TLC2551CDGKR [TI]

12 位 400kSPS ADC,串行输出、TMS320 兼容(最高 10MHz)和单通道 | DGK | 8 | 0 to 70;
TLC2551CDGKR
型号: TLC2551CDGKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12 位 400kSPS ADC,串行输出、TMS320 兼容(最高 10MHz)和单通道 | DGK | 8 | 0 to 70

光电二极管 转换器 模数转换器
文件: 总23页 (文件大小:366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
Maximum Throughput . . . 400 KSPS  
INL/DNL: ±1 LSB Max, SINAD: 72 dB,  
f = 20 kHz, SFDR: 85 dB, f = 20 kHz  
– TLC2552 – Dual Channels With  
Autosweep  
– TLC2555 – Single Channel With  
Pseudo-Differential Input  
i
i
SPI/DSP-Compatible Serial Interfaces With  
SCLK up to 20 MHz  
Optimized DSP Mode – Requires FS Only  
Low Power With Autopower Down  
– Operating Current : 3.5 mA  
Autopower Down: 8 µA  
Single 5 V Supply  
Rail-to-Rail Analog Input With 500 kHz BW  
Three Options Available:  
– TLC2551 – Single Channel Input  
Small 8-Pin MSOP and SOIC Packages  
PACKAGE TOP VIEW  
TLC2551  
TLC2552  
TLC2555  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CS  
SDO  
FS  
CS/FS  
SDO  
CS/FS  
SDO  
V
V
SCLK  
V
SCLK  
REF  
REF  
REF  
GND  
AIN  
V
GND  
AIN0  
V
GND  
V
DD  
DD  
DD  
SCLK  
AIN1  
AIN(+)  
AIN(–)  
description  
The TLC2551/2552/2555 are a family of high performance, 12-bit, low power, miniature 1.5 µs, CMOS  
analog-to-digital converters (ADC). The TLC255x family uses a 5 V supply. Devices are available with single,  
dual, or single pseudo-differential inputs. The TLC2551 has a 3-state output chip select (CS), serial output clock  
(SCLK), and serial data output (SDO) that provides a direct 3-wire interface to the serial port of most popular  
host microprocessors (SPI interface). When interfaced with a DSP, a frame sync signal (FS) is used to indicate  
the start of a serial data frame. The TLV2552/55 have a shared CS/FS terminal.  
TLC2551/2/5 are designed to operate with very low power consumption. The power saving feature is further  
enhanced with an autopower-down mode. This product family features a high-speed serial link to modern host  
processors with SCLK up to 20 MHz. TLC255x family uses the SCLK as the conversion clock, thus providing  
synchronous operation allowing a minimum conversion time of 1.5 µs using 20 MHz SCLK.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
8-MSOP  
(DGK)  
8-SOIC  
(D)  
TLC2551CDGK  
TLC2552CDGK  
TLC2555CDGK  
TLC2551IDGK  
TLC2552IDGK  
TLC2555IDGK  
0°C to 70°C  
TLC2551ID  
TLC2552ID  
TLC2555ID  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
functional block diagram  
TLC2551  
TLC2552  
V
DD  
V
DD  
REF  
AIN  
REF  
AIN0  
Mux  
LOW POWER  
12-BIT  
AIN1  
S/H  
SDO  
SAR ADC  
LOW POWER  
SAR ADC  
S/H  
SDO  
Conversion  
Clock  
Conversion  
Clock  
SCLK  
CS  
CONTROL  
LOGIC  
CONTROL  
LOGIC  
SCLK  
CS/FS  
FS  
GND  
GND  
TLC2555  
V
DD  
REF  
AIN (+)  
AIN (–)  
LOW POWER  
12-BIT  
SAR ADC  
S/H  
SDO  
Conversion  
Clock  
CONTROL  
LOGIC  
SCLK  
CS/FS  
GND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
Terminal Functions  
TLC2551  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AIN  
NO.  
4
I
I
Analog input channel  
CS  
1
Chip select. A high-to-low transition on the CS input removes SDO from 3-state within a maximum setup time.  
CS can be used as the FS pin when a dedicated serial port is used. If TLC2551 is attached to a dedicated DSP serial  
port, this terminal can be grounded.  
FS  
7
3
5
8
I
I
DSP frame sync input. Indication of the start of a serial data frame. Tie this terminal to V if not used.  
DD  
GND  
SCLK  
SDO  
Ground return for the internal circuitry. Unless otherwise noted, all voltage measurements are with respect to GND.  
Output serial clock. This terminal receives the serial SCLK from the host processor.  
I
O
The 3-state serial output for the A/D conversion result. SDO is kept in the high-impedance state until CS falling edge.  
The output format is MSB first.  
When FS is not used (FS = 1 at the falling edge of CS): The MSB is presented to the SDO pin after CS falling edge  
and output data is valid on the falling edge of SCLK.  
When FS is used (FS = 0 at the falling edge of CS): The MSB is presented to the SDO pin after the falling edge of  
FS or the falling edge of CS (whichever happens first). Output data is valid on the falling edge of SCLK. (This is  
typically used with an active FS from a DSP).  
V
V
6
2
I
I
Positive supply voltage  
External reference input  
DD  
REF  
TLC2552/55  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AIN0 /AIN(+)  
AIN1/AIN (–)  
CS/FS  
NO.  
4
5
1
I
I
I
Analog input channel 0. (positive input for TLV2555)  
Analog input channel 1 (inverted input for TLV2555)  
Chip select/frame sync. A high-to-low transition on the CS/FS removes SDO from 3-state within a maximum delay  
time.  
GND  
SCLK  
SDO  
3
7
8
I
I
Groundreturn for the internal circuitry. Unless otherwise noted, all voltage measurements are with respect to GND.  
Output serial clock. This terminal receives the serial SCLK from the host processor.  
O
The 3-state serial output for the A/D conversion result. SDO is kept in the high-impedance state when CS/FS is  
high and presents output data after the CS/FS falling edge until the LSB is presented. The output format is MSB  
th  
first. SDO returns to the Hi-Z state after the 16 SCLK. Output data is valid on the falling SCLK edge.  
V
V
6
2
I
I
Positive supply voltage  
External reference input  
DD  
REF  
detailed description  
The TLC2551/2/5 are successive approximation (SAR) ADCs utilizing a charge redistribution DAC. Figure 1  
shows a simplified version of the ADC.  
The sampling capacitor acquires the signal on AIN during the sampling period. When the conversion process  
starts, theSARcontrollogicandchargeredistributionDACareusedtoaddandsubtractfixedamountsofcharge  
from the sampling capacitor to bring the comparator into a balanced condition. When the comparator is  
balanced, the conversion is complete and the ADC output code is generated.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
detailed description (continued)  
Charge  
Redistribution  
DAC  
_
AIN  
Control  
Logic  
ADC Code  
+
GND/AIN(–)  
Figure 1. Simplified SAR Circuit  
serial interface  
OUTPUT DATA FORMAT  
MSB  
LSB  
D15–D4  
Conversion result (OD11–OD0)  
D3–D0  
Don’t care  
The output data format is binary (unipolar straight binary).  
binary  
Zero scale code = 000h, Vcode = GND  
Full scale code = FFFh, Vcode = VREFP – 1 LSB  
pseudo-differential inputs  
The TLC2555 operates in pseudo-differential mode. The inverted input is available on terminal 5. It can have  
a maximum input ripple of ±0.2 V. This is normally used for ground noise rejection.  
control and timing  
start of the cycle  
TLC2551  
When FS is not used ( FS = 1 at the falling edge of CS), the falling edge of CS is the start of the cycle. Output  
data changes on the rising edge of SCLK. This is typically used for a microcontroller with SPI interface,  
although it can also be used for a DSP. The microcontroller SPI interface should be programmed for  
CPOL=0 (serial clock reference to ground) and CPHA=1 (data is valid on the falling edge of serial clock).  
When FS is used ( FS is an active signal from a DSP), the falling edge of FS is the start of the cycle. Output  
data changes on the rising edge of SCLK. This is typically used for a TMS320 DSP. If the TLC2551 is  
attached to a dedicated DSP serial port. CS terminal can be grounded.  
TLC2552/5  
The CS and FS inputs are accessed via the same pin (pin 1) on the TLC2552 and TLC2555. The cycle is started  
by the falling edge transition provided by either a CS (interfacing with a SPI interface microcontroller) signal or  
FS (interfacing with a TMS320 DSP) signal. Timing for the TLC2555 is much like the TLC2551, with the  
exception of the CS/FS line.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
detailed description (continued)  
TLC2552 channel MUX reset cycle  
The TLC2552 uses CS/FS to reset the AIN multiplexer. A short active CS/FS cycle (4–7 SCLKs) resets the MUX  
to AIN0. If the CS/FS cycle is sufficient to complete the conversion (16 SCLKs plus maximum conversion time),  
the MUX toggles to the next channel (see Figure 4 for timing).  
sampling  
th  
The converter sample time is 12 SCLKs beginning on the 5 SCLK received after the converter has received  
an active CS or FS signal (CS/FS for the TLC2552/5).  
conversion  
The TLC2551 completes conversion in the following manner. The conversion is started after the 16th SCLK  
edge. The conversion takes 1.4 µs using 20 MHz SCLK plus 0.1 µs overhead. Enough time (for conversion)  
should be allowed before a rising CS/FS edge so that no conversion is terminated prematurely.  
TLC2552 input channel selection is toggled on each rising CS /FS edge. The MUX channel can be reset to AIN0  
via CS /FS as described in the earlier section and in Figure 5. The input is sampled for 12 SCLKs, converted,  
and the result is presented on SDO during the next cycle. Care should also be taken to allow enough time  
between samples to avoid prematurely terminating the conversion, which occurs on a rising CS /FS transition  
if the conversion is not complete.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
timing diagrams/conversion cycles  
DSP Interface  
1
2
3
4
5
6
12  
13  
14  
15  
16  
1
SCLK  
CS  
FS  
t
t
(sample)  
(powerdown)  
t
c
OD11  
OD10 OD9  
OD8  
OD7  
OD6  
OD0  
SDO  
Figure 2. TLC2551 DSP Mode/FS Active  
µP Interface  
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
1
SCLK  
CS  
FS  
t
t
(powerdown)  
(sample)  
t
c
OD11 OD10 OD9  
OD8  
OD7  
OD6  
OD5  
OD0  
SDO  
Figure 3. TLC2551 Microcontroller Mode/(SPI, CPOL = 0, CPHA = 1)  
1
2
3
4
5
1
4
12  
16  
1
4
12  
16  
SCLK  
CS/FS  
>8 SCLKs, MUX Toggles to AIN1  
<8 SCLKs, MUX  
Resets to AIN0  
t
(powerdown)  
t
t
(sample)  
(sample)  
t
t
c
c
AIN0 Result  
OD11  
OD0  
SDO  
Figure 4. TLC2552 Timing  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
timing diagrams/conversion cycles (continued)  
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
1
SCLK  
CS/FS  
t
t
(powerdown)  
(sample)  
t
c
OD11  
OD10  
OD9  
OD8  
OD7  
OD6  
OD5  
OD0  
OD10  
OD9  
OD11  
SDO  
Figure 5. TLC2555 Timing  
use CS as FS input  
When interfacing the TLC2551 with the TMS320 DSP, the FSR signal from the DSP may be connected to the  
CS input if this is the only device on the serial port. This will save one output terminal from the DSP. (Output data  
changes on the falling edge of SCLK. Default for TLC2552 and TLC2555).  
SCLK and conversion speed  
It takes 14 conversion clocks to complete the conversion. The conversion clock for the TLC2551/2/5 is equal  
to SCLK/2. This yields a minimum conversion time of 1.4 µs plus 0.1 µs overhead. These devices can operate  
with an SCLK up to 20 MHz for the supply voltage range specified. The total conversion time is 14× (1/10M)  
+16× (1/20M)+ 0.1 µs} = 2.3 µs for a 20 MHz SCLK. This is the minimum cycle time for an active CS or CS/FS  
signal. If violated, the conversion will terminate, invalidating the next data output cycle.  
reference voltage  
An external reference is applied via VREF. The voltage level applied to this pin establishes the upper limit of  
the analog inputs to produce a full-scale reading. The value of V  
the positive supply or be less than GND, consistent with the specified absolute maximum ratings. The digital  
and the analog input should not exceed  
REF  
output is at full scale when the input signal is equal to or higher than V  
is equal to or lower than GND.  
and at zero when the input signal  
REF  
powerdown and powerup initialization  
Autopower down is built in to the devices in order to reduce power consumption. The wake-up time is fast  
enough to provide power down between each cycle. The power-down state is initiated at the end of conversion  
and wakes up upon a falling edge on CS or FS.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, GND to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6.5 V  
DD  
Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
Reference input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V + 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 150°C  
J
Operating free-air temperature range, T : C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
Supply voltage, V  
DD  
Positive external reference voltage input, V  
2.7  
2
3.3  
5.5  
V
V
V
V
V
(see Note 1)  
V
V
REFP  
DD  
DD  
Analog input voltage (see Note 1)  
0
High level control input voltage, V  
2.1  
IH  
IL  
Low-level control input voltage, V  
0.6  
Setup time, CS falling edge (for 2551) or CS/FS falling edge (for  
2552/55) before first SCLK falling edge, t  
V
= REF = 5.5 V  
40  
ns  
DD  
su(CSL-SCLKL)  
Hold time, CS rising edge after SCLK falling edge, t  
5
0.5  
ns  
h(SCLKL-CSH)  
Delay time, delay from CS falling edge to FS rising edge (t  
7
SCLKs  
SCLKs  
SCLKs  
ns  
d(CSL-FSH)  
Setup time, FS rising edge before SCLK falling edge, t  
0.35  
su(FSH-SCLKL)  
Hold time, FS hold high after SCLK falling edge, t  
h(SCLKL-FSL)  
0.65  
Pulse width CS high time, t  
100  
0.75  
50  
wH(CS)  
wH(FS)  
Pulse width FS high time, t  
SCLKs  
ns  
SCLK cycle time, V  
= 5.5–4.5 V, t  
10000  
0.6  
DD  
Pulse width low time, t  
Pulse width high time, t  
c(SCLK)  
0.4  
SCLKs  
SCLKs  
wL(SCLK)  
0.4  
0.6  
wH(SCLK)  
Hold time, hold from end of conversion to CS high, t  
(EOC is internal, indicates end of  
h(EOC-CSH)  
0.1  
µs  
SCLKs  
°C  
conversion time, t )  
c
Active CS/FS cycle time to reset internal MUX to AIN0, reset cycle TLC2552 only  
4
0
7
70  
85  
TLC2551/2/5C  
Operating free-air temperature, T  
A
TLC2551/2/5I  
–40  
NOTES: 1. Analog input voltages greater than that applied to VREF convert as all ones (111111111111), while input voltages less than that  
applied to GND convert as all zeros(000000000000).  
2. This is the time required for the clock input signal to fall from V max or to rise from V max to V min. In the vicinity of normal room  
IH  
IL  
IH  
temperature, the devices function with input clock transition time as slow as 1 µs for remote data-acquisition applications where the  
sensor and A/D converter are placed several feet away from the controlling microprocessor.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
electrical characteristics over recommended operating free-air temperature range,  
= V = 4.5 V to 5.5 V, SCLK frequency = 20 MHz (unless otherwise noted)  
V
DD  
REF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 5.5 V, I  
= 5.5 V, I  
= –0.2 mA at 30 pF load  
= 0.8 mA at 30 pF load  
2.4  
OH  
DD  
DD  
O
OH  
OL  
V
0.4  
2.5  
V
OL  
= V  
1
–1  
Off-state output current  
(high-impedance-state)  
DD  
CS = V  
DD  
I
µA  
OZ  
= 0  
–2.5  
2.5  
O
I
I
I
High-level input current  
Low-level input current  
Operating supply current  
V = V  
DD  
0.005  
–0.005  
3
µA  
µA  
IH  
I
V = 0 V  
I
2.5  
IL  
CS at 0 V,  
V
= 4.5 V ~ 5.5 V  
3.5  
mA  
CC  
DD  
For all digital inputs,  
Autopower-down current (0.5 µs inactive)  
Autopower-down current (5 µs inactive)  
8
1
0V 0.3 V or V V – 0.3 V,  
I
µA  
I
I
DD  
CC(AUTOPWDN)  
SCLK = 0,  
V
= 4.5 V to 5.5 V, Ext ref  
DD  
Selected channel at V  
1
–1  
Selected analog input channel leakage  
current  
DD  
µA  
Selected channel at 0 V  
Analog inputs  
20  
45  
5
50  
C
Input capacitance  
pF  
i
Control Inputs  
25  
Input on resistance  
V
= 5.5 V  
500  
DD  
DD  
Delay time, delay from CS falling edge to  
V
= REF = 5.5 V, 30 pF  
40  
1
ns  
SDO valid, t  
d(CSL-SDOV)  
Delay time, delay from FS falling edge to  
SDO valid, t  
V
V
V
= REF = 5.5 V, 30 pF  
= REF = 5.5 V, 30 pF  
= REF = 5.5 V, 30 pF  
ns  
ns  
ns  
DD  
DD  
DD  
d(FSL-SDOV)  
Delay time, delay from SCLK rising edge  
to SDO valid, t  
11  
30  
d(SCLKH-SDOV)  
th  
Delay time, delay from 17 SCLK rising  
edge to SDO 3-state, t  
Conversion time  
Sampling time  
Action time  
d(SCLK17H-SDOZ)  
t
t
Conversion clock = internal oscillator  
See Note 3  
28  
SCLK  
ns  
c
300  
(sample)  
I
start to decrease  
0.5  
1
SCLK  
ms  
CC  
CC  
Autopower down  
Wakeup time  
I
down to MIN [I (AUTOPWDN)]  
CC  
2
Autopower down  
0.5  
SCLK  
All typical values are at V  
DD  
= 5 V, T = 25°C.  
A
NOTE 3: Minimal t  
is given by 0.9 × 50 pF × (R + 0.5 k), where R is the source output impedance.  
(sample)  
S S  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
ac specifications (f = 20 kHz)  
i
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
72  
MAX  
–80  
UNIT  
dB  
SINAD  
THD  
Signal-to-noise ratio + distortion  
Total harmonic distortion  
400 KSPS, V  
400 KSPS, V  
400 KSPS, V  
400 KSPS, V  
= V  
= V  
= V  
= V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
70  
DD  
DD  
DD  
DD  
REF  
REF  
REF  
REF  
–84  
11.8  
–84  
dB  
ENOB  
SFDR  
Effective number of bits  
Bits  
dB  
Spurious free dynamic range  
–80  
Analog Input  
Full power bandwidth, –3 dB  
1
MHz  
kHz  
Full-power bandwidth, –1 dB  
500  
external reference specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Reference input voltage  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= =4.5 V ~ 5.5 V  
V
DD  
CS = 1, SCLK = 0  
100  
20  
MΩ  
kΩ  
Reference input impedance  
Reference current  
= 5.5 V  
CS = 0, SCLK = 20 MHz  
25  
= V  
= V  
= 5.5 V  
= 5.5 V  
100  
400  
15  
µA  
REF  
REF  
CS = 1, SCLK = 0  
5
Reference input capacitance  
pF  
V
CS = 0, SCLK = 20 MHz  
20  
45  
50  
V
REF  
Reference voltage  
= =4.5 V – 5.5 V  
V
DD  
dc specification, V  
= V  
= 4.5 V to 5.5 V, SCLK frequency = 20 MHz (unless otherwise noted)  
REF  
DD  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
±0.6  
MAX  
±1  
UNIT  
LSB  
LSB  
INL  
Integral linearity error (see Note 5)  
Differential linearity error  
DNL  
See Note 4  
±0.5  
±1  
TLC2551/52  
TLC2555  
±1.5  
±2.5  
±2  
E
O
E
G
E
t
Offset error (see Note 6)  
See Note 4  
See Note 4  
See Note 4  
LSB  
LSB  
LSB  
TLC2551/52  
TLC2555  
Gain error (see Note 6)  
±5  
TLC2551/52  
TLC2555  
±2  
Total unadjusted error (see Note 7)  
±5  
NOTES: 4. Analog input voltages greater than that applied to REFP convert as all ones (111111111111), while input voltages less than that  
applied to REFM convert as all zeros (0000000000).  
5. Linear error is the maximum deviation from the best straight line through the A/D transfer characteristics.  
6. Zero error is the difference between 000000000000 and the converted output for zero input voltage: full-scale error is the difference  
between 111111111111 and the converted output for full-scale input voltage.  
7. Total unadjusted error comprises linearity, zero, and full-scale errors.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
PARAMETER MEASUREMENT INFORMATION  
t
(sample)  
t
t
c
wH(SCLK)  
V
1
2
4
12  
16  
IH  
SCLK  
V
IL  
t
wL(SCLK)  
t
t
t
su(CSL-SCLKL)  
(powerdown)  
CS  
t
h(SCLKL-FSL)  
WH(CS)  
t
su(FSH-SCLKL)  
t
h(EOC-CSH)  
t
d(CSL-FSH)  
t
d(SCLKH-SDOV)  
FS  
t
t
d(SCLK17H-SDOZ)  
wh(FS)  
OD11  
OD0  
SDO  
t
d(CSL-SDOV)  
Figure 6. Critical Timing TLC2551 (FS is active)  
t
(sample)  
t
su(CSL–SCLKL)  
t
c
1
2
4
12  
16  
SCLK  
t
(powerdown)  
CS  
t
t
d(SCLK17H-SDOZ)  
d(SCLKH-SDOV)  
OD11  
OD10  
OD9  
OD0  
SDO  
t
h(EOC–CSH)  
t
d(CSL-SDOV)  
Figure 7. Critical Timing TLC2551 (FS = 1)  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
PARAMETER MEASUREMENT INFORMATION  
t
(sample)  
t
c
1
1
4
12  
16  
SCLK  
CS/FS  
t
(Reset Cycle)  
MUX = AIN0  
t
h(EOC-CSH)  
t
d(CSLKH-SDOV)  
t
d(CSL-SDOV)  
OD11  
OD0  
OD11  
SDO  
t
t
d(SCLK17H-SDOZ)  
d(CSL-SDOV)  
Figure 8. Critical Timing TLC2552 Reset Cycle  
t
t
c
t
(sample)  
wH(SCLK)  
V
1
2
4
12  
16  
IH  
SCLK  
V
IL  
t
wL(SCLK)  
t
h(SCLKL-FSL)  
t
t
su(FSH-SCLKL)  
(powerdown)  
CS/FS  
t
t
h(EOC-CSH)  
d(SCLKH-SDOV)  
t
wh(FS)  
t
d(SCLK17H-SDOZ)  
OD11  
OD8  
OD0  
SDO  
t
d(CSL-SDOV)  
Figure 9. Critical Timing TLC2555 Power-Down Cycle  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
0.7  
0.65  
0.6  
0.4  
0.35  
0.3  
V
= REF = 5.5 V  
DD  
400 KSPS  
V
DD  
= REF = 5.5 V  
400 KSPS  
–40  
25  
90  
–40  
25  
90  
°
t – Temperature –  
C
°
t – Temperature –  
C
Figure 10  
Figure 11  
OFFSET ERROR  
vs  
TEMPERATURE  
GAIN ERROR  
vs  
TEMPERATURE  
0.5  
0.45  
0.4  
0.9  
0.85  
0.8  
V
= REF = 5.5 V  
DD  
400 KSPS  
V
DD  
= REF = 5.5 V  
400 KSPS  
0.75  
0.7  
–40  
–40  
25  
90  
25  
90  
°
t – Temperature –  
C
°
t – Temperature –  
C
Figure 12  
Figure 13  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
TEMPERATURE  
3.1  
V = REF = 5.5 V  
DD  
400 KSPS  
3.05  
3
–40  
25  
90  
°
t – Temperature –  
C
Figure 14  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODES  
1
V = REF = 5 V  
DD  
400 KSPS  
0.5  
0
–0.5  
–1  
1
4094  
Digital Output Codes  
Figure 15  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODES  
1
V = REF = 5 V  
DD  
400 KSPS  
0.5  
0
–0.5  
–1  
1
4094  
Digital Output Codes  
Figure 16  
2048 POINTS FAST FOURIER TRANSFORM (FFT)  
0
V
DD  
= REF = 5.5 V  
400 KSPS  
–20  
f = 20 kHz  
i
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
f – Input Frequency – KHz  
Figure 17  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
TYPICAL CHARACTERISTICS  
ENOB  
vs  
FREQUENCY  
SINAD  
vs  
FREQUENCY  
12  
75  
73  
71  
69  
V = REF = 5.5 V  
DD  
400 KSPS  
V = REF = 5.5 V  
DD  
400 KSPS  
11.5  
11  
10.5  
10  
67  
65  
0
20 40 60 80 100 120 140 160 180 200  
f – Input Frequency – KHz  
0
20 40 60 80 100 120 140 160 180 200  
f – Input Frequency – KHz  
Figure 18  
Figure 19  
THD  
vs  
FREQUENCY  
–65  
–70  
V = REF = 5.5 V  
DD  
400 KSPS  
–75  
–80  
–85  
–90  
0
20 40 60 80 100 120 140 160 180 200  
f – Input Frequency – KHz  
Figure 20  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
TYPICAL CHARACTERISTICS  
4095  
111111111111  
111111111110  
111111111101  
V
FS  
See Notes A and B  
4094  
4093  
V
FS Nom  
V
FT  
= V  
– 1/2 LSB  
FS  
2049  
2048  
100000000001  
100000000000  
V
ZT  
=V  
+ 1/2 LSB  
ZS  
2047  
011111111111  
V
ZS  
2
1
0
000000000010  
000000000001  
000000000000  
0
0.0012 0.0024  
2.4564 2.4576 2.4588  
V – Analog Input Voltage – V  
4.9128  
4.9140 4.9152  
I
NOTES: A. This curve is based on the assumption that V  
and V have been adjusted so that the voltage at the transition from digital 0 to  
ref–  
ref+  
1 (V ) is 0.0006 V, and the transition to full scale (V ) is 4.9134 V, 1 LSB = 1.2 mV.  
ZT FT  
B. The full scale value (V ) is the step whose nominal midstep value has the highest absolute value. The zero-scale value (V ) is  
FS  
ZS  
the step whose nominal midstep value equals zero.  
Figure 21. Ideal 12-Bit ADC Conversion Characteristics  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
APPLICATION INFORMATION  
V
DD  
EXT  
Reference  
10 kΩ  
10 kΩ  
V
DD  
XF  
RXD  
SCLK  
FS  
SDO  
SCLK  
V
REF  
TMS320 DSP  
TLC2551  
CS  
GND  
Ain  
V
DD  
EXT  
Reference  
10 kΩ  
10 kΩ  
V
DD  
XF  
RXD  
SCLK  
CS/FSD  
SDO  
V
REF  
TMS320 DSP  
SCLK  
TLC2552/55  
GND  
AIN 0/AIN (+)  
AIN 1/AIN (–)  
For TLC2555 only  
Figure 22. Typical Interface to a TMS320 DSP  
simplified analog input analysis  
Using the equivalent circuit in Figure 23, the time required to charge the analog input capacitance from 0 to Vs  
within 1/2 LSB can be derived as follows.  
The capacitance charging voltage is given by:  
–tch  
Rt Ci  
Vc  
Vs 1–EXP  
(1)  
Where:  
Rt = Rs + Zi  
tch = Charge time  
The input impedance Zi is 0.5 kat 5 V, and is higher (~ 0.6 k) at 2.7 V. The final voltage to 1/2 LSB is given  
by:  
Vs  
8192  
Vc (1 2 LSB)  
Vs–  
(2)  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
APPLICATION INFORMATION  
simplified analog input analysis (continued)  
Equating equation 1 to equation 2 and solving for cycle time t gives:  
c
VS  
8192  
–tch  
Rt Ci  
Vs–  
Vs 1–EXP  
(3)  
and time to change to 1/2 LSB (equal to minimum sampling time) is:  
[ ]  
Min t(sample)  
tch (1 2 LSB)  
Rt Ci In(8192)  
Where:  
In(8192) = 9.011  
Therefore, with the values given, the time for the analog input signal to settle is:  
(4)  
(5)  
(
)
tch (1 2 LSB)  
Rs 0.5 k  
Ci In(8192)  
This time must be less than the converter sample time shown in the timing diagrams. This is 12× SCLKs.  
1
1
2
t
12  
Min t  
tch  
LSB  
(sample)  
(sample)  
f(SCLK)  
Therefore the maximum SCLK frequency is:  
12  
12  
(6)  
max f  
SCLK  
[ (  
In 8192  
)
]
Rt Ci  
tch 1 2 LSB  
maximum conversion throughput  
For a supply voltage of 5 V, if the source impedance is less than 1 k, and the ADC analog input capacitance  
1
2
Ci is less than 50 pF, this equates to a minimum sampling time tch  
LSB of 0.676 µs ( 1 µs). Since the  
1
2
sampling time requires 12 SCLKs, the fastest SCLK frequency is 12 tch  
LSB = 12 MHz for R 1 k.  
s
The minimal total cycle time, t  
, is given as:  
(cycle)  
16  
Max f(SCLK)  
14  
t
t
t
t
0.1  
s
3.77  
s
c
(cycle)  
(sample)  
(overhead)  
f[(SCLK)] 0.5  
This is equivalent to a maximum throughput, max[fs] of 265 KSPS.  
The throughput can be even higher with a smaller source impedance. When source impedance is 100 , the  
minimum sampling time becomes:  
tch (1 2 LSB)  
Rt Ci In(8192)  
0.27  
s
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
APPLICATION INFORMATION  
maximum conversion throughput (continued)  
1
2
The maximum SCLK frequency possible is 12/tch  
LSB = 44 MHz. Then a 20 MHz clock (maximum SCLK  
frequency allowed for the internal comparator can be used. The minimal total cycle time is then reduced to:  
16  
16  
t
t
tc  
t
0.1  
s
2.3  
s
(cycle)  
(sample)  
overhead  
max f(SCLK)  
max f(SCLK) 2  
The maximum throughput, MAX[fs], is 1/2.3 µs = 134 KSPS for this case.  
Driving Source Requirements:  
Driving Source  
Data Converter  
r
V = Input Voltage at AIN  
I
R
S
i
V
C
V
i
V = External Driving Source Voltage  
S
+
_
V
S
R = Source Resistance  
S
t
s AMP  
r
C
V
= Input Resistance (Mux On Resistance)  
= Input Capacitance  
= Capacitance Charging Voltage  
i
C
i
i
C
NOTE: Noise and distortion must for the source be equivalent to the resolution of the converter.  
R must be real at the input frequency.  
s
Figure 23. Equivalent Input Circuit Including the Driving Source  
power down calculations  
Total power consumption at different conversion rate f , (f MAX [f ]) can be calculated by:  
s
s
s
V
× i(AVERAGE) = V  
[(f /MAX [f ]) × i(ON) + (1–f /MAX [f ]) × i(OFF)]  
DD S s s s  
DD  
If V  
= 5 V for TLC2551, and the sampling rate f = 10 kHz, the maximum sampling rate f  
= 200 kHz  
SMAX  
DD  
s
then i(ON) = ~3.5 mA operating current  
and i(OFF) = ~8 µA auto-powerdown current  
so V  
× i(AVERAGE) = 5 × (0.05 × 3500 µA + 0.95 × 8 µA)  
DD  
= (5 × 182.6) µW  
= 0.9 mW  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
MECHANICAL DATA  
DGK (R-PDSO-G8)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,38  
M
0,65  
8
0,25  
0,25  
5
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°6°  
1
4
0,69  
0,41  
3,05  
2,95  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073329/B 04/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-187  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2551, TLC2552, TLC2555  
5 V, LOW POWER, 12-BIT, 400 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS276 –MARCH 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TLC2551CDGKRG4

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, GREEN, PLASTIC, MSOP-8
TI

TLC2551ID

5 V, LOW POWER, 12-BIT, 400 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLC2551IDGK

5 V, LOW POWER, 12-BIT, 400 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLC2551IDGKR

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, GREEN, PLASTIC, MSOP-8
TI

TLC2551IDR

12 位 400kSPS ADC,串行输出、TMS320 兼容(最高 10MHz)和单通道 | D | 8 | -40 to 85
TI

TLC2552

5 V, LOW POWER, 12-BIT, 400 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLC2552CDGK

5 V, LOW POWER, 12-BIT, 400 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLC2552CDGKG4

12-Bit, 400 kSPS ADC, Serial Out, TMS320 Compatible (up to 10MHz), Dual Ch. Auto Sweep 8-VSSOP 0 to 70
TI

TLC2552CDGKR

2-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, GREEN, PLASTIC, MSOP-8
TI

TLC2552CDGKRG4

2-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, PLASTIC, MSOP-8
TI

TLC2552ID

5 V, LOW POWER, 12-BIT, 400 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLC2552IDG4

12-Bit, 400 kSPS ADC, Serial Out, TMS320 Compatible (up to 10MHz), Dual Ch. Auto Sweep 8-SOIC -40 to 85
TI