TLC272_16 [TI]

PRECISION DUAL OPERATIONAL AMPLIFIERS;
TLC272_16
型号: TLC272_16
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PRECISION DUAL OPERATIONAL AMPLIFIERS

放大器
文件: 总36页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
D, JG, P, OR PW PACKAGE  
(TOP VIEW)  
Trimmed Offset Voltage:  
TLC277 . . . 500 µV Max at 25°C,  
= 5 V  
V
DD  
1OUT  
1IN–  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, Including the First 30 Days  
2OUT  
2IN–  
2IN+  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
0°C to 70°C . . . 3 V to 16 V  
FK PACKAGE  
(TOP VIEW)  
40°C to 85°C . . . 4 V to 16 V  
55°C to 125°C . . . 4 V to 16 V  
Single-Supply Operation  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix,  
I-Suffix types)  
3
2
1
20 19  
18  
NC  
NC  
4
5
6
7
8
2OUT  
NC  
1IN–  
NC  
17  
16  
15  
14  
Low Noise . . . Typically 25 nV/Hz at  
f = 1 kHz  
2IN–  
NC  
1IN+  
NC  
Output Voltage Range Includes Negative  
Rail  
9 10 11 12 13  
12  
High Input impedance . . . 10 Typ  
ESD-Protection Circuitry  
Small-Outline Package Option Also  
Available in Tape and Reel  
NC – No internal connection  
DISTRIBUTION OF TLC277  
INPUT OFFSET VOLTAGE  
Designed-in Latch-Up Immunity  
30  
25  
20  
15  
10  
description  
473 Units Tested From 2 Wafer Lots  
= 5 V  
DD  
= 25°C  
V
T
The TLC272 and TLC277 precision dual  
operational amplifiers combine a wide range of  
input offset voltage grades with low offset voltage  
drift, high input impedance, low noise, and speeds  
approaching that of general-purpose BiFET  
devices.  
A
P Package  
These devices use Texas instrumentssilicon-gate  
LinCMOS technology, which provides offset  
voltage stability far exceeding the stability  
available with conventional metal-gate pro-  
cesses.  
5
The extremely high input impedance, low bias  
currents, and high slew rates make these cost-  
effective devices ideal for applications which have  
previously been reserved for BiFET and NFET  
products. Four offset voltage grades are available  
(C-suffix and I-suffix types), ranging from the  
0
800  
400  
0
400  
800  
V
IO  
– Input Offset Voltage – µV  
low-cost TLC272 (10 mV) to the high-precision TLC277 (500 µV). These advantages, in combination with good  
common-mode rejection and supply voltage rejection, make these devices a good choice for new  
state-of-the-art designs as well as for upgrading existing designs.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1994, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
IO  
AT 25°C  
T
A
TSSOP  
(PW)  
(JG)  
(P)  
500 µV TLC277CD  
2 mV TLC272BCD  
5 mV TLC272ACD  
10mV TLC272CD  
TLC277CP  
TLC272BCP  
TLC272ACP  
TLC272CP  
0°C to 70°c  
TLC272CPW  
TLC272Y  
500 µV TLC277ID  
2 mV TLC272BID  
5 mV TLC272AID  
10 mV TLC272ID  
TLC277IP  
TLC272BIP  
TLC272AIP  
TLC272IP  
40°C to 85°C  
55°C to 125°C  
500 µV TLC277MD  
10 mV TLC272MD  
TLC277MFK TLC277MJG TLC277MP  
TLC272MFK TLC272MJG TLC272MP  
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).  
description (continued)  
Ingeneral, manyfeaturesassociatedwithbipolartechnologyareavailableonLinCMOS operationalamplifiers  
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog  
calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and  
TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote  
and inaccessible battery-powered applications. The common-mode input voltage range includes the negative  
rail.  
A wide range of packaging options is available, including small-outline and chip carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.  
TheTLC272andTLC277incorporateinternalESD-protectioncircuitsthatpreventfunctionalfailuresatvoltages  
up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling  
these devices as exposure to ESD may result in the degradation of the device parametric performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of 55°C to 125°C.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
N5  
C1  
R1  
R2  
IN–  
IN+  
P5  
P6  
P1  
P2  
R5  
OUT  
N3  
D2  
N1  
R3  
N6  
R7  
N7  
N2  
D1  
N4  
R4  
GND  
TLC272Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLC272C. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive  
epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
V
DD  
(8)  
(3)  
(2)  
+
1IN+  
1IN–  
(1)  
1OUT  
(5)  
(6)  
+
2IN+  
2IN–  
(7)  
2OUT  
60  
(4)  
GND  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
73  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
ID  
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, P, or PW package . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
377 mW  
715 mW  
546 mW  
520 mW  
N/A  
POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
464 mW  
N/A  
1375 mW  
1050 mW  
1000 mW  
525 mW  
880 mW  
275 mW  
210 mW  
N/A  
672 mW  
640 mW  
PW  
336 mW  
N/A  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
V
MIN  
3
MAX  
MIN  
4
MAX  
16  
MIN  
4
MAX  
16  
Supply voltage, V  
16  
3.5  
8.5  
70  
DD  
V
V
= 5 V  
0.2  
0.2  
0
0.2  
0.2  
40  
3.5  
8.5  
