TLC2654ACN [TI]

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS; 高级LinCMOSE低噪声斩波稳零运算放大器
TLC2654ACN
型号: TLC2654ACN
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
高级LinCMOSE低噪声斩波稳零运算放大器

运算放大器 放大器电路 光电二极管 斩波器
文件: 总30页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
D, JG, OR P PACKAGE  
(TOP VIEW)  
Input Noise Voltage  
0.5 µV (Peak-to-Peak) Typ, f = 0 to 1 Hz  
1.5 µV (Peak-to-Peak) Typ, f = 0 to 10 Hz  
47 nV/Hz Typ, f = 10 Hz  
C
C
V
1
2
3
4
8
7
6
5
XA  
XB  
IN–  
IN+  
DD+  
OUT  
13 nV/Hz Typ, f = 1 kHz  
High Chopping Frequency . . . 10 kHz Typ  
No Clock Noise Below 10 kHz  
V
CLAMP  
DD–  
No Intermodulation Error Below 5 kHz  
D, J, OR N PACKAGE  
(TOP VIEW)  
Low Input Offset Voltage  
10 µV Max (TLC2654A)  
C
C
INT/EXT  
CLK IN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XB  
XA  
Excellent Offset Voltage Stability  
With Temperature . . . 0.05 µV/°C Max  
NC  
IN–  
IN+  
NC  
CLK OUT  
A
. . . 135 dB Min (TLC2654A)  
VD  
V
DD+  
CMRR . . . 110 dB Min (TLC2654A)  
. . . 120 dB Min (TLC2654A)  
OUT  
CLAMP  
C RETURN  
k
SVR  
V
8
DD–  
Single-Supply Operation  
Common-Mode Input Voltage Range  
Includes the Negative Rail  
FK PACKAGE  
(TOP VIEW)  
No Noise Degradation With External  
Capacitors Connected to V  
DD–  
Available in Q-Temp Automotive  
HighRel Automotive Applications  
Configuration Control/Print Support  
Qualification to Automotive Standards  
3
2
1
20 19  
18  
CLK OUT  
NC  
4
5
6
7
8
NC  
V
NC  
IN–  
NC  
17  
16  
15  
14  
DD+  
description  
NC  
OUT  
IN+  
The TLC2654 and TLC2654A are low-noise  
chopper-stabilized operational amplifiers using  
the Advanced LinCMOS process. Combining  
this process with chopper-stabilization circuitry  
makesexcellentdcprecisionpossible. Inaddition,  
circuit techniques are added that give the  
TLC2654 and TLC2654A noise performance  
unsurpassed by similar devices.  
9 10 11 12 13  
NC – No internal connection  
Chopper-stabilization techniques provide for extremely high dc precision by continuously nulling input offset  
voltage even during variations in temperature, time, common-mode voltage, and power-supply voltage. The  
high chopping frequency of the TLC2654 and TLC2654A (see Figure 1) provides excellent noise performance  
in a frequency spectrum from near dc to 10 kHz. In addition, intermodulation or aliasing error is eliminated from  
frequencies up to 5 kHz.  
This high dc precision and low noise, coupled with the extremely high input impedance of the CMOS input stage,  
makes the TLC2654 and TLC2654A ideal choices for a broad range of applications such as low-level,  
low-frequency thermocouple amplifiers and strain gauges and wide-bandwidth and subsonic circuits. For  
applications requiring even greater dc precision, use the TLC2652 or TLC2652A devices, which have a  
chopping frequency of 450 Hz.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1999, Texas Instruments Incorporated  
On products compliant to MIL-PRF-38535, all parameters are tested  
unless otherwise noted. On all other products, production  
processing does not necessarily include testing of all parameters.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
EQUIVALENT INPUT NOISE VOLTAGE  
description (continued)  
vs  
The TLC2654 and TLC2654A common-mode  
input voltage range includes the negative rail,  
thereby providing superior performance in either  
single-supply or split-supply applications, even at  
power supply voltage levels as low as ±2.3 V.  
FREQUENCY  
10 k  
Two external capacitors are required to operate  
the device; however, the on-chip chopper-control  
circuitry is transparent to the user. On devices in  
the 14-pin and 20-pin packages, the control  
circuitryisaccessible, allowingtheusertheoption  
of controlling the clock frequency with an external  
frequency source. In addition, the clock threshold  
of the TLC2554 and TLC2654A requires no level  
shifting when used in the single-supply configura-  
tion with a normal CMOS or TTL clock input.  
1 k  
Typical 250-Hz  
Chopper-Stabilized  
Operational Amplifier  
100  
10  
TLC2654  
Innovative circuit techniques used on the  
TLC2654 and TLC2654A allow exceptionally fast  
overload recovery time. An output clamp pin is  
available to reduce the recovery time even further.  
1
10  
100  
1 k  
f – Frequency – Hz  
Figure 1  
The device inputs and outputs are designed to  
withstand 100-mA surge currents without  
sustaining latch-up. In addition, the TLC2654 and TLC2654A incorporate internal ESD-protection circuits that  
prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015; however,  
exercise care in handling these devices, as exposure to ESD may result in degradation of the device parametric  
performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The Q-suffix devices are characterized for operation from 40°C to 125°C.  
The M-suffix devices are characterized for operation over the full military temperature range of 55°C to125°C.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
8 PIN  
14 PIN  
20 PIN  
V
max  
IO  
T
A
SMALL  
OUTLINE  
(D)  
CERAMIC  
DIP  
(JG)  
PLASTIC  
DIP  
SMALL  
OUTLINE  
(D)  
CERAMIC  
DIP  
PLASTIC  
DIP  
CERAMIC  
DIP  
(FK)  
AT 25°C  
(P)  
(J)  
(N)  
0°C  
to  
70°C  
10 µV  
20 mV  
TLC2654AC-8D  
TLC2654C-8D  
TLC2654ACP  
TLC2654CP  
TLC2654AC-14D  
TLC2654C-14D  
TLC2654ACN  
TLC2654CN  
40°C  
to  
85°C  
10 µV  
20 µV  
TLC2654AI-8D  
TLC2654I-8D  
TLC2654AIP  
TLC2654IP  
TLC2654AI-14D  
TLC2654I-14D  
TLC2654AIN  
TLC2654IN  
40°C  
to  
125°C  
10 µV  
20 µV  
TLC2654AQ-8D  
TLC2654Q-8D  
55°C  
to  
125°C  
10 µV  
20 µV  
TLC2654AM-8D  
TLC2654M-8D  
TLC2654AMJG  
TLC2654MJG  
TLC2654AMP  
TLC2654MP  
TLC2654AM-14D  
TLC2654M-14D  
TLC2654AMJ  
TLC2654MJ  
TLC2654AMN  
TLC2654MN  
TLC2654AMFK  
TLC2654MFK  
The 8-pin and 14-pin D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2654AC-8DR).  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
functional block diagram  
V
DD+  
11  
9
Clamp  
Circuit  
CLAMP  
OUT  
5
IN+  
IN–  
10  
+
4
C
IC  
Main  
A
B
B
A
+
Compensation-  
Biasing  
B
2
A
Null  
Circuit  
1
C
C
XB  
External Components  
XA  
8
C RETURN  
7
V
DD–  
Pin numbers shown are for the D (14 pin), J, and N packages.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
DD+  
DD–  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16 V  
ID  
Input voltage, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±8 V  
I
Voltage range on CLK IN and INT/EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
to V  
+ 5.2 V  
DD–  
DD–  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
O
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Current into CLK IN and INT/EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P package . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or JG package . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V  
.
DD+  
DD–  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D (8 pin)  
D (14 pin)  
725 mW  
950 mW  
5.8 mW/°C  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
9.2 mW/°C  
8.0 mW/°C  
464 mW  
608 mW  
880 mW  
880 mW  
672 mW  
736 mW  
640 mW  
377 mW  
494 mW  
715 mW  
715 mW  
546 mW  
598 mW  
520 mW  
145 mW  
190 mW  
275 mW  
275 mW  
210 mW  
230 mW  
200 mW  
FK  
J
JG  
N
1375 mW  
1375 mW  
1050 mW  
1150 mW  
1000 mW  
P
recommended operating conditions  
C SUFFIX  
I SUFFIX  
Q SUFFIX  
M SUFFIX  
MAX  
UNIT  
MIN  
MAX  
±8  
2.3  
MIN  
MAX  
MIN  
±2.3  
MAX  
MIN  
±2.3  
Supply voltage, V  
±2.3  
±2.3  
±8  
±8  
±8  
2.3  
V
V
DD±  
Common-mode input voltage, V  
V
V
V
V
DD+  
2.3  
V
V
DD+  
2.3  
V
V
V
DD+  
IC  
DD–  
DD+  
DD–  
DD–  
DD–  
Clock input voltage  
V
V
DD–  
70  
+5  
V
V
DD–  
85  
+5  
V
V
DD–  
125  
+5  
V
DD–  
125  
+5  
V
DD–  
0
DD–  
40  
DD–  
40  
DD–  
55  
Operating free-air temperature, T  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
electrical characteristics at specified free-air temperature, V  
= ±5 V (unless otherwise noted)  
DD±  
TLC2654C  
TLC2654AC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
20  
MIN  
TYP  
MAX  
10  
25°C  
5
4
Input offset voltage  
(see Note 4)  
V
IO  
µV  
Full range  
34  
24  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.01  
0.05  
0.06  
0.01  
0.05 µV/°C  
0.02 µV/mo  
VIO  
Input offset voltage  
long-term drift (see Note 5)  
25°C  
0.003  
30  
0.003  
30  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
I
I
Input offset current  
Input bias current  
pA  
IO  
150  
150  
150  
50  
50  
pA  
IB  
Full range  
150  
–5  
to  
2.7  
–5  
to  
2.7  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
Full range  
V
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.9  
155  
4.7  
4.7  
4.8  
4.9  
155  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 k, See Note 6  
= 10 k, See Note 6  
V
V
OM+  
L
L
4.7  
4.7  
120  
120  
4.7  
4.7  
135  
130  
Maximum negative peak  
output voltage swing  
OM–  
Full range  
25°C  
Large-signal differential  
voltage amplification  
A
VD  
V
O
= ±4 V,  
R = 10 kΩ  
L
dB  
kHz  
µA  
Full range  
Internal chopping  
frequency  
25°C  
10  
10  
25°C  
Full range  
25°C  
25  
25  
25  
25  
Clamp on-state current  
Clamp off-state current  
R
= 100 kΩ  
L
100  
100  
100  
pA  
V
O
= 4 V to 4 V  
= 0,  
Full range  
100  
V
V
R
25°C  
105  
105  
125  
110  
110  
125  
O
IC  
Common-mode rejection  
ratio  
CMRR  
dB  
dB  
= V  
= 50 Ω  
min,  
ICR  
Full range  
S
25°C  
Full range  
25°C  
110  
110  
125  
1.5  
120  
120  
125  
1.5  
Supply voltage rejection  
V
= ±2.3 V to ±8 V,  
DD±  
k
SVR  
ratio (V  
DD±  
/V  
IO  
)
V
O
= 0,  
R = 50 Ω  
S
2.4  
2.5  
2.4  
mA  
2.5  
I
Supply current  
V
O
= 0,  
No load  
DD  
Full range  
Full range is 0°C to 70°C.  
