
25°C  
to 125°C  
α
VIO  
2
2
µV/°C  
Input offset voltage long-  
term drift (see Note 5)  
V
IC  
V
O
= 0 V,  
= 0 V,  
V
R
=
2.5 V,  
DD  
S
25°C  
0.002  
0.002  
0.5  
µV/mo  
= 50 Ω  
25°C  
Full range  
25°C  
0.5  
1
60  
800  
60  
60  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
IB  
Full range  
800  
800  
0
0.3  
0
0.3  
25°C  
to 4 to 4.2  
to 4 to 4.2  
Common-mode input  
voltage  
V
R
= 50 Ω,  
|V | ≤ 5 mV  
IO  
V
V
ICR  
OH  
S
0
0
Full range  
to 3.5  
to 3.5  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.93  
4.99  
4.93  
OH  
4.85  
4.85  
4.25  
4.25  
4.85  
4.85  
4.25  
4.25  
= 200 µA  
High-level output  
voltage  
OH  
Full range  
25°C  
V
4.65  
4.65  
I
= 1 mA  
= 2.5 V,  
= 2.5 V,  
OH  
Full range  
25°C  
V
I
I
= 50 µA  
0.01  
0.09  
0.01  
0.09  
IC  
IC  
OL  
25°C  
0.15  
0.15  
1.5  
0.15  
0.15  
1.5  
V
= 500 µA  
OL  
Full range  
25°C  
V
A
Low-level output voltage  
V
OL  
0.9  
35  
0.9  
35  
V
IC  
= 2.5 V,  
I
= 5 mA  
OL  
Full range  
25°C  
1.5  
1.5  
10  
10  
10  
10  
Large-signal  
differential voltage  
amplification  
R
R
= 10 kΩ  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
V/mV  
VD  
175  
175  
= 1 mΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
id  
Common-mode input  
resistance  
12  
10  
12  
10  
i
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 1 MHz,  
P package  
8
8
pF  
i
Closed-loop output  
impedance  
A
V
= 10  
140  
75  
140  
75  
o
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode rejection  
ratio  
V
V
= 0 V to 2.7 V,  
= 2.5 V,  
IC  
O
CMRR  
dB  
dB  
R
= 50 Ω  
S
95  
95  
Supply-voltage rejection  
V
DD  
V
IC  
= 4.4 V to 16 V,  
k
SVR  
ratio (V V  
DD/ IO  
)
= V  
/2,  
No load  
Full range  
25°C  
DD  
2.2  
3
3
2.2  
3
3
I
Supply current  
V
O
= 2.5 V,  
No load  
mA  
DD  
Full range  
Full range is −55°C to 125°C for M level part.  
Referenced to 2.5 V  
NOTE 5: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TLC2272-EP operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2272-EP  
TLC2272A-EP  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX MIN  
TYP  
MAX  
25°C  
2.3  
3.6  
2.3  
3.6  
Slew rate at  
unity gain  
V
R
= 1.25 V to 2.75 V,  
‡, ‡  
C = 100 pF  
L
O
L
SR  
V/µs  
Full  
range  
= 10 kΩ  
1.7  
1.7  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
50  
9
50  
9
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
1
1
V
I
µV  
NPP  
1.4  
1.4  
Equivalent input  
noise current  
25°C  
0.6  
0.6  
fA/Hz  
n
A
= 1  
0.0013%  
0.004%  
0.03%  
0.0013%  
0.004%  
0.03%  
V
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
O
A
V
= 10  
= 100  
f = 20 kHz,  
R
THD + N  
25°C  
= 10 k,  
L
A
V
Gain-bandwidth  
product  
f = 10 kHz,  
C
R
= 10 k,  
L
25°C  
25°C  
2.18  
1
2.18  
1
MHz  
MHz  
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
A
= 1,  
= 100 pF  
O(PP)  
V
B
OM  
= 10 k,  
C
L
L
A
= 1,  
V
To 0.1%  
1.5  
2.6  
1.5  
2.6  
Step = 0.5 V to 2.5 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 10 k,  
= 100 pF  
L
L
To 0.01%  
Phase margin at  
unity gain  
50°  
50°  
φ
m
25°C  
25°C  
R
= 10 k,  
C
= 100 pF  
L
L
Gain margin  
10  
10  
dB  
Full range is −55°C to 125°C for M level part.  