85  
0
3.5  
DD  
Common-mode input voltage, V  
V
IC  
Operating free-air temperature, T  
= 10 V  
0
8.5  
DD  
55  
125  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC272C, TLC272AC,  
TLC272BC, TLC277C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
IC  
L
O
S
TLC272C  
TLC272AC  
TLC272BC  
TLC277C  
= 10 kΩ  
12  
mV  
0.9  
230  
200  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
500  
1500  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
S
L
25°C to  
70°C  
α
Temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
1.8  
µV/°C  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
I
IO  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
pA  
O
IC  
300  
600  
0.6  
40  
I
IB  
Input bias current (see Note 4)  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
4
4.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
3.5  
25°C  
0°C  
3.2  
3
3.8  
3.8  
3.8  
0
V
V
High-level output voltage  
V
V
V
V
= 100 mV,  
R
= 10 kΩ  
= 0  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
3
50  
50  
50  
Low-level output voltage  
= –100 mV,  
= 0.25 V to 2 V,  
I
0
mV  
V/mV  
dB  
OL  
OL  
70°C  
25°C  
0°C  
0
5
4
23  
27  
20  
80  
84  
85  
95  
94  
96  
1.4  
1.6  
1.2  
A
VD  
Large-signal differential voltage amplification  
R
= 10 kΩ  
L
70°C  
25°C  
0°C  
4
65  
60  
60  
65  
60  
60  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V  
min  
ICR  
IC  
70°C  
25°C  
0°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
70°C  
25°C  
0°C  
3.2  
3.6  
2.6  
= 2.5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
mA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC272C, TLC272AC,  
TLC272BC, TLC277C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
IC  
L
O
S
TLC272C  
TLC272AC  
TLC272BC  
TLC277C  
= 10 kΩ  
12  
mV  
0.9  
290  
250  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
800  
1900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
S
L
25°C to  
70°C  
α
Temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
2
µV/°C  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
I
IO  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
pA  
O
IC  
300  
600  
0.7  
50  
I
IB  
Input bias current (see Note 4)  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
9
9.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
8.5  
25°C  
0°C  
8
7.8  
7.8  
8.5  
8.5  
8.4  
0
V
V
High-level output voltage  
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
= 0  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
50  
50  
50  
Low-level output voltage  
I
0
mV  
V/mV  
dB  
OL  
OL  
70°C  
25°C  
0°C  
0
10  
7.5  
7.5  
65  
60  
60  
65  
60  
60  
36  
42  
32  
85  
88  
88  
95  
94  
96  
1.9  
2.3  
1.6  
A
VD  
Large-signal differential voltage amplification  
R
= 10 kΩ  
L
70°C  
25°C  
0°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V  
min  
ICR  
IC  
70°C  
25°C  
0°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
70°C  
25°C  
0°C  
4
4.4  
3.4  
= 2.5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
mA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC272I, TLC272AI,  
TLC272BI, TLC277I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
IC  
L
O
S
TLC272I  
TLC272AI  
TLC272BI  
TLC277I  
= 10 kΩ  
13  
mV  
0.9  
230  
200  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
500  
2000  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
S
L
25°C to  
85°C  
Temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
1.8  
µV/°C  
α
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
24  
I
IO  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
pA  
O
IC  
15  
35  
0.6  
200  
I
IB  
Input bias current (see Note 4)  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
4
4.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
3.5  
25°C  
40°C  
85°C  
3.2  
3
3.8  
3.8  
3.8  
0
V
V
High-level output voltage  
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
= 0  
OH  
ID  
ID  
O
L
3
25°C  
50  
50  
50  
Low-level output voltage  
I
40°C  
85°C  
0
mV  
V/mV  
dB  
OL  
OL  
0
25°C  
5
3.5  
3.5  
65  
60  
60  
65  
60  
60  
23  
32  
19  
80  
81  
86  
95  
92  
96  
1.4  
1.9  
1.1  
Large-signal differential voltage amplification  
A
VD  
R
= 10 kΩ  
40°C  
85°C  
L
25°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V  
min  
ICR  
40°C  
85°C  
IC  
25°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
40°C  
85°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
25°C  
3.2  
4.4  
2.4  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
40°C  
85°C  
mA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC272I, TLC272AI,  
TLC272BI, TLC277I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
IC  
L
O
S
TLC272I  
TLC272AI  
TLC272BI  
TLC277I  
= 10 kΩ  
13  
mV  
0.9  
290  
250  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
800  
2900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
O
IC  
= 10 kΩ  
Full range  
S
L
25°C to  
85°C  
Temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
2
µV/°C  
