TLC274_V01 [TI]

LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS;
TLC274_V01
型号: TLC274_V01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS

放大器
文件: 总49页 (文件大小:1496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
D
Trimmed Offset Voltage:  
TLC279 . . . 900 µV Max at 25°C,  
= 5 V  
D, J, N, OR PW PACKAGE  
(TOP VIEW)  
V
DD  
D
D
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, Including the First 30 Days  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
0°C to 70°C . . . 3 V to 16 V  
−40°C to 85°C . . . 4 V to 16 V  
−55°C to 125°C . . . 4 V to 16 V  
Single-Supply Operation  
1OUT  
1IN−  
1IN+  
4OUT  
13 4IN−  
1
2
3
4
5
6
7
14  
12  
11  
10  
9
4IN+  
GND  
3IN+  
3IN−  
3OUT  
V
DD  
2IN+  
2IN−  
8
2OUT  
D
D
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix  
and I-Suffix Versions)  
FK PACKAGE  
(TOP VIEW)  
D
D
D
D
D
Low Noise . . . Typically 25 nV/Hz  
at f = 1 kHz  
3
2
1
20 19  
18  
Output Voltage Range Includes Negative  
Rail  
4IN+  
NC  
1IN+  
NC  
4
5
6
7
8
17  
16  
15  
14  
12  
High Input Impedance . . . 10 Typ  
GND  
NC  
V
DD  
NC  
ESD-Protection Circuitry  
3IN+  
2IN+  
Small-Outline Package Option Also  
Available in Tape and Reel  
9 10 11 12 13  
D
Designed-In Latch-Up Immunity  
description  
NC − No internal connection  
The TLC274 and TLC279 quad operational  
amplifiers combine a wide range of input offset  
voltage grades with low offset voltage drift, high  
input impedance, low noise, and speeds  
approaching that of general-purpose BiFET  
devices.  
DISTRIBUTION OF TLC279  
INPUT OFFSET VOLTAGE  
30  
25  
20  
15  
10  
5
290 Units Tested From 2 Wafer Lots  
= 5 V  
V
T
A
DD  
= 25°C  
These devices use Texas Instruments silicon-  
gate LinCMOStechnology, which provides  
offset voltage stability far exceeding the stability  
N Package  
available  
with  
conventional  
metal-gate  
processes.  
The extremely high input impedance, low bias  
currents, and high slew rates make these  
cost-effective devices ideal for applications which  
have previously been reserved for BiFET and  
NFET products. Four offset voltage grades are  
available (C-suffix and I-suffix types), ranging  
from the low-cost TLC274 (10 mV) to the high-  
precision TLC279 (900 µV). These advantages, in  
combination with good common-mode rejection  
and supply voltage rejection, make these devices  
a good choice for new state-of-the-art designs as  
well as for upgrading existing designs.  
0
1200  
600  
0
600  
1200  
V
IO  
− Input Offset Voltage − µV  
LinCMOS is a trademark of Texas Instruments.  
ꢀꢢ  
Copyright 2001, Texas Instruments Incorporated  
ꢞ ꢢ ꢟ ꢞꢋ ꢌꢬ ꢚꢙ ꢝ ꢥꢥ ꢣꢝ ꢛ ꢝ ꢜ ꢢ ꢞ ꢢ ꢛ ꢟ ꢧ  
ꢠꢢ  
ꢝꢛ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
description (continued)  
In general, many features associated with bipolar technology are available on LinCMOSoperational  
amplifiers, without the power penalties of bipolar technology. General applications such as transducer  
interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the  
TLC274 and TLC279. The devices also exhibit low voltage single-supply operation, making them ideally suited  
for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the  
negative rail.  
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand −100-mA surge currents without sustaining latch-up.  
The TLC274 and TLC279 incorporate internal ESD-protection circuits that prevent functional failures at voltages  
up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling  
these devices as exposure to ESD may result in the degradation of the device parametric performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of 55°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
V
max  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
IO  
T
A
FORM  
(Y)  
TSSOP  
(PW)  
AT 25°C  
(J)  
(N)  
900 µV  
2 mV  
5 mV  
TLC279CD  
TLC274BCD  
TLC274ACD  
TLC274CD  
TLC279CN  
TLC274BCN  
TLC274ACN  
TLC274CN  
0°C to 70°C  
10 mV  
TLC274CPW  
TLC274Y  
900 µV  
2 mV  
5 mV  
TLC279ID  
TLC274BID  
TLC274AID  
TLC274ID  
TLC279IN  
TLC274BIN  
TLC274AIN  
TLC274IN  
40°C to 85°C  
55°C to 125°C  
10 mV  
900 µV  
10 mV  
TLC279MD  
TLC274MD  
TLC279MFK  
TLC274MFK  
TLC279MJ  
TLC274MJ  
TLC279MN  
TLC274MN  
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢇꢀ  
ꢒꢑ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
R1  
R2  
N5  
C1  
IN−  
P5  
P6  
P2  
P1  
IN+  
R5  
OUT  
N3  
D2  
N1  
R3  
N2  
D1  
N4  
N6  
R7  
N7  
R4  
GND  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TLC274Y chip information  
These chips, when properly assembled, display characteristics similar to the TLC274C. Thermal compression  
or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
V
DD  
(4)  
(14)  
(11)  
(8)  
(13)  
(12)  
(10)  
(9)  
(3)  
(2)  
+
1IN+  
1IN−  
(1)  
1OUT  
(5)  
(6)  
+
2IN+  
2IN−  
(7)  
2OUT  
(10)  
(9)  
68  
+
3IN+  
3IN−  
(8)  
3OUT  
(12)  
(13)  
+
4IN+  
4IN−  
(14)  
4OUT  
11  
(2)  
(3)  
(6)  
(1)  
(5)  
(4)  
108  
(7)  
GND  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
T max = 150°C  
J
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (11) IS INTERNALLY CONNECTED  
TO BACK SIDE OF CHIP.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
V
ID  
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, l (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or PW package . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at the noninverting input with respect to the inverting input.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
494 mW  
715 mW  
715 mW  
819 mW  
POWER RATING  
A
D
FK  
J
950 mW  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
12.6 mW/°C  
5.6 mW/°C  
608 mW  
275 mW  
275 mW  
1375 mW  
1375 mW  
1575 mW  
700 mW  
880 mW  
880 mW  
N
1008 mW  
448 mW  
PW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN  
3
MAX  
MIN  
4
MAX  
MIN  
4
MAX  
16  
Supply voltage, V  
DD  
16  
3.5  
8.5  
70  
16  
3.5  
8.5  
85  
V
V
V
= 5 V  
0.2  
0.2  
0
0.2  
0.2  
40  
0
3.5  
DD  
Common-mode input voltage, V  
IC  
V
= 10 V  
0
8.5  
DD  
Operating free-air temperature, T  
55  
125  
°C  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
ꢍꢎ  
ꢇꢀ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC274C, TLC274AC,  
TLC274BC, TLC279C  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
TLC274C  
TLC274AC  
TLC274BC  
TLC279C  
12  
mV  
0.9  
340  
320  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
900  
1500  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1.8  
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
60  
300  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
O
= 2.5 V,  
V
IC  
= 2.5 V  
0.6  
40  
I
IB  
pA  
600  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
0°C  
3.2  
3
3.8  
3.8  
3.8  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 10 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
3
50  
50  
50  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
70°C  
25°C  
0°C  
0
5
4
23  
27  
20  
80  
84  
85  
95  
94  
96  
2.7  
3.1  
2.3  
Large-signal differential voltage  
amplification  
A
R
= 10 kΩ  
VD  
L
70°C  
25°C  
0°C  
4
65  
60  
60  
65  
60  
60  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
70°C  
25°C  
0°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
70°C  
25°C  
0°C  
6.4  
7.2  
5.2  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
mA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC274C, TLC274AC,  
TLC274BC, TLC279C  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
TLC274C  
TLC274AC  
TLC274BC  
TLC279C  
12  
mV  
0.9  
390  
370  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
1200  
1900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of  
input offset voltage  
25°C to  
70°C  
α
2
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
60  
300  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
O
=.5 V,  
V
IC  
= 5 V  
0.7  
50  
I
IB  
pA  
600  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
0°C  
8
7.8  
7.8  
8.5  
8.5  
8.4  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
50  
50  
50  
0
I
= 0  
OL  
OL  
70°C  
25°C  
0°C  
0
10  
7.5  
7.5  
65  
60  
60  
65  
60  
60  
36  
42  
32  
85  
88  
88  
95  
94  
96  
3.8  
4.5  
3.2  
Large-signal differential voltage  
amplification  
A
R
= 10 kΩ  
VD  
L
70°C  
25°C  
0°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
70°C  
25°C  
0°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
70°C  
25°C  
0°C  
8
8.8  
6.8  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
mA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢏꢓ  
ꢐꢒ  
ꢇꢀ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC274I, TLC274AI,  
TLC274BI, TLC279I  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
TLC274I  
TLC274AI  
TLC274BI  
TLC279I  
13  
mV  
0.9  
340  
320  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
900  
2000  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
1.8  
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
24  
60  
1000  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
O
= 2.5 V,  
V
IC  
= 2.5 V  
0.6  
200  
I
IB  
pA  
2000  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
3.5  
Full range  
V
V
25°C  
40°C  
85°C  
3.2  
3
3.8  
3.8  
3.8  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 10 kΩ  
= 0  
OH  
ID  
ID  
O
L
3
25°C  
50  
50  
50  
40°C  
85°C  
0
= −100 mV,  
= 0.25 V to 2 V,  
I
mV  
V/mV  
dB  
OL  
OL  
0
25°C  
5
3.5  
3.5  
65  
60  
60  
65  
60  
60  
23  
32  
19  
80  
81  
86  
95  
92  
96  
2.7  
3.8  
2.1  
Large-signal differential voltage  
amplification  
40°C  
85°C  
A
VD  
R
= 10 kΩ  
L
25°C  
40°C  
85°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
25°C  
40°C  
85°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
25°C  
6.4  
8.8  
4.8  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
40°C  
85°C  
mA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC274I, TLC274AI,  
TLC274BI, TLC279I  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
TLC274I  
TLC274AI  
TLC274BI  
TLC279I  
13  
mV  
0.9  
390  
370  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
1200  
2900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
2
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
26  
60  
1000  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
O
= 5 V,  
V
IC  
= 5 V  
0.7  
220  
I
IB  
pA  
2000  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
40°C  
85°C  
8
7.8  
7.8  
8.5  
8.5  
8.5  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
25°C  
50  
50  
50  
40°C  
85°C  
0
I
OL  
OL  
0
25°C  
10  
7
36  
47  
31  
85  
87  
88  
95  
92  
96  
3.8  
5.5  
2.9  
Large-signal differential voltage  
amplification  
40°C  
85°C  
A
R
= 10 kΩ  
VD  
L
7
25°C  
65  
60  
60  
65  
60  
60  
40°C  
85°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
25°C  
40°C  
85°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
25°C  
8
10  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
40°C  
85°C  
mA  
DD  
No load  
6.4  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
ꢍꢎ  
  
ꢏꢓ  
ꢐꢒ  
ꢇꢀ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC274M, TLC279M  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
TLC274M  
TLC279M  
mV  
12  
V
IO  
Input offset voltage  
320  
900  
3750  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
L
µV  
Full range  
S
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
VIO  
2.1  
µV/°C  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
60  
15  
60  
35  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
IO  
V
O
= 2.5 V,  
V
IC  
= 2.5 V  
I
IB  
125°C  
0
to  
4
0.3  
to  
4.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
3.5  
Full range  
25°C  
55°C  
125°C  
25°C  
3.2  
3
3.8  
3.8  
3.8  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 10 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
50  
50  
50  
55°C  
125°C  
25°C  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
0
5
3.5  
3.5  
65  
60  
60  
65  
60  
60  
23  
35  
16  
80  
81  
84  
95  
90  
97  
2.7  
4
Large-signal differential voltage  
amplification  
55°C  
125°C  
25°C  
A
VD  
R
= 10 kΩ  
L
55°C  
125°C  
25°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
55°C  
125°C  
25°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
6.4  
10  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
55°C  
125°C  
mA  
DD  
No load  
1.9  
4.4  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless) otherwise noted)  
DD  
TLC274M, TLC279M  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
L
TLC274M  
TLC279M  
mV  
12  
V
IO  
Input offset voltage  
370  
1200  
4300  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
IC  
L
µV  
Full range  
S
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
VIO  
2.2  
µV/°C  
25°C  
125°C  
25°C  
0.1  
1.8  
0.7  
10  
60  
15  
60  
35  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
IO  
V
O
= 5 V,  
V
IC  
= 5 V  
I
IB  
125°C  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
8.5  
Full range  
25°C  
55°C  
125°C  
25°C  
8
7.8  
7.8  
8.5  
8.5  
8.4  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
50  
50  
50  
55°C  
125°C  
25°C  
0
I
OL  
OL  
0
10  
7
36  
50  
27  
85  
87  
86  
95  
90  
97  
3.8  
6.0  
2.5  
Large-signal differential voltage  
amplification  
55°C  
125°C  
25°C  
A
VD  
R
= 10 kΩ  
L
7
65  
60  
60  
65  
60  
60  
55°C  
125°C  
25°C  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
55°C  
125°C  
25°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
8
12  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
55°C  
125°C  
mA  
DD  
No load  
5.6  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢏꢓ  
ꢐꢒ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC274C, TLC274AC,  
TLC274AC,  
TLC274BC, TLC279C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
3.6  
4
MAX  
25°C  
0°C  
V
V
= 1 V  
IPP  
R
C
= 10 ,  
L
L
70°C  
25°C  
0°C  
3
= 20 F,  
SR  
Slew rate at unity gain  
V/µs  
P
2.9  
3.1  
2.5  
See Figure 1  
= 2.5 V  
IPP  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
0°C  
320  
340  
260  
1.7  
2
V
R
= V  
OH  
= 10 k,  
,
C
= 20 F,  
P
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
V = 10 mV,  
I
See Figure 3  
C = 20 F,  
L P  
Unity-gain bandwidth  
Phase margin  
MHz  
1
70°C  
25°C  
0°C  
1.3  
46°  
47°  
44°  
V = 10 mV,  
f = B ,  
1
I
L
φ
m
C
= 20 F,  
P
70°C  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC274C, TLC274AC,  
TLC274AC,  
TLC274BC, TLC279C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
5.3  
5.9  
4.3  
4.6  
5.1  
3.8  
MAX  
25°C  
0°C  
V
V
= 1 V  
IPP  
R
C
= 10 ,  
L
L
70°C  
25°C  
0°C  
= 20 F,  
SR  
Slew rate at unity gain  
V/µs  
P
See Figure 1  
= 5.5 V  
IPP  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
0°C  
200  
220  
140  
2.2  
2.5  
1.8  
49°  
50°  
46°  
V
R
= V  
OH  
= 10 k,  
,
C
= 20 F,  
P
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
V = 10 mV,  
I
See Figure 3  
C = 20 F,  
L P  
Unity-gain bandwidth  
Phase margin  
MHz  
1
70°C  
25°C  
0°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 F,  
P
70°C  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC274I, TLC274AI,  
TLC274BI, TLC279I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
3.6  
4.5  
2.8  
2.9  
3.5  
2.3  
MAX  
25°C  
40°C  
85°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 k,  
L
L
= 20 F,  
SR  
Slew rate at unity gain  
V/µs  
P
25°C  
See Figure 1  
40°C  
85°C  
V
= 2.5 V  
R
= 20 ,  
f = 1 kHz,  
See Figure 2  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
40°C  
85°C  
320  
380  
250  
1.7  
2.6  
1.2  
46°  
49°  
43°  
V
R
= V  
OH  
,
C
= 20 F,  
P
O
L
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
= 10 k,  
See Figure 1  
25°C  
V = 10 mV,  
I
See Figure 3  
C = 20 F,  
L P  
40°C  
85°C  
Unity-gain bandwidth  
Phase margin  
MHz  
1
25°C  
V
C
= 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
40°C  
85°C  
= 20 F,  
L
P
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC274I, TLC274AI,  
TLC274BI, TLC279I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
5.3  
6.7  
4
MAX  
25°C  
40°C  
85°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 ,  
L
L
= 20 F,  
SR  
Slew rate at unity gain  
V/µs  
P
25°C  
4.6  
5.8  
3.5  
See Figure 1  
40°C  
85°C  
V
= 5.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
40°C  
85°C  
200  
260  
130  
2.2  
3.1  
1.7  
49°  
52°  
46°  
V
R
= V  
OH  
,
C
= 20 F,  
P
O
L
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
= 10 k,  
See Figure 1  
25°C  
V = 10 mV,  
I
See Figure 3  
C = 20 F,  
L P  
40°C  
85°C  
Unity-gain bandwidth  
Phase margin  
MHz  
1
25°C  
V
C
= 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
40°C  
85°C  
= 20 F,  
L
P
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
ꢍꢎ  
  
ꢏꢓ  
ꢐꢒ  
ꢇꢀ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC274M, TLC279M  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
3.6  
4.7  
2.3  
2.9  
3.7  
2
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 k,  
L
L
= 20 F,  
SR  
Slew rate at unity gain  
V/µs  
P
See Figure 1  
55°C  
125°C  
V
= 2.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
320  
400  
230  
1.7  
2.9  
1.1  
46°  
49°  
41°  
V
R
= V  
= 10 k,  
,
C
= 20 F,  
P
O
L
OH  
L
kHz  
B
B
Maximum output-swing bandwidth  
OM  
See Figure 1  
V
I
= 10 mV,  
C = 20 F,  
L P  
55°C  
125°C  
25°C  
MHz  
Unity-gain bandwidth  
Phase margin  
1
See Figure 3  
V
C
= 10 mV,  
= 20 F,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
L
P
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC274M, TLC279M  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
5.3  
7.1  
3.1  
4.6  
6.1  
2.7  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
IPP  
IPP  
R
C
= 10 ,  
L
L
= 20 F,  
SR  
Slew rate at unity gain  
V/µs  
P
See Figure 1  
55°C  
125°C  
V
= 5.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
25  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
200  
280  
110  
2.2  
3.4  
1.6  
49°  
52°  
44°  
V
R
= V  
= 10 k,  
,
C
= 20 F,  
P
O
L
OH  
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
V
I
= 10 mV,  
C = 20 F,  
L P  
55°C  
125°C  
25°C  
Unity-gain bandwidth  
Phase margin  
MHz  
1
See Figure 3  
V
C
= 10 mV,  
= 20 F,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
L
P
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
DD  
A
TLC274Y  
TYP  
PARAMETER  
Input offset voltage  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
V
IO  
1.1  
10  
mV  
L
I
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
0.1  
0.6  
pA  
pA  
IO  
V
O
= 2.5 V,  
V
IC  
= 2.5 V  
IB  
0.2  
to  
0.3  
to  
4.2  
V
ICR  
Common-mode input voltage range (see Note 5)  
V
4
V
V
High-level output voltage  
V
V
V
V
V
V
= 100 mV,  
R
= 10 kΩ  
= 0  
3.2  
3.8  
0
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
Low-level output voltage  
= −100 mV,  
= 0.25 V to 2 V,  
I
50  
OL  
OL  
A
VD  
Large-signal differential voltage amplification  
R
= 10 kΩ  
5
65  
65  
23  
80  
95  
L
CMRR Common-mode rejection ratio  
= V  
min  
= 5 V to 10 V,  
IC  
DD  
ICR  
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
V
V
= 1.4 V  
dB  
SVR  
DD  
O
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
2.7  
6.4  
mA  
DD  
No load  
electrical characteristics, V  
= 10 V, T = 25°C (unless otherwise noted)  
DD  
A
TLC274Y  
TYP  
PARAMETER  
Input offset voltage  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 10 kΩ  
O
S
IC  
V
IO  
1.1  
10  
mV  
L
I
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
0.1  
0.7  
pA  
pA  
IO  
V
O
= 5 V,  
V
IC  
= 5 V  
IB  
0.2  
to  
0.3  
to  
9.2  
V
ICR  
Common-mode input voltage range (see Note 5)  
V
9
V
V
High-level output voltage  
V
V
V
V
V
V
= 100 mV,  
= −100 mV,  
= 1 V to 6 V,  
R
= 10 kΩ  
= 0  
8
8.5  
0
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
Low-level output voltage  
I
50  
OL  
OL  
A
VD  
Large-signal differential voltage amplification  
R
= 10 kΩ  
10  
65  
65  
36  
85  
95  
L
CMRR Common-mode rejection ratio  
= V  
min  
= 5 V to 10 V,  
IC  
DD  
ICR  
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
V
V
= 1.4 V  
dB  
SVR  
DD  
O
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
3.8  
8
mA  
DD  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
operating characteristics, V  
= 5 V, T = 25°C  
A
DD  
TLC274Y  
TYP  
3.6  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
V
= 1 V  
R
= 10 k,  
C
= 20 F,  
P
IPP  
L
L
SR  
Slew rate at unity gain  
V/µs  
nV/Hz  
kHz  
See Figure 1  
= 2.5 V  
2.9  
IPP  
V
B
B
Equivalent input noise voltage  
f = 1 kHz,  
R
C
= 20 ,  
See Figure 2  
R = 10 k,  
L
25  
n
S
L
V
O
= V  
OH  
,
= 20 F,  
P
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
320  
1.7  
46°  
OM  
See Figure 1  
V
V
= 10 mV,  
= 10 mV,  
C
= 20 F,  
See Figure 3  
MHz  
1
I
L
P
f = B ,  
C
= 20 F,  
L P  
I
1
φ
m
See Figure 3  
operating characteristics, V  
= 10 V, T = 25°C  
A
DD  
TLC274Y  
TYP  
5.3  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
V
= 1 V  
R
= 10 k,  
C
= 20 F,  
P
IPP  
L
L
SR  
Slew rate at unity gain  
V/µs  
nV/Hz  
kHz  
See Figure 1  
= 5.5 V  
4.6  
IPP  
V
B
B
Equivalent input noise voltage  
f = 1 kHz,  
R
C
= 20 ,  
See Figure 2  
R = 10 k,  
L
25  
n
S
L
V
O
= V  
OH  
,
= 20 F,  
P
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
200  
2.2  
49°  
OM  
See Figure 1  
V
V
= 10 mV,  
= 10 mV,  
C
= 20 F,  
See Figure 3  
C = 20 F,  
L
MHz  
1
I
L
P
f = B ,  
I
1
P
φ
m
See Figure 3  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC274 and TLC279 are optimized for single-supply operation, circuit configurations used for the  
various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either  
circuit gives the same result.  
V
DD  
V
DD  
+
V
O
V
O
+
+
V
I
V
I
C
R
C
R
L
L
L
L
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD  
+
V
DD  
20 Ω  
20 Ω  
+
+
1/2 V  
DD  
V
O
V
O
20 Ω  
20 Ω  
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
V
+
DD  
DD  
100 Ω  
100 Ω  
V
I
V
I
V
O
V
O
+
+
1/2 V  
DD  
C
C
L
L
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Because of the high input impedance of the TLC274 and TLC279 operational amplifiers, attempts to measure  
the input bias current can result in erroneous readings. The bias current at normal room ambient temperature  
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are  
offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using  
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated  
by subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the  
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage  
drop across the series resistor is measured and the bias current is calculated). This method requires that a  
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not  
feasible using this method.  
7
1
V = V  
IC  
8
14  
Figure 4. Isolation Metal Around Device Inputs (J and N packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. If conditions other than these are to  
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
PARAMETER MEASUREMENT INFORMATION  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained  
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 1 kHz  
(b) BOM > f > 1 kHz  
(c) f = BOM  
(d) f > BOM  
Figure 5. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
IO  
Input offset voltage  
Distribution  
α
VIO  
Temperature coefficient of input offset voltage  
Distribution  
8, 9  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
V
V
High-level output voltage  
OH  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
14, 15  
16  
17  
Low-level output voltage  
OL  
vs Low-level output current  
18, 19  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
20  
21  
32, 33  
A
VD  
Large-signal differential voltage amplification  
I
I
Input bias current  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
22  
22  
23  
IB  
Input offset current  
IO  
V
Common-mode input voltage  
IC  
vs Supply voltage  
vs Free-air temperature  
24  
25  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
30  
31  
Unity-gain bandwidth  
Phase margin  
1
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
34  
35  
36  
φ
m
V
n
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
37  
32, 33  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC274  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC274  
INPUT OFFSET VOLTAGE  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
753 Amplifiers Tested From 6 Wafer Lots  
DD  
753 Amplifiers Tested From 6 Wafer Lots  
V
= 5 V  
V
T
A
= 10 V  
DD  
= 25°C  
T = 25°C  
A
N Package  
N Package  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC274 AND TLC279  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC274 AND TLC279  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
324 Amplifiers Tested From 8 Wafer Lots  
324 Amplifiers Tested From 8 Wafer Lots  
V
T
A
= 5 V  
DD  
= 25°C to 125°C  
V
T
A
= 10 V  
DD  
= 25°C to 125°C  
N Package  
Outliers:  
(1) 20.5 V/°C  
N Package  
Outliers:  
(1) 21.2 V/C  
10 8 −6 −4 −2  
0
2
4
6
8
10  
10 8 −6 −4 −2  
0
2
4
6
8
10  
α
VIO  
− Temperature Coefficient − µV/°C  
α
VIO  
− Temperature Coefficient − µV/°C  
Figure 8  
Figure 9  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
Q
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
= 100 mV  
V
= 100 mV  
ID  
= 25°C  
ID  
T = 25°C  
A
T
A
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
6
4
2
0
0
−2  
−4  
−6  
−8  
10  
0
−5  
I
10 15 20 25 30 35 40  
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OH  
OH  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
V
V
V
V
1.6  
1.7  
1.8  
1.9  
16  
14  
12  
10  
8
DD  
DD  
DD  
I
= 5 mA  
OH  
V
= 100 mV  
ID  
V
= 100 mA  
ID  
R
T
A
= 10 kΩ  
= 25°C  
L
V
DD  
= 5 V  
DD  
V
−2  
DD  
V
DD  
= 10 V  
V
DD  
V
DD  
V
DD  
V
DD  
2.1  
2.2  
2.3  
2.4  
6
4
2
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
700  
650  
500  
450  
400  
350  
300  
250  
V
= 5 V  
DD  
V
= 10 V  
= 5 mA  
DD  
I
= 5 mA  
OL  
I
OL  
T
A
= 25°C  
T
A
= 25°C  
600  
550  
V
= 100 mV  
ID  
V
V
V
= 100 mV  
= 1 V  
500  
450  
ID  
ID  
ID  
= 2.5 V  
400  
350  
V
ID  
= 1 V  
300  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
V
V
= 5 mA  
= 1 V  
= 0.5 V  
I
V
T
= 5 mA  
OL  
ID  
IC  
OL  
IC  
A
= |V /2|  
ID  
= 25°C  
V
= 5 V  
DD  
V
= 5 V  
DD  
V
DD  
= 10 V  
V
= 10 V  
DD  
75 50 25  
0
25  
50  
75  
100 125  
0
−1 −2 −3 −4 −5 −6 −7 −8 −9 10  
T
A
− Free-Air Temperature − °C  
V
ID  
− Differential Input Voltage − V  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
V
V
T
A
= 1 V  
= 0.5 V  
= 25°C  
V
V
T
A
= 1 V  
= 0.5 V  
= 25°C  
ID  
IC  
ID  
IC  
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
I
− Low-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OL  
OL  
Figure 18  
Figure 19  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
T
= 55°C  
A
R
= 10 kΩ  
R
= 10 kΩ  
L
L
T
A
= 0°C  
V
= 10 V  
DD  
V
= 5 V  
T
= 25°C  
= 85°C  
= 125°C  
DD  
A
T
A
T
A
5
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
COMMON-MODE  
INPUT VOLTAGE POSITIVE LIMIT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10000  
1000  
100  
10  
V
V
= 10 V  
16  
14  
12  
10  
8
DD  
= 5 V  
IC  
T
A
= 25°C  
See Note A  
I
IB  
I
IO  
6
1
4
2
0.1  
25  
45  
65  
85  
105  
125  
0
T
− Free-Air Temperature − °C  
0
2
4
V
6
8
10  
12  
14  
16  
A
− Supply Voltage − V  
DD  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
10  
8
7
6
5
4
3
2
1
0
V
= V /2  
DD  
V = V /2  
O DD  
9
8
O
No Load  
No Load  
T
= 55°C  
= 0°C  
A
7
6
5
4
3
T
A
T
A
= 25°C  
V
DD  
= 10 V  
V
DD  
= 5 V  
2
1
0
T
A
= 70°C  
T
= 125°C  
A
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
A
R
C
= 1  
= 10 kΩ  
= 20 pF  
V
L
L
A
= 1  
= 1 V  
V
V
IPP  
V
V
= 10 V  
= 5.5 V  
DD  
IPP  
R
C
= 10 kΩ  
= 20 pF  
= 25°C  
L
L
See Figure 1  
T
A
V
V
= 10 V  
= 1 V  
See Figure 1  
DD  
IPP  
V
V
= 5 V  
= 1 V  
DD  
IPP  
2
1
V
V
= 5 V  
DD  
= 2.5 V  
IPP  
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 26  
Figure 27  
NORMALIZED SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
1.5  
1.4  
1.3  
1.2  
1.1  
1
10  
9
8
7
6
5
4
3
2
1
0
A
= 1  
V
V
= 10 V  
DD  
V
R
= 1 V  
= 10 kΩ  
= 20 pF  
IPP  
L
L
V
= 10 V  
DD  
C
T
T
A
T
A
= 125°C  
= 25°C  
= 55°C  
A
V
DD  
= 5 V  
V
R
= 5 V  
DD  
0.9  
0.8  
0.7  
0.6  
0.5  
= 10 kΩ  
L
See Figure 1  
10  
100  
1000  
10000  
75 50 25  
0
25  
50  
75  
100 125  
f − Frequency − kHz  
T
A
− Free-Air Temperature − °C  
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
UNITY-GAIN BANDWIDTH  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
3
2.5  
2
2.5  
V
= 5 V  
V = 10 mV  
I
DD  
V = 10 mV  
C
= 20 pF  
I
C
L
T
A
= 25°C  
= 20 pF  
L
See Figure 3  
See Figure 3  
2
1.5  
1.5  
1
1
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 30  
Figure 31  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
10  
V
= 5 V  
= 10 kΩ  
= 25°C  
DD  
106  
R
L
T
A
5
10  
0°  
4
10  
30°  
60°  
90°  
A
VD  
3
10  
2
10  
Phase Shift  
10  
1
120°  
150°  
180°  
0.1  
10  
100  
1 k  
10 k 100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
V
R
= 10 V  
= 10 kΩ  
= 25°C  
DD  
L
T
A
0°  
30°  
60°  
90°  
120°  
A
VD  
Phase Shift  
10  
1
150°  
180°  
0.1  
10  
100  
1 k  
10 k 100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 33  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
53°  
52°  
50°  
48°  
46°  
V
= 5 V  
DD  
V = 10 mV  
I
C
= 20 pF  
L
51°  
50°  
See Figure 3  
49°  
48°  
47°  
44°  
42°  
40°  
V = 10 mV  
I
C
= 20 pF  
L
T
A
= 25°C  
46°  
45°  
See Figure 3  
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 34  
Figure 35  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
400  
300  
200  
100  
0
50°  
45°  
40°  
V
R
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
V
= 5 V  
DD  
V = 10 mV  
I
T
A
T
A
= 25°C  
See Figure 2  
See Figure 3  
35°  
30°  
25°  
10 20 30 40 50 60 70 80 90 100  
0
1
10  
100  
1000  
C
− Capacitive Load − pF  
f − Frequency − Hz  
L
Figure 36  
Figure 37  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
APPLICATION INFORMATION  
single-supply operation  
While the TLC274 and TLC279 perform well using dual power supplies (also called balanced or split supplies),  
the design is optimized for single-supply operation. This design includes an input common-mode voltage range  
that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage  
range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for  
TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.  
Many single-supply applications require that a voltage be applied to one input to establish a reference level that  
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).  
The low input bias current of the TLC274 and TLC279 permits the use of very large resistive values to implement  
the voltage divider, thus minimizing power consumption.  
The TLC274 and TLC279 work well in conjunction with digital logic; however, when powering both linear devices  
and digital logic from the same power supply, the following precautions are recommended:  
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear  
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital  
logic.  
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, high-frequency applications may require R decoupling.  
C
V
DD  
R4  
R1  
R3  
R1 + R3  
V
= V  
DD  
REF  
R2  
R3  
V
I
R4  
R2  
V
O
+ V  
REF  
+
V
O
= (V − V )  
REF I  
V
REF  
C
0.01 µF  
Figure 38. Inverting Amplifier With Voltage Reference  
+
Power  
Supply  
Logic  
Logic  
Logic  
V
O
(a) COMMON SUPPLY RAILS  
+
Power  
Supply  
Logic  
Logic  
Logic  
V
O
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)  
Figure 39. Common Versus Separate Supply Rails  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
APPLICATION INFORMATION  
input characteristics  
The TLC274 and TLC279 are specified with a minimum and a maximum input voltage that, if exceeded at either  
input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially  
in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit  
is specified at V  
− 1 V at T = 25°C and at V  
− 1.5 V at all other temperatures.  
DD  
A
DD  
The use of the polysilicon-gate process and the careful input circuit design gives the TLC274 and TLC279 very  
good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift  
in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus  
dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)  
alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.  
The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of  
operation.  
Because of the extremely high input impedance and resulting low bias current requirements, the TLC274 and  
TLC279 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and  
sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good  
practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement  
Information section). These guards should be driven from a low-impedance source at the same voltage level  
as the common-mode input (see Figure 40).  
Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.  
noise performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias current requirements of the TLC274 and TLC279 result in a very low  
noise current, which is insignificant in most applications. This feature makes the devices especially favorable  
over bipolar devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit  
greater noise currents.  
+
+
+
V
I
V
O
V
O
V
O
V
I
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 40. Guard-Ring Schemes  
output characteristics  
The output stage of the TLC274 and TLC279 is designed to sink and source relatively high amounts of current  
(see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can  
cause device damage under certain conditions. Output current capability increases with supply voltage.  
All operating characteristics of the TLC274 and TLC279 were measured using a 20-pF load. The devices drive  
higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at  
lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding  
a small amount of resistance in series with the load capacitance alleviates the problem.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
APPLICATION INFORMATION  
output characteristics (continued)  
(a) C = 20 pF, R = NO LOAD  
(b) C = 130 pF, R = NO LOAD  
L L  
L
L
2.5 V  
+
V
O
V
I
C
T = 25°C  
A
L
f = 1 kHz  
= 1 V  
V
IPP  
2.5 V  
(d) TEST CIRCUIT  
(c) C = 150 pF, R = NO LOAD  
L
L
Figure 41. Effect of Capacitive Loads and Test Circuit  
Although the TLC274 and TLC279 possess excellent high-level output voltage and current capability, methods  
for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor  
(R ) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the  
P
use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively  
large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between  
approximately 60 and 180 , depending on how hard the op amp input is driven. With very low values of R ,  
P
a voltage offset from 0 V at the output occurs. Second, pullup resistor R acts as a drain load to N4 and the gain  
P
of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
APPLICATION INFORMATION  
output characteristics (continued)  
V
DD  
C
R
V
I
P
+
I
I
P
V
O
F
V
O
+
R2  
I
L
R
R1  
L
V
− V  
O
DD  
+ I + I  
P
Figure 43. Compensation for  
Input Capacitance  
Rp =  
I
F
L
I
= Pullup current required  
P
by the operational amplifier  
(typically 500 µA)  
Figure 42. Resistive Pullup to Increase V  
OH  
feedback  
Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for  
oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads  
(discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with  
the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.  
electrostatic discharge protection  
The TLC274 and TLC279 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents  
functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be  
exercised, however, when handling these devices as exposure to ESD may result in the degradation of the  
device parametric performance. The protection circuit also causes the input bias currents to be  
temperature-dependent and have the characteristics of a reverse-biased diode.  
latch-up  
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC274 and  
TLC279 inputs and outputs were designed to withstand 100-mA surge currents without sustaining latch-up;  
however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection  
diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply  
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.  
Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the  
supply rails as close to the device as possible.  
The current path established if latch-up occurs is usually between the positive supply rail and ground and can  
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
APPLICATION INFORMATION  
10 kΩ  
10 kΩ  
0.016 µF  
0.016 µF  
10 kΩ  
V
I
10 kΩ  
1/4  
TLC274  
+
5 V  
10 kΩ  
1/4  
TLC274  
+
1/4  
TLC274  
+
Low Pass  
HIgh Pass  
Band Pass  
5 kΩ  
R = 5 k(3/d−1)  
(see Note A)  
NOTE A: d = damping factor, 1/Q  
Figure 44. State-Variable Filter  
12 V  
H.P.  
5082-2835  
V
I
+
1/4  
+
TLC274  
1/4  
V
O
TLC274  
0.5 µF  
Mylar  
N.O.  
Reset  
100 kΩ  
Figure 45. Positive-Peak Detector  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢇ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢉꢆ ꢀꢁ ꢂꢃ ꢄꢊ  
ꢐꢑꢒ ꢂꢓꢏ ꢓꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒꢑ ꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐ ꢁꢓ ꢘꢓ ꢒꢑ ꢏ  
ꢁꢋ  
  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
APPLICATION INFORMATION  
V
I
(see Note A)  
100 kΩ  
0.47 µF  
1.2 kΩ  
20 kΩ  
4.7 kΩ  
0.1 µF  
TL431  
1/4  
TLC274  
+
1 kΩ  
TIP31  
15 Ω  
TIS193  
+
250 µF,  
25 V  
V
O
(see Note B)  
10 kΩ  
47 kΩ  
0.01 µF  
22 kΩ  
110 Ω  
NOTES: B. V = 3.5 V to 15 V  
I
O
C.  
V
= 2 V, 0 to 1 A  
Figure 46. Logic-Array Power Supply  
V
O
(see Note A)  
9 V  
0.1 µF  
9 V  
10 kΩ  
10 kΩ  
C
1/4  
TLC274  
100 kΩ  
R2  
1/4  
TLC274  
+
V
O
(see Note B)  
100 kΩ  
R1  
1
R1  
f
=
O
4C(R2) R2  
47 kΩ  
R3  
NOTES: A.  
B.  
V
V
= 8 V  
= 4 V  
O(PP)  
O(PP)  
Figure 47. Single-Supply Function Generator  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢉꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢊ  
  
ꢍꢎ  
ꢐꢑ ꢒ ꢂꢓ ꢏꢓ ꢎ ꢔ ꢕ ꢖꢇꢗ ꢎ ꢐꢒ ꢑꢇꢀ ꢓꢎ ꢔꢇꢁ ꢇꢍ ꢐꢁ ꢓꢘ ꢓꢒ ꢑꢏ  
SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001  
APPLICATION INFORMATION  
5 V  
V −  
I
+
10 kΩ  
100 kΩ  
1/4  
TLC279  
1/4  
TLC279  
+
V
O
10 kΩ  
R1, 10 kΩ  
(see Note A)  
10 kΩ  
95 kΩ  
1/4  
TLC279  
+
V +  
I
−5 V  
NOTE C: CMRR adjustment must be noninductive.  
Figure 48. Low-Power Instrumentation Amplifier  
5 V  
1/4  
TLC274  
R
R
V
O
10 MΩ  
10 MΩ  
+
V
I
2C  
540 pF  
1
f
+
NOTCH  
2pRC  
R/2  
5 MΩ  
C
C
270 pF  
270 pF  
Figure 49. Single-Supply Twin-T Notch Filter  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC274ACD  
TLC274ACDR  
TLC274ACN  
TLC274ACNE4  
TLC274AID  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
D
D
N
N
D
D
N
D
D
D
N
N
NS  
D
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50  
Green (RoHS  
& no Sb/Br)  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
TLC274AC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
2500  
25  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
Call TI | NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TLC274AC  
TLC274ACN  
TLC274ACN  
TLC274AI  
Green (RoHS  
& no Sb/Br)  
0 to 70  
25  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
0 to 70  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TLC274AIDR  
TLC274AIN  
2500  
25  
Green (RoHS  
& no Sb/Br)  
TLC274AI  
Green (RoHS  
& no Sb/Br)  
TLC274AIN  
TLC274BC  
TLC274BC  
TLC274BC  
TLC274BCN  
TLC274BCN  
TLC274B  
TLC274BCD  
TLC274BCDG4  
TLC274BCDR  
TLC274BCN  
TLC274BCNE4  
TLC274BCNS  
TLC274BID  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
25  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
0 to 70  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
SOIC  
SOIC  
SOIC  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
TLC274BI  
TLC274BIDG4  
TLC274BIDR  
50  
Green (RoHS  
& no Sb/Br)  
TLC274BI  
2500  
Green (RoHS  
& no Sb/Br)  
TLC274BI  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
25  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC274BIDRG4  
TLC274BIN  
ACTIVE  
SOIC  
PDIP  
SOIC  
SSOP  
SSOP  
SSOP  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
-40 to 85  
TLC274BI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
N
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TLC274BIN  
TLC274C  
P274  
TLC274CD  
D
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC274CDB  
TLC274CDBG4  
TLC274CDBR  
TLC274CDG4  
TLC274CDR  
TLC274CDRG4  
TLC274CN  
DB  
DB  
DB  
D
80  
Green (RoHS  
& no Sb/Br)  
80  
Green (RoHS  
& no Sb/Br)  
P274  
2000  
50  
Green (RoHS  
& no Sb/Br)  
P274  
Green (RoHS  
& no Sb/Br)  
TLC274C  
TLC274C  
TLC274C  
TLC274CN  
TLC274CN  
TLC274  
TLC274  
P274  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
N
Green (RoHS  
& no Sb/Br)  
TLC274CNE4  
TLC274CNS  
TLC274CNSR  
TLC274CPW  
TLC274CPWR  
TLC274CPWRG4  
TLC274ID  
N
25  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
NS  
NS  
PW  
PW  
PW  
D
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
SO  
2000  
90  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
SOIC  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
P274  
Green (RoHS  
& no Sb/Br)  
P274  
Green (RoHS  
& no Sb/Br)  
TLC274I  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC274IDG4  
TLC274IDR  
TLC274IN  
ACTIVE  
SOIC  
SOIC  
PDIP  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-55 to 125  
-55 to 125  
-55 to 125  
0 to 70  
TLC274I  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
2500  
25  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TLC274I  
TLC274IN  
TLC274IN  
P274  
N
Green (RoHS  
& no Sb/Br)  
TLC274INE4  
TLC274IPW  
TLC274IPWR  
TLC274IPWRG4  
TLC274MD  
PDIP  
N
25  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
TSSOP  
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PW  
PW  
PW  
D
90  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
Y274  
Green (RoHS  
& no Sb/Br)  
Y274  
Green (RoHS  
& no Sb/Br)  
TLC274M  
TLC274M  
TLC274M  
TLC279C  
TLC279C  
TLC279C  
TLC279CN  
TLC279I  
TLC279I  
TLC279IN  
TLC274MDG4  
TLC274MDRG4  
TLC279CD  
D
50  
Green (RoHS  
& no Sb/Br)  
D
2500  
50  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
TLC279CDG4  
TLC279CDR  
TLC279CN  
D
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
N
Green (RoHS  
& no Sb/Br)  
0 to 70  
TLC279ID  
SOIC  
SOIC  
PDIP  
D
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
TLC279IDR  
TLC279IN  
D
2500  
25  
Green (RoHS  
& no Sb/Br)  
N
Green (RoHS  
& no Sb/Br)  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Apr-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC274ACDR  
TLC274AIDR  
TLC274CDBR  
TLC274CDR  
TLC274CDR  
TLC274CNSR  
TLC274CPWR  
TLC274IPWR  
TLC274MDRG4  
TLC279CDR  
TLC279IDR  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
SO  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2500  
2500  
2000  
2500  
2500  
2000  
2000  
2000  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
6.5  
6.5  
8.35  
6.5  
6.5  
8.2  
6.9  
6.9  
6.5  
6.5  
6.5  
9.0  
9.0  
6.6  
9.0  
9.0  
10.5  
5.6  
5.6  
9.0  
9.0  
9.0  
2.1  
2.1  
2.5  
2.1  
2.1  
2.5  
1.6  
1.6  
2.1  
2.1  
2.1  
8.0  
8.0  
12.0  
8.0  
8.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DB  
D
D
NS  
PW  
PW  
D
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
D
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Apr-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC274ACDR  
TLC274AIDR  
TLC274CDBR  
TLC274CDR  
TLC274CDR  
TLC274CNSR  
TLC274CPWR  
TLC274IPWR  
TLC274MDRG4  
TLC279CDR  
TLC279IDR  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
SO  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2500  
2500  
2000  
2500  
2500  
2000  
2000  
2000  
2500  
2500  
2500  
350.0  
350.0  
367.0  
350.0  
333.2  
367.0  
367.0  
367.0  
350.0  
350.0  
350.0  
350.0  
350.0  
367.0  
350.0  
345.9  
367.0  
367.0  
367.0  
350.0  
350.0  
350.0  
43.0  
43.0  
38.0  
43.0  
28.6  
38.0  
35.0  
35.0  
43.0  
43.0  
43.0  
DB  
D
D
NS  
PW  
PW  
D
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
D
D
Pack Materials-Page 2  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLC277

LinCMOSE PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC277CD

LinCMOSE PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC277CD1

IC IC,OP-AMP,DUAL,CMOS,SOP,8PIN,PLASTIC, Operational Amplifier
TI

TLC277CDG4

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC277CDR

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC277CDRG4

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC277CJG

DUAL OP-AMP, 1900uV OFFSET-MAX, 2.2MHz BAND WIDTH, CDIP8, 0.300 INCH, HERMETIC SEALED, CERAMIC, DIP-8
TI

TLC277CP

LinCMOSE PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC277CP3

IC IC,OP-AMP,DUAL,CMOS,DIP,8PIN,PLASTIC, Operational Amplifier
TI

TLC277CPE4

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC277CPP3

IC IC,OP-AMP,DUAL,CMOS,DIP,8PIN,PLASTIC, Operational Amplifier
TI

TLC277CPS

双路精密单电源运算放大器 | PS | 8 | 0 to 70
TI