Referenced to 2.5 V  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TLC2272-EP electrical characteristics at specified free-air temperature, V  
otherwise noted)  
=
5 V (unless  
DD  
TLC2272-EP  
TLC2272A-EP  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
µV  
A
MIN  
TYP  
MAX  
2500  
3000  
MIN  
TYP  
MAX  
25°C  
300  
300  
950  
V
IO  
Input offset voltage  
Full range  
1500  
Temperature coefficient of  
input offset voltage  
25°C  
to 125°C  
α
VIO  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 5)  
V
= 0 V,  
= 50 Ω  
V
O
= 0 V,  
IC  
R
25°C  
0.002  
0.5  
0.002  
0.5  
µV/mo  
S
25°C  
Full range  
25°C  
60  
800  
60  
60  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
Full range  
800  
800  
−5  
5.3  
−5  
5.3  
25°C  
to 4 to 4.2  
to 4 to 4.2  
Common-mode input  
voltage  
V
R
= 50 Ω,  
S
|V | ≤ 5 mV  
IO  
V
V
ICR  
−5  
to 3.5  
−5  
to 3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.93  
4.99  
4.93  
O
4.85  
4.85  
4.25  
4.25  
4.85  
4.85  
4.25  
4.25  
= 200 µA  
Maximum positive peak  
output voltage  
O
Full range  
25°C  
V
OM+  
4.65  
4.65  
I
O
= 1 mA  
Full range  
25°C  
V
= 0 V,  
= 0 V,  
I
I
= 50 µA  
4.99  
4.99  
IC  
IC  
O
25°C  
4.85 4.91  
4.85 4.91  
4.85  
V
= 500 µA  
Maximum negative peak  
output voltage  
O
Full range 4.85  
V
V
OM−  
25°C  
Full range  
25°C  
3.5  
3.5  
20  
4.1  
50  
3.5  
3.5  
20  
4.1  
V
= 0 V,  
I
O
= 5 mA  
IC  
O
50  
R
R
= 10 kΩ  
= 1 mΩ  
Large-signal differential  
voltage amplification  
L
L
Full range  
25°C  
20  
20  
A
VD  
V
=
4 V  
V/mV  
300  
300  
12  
10  
12  
10  
r
r
Differential input resistance  
25°C  
id  
Common-mode input  
resistance  
12  
10  
12  
10  
25°C  
25°C  
25°C  
i
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 1 MHz,  
P package  
= 10  
8
8
pF  
i
Closed-loop output  
impedance  
A
V
130  
80  
130  
80  
o
25°C  
Full range  
25°C  
75  
75  
80  
80  
75  
75  
80  
80  
Common-mode rejection  
ratio  
V
V
= 5 V to 2.7 V,  
= 0 V,  
IC  
O
CMRR  
dB  
dB  
R = 50 Ω  
S
95  
95  
Supply-voltage rejection  
V
V
=
2.2 V to 8 V,  
DD  
IC  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
= 0 V,  
No load  
Full range  
25°C  
2.4  
3
3
2.4  
3
3
I
Supply current  
V
O
= 2.5 V,  
No load  
mA  
DD  
Full range  
Full range is −55°C to 125°C for M level part.  
NOTE 5: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TLC2272-EP operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2272-EP  
TLC2272A-EP  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX MIN  
TYP  
MAX  
25°C  
2.3  
3.6  
2.3  
3.6  
Slew rate at  
unity gain  
V
C
=
1 V,  
R = 10 k,  
L
O
L
SR  
V/µs  
Full  
range  
= 100 pF  
1.7  
1.7  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
50  
9
50  
9
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
1
1
V
I
µV  
NPP  
1.4  
1.4  
Equivalent input  
noise current  
25°C  
0.6  
0.6  
fA/Hz  
n
A
= 1  
0.0011%  
0.004%  
0.03%  
0.0011%  
0.004%  
0.03%  
V
Total harmonic  
distortion plus  
noise  
V
R
=
2.3 V  
O
L
A
V
= 10  
= 10 kΩ,  
THD + N  
25°C  
f = 20 kHz  
A
= 100  
R = 10 k,  
L
V
Gain-bandwidth f = 10 kHz,  
product  
25°C  
25°C  
2.25  
0.54  
2.25  
0.54  
MHz  
MHz  
C = 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 4.6 V,  
A
= 1,  
= 100 pF  
L
O(PP)  
= 10 k,  
V
B
OM  
C
L
A
= 1,  
V
To 0.1%  
1.5  
3.2  
1.5  
3.2  
Step = 2.3 V to 2.3 V,  
R
C
t
s
Settling time  
25°C  
µs  
= 10 k,  
= 100 pF  
L
L
To 0.01%  
Phase margin at  
unity gain  
52°  
52°  
φ
m
25°C  
25°C  
R
= 10 k,  
C = 100 pF  
L
L
Gain margin  
10  
10  
dB  
Full range is −55°C to 125°C for M level part.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TLC2274-EP electrical characteristics at specified free-air temperature, V  
otherwise noted)  
= 5 V (unless  
DD  
TLC2274-EP  
TLC2274A-EP  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
µV  
A
MIN  
TYP MAX  
MIN  
TYP  
MAX  
25°C  
300 2500  
3000  
300  
950  
V
IO  
Input offset voltage  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
25°C  
to 125°C  
α
VIO  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 5)  
V
V
=
2.5 V,  
V
R
= 0 V,  
= 50 Ω  
S
DD  
= 0 V,  
IC  
25°C  
0.002  
0.5  
0.002  
0.5  
µV/mo  
O
25°C  
Full range  
25°C  
60  
800  
60  
60  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
Full range  
800  
800  
0
0.3  
0
0.3  
25°C  
to 4 to 4.2  
to 4 to 4.2  
Common-mode input  
voltage  
V
R
= 50 Ω,  
|V | ≤ 5 mV  
IO  
V
V
ICR  
OH  
S
0 to  
3.5  
0 to  
3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.99  
OH  
4.85  
4.85  
4.25  
4.25  
4.93  
4.85  
4.85  
4.25  
4.25  
4.93  
= 200 µA  
High-level output  
voltage  
OH  
Full range  
25°C  
V
4.65  
4.65  
I
= 1 mA  
= 2.5 V,  
OH  
Full range  