α
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
26  
I
IO  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
pA  
O
IC  
1000  
2000  
0.7  
220  
I
IB  
Input bias current (see Note 4)  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
9
9.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
8.5  
25°C  
40°C  
85°C  
8
7.8  
7.8  
8.5  
8.5  
8.5  
0
V
V
High-level output voltage  
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
= 0  
OH  
ID  
ID  
O
L
25°C  
50  
50  
50  
Low-level output voltage  
I
40°C  
85°C  
0
mV  
V/mV  
dB  
OL  
OL  
0
25°C  
10  
7
36  
46  
31  
85  
87  
88  
95  
92  
96  
1.4  
2.8  
1.5  
A
VD  
Large-signal differential voltage amplification  
R
= 10 kΩ  
40°C  
85°C  
L
7
25°C  
65  
60  
60  
65  
60  
60  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V  
min  
ICR  
40°C  
85°C  
IC  
25°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
40°C  
85°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
25°C  
4
5
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
40°C  
85°C  
mA  
DD  
No load  
3.2  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC272M, TLC277M  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
TLC272M  
TLC277M  
mV  
12  
V
IO  
Input offset voltage  
200  
500  
3750  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
L
µV  
Full range  
S
Temperature coefficient of input offset  
voltage  
25°C to  
125°C  
α
2.1  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V  
= 2.5 V  
V
V
= 2.5 V  
= 2.5 V  
IO  
O
IC  
15  
35  
I
IB  
O
IC  
125°C  
0
to  
4
0.3  
to  
4.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
3.5  
25°C  
55°C  
125°C  
25°C  
3.2  
3
3.8  
3.8  
3.8  
0
V
V
High-level output voltage  
V
V
V
V
= 100 mV,  
R
= 10 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
50  
50  
50  
Low-level output voltage  
= 100 mV,  
= 0.25 V to 2 V  
I
55°C  
125°C  
25°C  
0
OL  
OL  
0
5
3.5  
3.5  
65  
60  
60  
65  
60  
60  
23  
35  
16  
80  
81  
84  
95  
90  
97  
1.4  
2
A
VD  
Large-signal differential voltage amplification  
R
= 10 kΩ  
55°C  
125°C  
25°C  
L
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V  
min  
ICR  
55°C  
125°C  
25°C  
IC  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
55°C  
125°C  
25°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
3.2  
5
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
mA  
DD  
No load  
1
2.2  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC272M, TLC277M  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
V
= 1.4 V,  
= 50 ,  
= 1.4 V,  
= 50 ,  
V
= 0,  
25°C  
Full range  
25°C  
1.1  
O
IC  
TLC272M  
TLC277M  
mV  
R
R
= 10 kΩ  
12  
S
L
V
IO  
Input offset voltage  
V
O
V
IC  
= 0,  
250  
800  
4300  
µV  
R
R
= 10 kΩ  
Full range  
S
L
Temperature coefficient of input offset  
voltage  
25°C to  
125°C  
α
2.2  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.8  
0.7  
10  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
IO  
O
IC  
15  
35  
I
IB  
O
IC  
125°C  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
8.5  
25°C  
55°C  
125°C  
25°C  
8
7.8  
7.8  
8.5  
8.5  
8.4  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
50  
50  
50  
I
55°C  
125°C  
25°C  
0
OL  
OL  
0
10  
7
36  
50  
27  
85  
87  
86  
95  
90  
97  
1.9  
3
Large-signal differential voltage  
amplification  
A
VD  
R
= 10 kΩ  
55°C  
125°C  
25°C  
L
7
65  
60  
60  
65  
60  
60  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
55°C  
125°C  
25°C  
IC  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
55°C  
125°C  
25°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
4
6
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
mA  
DD  
No load  
1.3  
2.8  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
DD  
A
TLC272Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
V
IO  
Input offset voltage  
1.1  
10  
mV  
α
Temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
1.8  
0.1  
0.6  
µV/°C  
pA  
VIO  
I
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
IO  
IB  
O
IC  
I
Input bias current (see Note 4)  
pA  
O
IC  
0.2  
to  
0.3  
to  
4.2  
V
ICR  
Common-mode input voltage range (see Note 5)  
V
4
V
V
High-level output voltage  
V
V
V
V
V
V
= 100 mV,  
R
= 10 kΩ  
= 0  
3.2  
3.8  
0
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
Low-level output voltage  
= –100 mV,  
= 0.25 V to 2 V  
I
50  
OL  
OL  
A
VD  
Large-signal differential voltage amplification  
R
= 10 kΩ  
5
65  
65  
23  
80  
95  
L
CMRR Common-mode rejection ratio  
= V  
min  
IC  
DD  
ICR  
= 5 V to 10 V,  
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
V
V
= 1.4 V  
dB  
SVR  
DD  
O
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
1.4  
3.2  
mA  
DD  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
electrical characteristics, V  
= 10 V, T = 25°C (unless otherwise noted)  
DD  
A
TLC272Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
V
IO  
Input offset voltage  
1.1  
10  
mV  
Temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