NOTES: 4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual V of these devices  
IO  
inhigh-speedautomatedtesting.V ismeasuredtoalimitdeterminedbythetestequipmentcapabilityatthetemperatureextremes.  
IO  
The test ensures that the stabilization circuitry is performing properly.  
5. Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT = 150°Cextrapolated  
A
to T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
6. Output clamp is not connected.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
operating characteristics at specified free-air temperature, V  
= ±5 V  
DD±  
TLC2654C  
TLC2654AC  
TEST  
PARAMETER  
T
A
UNIT  
V/µs  
V/µs  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
1.5  
1.3  
2.3  
1.7  
2
1.5  
1.3  
2.3  
1.7  
2
SR+  
SR–  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
V
R
C
= ±2.3 V,  
= 10 k,  
= 100 pF  
O
L
L
3.7  
3.7  
Full range  
f = 10 Hz  
47  
13  
47  
13  
75  
20  
Equivalent input noise voltage  
(see Note 7)  
V
n
25°C  
nV/Hz  
f = 1 kHz  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 10 kHz  
f = 10 kHz,  
0.5  
0.5  
Peak-to-peak equivalent input  
noise voltage  
V
25°C  
25°C  
µV  
N(PP)  
1.5  
1.5  
I
n
Equivalent input noise current  
0.004  
0.004  
pA/Hz  
R
C
= 10 k,  
= 100 pF  
Gain-bandwidth product  
25°C  
25°C  
1.9  
1.9  
MHz  
L
L
R
C
= 10 k,  
= 100 pF  
L
L
φ
m
Phase margin at unity gain  
48°  
48°  
Full range is 0°C to 70°C.  
NOTE 7: This parameter is tested on a sample basis for the TLC2654A. For other test requirements, please contact the factory. This statement  
has no bearing on testing or nontesting of other parameters.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
electrical characteristics at specified free-air temperature, V  
= ±5 V (unless otherwise noted)  
DD ±  
TLC2654I  
TLC2654AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
20  
MIN  
TYP  
MAX  
10  
25°C  
5
4
Input offset voltage  
(see Note 4)  
V
IO  
µV  
Full range  
40  
30  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.01  
0.05  
0.06  
0.01  
0.05 µV/°C  
0.02 µV/mo  
VIO  
Input offset voltage  
long-term drift (see Note 5)  
25°C  
0.003  
30  
0.003  
30  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
I
I
Input offset current  
Input bias current  
pA  
IO  
200  
200  
200  
50  
50  
pA  
IB  
Full range  
200  
–5  
to  
2.7  
–5  
to  
2.7  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
Full range  
V
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.9  
155  
4.7  
4.7  
4.8  
4.9  
155  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 k, See Note 6  
= 10 k, See Note 6  
V
V
OM+  
L
L
4.7  
4.7  
120  
120  
4.7  
4.7  
135  
125  
Maximum negative peak  
output voltage swing  
OM–  
Full range  
25°C  
Large-signal differential  
voltage amplification  
A
VD  
V
O
= ±4 V,  
R = 10 kΩ  
L
dB  
kHz  
µA  
Full range  
Internal chopping  
frequency  
25°C  
10  
10  
25°C  
Full range  
25°C  
25  
25  
25  
25  
Clamp on-state current  
Clamp off-state current  
R
= 100 kΩ  
L
100  
100  
100  
pA  
V
O
= 4 V to 4 V  
= 0,  
Full range  
100  
V
V
R
25°C  
105  
105  
125  
110  
110  
125  
O
IC  
Common-mode rejection  
ratio  
CMRR  
dB  
dB  
= V  
= 50 Ω  
min,  
ICR  
Full range  
S
25°C  
Full range  
25°C  
110  
110  
125  
1.5  
120  
120  
125  
1.5  
Supply voltage rejection  
V
= ± 2.3 V to ±8 V,  
DD±  
k
SVR  
ratio (V  
DD±  
/V  
IO  
)
V
O
= 0,  
R = 50 Ω  
S
2.4  
2.5  
2.4  
mA  
2.5  
I
Supply current  
V
O
= 0,  
No load  
DD  
Full range  
Full range is 40°C to 85°C  
NOTES: 4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual V of these devices  
IO  
inhigh-speedautomatedtesting.V ismeasuredtoalimitdeterminedbythetestequipmentcapabilityatthetemperatureextremes.  
IO  
The test ensures that the stabilization circuitry is performing properly.  
5. Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT = 150°Cextrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
6. Output clamp is not connected.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
operating characteristics at specified free-air temperature, V  
= ±5 V  
DD±  
TLC2654I  
TLC2654AI  
TEST  
CONDITIONS  
PARAMETER  
T
A
UNIT  
V/µs  
V/µs  
MIN  
1.5  
1.2  
2.3  
1.5  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
2
1.5  
1.2  
2.3  
1.5  
2
SR+  
SR–  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
V
R
C
= ±2.3 V,  
= 10 k,  
= 100 pF  
O
L
L
3.7  
3.7  
Full range  
f = 10 Hz  
47  
13  
47  
13  
75  
20  
Equivalent input noise voltage  
(see Note 7)  
V
n
25°C  
nV/Hz  
f = 1 kHz  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 10 kHz  
f = 10 kHz,  
0.5  
0.5  
Peak-to-peak equivalent input  
noise voltage  
V
25°C  
25°C  
µV  
N(PP)  
1.5  
1.5  
I
n
Equivalent input noise current  
0.004  
0.004  
pA/Hz  
Gain-bandwidth product  
25°C  
25°C  
1.9  
1.9  
MHz  
R
C
= 10 k,  
= 100 pF  
L
L
R
C
= 10 k,  
= 100 pF  
L
L
φ
m
Phase margin at unity gain  
48°  
48°  
Full range is 40°C to 85°C.  
NOTE 7: This parameter is tested on a sample basis for the TLC2654A. For other test requirements, please contact the factory. This statement  
has no bearing on testing or nontesting of other parameters.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
electrical characteristics at specified free-air temperature, V  
= ±5 V (unless otherwise noted)  
DD ±  
TLC2654Q  
TLC2654M  
TLC2654AQ  
TLC2654AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
20  
MIN  
TYP  
MAX  
10  
25°C  
5
4
Input offset voltage  
(see Note 4)  
V
IO  
µV  
Full range  
50  
40  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.01 0.05  
0.01 0.05  
µV/°C  
µV/mo  
pA  
VIO  
Input offset voltage  
long-term drift (see Note 5)  
25°C  
0.003 0.06  
30  
0.003 0.02  
30  
V
= 0,  
R = 50 Ω  
S
IC  
25°C  
Full range  
25°C  
I
I
Input offset current  
Input bias current  
IO  
500  
500  
50  
50  
pA  
V
IB  
Full range  
500  
500  
–5  
to  
2.7  
–5  
to  
2.7  
Common-mode input  
voltage range  
V
R
= 50 Ω  
Full range  
ICR  
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.9  
155  
4.7  
4.7  
4.8  
4.9  
155  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 k, See Note 6  
= 10 k, See Note 6  
V
V
OM+  
L
L
4.7  
4.7  
120  
120  
4.7  
4.7  
135  
120  
Maximum negative peak  
output voltage swing  
OM–  
Full range  
25°C  
Large-signal differential  
voltage amplification  
A
VD  
V
O
= ±4 V,  
R = 10 kΩ  
L
dB  
kHz  
µA  
Full range  
Internal chopping  
frequency  
25°C  
10  
10  
25°C  
Full range  
25°C  
25  
25  
25  
25  
Clamp on-state current  
Clamp off-state current  
R
= 100 kΩ  
L
100  
500  
100  
500  
V
O
= 4 V to 4 V  
= 0,  
pA  
dB  
Full range  
V
V
R
25°C  
105  
105  
125  
110  
110  
125  
O
IC  
Common-mode rejection  
ratio  
CMRR  
= V  
= 50 Ω  
min,  
ICR  
Full range  
S
25°C  
Full range  
25°C  
110  
105  
125  
1.5  
110  
110  
125  
1.5  
Supply voltage rejection  
V
= ±2.3 V to ±8 V,  
DD±  
k
dB  
SVR  
ratio (V  
DD±  
/V  
IO  
)
V
O
= 0,  
R = 50 Ω  
S
2.4  
2.5  
2.4  
2.5  
I
Supply current  
V
O
= 0,  
No load  
mA  
DD  
Full range  
On products complaint to MIL-STD-883, Class B, this parameter is not production tested.  
Full range is 40° to 125°C for Q suffix, 55° to 125°C for M suffix.  
NOTES: 4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual V of these devices  
IO  
inhigh-speedautomatedtesting.V ismeasuredtoalimitdeterminedbythetestequipmentcapabilityatthetemperatureextremes.  
IO  
The test ensures that the stabilization circuitry is performing properly.  
5. Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT = 150°Cextrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
6. Output clamp is not connected.  
A
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
operating characteristics at specified free-air temperature, V  
= ±5 V  
DD±  
TLC2654Q  
TLC2654M  
TLC2654AQ  
TLC2654AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
25°C  
1.5  
1.1  
2.3  
1.3  
2
SR+  
SR–  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
Equivalent input noise voltage  
V/µs  
V/µs  
Full range  
25°C  
V
= ±2.3 V,  
R
= 10 k,  
C = 100 pF  
L
O
L
3.7  
Full range  
25°C  
f = 10 Hz  
47  
13  
V
n
nV/Hz  
µV  
f = 1 kHz  
25°C  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 1 kHz  
25°C  
0.5  
Peak-to-peak equivalent input  
noise voltage  
V
N(PP)  
25°C  
1.5  
I
n
Equivalent input noise current  
Gain-bandwidth product  
25°C  
0.004  
1.9  
pA/Hz  
f = 10 kHz,  
R
C
= 10 k,  
C
= 100 pF  
L
25°C  
MHz  
L
L
φ
m
Phase margin at unity gain  
R
= 10 k,  
L
= 100 pF  
25°C  
48°  
Full range is 40° to 125°C for Q suffix, 55° to 125°C for M suffix.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
IO  
Input offset voltage  
Distribution  
2
3
Normalized input offset voltage  
vs Chopping frequency  
vs Chopping frequency  
vs Free-air temperature  
4
5
I
I
Input offset current  
IO  
vs Common-mode input voltage  
vs Chopping frequency  
vs Free-air temperature  
6
7
8
Input bias current  
IB  
Clamp current  
vs Output voltage  
9
vs Output current  
vs Free-air temperature  
10  
11  
V
V
Maximum peak output voltage swing  
OM  
Maximum peak-to-peak output voltage swing  
vs Frequency  
vs Frequency  
12  
13  
O(PP)  
CMRR Common-mode rejection ratio  
vs Frequency  
vs Free-air temperature  
14  
15  
A
Large-signal differential voltage amplification  
Chopping frequency  
Supply current  
VD  
vs Supply voltage  
vs Free-air temperature  
16  
17  
vs Supply voltage  
vs Free-air temperature  
18  
19  
I
I
DD  
vs Supply voltage  
vs Free-air temperature  
20  
21  
Short-circuit output current  
Slew rate  
OS  
vs Supply voltage  
vs Free-air temperature  
22  
23  
SR  
Small signal  
Large signal  
24  
25  
Pulse response  
V
Peak-to-peak input noise voltage  
Equivalent input noise voltage  
Supply voltage rejection ratio  
vs Chopping frequency  
vs Frequency  
26, 27  
28  
N(PP)  
V
n
k
vs Frequency  
29  
SVR  
vs Supply voltage  
vs Free-air temperature  
30  
31  
Gain-bandwidth product  
vs Supply voltage  
vs Load capacitance  
32  
33  
φ
m
Phase margin  
Phase shift  
vs Frequency  
14  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
NORMALIZED INPUT OFFSET VOLTAGE  
vs  
DISTRIBUTION OF TLC2654  
INPUT OFFSET VOLTAGE  
CHOPPING FREQUENCY  
40  
30  
20  
16  
V
V
T
A
= ± 5 V  
DD±  
= 0  
456 Units Tested From 4 Wafer Lots  
V
T
A
= ±5 V  
IC  
= 25°C  
DD±  
= 25°C  
N Package  
20  
10  
12  
8
0
4
0
–10  
100  
1K  
10K  
100K  
–20 –16 –12 – 8 – 4  
0
4
8
12 16 20  
Chopping Frequency – Hz  
V
IO  
– Input Offset Voltage – µV  
Figure 2  
Figure 3  
INPUT OFFSET CURRENT  
vs  
FREE-AIR TEMPERATURE  
INPUT OFFSET CURRENT  
vs  
CHOPPING FREQUENCY  
100  
80  
140  
120  
100  
80  
V
V
T
A
= ±5 V  
V
= ±5 V  
DD±  
DD±  
= 0  
V
IC  
= 0  
IC  
= 25°C  
60  
60  
40  
20  
0
40  
20  
0
100  
1 k  
10 k  
100 k  
25  
45  
65  
85  
105  
125  
Chopping Frequency – Hz  
T
A
– Free-Air Temperature – °C  
Figure 4  
Figure 5  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
vs  
INPUT BIAS CURRENT  
vs  
CHOPPING FREQUENCY  
COMMON-MODE INPUT VOLTAGE  
1000  
100  
10  
100  
80  
V
V
T
A
= ±5 V  
V
T
= ±5 V  
= 25°C  
DD±  
= 0  
DD±  
A
IC  
= 25°C  
60  
40  
20  
0
– 5 – 4 – 3 – 2 –1  
0
1
2
3
4
5
100  
1 k  
10 k  
100 k  
Chopping Frequency – Hz  
V
IC  
– Common-Mode Input Voltage – V  
Figure 6  
Figure 7  
CLAMP CURRENT  
vs  
OUTPUT VOLTAGE  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
µA  
100  
10  
1
100  
V
T
A
= ±5 V  
= 25°C  
DD±  
V
V
= ±5 V  
DD±  
IC  
= 0  
µA  
µA  
80  
60  
40  
20  
0
Positive Clamp Current  
100 nA  
10 nA  
1 nA  
100 pA  
10 pA  
1 pA  
Negative Clamp Current  
4
4.2  
4.4  
4.6  
4.8  
5
25  
45  
65  
85  
105  
125  
|V | – Output Voltage – V  
O
T
A
– Free-Air Temperature – °C  
Figure 8  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
OUTPUT CURRENT  
5
5
4.8  
4.6  
V
T
A
= ±5 V  
V
OM+  
DD±  
= 25°C  
2.5  
0
V
OM+  
V
OM–  
V
R
= ±5 V  
DD±  
= 10 kΩ  
L
4.4  
4.2  
4
– 2.5  
– 5  
V
OM–  
0
0.4  
0.8  
1.2  
1.6  
2
–75 – 50 – 25  
0
25  
50  
75 100 125  
|I | – Output Current – mA  
O
T
A
– Free-Air Temperature – °C  
Figure 10  
Figure 11  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
COMMOM-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
140  
V
T
A
= ±5 V  
DD±  
= 25°C  
120  
100  
80  
60  
40  
20  
0
8
6
4
2
0
T
= 55°C  
= 125°C  
A
T
A
V
R
= ±5 V  
DD±  
= 10 kΩ  
L
10  
100  
1 k  
10 k  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
160  
158  
156  
60°  
80°  
120  
100  
V
R
= ±5 V  
= 10 kΩ  
= ±4 V  
DD±  
L
Phase Shift  
V
O
80  
60  
100°  
120°  
A
VD  
40  
20  
140°  
160°  
180°  
154  
152  
150  
0
V
= ±5 V  
DD±  
R
= 10 kΩ  
L
L
C
= 100 pF  
–20  
–40  
200°  
220°  
T
A
= 25°C  
– 75 – 50 – 25  
0
25  
50  
75 100 125  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
T
A
– Free-Air Temperature – °C  
f – Frequency – Hz  
Figure 14  
Figure 15  
CHOPPING FREQUENCY  
vs  
FREE-AIR TEMPERATURE  
CHOPPING FREQUENCY  
vs  
SUPPLY VOLTAGE  
11.4  
11  
10.5  
10  
V
DD±  
= ±5 V  
T
A
= 25°C  
10.6  
9.5  
9
10.2  
9.8  
8.5  
9.4  
–75 – 50 – 25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
T – Free-Air Temperature – °C  
A
|V | – Supply Voltage – V  
DD±  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
2
1.6  
1.2  
2
1.6  
1.2  
V
= 0  
O
V
V
= ±7.5 V  
= ±5 V  
No Load  
DD±  
DD±  
T
A
= 25°C  
V
DD±  
= ±2.5 V  
T
= 55°C  
A
0.8  
0.4  
0
0.8  
0.4  
0
T
A
= 125°C  
V
= 0  
O
No Load  
0
1
2
3
4
5
6
7
8
–75 – 50 – 25  
0
25  
50  
75 100 125  
|V  
DD ±  
| – Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 18  
Figure 19  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
12  
8
15  
10  
V
T
A
= 0  
= 25°C  
V
= ±5 V  
DD±  
O
V
O
= 0  
4
5
V
ID  
= 100 mV  
V
ID  
= 100 mV  
0
0
– 4  
– 8  
–12  
– 5  
–10  
–15  
V
ID  
= 100 mV  
V
4
= 100 mV  
ID  
0
1
2
3
5
6
7
8
–75 – 50 – 25  
0
25  
50  
75  
100 125  
|V  
DD ±  
| – Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
5
4
3
SR–  
SR–  
4
3
2
1
SR+  
2
1
0
SR+  
R
C
T
A
= 10 kΩ  
= 100 pF  
= 25°C  
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
L
L
DD±  
L
L
0
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75 100 125  
|V  
DD ±  
| – Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 22  
Figure 23  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
100  
75  
50  
25  
0
4
3
2
1
0
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
DD±  
L
L
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
DD±  
L
L
T
A
T
A
– 25  
– 50  
–1  
– 2  
–75  
– 3  
– 4  
–100  
5
0
1
2
3
4
6
7
0
5
10 15 20 25 30 35 40  
t – Time – µs  
t – Time – µs  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
PEAK-TO-PEAK INPUT NOISE VOLTAGE  
PEAK-TO-PEAK INPUT NOISE VOLTAGE  
vs  
vs  
CHOPPING FREQUENCY  
CHOPPING FREQUENCY  
5
4
3
1.8  
V
R
= ±5 V  
V
R
= ±5 V  
DD±  
= 20 Ω  
DD±  
= 20 Ω  
1.6  
1.4  
1.2  
S
S
f = 0 to 10 Hz  
T
A
f = 0 to 1 Hz  
T
A
= 25°C  
= 25°C  
1
0.8  
2
1
0
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Chopping Frequency – kHz  
Chopping Frequency – kHz  
Figure 26  
Figure 27  
SUPPLY VOLTAGE REJECTION RATIO  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
50  
V
= ±5 V  
DD±  
= 20 Ω  
V
T
A
= ±2.3 V to ±8 V  
= 25°C  
DD±  
R
T
S
= 25°C  
A
40  
30  
20  
10  
0
100  
80  
k
SVR+  
60  
40  
20  
0
k
SVR–  
10  
100  
1 k  
10 k  
1
10  
100  
1 k  
10 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 28  
Figure 29  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
TYPICAL CHARACTERISTICS  
GAIN-BANDWIDTH PRODUCT  
vs  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
2.6  
2.1  
V
= ±5 V  
R
C
T
= 10 kΩ  
DD±  
L
L
R
= 10 kΩ  
= 100 pF  
L
L
2.4  
2.2  
2
C
= 100 pF  
= 25°C  
A
2
1.8  
1.6  
1.9  
1.4  
1.2  
1.8  
–75 – 50 – 25  
0
25  
50  
75  
100 125  
0
1
2
3
4
5
6
7
8
|V  
DD±  
| – Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 30  
Figure 31  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
LOAD CAPACITANCE  
60°  
50°  
40°  
30°  
20°  
10°  
0°  
60°  
V
= ±5 V  
R
= 10 kΩ  
= 100 pF  
= 25°C  
DD±  
L
L
R
= 10 kΩ  
C
T
L
50°  
40°  
30°  
20°  
10°  
0°  
T
A
= 25°C  
A
0
200  
400  
600  
800  
1000  
0
1
2
3
4
5
6
7
8
|V  
DD±  
| – Supply Voltage – V  
C
– Load Capacitance – pF  
L
Figure 32  
Figure 33  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
APPLICATION INFORMATION  
capacitor selection and placement  
Leakage and dielectric absorption are the two important factors to consider when selecting external capacitors  
C
and C . Both factors can cause system degradation, negating the performance advantages realized by  
XA  
XB  
using the TLC2654.  
Degradation from capacitor leakage becomes more apparent with increasing temperatures. Low-leakage  
capacitors and standoffs are recommended for operation at T = 125°C. In addition, guard bands are  
A
recommended around the capacitor connections on both sides of the printed-circuit board to alleviate problems  
caused by surface leakage on circuit boards.  
Capacitorswithhighdielectricabsorptiontendtotakeseveralsecondstosettleuponapplicationofpower, which  
directly affects input offset voltage. In applications needing fast settling of input voltage, high-quality film  
capacitors such as mylar, polystyrene, or polypropylene should be used. In other applications, a ceramic or  
other low-grade capacitor can suffice.  
Unlike many choppers available today, the TLC2654 is designed to function with values of C and C in the  
XA  
XB  
range of 0.1 µF to 1 µF without degradation to input offset voltage or input noise voltage. These capacitors  
should be located as close as possible to C and C and return to either V or C RETURN. On many  
XA  
XB  
DD–  
choppers, connecting these capacitors to V  
eliminated on the TLC2654.  
causes degradation in noise performance; this problem is  
DD–  
internal/external clock  
The TLC2654 has an internal clock that sets the chopping frequency to a nominal value of 10 kHz. On 8-pin  
packages, the chopping frequency can only be controlled by the internal clock; however, on all 14-pin packages  
and the 20-pin FK package the device chopping frequency can be set by the internal clock or controlled  
externally by use of the INT/EXT and CLK IN. To use the internal 10-kHz clock, no connection is necessary. If  
external clocking is desired, connect INT/EXT to V  
and the external clock to CLK IN. The external clock trip  
DD–  
point is 2.5 V above the negative rail; however, CLK IN can be driven from the negative rail to 5 V above the  
negative rail. This allows the TLC2654 to be driven directly by 5-V TTL and CMOS logic when operating in the  
single-supply configuration. If this 5-V level is exceeded, damage could occur to the device unless the current  
into CLK IN is limited to ±5 mA. A divide-by-two  
frequency divider interfaces with CLK IN and sets  
the chopping frequency. The chopping frequency  
appears on CLK OUT.  
0
V
T
= ±5 V  
= 25°C  
DD±  
A
overload recovery/output clamp  
– 5  
0
When large differential-input-voltage conditions  
are applied to the TLC2654, the nulling loop  
attempts to prevent the output from saturating by  
drivingC andC tointernally-clampedvoltage  
XA  
XB  
levels. Once the overdrive condition is removed,  
a period of time is required to allow the built-up  
charge to dissipate. This time period is defined as  
overload recovery time (see Figure 34). Typical  
overload recovery time for the TLC2654 is  
significantly faster than competitive products;  
however, this time can be reduced further by use  
of internal clamp circuitry accessible through  
CLAMP if required.  
– 50  
0
10 20 30 40 50 60 70 80  
t – Time – ms  
Figure 34. Overload Recovery  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
APPLICATION INFORMATION  
overload recovery/output clamp (continued)  
The clamp is a switch that is automatically activated when the output is approximately 1 V from either supply  
rail. When connected to the inverting input (in parallel with the closed-loop feedback resistor), the closed-loop  
gain is reduced and the TLC2654 output is prevented from going into saturation. Since the output must source  
or sink current through the switch (see Figure 9), the maximum output voltage swing is slightly reduced.  
thermoelectric effects  
To take advantage of the extremely low offset voltage temperature coefficient of the TLC2654, care must be  
taken to compensate for the thermoelectric effects present when two dissimilar metals are brought into contact  
witheachother(suchasdeviceleadsbeingsolderedtoaprinted-circuitboard). Itisnotuncommonfordissimilar  
metal junctions to produce thermoelectric voltages in the range of several microvolts per degree Celsius (orders  
of magnitude greater than the 0.01 µV/°C typical of the TLC2654).  
To help minimize thermoelectric effects, pay careful attention to component selection and circuit-board layout.  
Avoid the use of nonsoldered connections (such as sockets, relays, switches, etc.) in the input signal path.  
Cancel thermoelectric effects by duplicating the number of components and junctions in each device input. The  
use of low-thermoelectric-coefficient components, such as wire-wound resistors, is also beneficial.  
latch-up avoidance  
BecauseCMOSdevicesaresusceptibletolatch-upduetotheirinherentparasiticthyristors, theTLC2654inputs  
and outputs are designed to withstand 100-mA surge currents without sustaining latch-up; however,  
techniques to reduce the chance of latch-up should be used whenever possible. Internal protection diodes  
should not, by design, be forward biased. Applied input and output voltages should not exceed the supply  
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.  
Supply transients should be stunted by the use of decoupling capacitors (0.1 µF typical) located across the  
supply rails as close to the device as possible.  
The current path established if latch-up occurs is usually between the supply rails and is limited only by the  
impedance of the power supply and the forward resistance of the parasitic thyristor. The chance of latch-up  
occurring increases with increasing temperature and supply voltage.  
electrostatic-discharge protection  
The TLC2654 incorporates internal ESD-protection circuits that prevent functional failures at voltages at or  
below 2000 V. Care should be exercised in handling these devices, as exposure to ESD may result in  
degradation of the device parametric performance.  
theory of operation  
Chopper-stabilized operational amplifiers offer the best dc performance of any monolithic operational amplifier.  
This superior performance is the result of using two operational amplifiers — a main amplifier and a nulling  
amplifier – plus oscillator-controlled logic and two external capacitors to create a system that behaves as a  
single amplifier. With this approach, the TLC2654 achieves submicrovolt input offset voltage, submicrovolt  
noise voltage, and offset voltage variations with temperature in the nV/°C range.  
The TLC2654 on-chip control logic produces two dominant clock phases: a nulling phase and an amplifying  
phase. The term chopper-stabilized derives from the process of switching between these two clock phases.  
Figure 35 shows a simplified block diagram of the TLC2654. Switches A and B are make-before-break types.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
APPLICATION INFORMATION  
theory of operation (continued)  
Duringthenullingphase, switchAisclosed, shortingthenullingamplifierinputstogetherandallowingthenulling  
amplifier to reduce its own input offset voltage by feeding its output signal back to an inverting input node.  
Simultaneously, external capacitor C stores the nulling potential to allow the offset voltage of the amplifier to  
XA  
remain nulled during the amplifying phase.  
Main  
5
IN+  
IN–  
+
10  
OUT  
4
B
C
XB  
B
Null  
+
A
7
V
DD–  
A
C
XA  
Pin numbers shown are for the D (14 pin), J, and N packages.  
Figure 35. TLC2654 Simplified Block Diagram  
During the amplifying phase, switch B is closed, connecting the output of the nulling amplifier to a noninverting  
input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also,  
external capacitor C  
nulled during the next nulling phase.  
stores the nulling potential to allow the offset voltage of the main amplifier to remain  
XB  
This continuous chopping process allows offset voltage nulling during variations in time and temperature and  
over the common-mode input voltage range and power supply range. In addition, because the low-frequency  
signal path is through both the null and main amplifiers, extremely high gain is achieved.  
The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to  
choppingandthecapabilityofthecircuittoreducethisnoisewhilechopping. TheuseoftheAdvancedLinCMOS  
process, with its low-noise analog MOS transistors and patent-pending input stage design, significantly reduces  
the input noise voltage.  
The primary source of nonideal operation in chopper-stabilized amplifiers is error charge from the switches. As  
charge imbalance accumulates on critical nodes, input offset voltage can increase especially with increasing  
chopping frequency. This problem has been significantly reduced in the TLC2654 by use of a patent-pending  
compensation circuit and the Advanced LinCMOS process.  
The TLC2654 incorporates a feed-forward design that ensures continuous frequency response. Essentially, the  
gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency of the  
main amplifier. As a result, the high-frequency response of the system is the same as the frequency response  
of the main amplifier. This approach also ensures that the slewing characteristics remain the same during both  
the nulling and amplifying phases.  
The primary limitation on ac performance is the chopping frequency. As the input signal frequency approaches  
the chopper’s clock frequency, intermodulation (or aliasing) errors result from the mixing of these frequencies.  
To avoid these error signals, the input frequency must be less than half the clock frequency. Most choppers  
available today limit the internal chopping frequency to less than 500 Hz in order to eliminate errors due to the  
charge imbalancing phenomenon mentioned previously. However, to avoid intermodulation errors on a 500-Hz  
chopper, the input signal frequency must be limited to less than 250 Hz.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
APPLICATION INFORMATION  
theory of operation (continued)  
The TLC2654 removes this restriction on ac performance by using a 10-kHz internal clock frequency. This high  
chopping frequency allows amplification of input signals up to 5 kHz without errors due to intermodulation and  
greatly reduces low-frequency noise.  
THERMAL INFORMATION  
temperature coefficient of input offset voltage  
Figure 36 shows the effects of package-included thermal EMF. The TLC2654 can null only the offset voltage  
within its nulling loop. There are metal-to-metal junctions outside the nulling loop (bonding wires, solder joints,  
etc.) that produce EMF. In Figure 36, a TLC2654 packaged in a 14-pin plastic package (N package) was placed  
in an oven at 25°C at t = 0, biased up, and allowed to stabilize. At t = 3 min, the oven was turned on and allowed  
to rise in temperature to 125°C. As evidenced by the curve, the overall change in input offset voltage with  
temperature is less than the specified maximum limit of 0.05 µV/°C.  
8
4
0
0.08  
0.04  
0.1 µF  
0
50 kΩ  
– 0.04  
– 4  
– 8  
5 V  
4
V
= V /1000  
IO  
10  
O
IN–  
IN+  
+
– 0.08  
– 0.12  
– 0.16  
– 0.2  
100 Ω  
5
OUT  
– 12  
–5 V  
V
O
50 kΩ  
0.1 µF  
– 15  
– 18  
0
3
6
9
12 15 18 21 24 27 30  
t – Time – min  
Pin numbers shown are for the D (14-pin), J, and N  
packages.  
Figure 36. Effects of Package-Induced Thermal EMF  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
MECHANICAL DATA  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
MECHANICAL DATA  
J (R-GDIP-T**)  
CERAMIC DUAL-IN-LINE PACKAGE  
14 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
A MAX  
B
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
A MIN  
B MAX  
B MIN  
C MAX  
C MIN  
14  
8
0.785  
0.785  
0.910  
0.975  
(19,94) (19,94) (23,10) (24,77)  
C
0.755  
(19,18) (19,18)  
0.755  
0.930  
(23,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
1
7
0.065 (1,65)  
0.045 (1,14)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.100 (2,54)  
0.070 (1,78)  
0.020 (0,51) MIN  
A
0.200 (5,08) MAX  
Seating Plane  
0.130 (3,30) MIN  
0.100 (2,54)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.014 (0,36)  
0.008 (0,20)  
4040083/D 08/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
MECHANICAL DATA  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE PACKAGE  
0.400 (10,20)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.063 (1,60)  
0.015 (0,38)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL-STD-1835 GDIP1-T8  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PIN SHOWN  
PINS **  
DIM  
14  
16  
18  
20  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23.37)  
0.975  
(24,77)  
A MAX  
A MIN  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21.59)  
0.940  
(23,88)  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.020 (0,51) MIN  
0.310 (7,87)  
0.290 (7,37)  
0.035 (0,89) MAX  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
14/18 PIN ONLY  
4040049/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2654, TLC2654A  
Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS020F – NOVEMBER 1988 – REVISED JULY 1999  
MECHANICAL DATA  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLC2654ACP

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654ACPE4

OP-AMP, 24uV OFFSET-MAX, 1.9MHz BAND WIDTH, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
TI

TLC2654AI-14D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AI-8D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AI-8DG4

Advanced LinCMOS™ Low-Noise Chopper-Stabilized Operational Amplifier 8-SOIC
TI

TLC2654AI-8DR

暂无描述
TI

TLC2654AI14D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AI8D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AIN

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AIP

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AIPE4

OP-AMP, 30uV OFFSET-MAX, 1.9MHz BAND WIDTH, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
TI

TLC2654AM

低噪声斩波稳定型高级 LinCMOS™ 运算放大器
TI