25°C  
V
IC  
I
I
= 50 µA  
= 5 mA  
0.01  
0.09  
0.01  
0.09  
OL  
25°C  
0.15  
0.15  
1.5  
0.15  
0.15  
1.5  
V
I
= 2.5 V,  
= 500 µA  
IC  
OL  
Low-level output  
voltage  
Full range  
25°C  
V
V
OL  
0.9  
35  
0.9  
35  
V
IC  
= 2.5 V,  
OL  
Full range  
25°C  
1.5  
1.5  
10  
10  
10  
10  
R
R
= 10 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
175  
175  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
id  
Common-mode input  
resistance  
12  
10  
12  
10  
i
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 1 MHz,  
N package  
8
8
pF  
i
Closed-loop output  
impedance  
A
V
= 10  
140  
75  
140  
75  
o
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode  
rejection ratio  
V
IC  
V
O
= 0 V to 2.7 V,  
= 2.5 V,  
CMRR  
dB  
dB  
R
= 50 Ω  
S
95  
95  
Supply-voltage rejection  
V
V
= 4.4 V to 16 V,  
DD  
IC  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
= V  
/2,  
No load  
Full range  
25°C  
DD  
4.4  
6
6
4.4  
6
6
I
Supply current  
V
O
= 2.5 V,  
No load  
mA  
DD  
Full range  
Full range is −55°C to 125°C for M level part.  
Referenced to 2.5 V  
NOTE 5: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TLC2274-EP operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2274-EP  
TLC2274A-EP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX MIN  
TYP  
MAX  
2.3  
3.6  
2.3  
3.6  
25°C  
Slew rate at unity  
gain  
V
R
= 0.5 V to 2.5 V,  
= 10 k,  
C
= 100 pF  
L
O
L
SR  
V/µs  
Full  
range  
1.7  
1.7  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
50  
9
50  
9
Equivalent input  
noise voltage  
V
n
nV/Hz  
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
1
1
V
I
µV  
N(PP)  
1.4  
1.4  
Equivalent input  
noise current  
25°C  
0.6  
0.6  
fA/Hz  
n
A
= 1  
0.0013%  
0.004%  
0.03%  
0.0013%  
0.004%  
0.03%  
V
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
O
A
V
= 10  
= 100  
f = 20 kHz,  
R
THD + N  
25°C  
= 10 kΩ  
L
A
V
Gain-bandwidth  
product  
f = 10 kHz,  
R
= 10 k,  
L
25°C  
25°C  
2.18  
1
2.18  
1
MHz  
MHz  
C
= 100 pF  
L
Maximum out-  
put-swing band-  
width  
V
R
= 2 V,  
= 10 k,  
A
V
= 1,  
O(PP)  
L
B
OM  
C = 100 pF  
L
A
= 1,  
V
To 0.1%  
1.5  
2.6  
1.5  
2.6  
Step = 0.5 V to 2.5 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 10 k,  
= 100 pF  
L
L
To 0.01%  
Phase margin at  
unity gain  
50°  
50°  
φ
m
25°C  
25°C  
C = 100 pF  
L
R
= 10 k,  
L
Gain margin  
10  
10  
dB  
Full range is −55°C to 125°C for M level part.  
Referenced to 2.5 V  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TLC2274-EP electrical characteristics at specified free-air temperature, V  
otherwise noted)  
=
5 V (unless  
DD  
TLC2274-EP  
TLC2274A-EP  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
2500  
3000  
MIN  
TYP  
MAX  
25°C  
300  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient of  
input offset voltage  
25°C  
to 125°C  
α
VIO  
2
2
µV/°C  
Input offset voltage long-  
term drift (see Note 5)  
V
= 0 V,  
= 50 Ω  
V
O
= 0 V,  
IC  
R
25°C  
0.002  
0.5  
0.002  
0.5  
µV/mo  
S
25°C  
Full range  
25°C  
60  
800  
60  
60  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
Full range  
800  
800  
−5  
5.3  
−5  
5.3  
25°C  
to 4 to 4.2  
to 4 to 4.2  
Common-mode input  
voltage  
V
R
= 50 Ω, |V | ≤ 5 mV  
S IO  
V
V
ICR  
−5  
to 3.5  
−5  
to 3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.93  
4.99  
4.93  
O
4.85  
4.85  
4.25  
4.25  
4.85  
4.85  
4.25  
4.25  
= 200 µA  
Maximum positive peak  
output voltage  
O
Full range  
25°C  
V
OM+  
4.65  
4.65  
I
O
= 1 mA  
Full range  
25°C  
V
= 0 V,  
= 0 V,  
I
I
= 50 µA  
4.99  
4.99  
IC  
IC  
O
25°C  
4.85 4.91  
4.85 4.91  
4.85  
V
= 500 µA  
Maximum negative peak  
output voltage  
O
Full range 4.85  
V
OM−  
V
25°C  
Full range  
25°C  
3.5  
3.5  
20  
4.1  
50  
3.5  
3.5  
20  
4.1  
V
= 0 V,  
I
O
= 5 mA  
IC  
O
50  
R
R
= 10 kΩ  
= 1 MΩ  
Large-signal differential  
voltage amplification  
L
L
Full range  
25°C  
20  
20  
A
VD  
V
=
4 V  
V/mV  
300  
300  
12  
10  
12  
10  
r
r
Differential input resistance  
25°C  
id  
Common-mode input  
resistance  
12  
10  
12  
10  
25°C  
25°C  
25°C  
i
Common-mode input  
capacitance  
c
z
f = 10 kHz, N package  
f = 1 MHz, = 10  
8
8
pF  
i
Closed-loop output  
impedance  
A
V
130  
80  
130  
80  
o
25°C  
Full range  
25°C  
75  
75  
80  
80  
75  
75  
80  
80  
Common-mode rejection  
ratio  
V
IC  
V
O
= 5 V to 2.7 V  
CMRR  
dB  
dB  
= 0 V,  
R = 50 Ω  
S
95  
95  
Supply-voltage rejection  
V
V
=
2.2 V to 8 V,  
No load  
DD  
IC  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
= 0 V,  
Full range  
25°C  
4.8  
6
6
4.8  
6
6
I
Supply current  
V
O
= 0 V,  
No load  
mA  
DD  
Full range  
Full range is −55°C to 125°C for M level part.  