1.8  
0.1  
0.7  
µV/°C  
pA  
α
VIO  
I
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
IO  
IB  
O
IC  
I
Input bias current (see Note 4)  
pA  
O
IC  
0.2  
to  
0.3  
to  
9.2  
V
ICR  
Common-mode input voltage range (see Note 5)  
V
9
V
V
High-level output voltage  
V
V
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
= 0  
8
8.5  
0
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
Low-level output voltage  
I
50  
OL  
OL  
A
VD  
Large-signal differential voltage amplification  
R
= 10 kΩ  
10  
65  
65  
36  
85  
95  
L
CMRR Common-mode rejection ratio  
= V  
min  
IC  
DD  
ICR  
= 5 V to 10 V,  
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
V
V
= 1.4 V  
dB  
SVR  
DD  
O
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
1.9  
4
mA  
DD  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC272C, TLC272AC,  
TLC272BC, TLC277C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
3.6  
4
MAX  
25°C  
0°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 k,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
3
SR  
Slew rate at unity gain  
V/µs  
2.9  
3.1  
2.5  
See Figure 1  
V
= 2.5 V  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
0°C  
320  
340  
260  
1.7  
2
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 10 k,  
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
MHz  
1
70°C  
25°C  
0°C  
1.3  
46°  
47°  
43°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
C
= 20 pF,  
L
70°C  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC272C, TLC272AC,  
TLC272BC, TLC277C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
5.3  
5.9  
4.3  
4.6  
5.1  
3.8  
MAX  
25°C  
0°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 k,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
V
= 5.5 V  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
0°C  
200  
220  
140  
2.2  
2.5  
1.8  
49°  
50°  
46°  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 10 k,  
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 1  
70°C  
25°C  
0°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
MHz  
70°C  
25°C  
0°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
C
= 20 pF,  
L
70°C  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC272I, TLC272AI,  
TLC272BI, TLC277I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
3.6  
4.5  
2.8  
2.9  
3.5  
2.3  
MAX  
25°C  
40°C  
85°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 k,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
V
= 2.5 V  
40°C  
85°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
40°C  
85°C  
320  
380  
250  
1.7  
2.6  
1.2  
46°  
49°  
43°  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 10 k,  
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
25°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
40°C  
85°C  
MHz  
1
25°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
40°C  
85°C  
C
= 20 pF,  
L
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC272I, TLC272AI,  
TLC272BI, TLC277I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
5.3  
6.8  
4
MAX  
25°C  
40°C  
85°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 k,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
4.6  
5.8  
3.5  
See Figure 1  
V
= 5.5 V  
40°C  
85°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
40°C  
85°C  
200  
260  
130  
2.2  
3.1  
1.7  
49°  
52°  
46°  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 10 k,  
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 1  
25°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
40°C  
85°C  
MHz  
25°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
40°C  
85°C  
C
= 20 pF,  
L
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC272M, TLC277M  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
3.6  
4.7  
2.3  
2.9  
3.7  
2
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 k,  
= 20 pF,  
See Figure 1  
L
L
SR  
Slew rate at unity gain  
V/µs  
V
= 2.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
320  
400  
230  
1.7  
2.9  
1.1  
46°  
49°  
41°  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 10 k,  
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 1  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
55°C  
125°C  
25°C  
MHz  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC272M, TLC277M  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
5.3  
7.1  
3.1  
4.6  
6.1  
2.7  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 k,  
= 20 pF,  
See Figure 1  
L
L
SR  
Slew rate at unity gain  
V/µs  
V
= 5.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
B
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
n
25°C  
55°C  
125°C  
25°C  
200  
280  
110  
2.2  
3.4  
1.6  
49°  
52°  
44°  
V
R
= V  
OH  
= 10 k,  
,
C
= 20 pF,  
O
L
L
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
1
Unity-gain bandwidth  
Phase margin  
55°C  
125°C  
25°C  
MHz  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
55°C  
125°C  
C
= 20 pF,  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics, V  
= 5 V, T = 25°C  
A
DD  
TLC272Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
V
= 1 V  
3.6  
R
= 10 k,  
C
= 20 pF,  
IPP  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 2.5 V  
2.9  
IPP  
V
n
Equivalent input noise voltage  
f = 1 kHz,  
R
C
= 20 ,  
See Figure 2  
R = 10 k,  
L
25  
320  
1.7  
nV/Hz  
kHz  
S
L
V
= V  
,
= 20 pF,  
O
OH  
B
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
OM  
1
See Figure 1  
B
V = 10 mV,  
I
C
= 20 pF,  
See Figure 3  
MHz  
L
V = 10 mV,  
I
See Figure 3  
f = B ,  
C
= 20 pF,  
1
L
φ
m
46°  
operating characteristics, V  
= 10 V, T = 25°C  
A
DD  
TLC272Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
V
= 1 V  
5.3  
R
= 10 k,  
C
= 20 pF,  
IPP  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 5.5 V  
4.6  
IPP  
V
n
Equivalent input noise voltage  
f = 1 kHz,  
R
C
= 20 ,  
See Figure 2  
R = 10 k,  
L
25  
200  
2.2  
nV/Hz  
kHz  
S
L
V
= V  
,
= 20 pF,  
O
OH  
B
B
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
OM  
See Figure 1  
V = 10 mV,  
I
C
= 20 pF,  
See Figure 3  
C = 20 pF,  
L
MHz  
1
L
V = 10 mV,  
I
See Figure 3  
f = B ,  
1
φ
m
49°  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC272 and TLC277 are optimized for single-supply operation, circuit configurations used for the  
various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
thenegativerail. Acomparisonofsingle-supplyversussplit-supplytestcircuitsisshownbelow. Theuseofeither  
circuit gives the same result.  
V
DD  
V
DD+  
+
+
V
O
V
O
V
I
V
I
C
R
C
R
L
L
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD  
V
DD+  
20 Ω  
20 Ω  
+
1/2 V  
V
O
V
O
DD  
+
20 Ω  
20 Ω  
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
V
DD  
DD+  
100 Ω  
100 Ω  
+
V
I
V
I
V
O
V
O
+
1/2 V  
DD  
C
C
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Because of the high input impedance of the TLC272 and TLC277 operational amplifiers, attempts to measure  
the input bias current can result in erroneous readings. The bias current at normal room ambient temperature  
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are  
offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using  
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated  
by subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the  
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage  
drop across the series resistor is measured and the bias current is calculated). This method requires that a  
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not  
feasible using this method.  
8
5
V = V  
IC  
1
4
Figure 4. Isolation Metal Around Device Inputs  
(JG and P packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. If conditions other than these are to  
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generallymeasuredbymonitoringthedistortionleveloftheoutputwhileincreasingthefrequencyofasinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. Thefrequencyisthenincreaseduntilthemaximumpeak-to-peakoutputcannolongerbemaintained  
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 1 kHz  
(b) B  
OM  
> f > 1 kHz  
(c) f = B  
OM  
(d) f > B  
OM  
Figure 5. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Distribution  
Distribution  
6, 7  
8, 9  
IO  
α
Temperature coefficient of input offset voltage  
VIO  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
V
V
A
High-level output voltage  
OH  
OL  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
14, 15  
16  
17  
Low-level output voltage  
vs Low-level output current  
18, 19  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
20  
21  
32, 33  
Large-signal differential voltage amplification  
VD  
I
I
Input bias current  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
22  
22  
23  
IB  
Input offset current  
IO  
V
Common-mode input voltage  
IC  
vs Supply voltage  
vs Free-air temperature  
24  
25  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
30  
31  
Unity-gain bandwidth  
1
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
34  
35  
36  
φ
m
Phase margin  
V
n
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
37  
32, 33  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC272  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC272  
INPUT OFFSET VOLTAGE  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
753 Amplifiers Tested From 6 Wafer Lots  
753 Amplifiers Tested From 6 Wafer Lots  
V
= 5 V  
V
= 10 V  
DD  
= 25°C  
DD  
= 25°C  
T
A
T
A
P Package  
P Package  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC272 AND TLC277  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC272 AND TLC277  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
60  
50  
40  
30  
20  
10  
0
60  
324 Amplifiers Tested From 8 Wafer Lots  
324 Amplifiers Tested From 8 Wafer Lots  
V
T
= 5 V  
V
T
= 5 V  
DD  
= 25°C to 125°C  
DD  
= 25°C to 125°C  
50  
40  
30  
20  
10  
0
A
A
P Package  
P Package  
Outliers:  
(1) 20.5 µV/°C  
Outliers:  
(1) 21.2 µV/°C  
10 8 –6 –4 –2  
0
2
4
6
8
10  
10 8 –6 –4 –2  