NOTE 5: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TLC2274-EP operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2274-EP  
TLC2274A-EP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX MIN  
TYP  
MAX  
25°C  
2.3  
3.6  
2.3  
3.6  
Slew rate at unity  
gain  
V
C
=
2.3 V,  
R = 10 k,  
L
O
L
SR  
V/µs  
Full  
range  
= 100 pF  
1.7  
1.7  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
50  
9
50  
9
Equivalent input  
noise voltage  
V
n
nV/Hz  
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
1
1
V
I
µV  
N(PP)  
1.4  
1.4  
Equivalent input  
noise current  
25°C  
0.6  
0.6  
fA/Hz  
n
A
= 1  
0.0011%  
0.004%  
0.03%  
0.0011%  
0.004%  
0.03%  
V
Total harmonic  
distortion plus  
noise  
V
R
=
2.3 V,  
O
L
A
V
= 10  
= 100  
= 10 kΩ,  
THD + N  
25°C  
f = 20 kHz  
A
V
Gain-bandwidth  
product  
f = 10 kHz,  
R
= 10 k,  
L
25°C  
25°C  
2.25  
0.54  
2.25  
0.54  
MHz  
MHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 4.6 V,  
A
= 1,  
= 100 pF  
L
O(PP)  
= 10 k,  
V
B
OM  
C
L
A
= 1,  
V
To 0.1%  
1.5  
3.2  
1.5  
3.2  
Step = 2.3 V to 2.3 V,  
R
C
t
s
Settling time  
25°C  
µs  
= 10 k,  
= 100 pF  
L
L
To 0.01%  
Phase margin at  
unit gain  
φ
m
25°C  
25°C  
52°  
52°  
R
= 10 k,  
C
= 100 pF  
L
L
Gain margin  
10  
10  
dB  
Full range is −55°C to 125°C for M level part.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Distribution  
vs Common-mode voltage  
1 − 4  
V
Input offset voltage  
IO  
5, 6  
7 − 10  
11  
α
VIO  
Input offset voltage temperature coefficient  
Input bias and input offset current  
Distribution  
I
/I  
vs Free-air temperature  
IB IO  
vs Supply voltage  
vs Free-air temperature  
12  
13  
V
I
Input voltage  
V
V
V
V
V
High-level output voltage  
vs High-level output current  
vs Low-level output current  
vs Output current  
14  
15, 16  
17  
OH  
Low-level output voltage  
OL  
Maximum positive peak output voltage  
Maximum negative peak output voltage  
Maximum peak-to-peak output voltage  
OM+  
OM−  
O(PP)  
vs Output current  
18  
vs Frequency  
19  
vs Supply voltage  
vs Free-air temperature  
20  
21  
I
Short-circuit output current  
Output voltage  
OS  
V
vs Differential input voltage  
22, 23  
24  
O
Large-signal differential voltage amplification vs Load resistance  
Large-signal differential voltage amplification  
vs Frequency  
25, 26  
A
VD  
and phase margin  
Large-signal differential voltage amplification vs Free-air temperature  
27, 28  
29, 30  
z
Output impedance  
vs Frequency  
o
vs Frequency  
vs Free-air temperature  
31  
32  
CMRR  
Common-mode rejection ratio  
vs Frequency  
vs Free-air temperature  
33, 34  
35  
k
Supply-voltage rejection ratio  
Supply current  
SVR  
vs Supply voltage  
vs Free-air temperature  
36, 37  
38, 39  
I
DD  
vs Load capacitance  
vs Free-air temperature  
40  
41  
SR  
Slew rate  
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
42, 43  
44, 45  
46, 47  
48, 49  
50, 51  
52  
V
V
O
vs Frequency  
n
Noise voltage over a 10-second period  
Integrated noise voltage  
vs Frequency  
vs Frequency  
53  
THD + N  
Total harmonic distortion plus noise  
54  
vs Supply voltage  
vs Free-air temperature  
55  
56  
Gain-bandwidth product  
φ
m
Phase margin  
Gain margin  
vs Load capacitance  
vs Load capacitance  
57  
58  
NOTE: For all graphs where V  
DD  
= 5 V, all loads are referenced to 2.5 V.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC2272  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC2272  
INPUT OFFSET VOLTAGE  
20  
15  
10  
20  
15  
10  
891 Amplifiers From  
2 Wafer Lots  
5 V  
= 25°C  
891 Amplifiers From  
2 Wafer Lots  
2.5 V  
= 25°C  