0
2
4
6
8
10  
αV – Temperature Coefficient – µV/°C  
αV – Temperature Coefficient – µV/°C  
IO  
IO  
Figure 8  
Figure 9  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
= 100 mV  
ID  
= 25°C  
V
= 100 mV  
ID  
T = 25°C  
A
T
A
V
DD  
= 16 V  
See Note A  
V
DD  
= 5 V  
V
DD  
= 4 V  
V
DD  
= 10 V  
V
= 3 V  
DD  
6
4
2
0
0
– 2  
– 4  
– 6  
– 8  
– 10  
0
– 5 – 10 – 15 – 20 – 25 – 30 – 35 – 40  
I
– High-Level Output Current – mA  
OH  
I
– High-Level Output Current – mA  
OH  
NOTE A: The 3-V curve only applies to the C version.  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
16  
FREE-AIR TEMPERATURE  
V
V
1.6  
1.7  
DD  
V
= 100 mV  
ID  
I
= 5 mA  
OH  
14  
12  
10  
8
R
T
= 10 kΩ  
= 25°C  
L
A
DD  
V
ID  
= 100 mA  
V
DD  
= 5 V  
V
–1.8  
1.9  
DD  
V
DD  
V
–2  
DD  
V
DD  
= 10 V  
6
V
–2.1  
2.2  
DD  
DD  
4
V
2
V
V
–2.3  
–2.4  
DD  
DD  
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
20  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
– Free-Air Temperature – °C  
A
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
700  
650  
600  
550  
500  
450  
400  
350  
300  
500  
450  
400  
350  
300  
250  
V
I
= 5 V  
V
= 10 V  
DD  
DD  
I
= 5 mA  
= 5 mA  
OL  
OL  
T = 25°C  
A
T
A
= 25°C  
V
= 100 mV  
ID  
V
V
V
= 100 mV  
= 1 V  
ID  
ID  
ID  
= 2.5 V  
V
= 1 V  
ID  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
1
2
3
4
5
6
7
8
9
10  
V
IC  
– Common-Mode Input Voltage – V  
V
IC  
– Common-Mode Input Voltage – V  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
= 5 mA  
OL  
I
= 5 mA  
= 1 V  
= 0.5 V  
OL  
V
T
= |V 2|  
ID/  
= 25°C  
IC  
A
V
V
ID  
IC  
V
= 5 V  
DD  
V
= 5 V  
DD  
V
DD  
= 10 V  
V
= 10 V  
DD  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 10  
75 50 25  
0
25  
50  
75 100 125  
V
– Differential Input Voltage – V  
ID  
T
– Free-Air Temperature – °C  
A
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT CURRENT  
1.0  
0.9  
3.0  
V
V
T
= 1 V  
V
V
= 1 V  
ID  
ID  
= 0.5 V  
= 0.5 V  
IC  
= 25°C  
IC  
2.5  
T
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
= 25°C  
A
A
V
= 16 V  
DD  
V
= 5 V  
See Note A  
DD  
2.0  
1.5  
1.0  
0.5  
0
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
I
– Low-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OL  
OL  
NOTE A: The 3-V curve only applies to the C version.  
Figure 18  
Figure 19  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
60  
50  
40  
30  
20  
10  
0
50  
T
= 55°C  
A
R
= 10 kΩ  
R
= 10 kΩ  
45  
40  
35  
30  
25  
20  
15  
10  
L
L
T
A
= 0°C  
V
= 10 V  
DD  
V
= 5 V  
T
= 25°C  
= 85°C  
= 125°C  
DD  
A
T
A
T
A
5
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
COMMON-MODE  
INPUT VOLTAGE POSITIVE LIMIT  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10000  
16  
14  
12  
10  
8
V
V
= 10 V  
DD  
= 5 V  
T
A
= 25°C  
IC  
See Note A  
1000  
100  
10  
I
IB  
I
IO  
6
4
1
2
0.1  
0
25  
35 45 55 65 75 85 95 105 115 125  
– Free-Air Temperature – °C  
0
2
4
6
8
10  
12  
14  
16  
T
A
V
DD  
– Supply Voltage – V  
NOTE A: The typical values of input bias current and input  
offset current below 5 pA were determined mathematically.  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
5
4
3.5  
3
V
= V /2  
DD  
V
= V /2  
4.5  
4
O
O DD  
No Load  
No Load  
T
= 55°C  
= 0°C  
A
3.5  
3
2.5  
2
T
A
T
= 25°C  
A
V
DD  
= 10 V  
2.5  
2
1.5  
1
1.5  
V
DD  
= 5 V  
1
0.5  
0
T
= 70°C  
A
0.5  
0
T
A
= 125°C  
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
8
7
6
5
4
3
2
1
0
8
A
= 1  
= 1 V  
= 10 kΩ  
= 20 pF  
= 25°C  
A
R
C
= 1  
= 10 kΩ  
= 20 pF  
V
V
L
L
V
R
C
IPP  
7
6
5
4
3
2
1
0
V
V
= 10 V  
= 5.5 V  
DD  
L
L
IPP  
See Figure 1  
T
A
See Figure 1  
V
V
= 10 V  
= 1 V  
DD  
IPP  
V
V
= 5 V  
= 1 V  
DD  
IPP  
V
V
= 5 V  
DD  
= 2.5 V  
IPP  
0
2
4
V
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75 100 125  
– Supply Voltage – V  
DD  
T
A
– Free-Air Temperature – °C  
Figure 26  
Figure 27  
NORMALIZED SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
10  
9
8
7
6
5
4
3
2
1
0
A
= 1  
V
V
DD  
= 10 V  
V
IPP  
= 1 V  
= 10 kΩ  
= 20 pF  
R
V
= 10 V  
L
L
DD  
C
T
= 125°C  
= 25°C  
= 55°C  
A
T
A
T
A
V
DD  
= 5 V  
V
DD  
= 5 V  
R
= 10 kΩ  
L
See Figure 1  
75 50 25  
0
25  
50  
75 100 125  
10  
100  
1000  
10000  
T
A
– Free-Air Temperature – °C  
f – Frequency – kHz  
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
vs  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
V = 10 mV  
V
= 5 V  
I
DD  
V = 10 mV  
C
= 20 pF  
L
I
T
A
= 25°C  
C
= 20 pF  
L
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 30  
Figure 31  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
10  
6
10  
5
10  
4
10  
3
10  
2
10  
1
10  
V
= 5 V  
= 10 kΩ  
= 25°C  
DD  
R
L
T
A
0°  
30°  
60°  
90°  
120°  
A
VD  
Phase Shift  
1
150°  
180°  
0.1  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f – Frequency – Hz  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
10  
6
10  
5
10  
4
10  
3
10  
2
10  
1
10  
V
= 10 V  
DD  
R
T
A