V
=
DD  
V
=
DD  
T
A
T
A
5
0
5
0
−1.6 −1.2 0.8 0.4  
0
0.4  
0.8  
1.2  
1.6  
−1.6 −1.2 0.8 0.4  
0
0.4  
0.8  
1.2  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 1  
Figure 2  
DISTRIBUTION OF TLC2274  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC2274  
INPUT OFFSET VOLTAGE  
20  
15  
10  
20  
15  
10  
992 Amplifiers From  
2 Wafer Lots  
5 V  
992 Amplifiers From  
2 Wafer Lots  
2.5 V  
V
=
DD  
V
=
DD  
5
0
5
0
1.6 1.2 0.8 0.4  
1.6 1.2 0.8 0.4  
0
0.4  
0.8  
1.2  
1.6  
0
0.4  
0.8  
1.2  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 3  
Figure 4  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE VOLTAGE  
1
0.5  
0
1
0.5  
0
V
T
R
= 5 V  
= 25°C  
= 50 Ω  
V
T
R
=
5 V  
DD  
A
S
DD  
A
S
= 25°C  
= 50 Ω  
0.5  
−1  
0.5  
−1  
−1  
0
1
2
3
4
5
−6 −5 −4 −3 −2 1  
0
1
2
3
4
5
V
IC  
− Common-Mode Voltage − V  
V
IC  
− Common-Mode Voltage − V  
Figure 5  
Figure 6  
DISTRIBUTION OF TLC2272  
vs  
DISTRIBUTION OF TLC2272  
vs  
INPUT OFFSET VOLTAGE TEMPERATURE  
INPUT OFFSET VOLTAGE TEMPERATURE  
COEFFICIENT  
COEFFICIENT  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
128 Amplifiers From  
2 Wafer Lots  
128 Amplifiers From  
2 Wafer Lots  
V
= 5 V  
DD  
V
= 2.5 V  
DD  
P Package  
P Package  
25°C to 125°C  
25°C to 125°C  
0
0
−1  
0
1
2
3
4
5
−5 −4 −3 −2  
−1  
0
1
2
3
4
5
−5 −4 −3 −2  
αV − Temperature Coefficient − µV/°C  
IO  
αV − Temperature Coefficient − µV/°C  
IO  
Figure 7  
Figure 8  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC2274  
DISTRIBUTION OF TLC2274  
vs  
vs  
INPUT OFFSET VOLTAGE TEMPERATURE  
INPUT OFFSET VOLTAGE TEMPERATURE  
COEFFICIENT  
COEFFICIENT  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
128 Amplifiers From  
2 Wafer Lots  
128 Amplifiers From  
2 Wafer Lots  
V =  
2.5 V  
N Package  
= 25°C to 125°C  
V
=
2.5 V  
N Package  
= 25°C to 125°C  
DD  
DD  
T
A
T
A
0
0
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
α − Temperature Coefficient − µV/°C  
VIO  
α
VIO  
− Temperature Coefficient − µV/°C  
Figure 9  
Figure 10  
INPUT BIAS AND INPUT OFFSET CURRENT  
INPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
35  
30  
25  
20  
15  
10  
5
12  
10  
8
V
V
V
= 2.5 V  
= 0 V  
= 0 V  
T
R
= 25°C  
= 50 Ω  
DD  
IC  
O
A
S
R
= 50 Ω  
S
6
4
2
I
IB  
|V | 5mV  
IO  
0
− 2  
− 4  
I
IO  
− 6  
− 8  
0
− 10  
25  
45  
65  
85  
105  
125  
2
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
|V  
DD  
| − Supply Voltage − V  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
INPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT  
5
4
6
5
4
3
V
DD  
= 5 V  
V
DD  
= 5 V  
3
T
A
= 125°C  
|V | 5mV  
IO  
2
T
A
= 25°C  
1
2
T
A
= 55°C  
0
1
0
−1  
−75 − 50 − 25  
0
25  
50  
75  
100 125  
0
1
2
3
4
T
A
− Free-Air Temperature − °C  
I
− High-Level Output Current − mA  
OH  
Figure 13  
Figure 14  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1.2  
1
1.4  
1.2  
1
V
V
= 5 V  
= 2.5 V  
V
T
= 5 V  
= 25°C  
DD  
IC  
DD  
A
V
IC  
= 0 V  
T
A
= 125°C  
= 25°C  
0.8  
0.6  
0.4  
0.2  
0
V
IC  
= 1.25 V  
0.8  
0.6  
0.4  
0.2  
0
T
A
T
= 55°C  
A
V
IC  
= 2.5 V  
0
1
2
3
4
5
0
1
2
3
4
5
6
I
− Low-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OL  
OL  
Figure 15  
Figure 16  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE  
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
5
4
3.8  
−4  
V
DD  
= 5 V  
V
V
=
5 V  
DD  
IC  
= 0 V  
T
A
= 125°C  
T
= 55°C  
= 25°C  
4.2  
4.4  
4.6  
A
T
= 25°C  
A
T
A
3
2
T
A
= 55°C  
T
A
= 125°C  
4.8  
−5  
1
0
1
2
3
4
5
6
0
1
2
3
4
5
|I | − Output Current − mA  
O
I
O
− Output Current − mA  
Figure 17  
Figure 18  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
10  
9
8
7
6
5
4
3
2
1
0
16  
12  
8
R
T
A
= 10 kΩ  
= 25°C  
L
V
= 100 mV  
ID  
V
DD  
= 5 V  
4
V
DD  
= 5 V  
0
V
= 100 mV  
ID  
−4  
−8  
V
T
A
= 0 V  
= 25°C  
O
2
3
4
5
6
7
8
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
|V  
DD  
| − Supply Voltage − V  
Figure 19  
Figure 20  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
15  
11  
7
5
4
3
2
V
V
= 0 V  
DD  
O
V
= 5 V  
= 25°C  
= 10 kΩ  
= 2.5 V  
DD  
=
5 V  
T
A
V
ID  
= 100 mV  
R
L
V
IC  
−3  
−1  
−5  
V
ID  
= 100 mV  
1
0
75 50 25  
0
25  
50  
75 100 125  
800  
1200  
800  
400  
0
400  
T
A
− Free-Air Temperature °C  
V
ID  
− Differential Input Voltage − µV  
Figure 21  
Figure 22  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
LOAD RESISTANCE  
1000  
5
3
V
= 5 V  
= 25°C  
= 10 kΩ  
= 0 V  
DD  
V
T
A
=
1 V  
O
T
A
= 25°C  
R
L
V
IC  
100  
10  
1
V
DD  
= 5 V  
1
V
DD  
= 5 V  
−1  
−3  
−5  
0.1  
0.1  
1
10  
100  
0
250 500 750 1000  
1000 750 500 250  
V
ID  
− Differential Input Voltage − µV  
R
− Load Resistance − kΩ  
L
Figure 23  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
R
C
= 5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
DD  
L
L
T
A
40  
90°  
45°  
0°  
20  
0
20  
40  
45°  
90°  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 25  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
40  
20  
180°  
135°  
V
R
C
= 5 V  
DD  
L
L
= 10 kΩ  
= 100 pF  
= 25°C  
T
A
90°  
45°  
0°  
0
20  
45°  
90°  
40  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 26  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1 k  
100  
10  
1 k  
100  
10  
V
V
V
=
5 V  
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
DD  
IC  
O
= 0 V  
IC  
O
=
4 V  
R
= 1 MΩ  
L
R
= 1 MΩ  
L
R
= 10 kΩ  
L
R
= 10 kΩ  
L
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature °C  
T
A
− Free-Air Temperature °C  
Figure 27  
Figure 28  
OUTPUT IMPEDANCE  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
= 5 V  
= 25°C  
V
T
= 5 V  
= 25°C  
DD  
A
DD  
A
A
= 100  
= 10  
V
A
V
= 100  
A
V
A
= 10  
= 1  
V
1
1
A
V
= 1  
A
V
0.1  
0.1  
100  
1 k  
10 k  
100 k  
1 M  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 29  
Figure 30  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
100  
80  
60  
40  
20  
0
90  
86  
82  
78  
74  
70  
T
A
= 25°C  
V
= 5 V  
DD  
V
= 5 V  
DD  
V
= 5 V  
DD  
V
IC  
= 5 V to 2.7 V  
V
DD  
= 5 V  
V
IC  
= 0 V to 2.7 V  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
75 50 25  
0
25  
50  
75 100 125  
f − Frequency − Hz  
T
A
− Free-Air Temperature °C  
Figure 31  
Figure 32  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
T
A
= 5 V  
= 25°C  
V
=
5 V  
T = 25°C  
A
DD  
DD  
k
k
SVR+  
SVR+  
k
SVR−  
k
SVR−  
20  
20  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 33  
Figure 34  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
TLC2272  
SUPPLY CURRENT  
SUPPLY VOLTAGE REJECTION RATIO  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
3
2.4  
1.8  
1.2  
0.6  
0
110  
105  
100  
V
= 0 V  
V
V
=
2.2 V to 8 V  
O
DD  
= 0 V  
No Load  
O
T
= 25°C  
A
T
= 55°C  
A
95  
90  
85  
T
= 125°C  
A
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75 100 125  
|V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature °C  
Figure 35  
Figure 36  
TLC2274  
SUPPLY CURRENT  
TLC2272  
SUPPLY CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
3
6
4.8  
3.6  
2.4  
1.2  
0
V
= 0 V  
O
V
V
= 5 V  
DD  
= 0 V  
No Load  
O
2.4  
V
V
= 5 V  
= 2.5 V  
DD  
O
1.8  
1.2  
0.6  
0
T
= 25°C  
A
T
A
= 55°C  
T
A
= 125°C  
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75 100 125  
|V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature °C  
Figure 37  
Figure 38  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
TLC2274  
SUPPLY CURRENT  
vs  
SLEW RATE  
vs  
LOAD CAPACITANCE  
FREE-AIR TEMPERATURE  
5
4
3
2
1
0
6
4.8  
3.6  
2.4  
V
= 5 V  
DD  
= 1  
A
V
V
= 5 V  
V
A
DD  
= 0 V  
T
= 25°C  
O
SR −  
V
V
= 5 V  
DD  
= 2.5 V  
O
SR +  
1.2  
0
10  
100  
1 k  
10 k  
75 50 25  
0
25  
50  
75 100 125  
C
− Load Capacitance − pF  
L
T
− Free-Air Temperature °C  
A
Figure 39  
Figure 40  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
INVERTING LARGE-SIGNAL PULSE RESPONSE  
5
5
4
3
2
1
0
V
= 5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
DD  
R
C
L
L
SR −  
4
3
2
T
A
A
V
SR +  
V
R
C
= 5 V  
= 10 kΩ  
= 100 pF  
= 1  
DD  
L
L
1
0
A
V
75 50 25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
9
T
A
− Free-Air Temperature °C  
t − Time − µs  
Figure 41  
Figure 42  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL PULSE RESPONSE  
INVERTING LARGE-SIGNAL PULSE RESPONSE  
5
5
4
3
2
1
0
V
= 5 V  
DD  
V
R
C
= 5 V  
= 10 kΩ  
= 100 pF  
= 1  
DD  
L
L
R
C
T
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
4
3
L
L
A
A
V
A
A
V
T
= 25°C  
2
1
0
− 1  
− 2  
− 3  
− 4  
− 5  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
t − Time − µs  
t − Time − µs  
Figure 43  
Figure 44  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL PULSE RESPONSE  
INVERTING SMALL-SIGNAL PULSE RESPONSE  
5
2.65  
V
DD  
= 5 V  
V
R
C
= 5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
= −1  
DD  
L
L
R
C
T
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
4
3
L
L
A
2.6  
T
A
A
V
A
V
2
1
2.55  
2.5  
0
−1  
−2  
−3  
−4  
2.45  
2.4  
−5  
0
1
2
3
4
5
6
7
8
9
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4.5  
5 5.5  
4
t − Time − µs  
t − Time − µs  
Figure 45  
Figure 46  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
INVERTING SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
100  
2.65  
2.6  
V
R
C
= 5 V  
DD  
L
L
V
= 5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
DD  
L
L
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
R
C
T
T
A
A
A
50  
V
A
V
2.55  
2.5  
0
50  
2.45  
2.4  
−100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
t − Time − µs  
t − Time − µs  
Figure 47  
Figure 48  
EQUIVALENT INPUT NOISE VOLTAGE  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL PULSE RESPONSE  
vs  
FREQUENCY  
100  
50  
0
60  
V
R
C
= 5 V  
DD  
L
L
V
= 5 V  
= 25°C  
= 20 Ω  
DD  
= 10 kΩ  
= 100 pF  
= 25°C  
= 1  
T
A
R
S
50  
40  
30  
20  
10  
0
T
A
A
V
−50  
−100  
0
0.5  
1
1.5  
10  
100  
1 k  
10 k  
t − Time − µs  
f − Frequency − Hz  
Figure 49  
Figure 50  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
NOISE VOLTAGE  
FREQUENCY  
OVER A 10 SECOND PERIOD  
60  
50  
40  
30  
20  
10  
0
1000  
750  
500  
250  
0
V
= 5 V  
DD  
f = 0.1 Hz to 10 Hz  
V
T
R
= 5 V  
= 25°C  
= 20 Ω  
DD  
A
S
T
A
= 25°C  
250  
500  
−750  
−1000  
0
2
4
6
8
10  
10  
100  
1 k  
10 k  
t − Time − s  
f − Frequency − Hz  
Figure 51  
Figure 52  
TOTAL HARMONIC DISTORTION PLUS NOISE  
INTEGRATED NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
1
0.1  
100  
Calculated Using  
V
= 5 V  
= 25°C  
= 10 kΩ  
DD  
Ideal Pass-Band Filter  
Lower Frequency = 1 Hz  
T
A
R
L
T = 25°C  
A
10  
A
V
= 100  
0.01  
A
= 10  
= 1  
V
1
A
V
0.001  
0.1  
0.0001  
100  
1 k  
10 k  
100 k  
1
10  
100  
1 k  
10 k  
100 k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 53  
Figure 54  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢃ ꢄ ꢅ ꢆꢇ ꢂ ꢃ ꢃ ꢄꢅ ꢊ ꢆꢇꢈ  
ꢓꢈ ꢇ ꢕꢊꢀ ꢖ ꢓꢗ ꢊ ꢁ ꢊꢒ ꢈꢁ ꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊ ꢖ ꢁꢆꢀꢓ ꢆꢕꢊꢖ ꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
GAIN-BANDWIDTH PRODUCT  
vs  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
3
2.8  
2.6  
2.4  
2.2  
2
2.5  
2.4  
2.3  
2.2  
2.1  
2
V
= 5 V  
DD  
f = 10 kHz  
f = 10 kHz  
R
C
= 10 kΩ  
= 100 pF  
= 25°C  
L
L
R
C
= 10 kΩ  
= 100 pF  
L
L
T
A
1.8  
1.6  
1.4  
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75 100 125  
|V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature °C  
Figure 55  
Figure 56  
GAIN MARGIN  
vs  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
15  
12  
9
75°  
60°  
V
T
=
5 V  
V
= 5 V  
= 1  
= 10 kΩ  
= 25°C  
DD  
A
DD  
= 25°C  
A
V
R
= 100 Ω  
= 50 Ω  
R
null  
L
T
A
R
null  
45°  
30°  
R
= 20 Ω  
null  
6
10 kΩ  
3
V
15°  
0°  
DD +  
10 kΩ  
R
null  
R
= 0  
null  
V
I
C
L
R
= 10 Ω  
null  
V
DD −  
0
10  
100  
1000  
10000  
10  
100  
1000  
10000  
C
− Load Capacitance − pF  
C
− Load Capacitance − pF  
L
L
Figure 57  
Figure 58  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄꢅ ꢆꢇ ꢉ ꢀ ꢂ ꢃꢃ ꢄꢅ ꢊꢆ ꢇꢈ  
ꢓ ꢈꢇꢕ ꢊꢀ ꢖꢓ ꢗꢊꢁ ꢊꢒ ꢈ ꢁꢖ ꢘꢖ ꢇꢕ ꢔ  
  
ꢕꢊꢖ ꢁꢆ ꢀꢓ ꢆꢕ ꢊ ꢖꢁ  
SGLS131A − JULY 2002 − REVISED NOVEMBER 2003  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 6) and subcircuit in Figure 59 were generated using  
the TLC227x typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
DIN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DIP  
RP  
2
VIP  
VIN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLC227x 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
60  
60  
8
112.653E3  
122.653E3  
550  
C1  
11  
6
1214E−12  
C2  
760.00E−12  
53DX  
DC  
5
7
9950  
DE  
54  
90  
92  
4
5DX  
3
44.310E3  
99925.9E3  
4−.5  
DLP  
DLN  
DP  
91DX  
10  
60  
9
90DX  
3DX  
0DC 0  
EGND  
FB  
99  
99  
0POLY (2) (3,0) (4,) 0 .5 .5  
VC 3 53 DC .78  
VE  
0POLY (5) VB VC VE VLP VLN 0  
54  
7
91  
0
4DC .78  
8DC 0  
0DC 1.9  
92DC 9.4  
+ 984.9E3 −1E6 1E6 1E6 −1E6  
VLIM  
VLP  
VLN  
GA  
6
011 12 377.0E−6  
GCM 0 6 10 99 134E−9  
ISS  
HLIM  
J1  
J2  
R2  
3
10DC 216.OE−6  
0VLIM 1K  
210 JX  
110 JX  
9100.OE3  
.MODEL DX D (IS=800.0E−18)  
90  
11  
12  
6
.MODEL JX PJF (IS=1.500E−12BETA=1.316E-3  
+ VTO=−.270)  
.ENDS  
Figure 59. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
ꢜꢑ  
ꢡ ꢐ ꢟ ꢑꢏ ꢝ ꢎꢋ ꢢꢏ ꢠ ꢝꢞ ꢣꢞ ꢝ ꢋꢢꢏ ꢠ ꢠ ꢝ ꢨ ꢧꢑꢏ ꢧ ꢠꢧ ꢐ ꢟꢝ ꢋꢐꢥ ꢞ ꢐꢥ ꢍꢠꢐ ꢡꢦ  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2007  
PACKAGING INFORMATION  
Orderable Device  
TLC2272AMDREP  
TLC2274AMDREP  
TLC2274AMPWREP  
TLC2274MDREP  
TLC2274MPWREP  
V62/03618-01XE  
V62/03618-02UE  
V62/03618-02YE  
V62/03618-04UE  
V62/03618-04YE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
TSSOP  
SOIC  
D
PW  
D
14  
14  
14  
14  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
SOIC  
PW  
D
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
SOIC  
PW  
D
14  
14  
14  
14  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
SOIC  
PW  
D
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TLC2274MFK

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274MFKB

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274MJ

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274MJB

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274MN

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274MPWREP

Advanced LinCMOS RAIL-TO-RAIL OPWEATIONAL AMPLIFIERS
TI

TLC2274MW

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274MWB

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274Q

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274QD

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274QDR

Advanced LinCMOSTM RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLC2274QDRG4Q1

ADVANCED LINCMOS RAIL-TO -RAIL OPERATIONAL AMPLIFIERS
TI