= 10 kΩ  
= 25°C  
L
0°  
30°  
60°  
90°  
120°  
A
VD  
Phase Shift  
1
150°  
180°  
0.1  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f – Frequency – Hz  
Figure 33  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
53°  
52°  
50°  
48°  
46°  
44°  
42°  
V
= 5 V  
DD  
V = 10 mV  
I
C
= 20 pF  
L
51°  
50°  
See Figure 3  
49°  
48°  
47°  
V = 10 mV  
I
C
T
= 20 pF  
= 25°C  
L
A
See Figure 3  
46°  
45°  
40°  
0
2
4
6
8
10  
12  
14  
16  
–75 –50 –25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 34  
Figure 35  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
CAPACITIVE LOAD  
FREQUENCY  
50°  
45°  
40°  
35°  
30°  
25°  
400  
300  
200  
100  
0
V
= 5 V  
DD  
V = 10 mV  
V
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
R
T
I
A
T
= 25°C  
A
See Figure 3  
See Figure 2  
0
10 20 30 40 50 60 70 80 90 100  
1
10  
100  
f – Frequency – Hz  
1000  
C
– Capacitive Load – pF  
L
Figure 36  
Figure 37  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
single-supply operation  
While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split supplies),  
the design is optimized for single-supply operation. This design includes an input common-mode voltage range  
that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage  
range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for  
TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.  
Many single-supply applications require that a voltage be applied to one input to establish a reference level that  
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).  
The low input bias current of the TLC272 and TLC277 permits the use of very large resistive values toimplement  
the voltage divider, thus minimizing power consumption.  
TheTLC272andTLC277workwellinconjunctionwithdigitallogic;however, whenpoweringbothlineardevices  
and digital logic from the same power supply, the following precautions are recommended:  
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear  
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital  
logic.  
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, high-frequency applications may require RC decoupling.  
V
DD  
R4  
R1  
R2  
+
V
I
R3  
V
O
V
V
REF  
DD  
R1  
R3  
V
REF  
R4  
R2  
V
(V  
V )  
V
R3  
C
O
REF  
I
REF  
0.01 µF  
Figure 38. Inverting Amplifier With Voltage Reference  
Power  
Supply  
Logic  
Logic  
Logic  
OUT  
+
(a) COMMON SUPPLY RAILS  
+
Power  
Supply  
Logic  
Logic  
Logic  
OUT  
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)  
Figure 39. Common vs Separate Supply Rails  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
input characteristics  
The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded at either  
input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially  
in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit  
is specified at V  
– 1 V at T = 25°C and at V  
– 1.5 V at all other temperatures.  
DD  
A
DD  
The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277 very  
good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift  
in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus  
dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)  
alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.  
The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of  
operation.  
Because of the extremely high input impedance and resulting low bias current requirements, the TLC272 and  
TLC277 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and  
sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good  
practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement  
Information section). These guards should be driven from a low-impedance source at the same voltage level  
as the common-mode input (see Figure 40).  
Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.  
noise performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low  
noise current, which is insignificant in most applications. This feature makes the devices especially favorable  
over bipolar devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit  
greater noise currents.  
+
+
+
V
I
OUT  
OUT  
OUT  
V
I
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 40. Guard-Ring Schemes  
output characteristics  
The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of current  
(see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can  
cause device damage under certain conditions. Output current capability increases with supply voltage.  
All operating characteristics of the TLC272 and TLC277 are measured using a 20-pF load. The devices can  
drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole  
occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many  
cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
output characteristics (continued)  
(b) C = 130 pF, R = NO LOAD  
(a) C = 20 pF, R = NO LOAD  
L
L
L
L
2.5 V  
+
T
= 25°C  
A
f = 1 kHz  
= 1 V  
V
O
V
IPP  
V
I
C
L
2.5 V  
(d) TEST CIRCUIT  
(c) C = 150 pF, R = NO LOAD  
L
L
Figure 41. Effect of Capacitive Loads and Test Circuit  
Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability, methods  
for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor  
(R ) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the  
P
use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively  
large amount of current. In this circuit, N4 behaves like a linear resistor with an on resistance between  
approximately 60 and 180 , depending on how hard the operational amplifier input is driven. With very low  
values of R , a voltage offset from 0 V at the output occurs. Second, pullup resistor R acts as a drain load to  
P
P
N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the  
output current.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
output characteristics (continued)  
V
DD  
R
V
I
+
P
I
I
P
V
O
C
F
R2  
I
R1  
V
R
L
L
V
O
+
– V  
DD  
+ I + I  
P
O
R
=
p
I
F
L
I
= Pullup current required by  
p
the operational amplifier  
(typically 500 µA)  
Figure 42. Resistive Pullup to Increase V  
Figure 43. Compensation for Input Capacitance  
OH  
feedback  
Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for  
oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads  
(discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with  
the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.  
electrostatic discharge protection  
The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents  
functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be  
exercised, however, when handling these devices as exposure to ESD may result in the degradation of the  
device parametric performance. The protection circuit also causes the input bias currents to be temperature  
dependent and have the characteristics of a reverse-biased diode.  
latch-up  
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272 and  
TLC277 inputs and outputs were designed to withstand –100-mA surge currents without sustaining latch-up;  
however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection  
diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply  
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.  
Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the  
supply rails as close to the device as possible.  
The current path established if latch-up occurs is usually between the positive supply rail and ground and can  
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
10 kΩ  
10 kΩ  
0.016 µF  
0.016 µF  
10 kΩ  
V
I
10 kΩ  
1/2  
TLC272  
+
5 V  
10 kΩ  
1/2  
TLC272  
+
1/2  
TLC272  
+
Low Pass  
High Pass  
Band Pass  
5 kΩ  
R = 5 k(3/d-1) (see Note A)  
NOTE A: d = damping factor, 1/Q  
Figure 44. State-Variable Filter  
12 V  
H.P.  
5082-2835  
V
I
+
1/2  
+
TLC272  
1/2  
TLC272  
V
O
N.O.  
Reset  
0.5 µF  
Mylar  
100 kΩ  
Figure 45. Positive-Peak Detector  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
V
I
(see Note A)  
100 kΩ  
1 kΩ  
1.2 kΩ  
20 kΩ  
0.47 µF  
4.7 kΩ  
0.1 µF  
TL431  
1/2  
TLC272  
+
TIP31  
15 Ω  
TIS193  
250 µF,  
+
25 V  
V
O
(see Note B)  
10 kΩ  
47 kΩ  
0.01 µF  
22 kΩ  
110 Ω  
NOTES: A. V = 3.5 to 15 V  
I
O
B.  
V
= 2 V, 0 to 1 A  
Figure 46. Logic-Array Power Supply  
V
O
(see Note A)  
9 V  
0.1 µF  
9 V  
10 kΩ  
10 kΩ  
C
100 kΩ  
1/2  
TLC272  
1/2  
TLC272  
+
R2  
V
(see Note B)  
1
O
100 kΩ  
R1  
fO  
4C(R2) R3  
R1  
47 kΩ  
R3  
NOTES: A.  
B.  
V
V
= 8 V  
= 4 V  
O(PP)  
O(PP)  
Figure 47. Single-Supply Function Generator  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC272, TLC272A, TLC272B, TLC272Y, TLC277  
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS  
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
5 V  
V –  
I
+
10 kΩ  
100 kΩ  
1/2  
TLC277  
1/2  
TLC277  
+
V
O
10 kΩ  
R1,10 kΩ  
(see Note A)  
10 kΩ  
95 kΩ  
1/2  
TLC277  
+
V +  
I
–5 V  
NOTE B: CMRR adjustment must be noninductive.  
Figure 48. Low-Power Instrumentation Amplifier  
5 V  
1/2  
TLC272  
+
R
R
V
O
10 MΩ  
10 MΩ  
V
I
2C  
540 pF  
1
f
R/2  
5 MΩ  
NOTCH  
2 RC  
C
C
270 pF  
270 pF  
Figure 49. Single-Supply Twin-T Notch Filter  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLC274

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC274A

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC274ACD

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC274ACD

QUAD OP-AMP, 6500uV OFFSET-MAX, 1.7MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14
ROCHESTER

TLC274ACDG4

The TLC274 and TLC279 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high...
TI

TLC274ACDP3

IC OP-AMP, Operational Amplifier
TI

TLC274ACDR

The TLC274 and TLC279 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high...
TI

TLC274ACDR

QUAD OP-AMP, 6500uV OFFSET-MAX, 1.7MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14
ROCHESTER

TLC274ACDRG4

The TLC274 and TLC279 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high...
TI

TLC274ACJ

QUAD OP-AMP, 6500uV OFFSET-MAX, 2.2MHz BAND WIDTH, CDIP14
TI

TLC274ACJP4

IC OP-AMP, Operational Amplifier
TI

TLC274ACN

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI