TLC27L1 [TI]

LinCMOSE LOW-POWER OPERATIONAL AMPLIFIERS; LinCMOSE低功耗运算放大器
TLC27L1
型号: TLC27L1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LinCMOSE LOW-POWER OPERATIONAL AMPLIFIERS
LinCMOSE低功耗运算放大器

运算放大器
文件: 总32页 (文件大小:518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
Input Offset Voltage Drift . . . Typically  
Low Noise . . . 68 nV/Hz Typically at  
0.1 µV/Month, Including the First 30 Days  
f = 1 kHz  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
0°C to 70°C . . . 3 V to 16 V  
Output Voltage Range includes Negative  
Rail  
12  
High Input Impedance . . . 10 Typ  
40°C to 85°C . . . 4 V to 16 V  
55°C to 125°C . . . 5 V to 16 V  
ESD-Protection Circuitry  
Small-Outline Package Option Also  
Available in Tape and Reel  
Single-Supply Operation  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix  
and I-Suffix Types)  
Designed-In Latch-Up Immunity  
description  
The TLC27L1 operational amplifier combines a wide range of input offset-voltage grades with low offset-voltage  
drift and high input impedance. In addition, the TLC27L1 is a low-bias version of the TLC271 programmable  
amplifier. These devices use the Texas Instruments silicon-gate LinCMOS technology, which provides  
offset-voltage stability far exceeding the stability available with conventional metal-gate processes.  
Three offset-voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L1 (10  
mV) to the TLC27L1B (2 mV) low-offset version. The extremely high input impedance and low bias currents,  
in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good  
choice for new state-of-the-art designs as well as for upgrading existing designs.  
Ingeneral, manyfeaturesassociatedwithbipolartechnologyareavailableinLinCMOS operationalamplifiers,  
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog  
calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC27L1. The  
devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and  
inaccessible battery-powered applications. The common-mode input-voltage range includes the negative rail.  
The device inputs and output are designed to withstand 100-mA surge currents without sustaining latch-up.  
The TLC27L1 incorporates internal electrostatic-discharge (ESD) protection circuits that prevent functional  
failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be  
exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric  
performance.  
AVAILABLE OPTIONS  
PACKAGE  
D OR P PACKAGE  
V
max  
IO  
SMALL  
OUTLINE  
(D)  
PLASTIC  
DIP  
(TOP VIEW)  
T
A
AT 25°C  
(P)  
OFFSET N1  
IN –  
V
V
OUT  
1
2
3
4
8
7
6
5
DD  
DD  
2 mV  
5 mV  
TLC27L1BCD  
TLC27L1ACD  
TLC27L1CD  
TLC27L1BCP  
TLC27L1ACP  
TLC27L1CP  
0°C to 70°C  
IN +  
GND  
10 mV  
OFFSET N2  
2 mV  
5 mV  
10 mV  
TLC27L1BID  
TLC27L1AID  
TLC27L1ID  
TLC27L1BIP  
TLC27L1AIP  
TLC27L1IP  
40°C to 85°C  
55°C to 125°C  
10 mV  
TLC27L1MD  
TLC27L1MP  
The D package is available taped and reeled. Add R suffix to the device type  
(e.g., TLC27L1BCDR).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1995, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
description (continued)  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of – 55°C to 125°C.  
equivalent schematic  
V
DD  
P3  
P12  
P9A  
R6  
N5  
P4  
P5  
P9B  
P7B  
P11  
P1  
P2 R2  
IN –  
IN +  
R1  
P10  
N11  
N12  
P7A  
P6A  
P6B  
P8  
C1  
R5  
N3  
N9  
N6  
R7  
N7  
N1  
N2  
N4  
N13  
D1  
D2  
R3  
R4  
N10  
OFFSET OFFSET  
N1  
GND  
OUT  
N2  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
ID  
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
O
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
Storage temperature range, T  
Case temperature for 60 seconds, T : FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
C
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
P
725 mW  
5.8 mW/°C  
8.0 mW/°C  
464 mW  
377 mW  
145 mW  
1000 mW  
640 mW  
520 mW  
200 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
V
MIN  
3
MAX  
MIN  
4
MAX  
MIN  
5
MAX  
16  
Supply voltage, V  
16  
3.5  
8.5  
70  
16  
3.5  
8.5  
85  
DD  
V
V
= 5 V  
0.2  
0.2  
0
0.2  
0.2  
40  
0
3.5  
DD  
Common-mode input voltage, V  
V
IC  
Operating free-air temperature, T  
= 10 V  
0
8.5  
DD  
55  
125  
°C  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
electrical characteristics at specified free-air temperature (unless otherwise noted)  
TLC27L1C, TLC27L1AC, TLC27L1BC  
TEST  
V
= 5 V  
V
= 10 V  
T
A
PARAMETER  
UNIT  
DD  
TYP MAX MIN  
DD  
TYP MAX  
CONDITIONS  
MIN  
25°C  
Full range  
25°C  
1.1  
10  
12  
5
1.1  
10  
12  
5
TLC27L1C  
TLC27L1AC  
TLC27L1BC  
V
V
R
= 1.4 V,  
= 0 V,  
= 50 ,  
O
IC  
S
I
0.9  
0.9  
V
IO  
Input offset voltage  
mV  
Full range  
25°C  
6.5  
2
6.5  
2
R = 1 MΩ  
0.24  
0.26  
Full range  
3
3
Average temperature coefficient of  
input offset voltage  
25°C to  
70°C  
α
1.1  
1
µV/°C  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
0.1  
V
V
= V  
/2,  
/2  
O
IC  
DD  
= V  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
pA  
IO  
300  
600  
8
0.7  
300  
600  
DD  
0.6  
40  
V
V
= V  
DD  
= V  
/2,  
/2  
O
IC  
I
IB  
pA  
V
50  
DD  
0.2 0.3  
0.2 0.3  
25°C  
to  
4
to  
4.2  
to  
9
to  
9.2  
Common-mode input  
voltage range (see Note 5)  
V
ICR  
0.2  
to  
3.5  
0.2  
to  
8.5  
Full range  
V
V
25°C  
0°C  
3.2  
3
4.1  
4.1  
4.2  
0
8
7.8  
7.8  
8.9  
8.9  
8.9  
0
V
ID  
= 100 mV,  
V
V
High-level output voltage  
Low-level output voltage  
OH  
R = 1 MΩ  
L
70°C  
25°C  
0°C  
3
50  
50  
50  
50  
50  
50  
V
= –100 mV,  
= 0  
ID  
0
0
mV  
V/mV  
dB  
OL  
I
OL  
70°C  
25°C  
0°C  
0
0
50  
50  
50  
65  
60  
60  
70  
60  
60  
520  
700  
380  
94  
95  
95  
97  
97  
98  
65  
10  
12  
8
50  
870  
Large-signal differential  
voltage amplification  
R = 1 MΩ,  
See Note 6  
L
A
50 1030  
VD  
70°C  
25°C  
0°C  
50  
65  
60  
60  
70  
60  
60  
660  
97  
97  
97  
97  
97  
98  
95  
14  
18  
11  
CMRR Common-mode rejection ratio  
V
IC  
= V  
min  
ICR  
70°C  
25°C  
0°C  
Supply-voltage rejection ratio  
V
V
= 5 V to 10 V,  
= 1.4 V  
DD  
O
k
dB  
nA  
µA  
SVR  
I(SEL)  
DD  
(V  
DD  
/V  
IO  
)
70°C  
25°C  
25°C  
0°C  
I
I
Input current (BIAS SELECT)  
Supply current  
V
= V  
I(SEL)  
DD  
17  
21  
14  
23  
33  
20  
V
V
= V  
DD  
= V  
/2,  
/2,  
DD  
O
IC  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 10 V, V = 1 V to 6 V.  
DD O  
DD  
O
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
electrical characteristics at specified free-air temperature (unless otherwise noted)  
TLC27L1I, TLC27L1AI, TLC27L1BI  
= 5 V = 10 V  
TEST  
CONDITIONS  
V
V
T
A
PARAMETER  
UNIT  
DD  
TYP MAX MIN  
DD  
TYP MAX  
MIN  
25°C  
Full range  
25°C  
1.1  
10  
13  
5
1.1  
10  
13  
5
TLC27L1I  
TLC27L1AI  
TLC27L1BI  
V
V
R
R
= 1.4 V,  
= 0 V,  
= 50 ,  
= 1 MΩ  
O
IC  
S
L
0.9  
0.9  
V
IO  
Input offset voltage  
mV  
Full range  
25°C  
7
7
0.24  
2
0.26  
2
Full range  
3.5  
3.5  
Average temperature coefficient  
of input offset voltage  
25°C to  
85°C  
α
1.1  
0.1  
1
µV/°C  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
V
V
= V  
/2,  
/2  
O
IC  
DD  
= V  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
pA  
24 1000  
0.6  
26 1000  
0.7  
DD  
V
V
= V  
DD  
= V  
/2,  
/2  
O
IC  
I
IB  
pA  
V
200 2000  
220 2000  
DD  
0.2 0.3  
0.2 0.3  
25°C  
to  
4
to  
4.2  
to  
9
to  
9.2  
Common-mode input  
voltage range (see Note 5)  
V
ICR  
0.2  
to  
3.5  
0.2  
to  
8.5  
Full range  
V
V
25°C  
40°C  
85°C  
3
3
3
4.1  
4.1  
4.2  
0
8
7.8  
7.8  
8.9  
8.9  
8.9  
0
V
ID  
= 100 mV,  
V
V
High-level output voltage  
Low-level output voltage  
OH  
R = 1 MΩ  
L
25°C  
50  
50  
50  
50  
50  
50  
V
= 100 mV,  
= 0  
ID  
40°C  
85°C  
0
0
mV  
V/mV  
dB  
OL  
I
OL  
0
0
25°C  
50  
50  
50  
65  
60  
60  
70  
60  
60  
520  
900  
330  
94  
95  
95  
97  
97  
98  
65  
10  
16  
17  
50  
870  
Large-signal differential  
voltage amplification  
R = 1 MΩ  
See Note 6  
L
A
40°C  
85°C  
50 1550  
VD  
50  
65  
60  
60  
70  
60  
60  
585  
97  
97  
98  
97  
97  
98  
95  
14  
25  
10  
25°C  
CMRR Common-mode rejection ratio  
V
IC  
= V  
min  
ICR  
40°C  
85°C  
25°C  
Supply-voltage rejection ratio  
V
V
= 5 V to 10 V,  
= 1.4 V  
DD  
O
k
40°C  
85°C  
dB  
nA  
µA  
SVR  
I(SEL)  
DD  
(V  
DD  
/V  
IO  
)
I
I
Input current (BIAS SELECT)  
Supply current  
V
= V  
25°C  
I(SEL)  
DD  
25°C  
17  
27  
13  
23  
43  
18  
V
V
= V  
DD  
= V  
/2,  
/2,  
DD  
O
IC  
40°C  
85°C  
No load  
Full range is 40 to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 10 V, V = 1 V to 6 V.  
DD O  
DD  
O
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
electrical characteristics at specified free-air temperature (unless otherwise noted)  
TLC27L1M  
TEST  
CONDITIONS  
V
= 5 V  
V
= 10 V  
T
A
PARAMETER  
UNIT  
DD  
TYP MAX  
DD  
MIN TYP MAX  
MIN  
V
V
= 1.4 V,  
= 0 V,  
O
IC  
25°C  
1.1  
10  
12  
1.1  
10  
12  
V
IO  
Input offset voltage  
mV  
R
R
= 50 ,  
= 1 MΩ  
S
L
Full range  
Average temperature coefficient  
of input offset voltage  
25°C to  
125°C  
α
1.4  
1.4  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
0.1  
1.8  
0.7  
10  
pA  
nA  
pA  
nA  
V
V
= V  
/2,  
/2  
O
IC  
DD  
= V  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
IO  
15  
35  
15  
35  
DD  
V
V
= V  
DD  
= V  
/2,  
/2  
O
IC  
I
IB  
125°C  
DD  
0
to  
4
0.3  
to  
4.2  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
Common-mode input  
voltage range (see Note 5)  
V
ICR  
0
to  
0
to  
Full range  
3.5  
8.5  
25°C  
55°C  
125°C  
25°C  
3.2  
3
4.1  
4.1  
4.2  
0
8
7.8  
7.8  
8.9  
8.8  
9
V
= 100 mV,  
ID  
L
V
V
High-level output voltage  
Low-level output voltage  
V
mV  
OH  
R = 1 MΩ  
3
50  
50  
50  
0
50  
50  
50  
V
= 100 mV,  
= 0  
ID  
55°C  
125°C  
25°C  
0
0
OL  
I
OL  
0
0
50  
520  
50  
870  
Large-signal differential  
voltage amplification  
R = 1 MΩ,  
See Note 6  
L
A
55°C  
125°C  
25°C  
25 1000  
25 1775  
V/mV  
dB  
VD  
25  
65  
60  
60  
70  
60  
60  
200  
94  
95  
85  
97  
97  
98  
65  
10  
17  
7
25  
65  
60  
60  
70  
60  
60  
380  
97  
97  
91  
97  
97  
98  
95  
14  
28  
9
CMRR Common-mode rejection ratio  
V
= V  
min  
ICR  
55°C  
125°C  
25°C  
IC  
Supply-voltage rejection ratio  
V
V
= 5 V to 10 V,  
= 1.4 V  
O
DD  
k
55°C  
125°C  
25°C  
dB  
nA  
µA  
SVR  
I(SEL)  
DD  
(V  
DD  
/V  
IO  
)
I
I
Input current (BIAS SELECT)  
Supply current  
V
= V  
I(SEL)  
DD  
25°C  
17  
30  
12  
23  
48  
15  
V
V
= V  
/2,  
O
IC  
DD  
= V  
/2,  
DD  
55°C  
125°C  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 10 V, V = 1 V to 6 V.  
DD O  
DD  
O
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27L1C,  
TLC27L1AC,  
TLC27L1BC  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.03  
0.03  
0.03  
0.02  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 33  
= 2.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 34  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
0°C  
5
6
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 33  
70°C  
25°C  
0°C  
4.5  
85  
V = 10 mV,  
I
See Figure 35  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
100  
65  
kHz  
70°C  
25°C  
0°C  
34°  
36°  
30°  
V = 10 mV,  
f = B ,  
1
See Figure 35  
I
L
φ
m
C
= 20 pF,  
70°C  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27L1C,  
TLC27L1AC,  
TLC27L1BC  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.05  
0.04  
0.04  
0.05  
0.04  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 33  
= 5.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 34  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
0°C  
1
1.3  
0.9  
110  
125  
90  
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 33  
70°C  
25°C  
0°C  
V = 10 mV,  
I
See Figure 35  
C
= 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
kHz  
1
70°C  
25°C  
0°C  
38°  
40°  
34°  
V = 10 mV,  
f = B ,  
1
See Figure 35  
I
L
φ
m
C
= 20 pF,  
70°C  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27L1I,  
TLC27L1AI,  
TLC27L1BI  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.03  
0.03  
0.04  
0.02  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 33  
= 2.5 V  
40°C  
85°C  
I(PP)  
f = 1 kHz,  
See Figure 34  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
40°C  
85°C  
5
7
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 33  
4
25°C  
85  
V = 10 mV,  
I
See Figure 35  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
40°C  
85°C  
130  
55  
MHz  
25°C  
34°  
38°  
28°  
V = 10 mV,  
f = B ,  
1
See Figure 35  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27L1C,  
TLC27L1AC,  
TLC27L1BC  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.06  
0.03  
0.04  
0.05  
0.03  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 33  
= 5.5 V  
40°C  
85°C  
I(PP)  
f = 1 kHz,  
See Figure 34  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
40°C  
85°C  
1
1.4  
0.8  
110  
155  
80  
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 33  
25°C  
V = 10 mV,  
I
See Figure 35  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
40°C  
85°C  
MHz  
1
25°C  
38°  
42°  
32°  
V = 10 mV,l  
f = B ,  
1
See Figure 35  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27L1M  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
0.03  
0.04  
0.02  
0.03  
0.04  
0.02  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
See Figure 33  
L
L
SR  
Slew rate at unity gain  
V/µs  
V
= 2.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 34  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
5
8
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 1 M,  
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 33  
3
85  
V = 10 mV,  
I
See Figure 35  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
55°C  
125°C  
25°C  
140  
45  
kHz  
34°  
39°  
25°  
V = 10 mV,  
f = B ,  
1
See Figure 35  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27L1M  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
0.05  
0.06  
0.03  
0.04  
0.06  
0.03  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
See Figure 33  
L
L
SR  
Slew rate at unity gain  
V/µs  
V
= 5.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 34  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
1
1.5  
0.7  
110  
165  
70  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 1 M,  
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 33  
V = 10 mV,  
I
See Figure 35  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
55°C  
125°C  
25°C  
kHz  
38°  
43°  
29°  
V = 10 mV,  
f = B ,  
1
See Figure 35  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1, 2  
V
Input offset voltage  
Distribution  
Distribution  
IO  
α
Temperature coefficient  
3, 4  
VIO  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
5, 6  
7
8
V
V
A
High-level output voltage  
OH  
OL  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
9, 10  
11  
12  
Low-level output voltage  
vs Low-level output current  
13, 14  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
15  
16  
27, 28  
Large-signal differential voltage amplification  
VD  
I
I
Input bias current  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
17  
17  
18  
IB  
Input offset current  
Maximum input voltage  
IO  
V
I
vs Supply voltage  
vs Free-air temperature  
19  
20  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
21  
22  
SR  
Bias-select current  
vs Supply voltage  
vs Frequency  
23  
24  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
25  
26  
Unity-gain bandwidth  
1
vs Supply voltage  
vs Free-air temperature  
vs Capacitance load  
29  
30  
31  
φ
m
Phase margin  
V
n
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
32  
27, 28  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC27L1  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27L1  
INPUT OFFSET VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
905 Amplifiers Tested From 6 Wafer Lots  
905 Amplifiers Tested From 6 Wafer Lots  
V
T
A
= 5 V  
DD  
= 25°C  
V
= 10 V  
DD  
= 25°C  
T
A
P Package  
P Package  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 1  
Figure 2  
DISTRIBUTION OF TLC27L1  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27L1  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
70  
60  
50  
40  
30  
20  
10  
0
70  
356 Amplifiers Tested From 8 Wafer Lots  
356 Amplifiers Tested From 8 Wafer Lots  
V
T
A
= 10 V  
V
T
A
= 5 V  
DD  
= 25°C to 125°C  
DD  
= 25°C to 125°C  
60  
50  
40  
30  
20  
10  
0
P Package  
Outliers:  
(1) 19.2 µV/°C  
(1) 12.1 µV/°C  
P Package  
Outliers:  
(1) 18.7 µV/°C  
(1) 11.6 µV/°C  
10 8 –6 –4 –2  
0
2
4
6
8
10  
10 8 –6 –4 –2  
0
2
4
6
8
10  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 3  
Figure 4  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
16  
14  
12  
10  
8
5
4
3
2
1
0
V
T
= 100 mV  
V
T
= 100 mV  
= 25°C  
ID  
= 25°C  
ID  
A
A
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
6
4
2
0
0
–5 –10 15 20 25 30 35 40  
0
–2  
–4  
–6  
–8  
10  
I
– High-Level Output Current – mA  
I
– High-Level Output Current – mA  
OH  
OH  
Figure 5  
Figure 6  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
16  
14  
12  
10  
8
1.6  
1.7  
1.8  
1.9  
–2  
I
= 5 mA  
= 100 mV  
OH  
V
R
T
= 100 mV  
= 1 MΩ  
= 25°C  
ID  
L
A
V
ID  
V
DD  
= 5 V  
V
DD  
= 10 V  
6
2.1  
2.2  
2.3  
2.4  
4
2
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 7  
Figure 8  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
500  
450  
400  
350  
300  
250  
700  
V
= 5 V  
= 5 mA  
= 25°C  
DD  
V
= 10 V  
= 5 mA  
= 25°C  
DD  
I
OL  
I
OL  
650  
600  
T
A
T
A
550  
500  
V
= 100 mV  
ID  
V
V
V
= 100 mV  
= 1 V  
ID  
ID  
ID  
450  
400  
= 2.5 V  
V
ID  
= 1 V  
350  
300  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
V
IC  
– Common-Mode Input Voltage – V  
V
IC  
– Common-Mode Input Voltage – V  
Figure 9  
Figure 10  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
I
V
= 5 mA  
= 1 V  
= 0.5 V  
I
V
T
= 5 mA  
OL  
ID  
IC  
OL  
IC  
A
= V /2  
ID  
= 25°C  
V
V
= 5 V  
DD  
V
= 5 V  
DD  
V
DD  
= 10 V  
V
= 10 V  
DD  
75 50 25  
0
25  
50  
75  
100 125  
0
–1 –2 3 4 –5 –6 –7 –8 –9 –10  
T
A
– Free-Air Temperature – °C  
V
ID  
– Differential Input Voltage – V  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
3
2.5  
2
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 1 V  
= 0.5 V  
ID  
V
V
= 1 V  
= 0.5 V  
ID  
IC  
IC  
T
A
= 25°C  
T
A
= 25°C  
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
6
7
8
I
– Low-Level Output Current – mA  
OL  
I
– Low-Level Output Current – mA  
OL  
Figure 13  
Figure 14  
LARGE-SIGNAL  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
A
= 55°C  
R
= 1 MΩ  
R
= 1 MΩ  
L
L
– 40°C  
T
A
= 0°C  
25°C  
70°C  
V
DD  
= 10 V  
85°C  
600  
600  
V
DD  
= 5 V  
400  
400  
125°C  
200  
200  
0
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 15  
Figure 16  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
INPUT BIAS AND INPUT OFFSET  
CURRENTS  
vs  
MAXIMUM INPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
16  
14  
12  
10  
8
10000  
1000  
100  
10  
V
V
= 10 V  
T
A
= 25°C  
DD  
= 5 V  
IC  
See Note A  
I
IB  
I
IO  
6
4
1
2
0
0.1  
0
2
4
6
8
10  
12  
14  
16  
25 35 45 55 65 75 85 95 105 115 125  
– Free-Air Temperature – °C  
T
A
V
– Supply Voltage – V  
DD  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 17  
Figure 18  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
30  
25  
20  
15  
10  
5
45  
T = 55°C  
A
V
= V /2  
DD  
O
V
= V /2  
DD  
O
40  
35  
30  
25  
20  
15  
10  
5
No Load  
No Load  
40°C  
V
= 10 V  
DD  
0°C  
25°C  
70°C  
V
DD  
= 5 V  
125°C  
0
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 19  
Figure 20  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.07  
0.07  
0.06  
0.05  
0.04  
0.03  
A
= 1  
V
R
C
= 1 MΩ  
L
L
V
I(PP)  
= 1 V  
V
V
= 10 V  
= 5.5 V  
DD  
I(PP)  
= 20 pF  
= 1  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
R
C
= 1 MΩ  
= 20 pF  
L
L
A
V
See Figure 33  
T = 25°C  
A
See Figure 33  
V
V
= 10 V  
DD  
= 1 V  
I(PP)  
V
V
= 5 V  
DD  
0.02  
0.01  
0.00  
= 1 V  
I(PP)  
V
V
= 5 V  
DD  
= 2.5 V  
I(PP)  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 21  
Figure 22  
BIAS-SELECT CURRENT  
vs  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
10  
9
8
7
6
5
4
3
2
1
0
150  
135  
120  
T
= 25°C  
A
V
= V  
DD  
I(SEL)  
T
= 125°C  
= 25°C  
= –55°C  
A
V
= 10 V  
= 5 V  
DD  
T
A
105  
90  
75  
60  
45  
30  
15  
0
T
A
V
DD  
R
= 1 MΩ  
L
See Figure 33  
0.1  
1
10  
100  
0
2
4
6
8
10  
12  
14  
16  
f – Frequency – kHz  
V
DD  
– Supply Voltage – V  
Figure 23  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
UNITY-GAIN BANDWIDTH  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
140  
130  
120  
110  
100  
90  
150  
130  
110  
90  
V = 10 mV  
V
= 5 V  
I
DD  
V = 10 mV  
C
= 20 pF  
L
I
C
T
A
= 25°C  
= 20 pF  
L
See Figure 35  
See Figure 35  
80  
70  
70  
50  
60  
50  
30  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 25  
Figure 26  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
10  
V
= 5 V  
DD  
R
T
A
= 1 MΩ  
= 25°C  
L
0°  
30°  
A
VD  
60°  
90°  
Phase Shift  
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k 100 k  
1 M  
f – Frequency – Hz  
Figure 27  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
10  
6
10  
5
10  
V
R
T
A
= 10 V  
= 1 MΩ  
= 25°C  
DD  
L
0°  
4
3
2
1
10  
10  
10  
10  
30°  
A
VD  
60°  
90°  
Phase Shift  
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k 100 k  
1 M  
f – Frequency – Hz  
Figure 28  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
42°  
40°  
38°  
36°  
34°  
32°  
30°  
40°  
V
= 5 mV  
V = 10 mV  
DD  
V = 10 mV  
I
C
= 20 pF  
I
38°  
36°  
L
C
= 20 pF  
L
T
A
= 25°C  
See Figure 35  
See Figure 35  
34°  
32°  
30°  
28°  
26°  
24°  
22°  
20°  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 29  
Figure 30  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
37°  
35°  
33°  
31°  
29°  
27°  
25°  
200  
175  
150  
125  
100  
75  
V
= 5 mV  
DD  
V = 10 mV  
V
= 5 V  
= 20Ω  
DD  
I
R
S
T
= 25°C  
A
T
= 25°C  
A
See Figure 35  
See Figure 34  
50  
25  
0
0
10 20 30 40 50 60 70 80 90 100  
1
10  
100  
1000  
C
– Capacitive Load – pF  
L
f – Frequency – Hz  
Figure 31  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC27L1 is optimized for single-supply operation, circuit configurations used for the various tests  
often present some inconvenience since the input signal, in many cases, must be offset from ground. This  
inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative  
rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives  
the same result.  
V
DD  
V
DD+  
+
+
V
O
V
O
V
I
V
I
C
R
C
R
L
L
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 33. Unity-Gain Amplifier  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits (continued)  
2 kΩ  
2 kΩ  
V
DD  
V
DD+  
20 Ω  
1/2 V  
V
O
V
O
DD  
+
+
20 Ω  
20 Ω  
20 Ω  
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 34. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD+  
V
DD  
100 Ω  
100 Ω  
+
V
I
V
I
V
O
V
O
+
1/2 V  
DD  
C
C
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 35. Gain-of-100 Inverting Amplifier  
input bias current  
Due to the high input impedance of the TLC27L1 operational amplifiers, attempts to measure the input bias  
current can result in erroneous readings. The bias current at normal room ambient temperature is typically less  
than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid  
erroneous measurements:  
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 36). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias-current test (using a  
picoammeter) with no device in the test socket. The actual input bias current can then be calculated by  
subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.  
One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the  
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage  
drop across the series resistor is measured and the bias current is calculated). This method requires that a  
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not  
feasible using this method.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
8
5
V = V  
IC  
1
4
Figure 36. Isolation Metal Around Device Inputs (JG and P packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise is necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. When conditions other than these are  
to be used, please refer to the Typical Characteristics section of this data sheet.  
input offset-voltage temperature coefficient  
Erroneous readings often result from attempts to measure the temperature coefficient of input offset voltage.  
This parameter is actually a calculation using input offset-voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance which can cause erroneous input  
offset-voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
full-power response  
Full-power response, the frequency above which the amplifier slew rate limits the output voltage swing, is often  
specified two ways: full-linear response and full-peak response. The full-linear response is generally measured  
by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until  
the maximum frequency is found above which the output contains significant distortion. The full-peak response  
is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output  
swing cannot be maintained.  
Since there is no industry-wide accepted value for significant distortion, the full-peak response is specified in  
this data sheet and is measured using the circuit in Figure 33. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. Thefrequencyisthenincreaseduntilthemaximumpeak-to-peakoutputcannolongerbemaintained  
(Figure 37). A square wave allows a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
full-power response (continued)  
(a) f = 100 Hz  
(b) B  
OM  
> f > 100 Hz  
(c) f = B  
OM  
(d) f > B  
OM  
Figure 37. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices, and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
APPLICATION INFORMATION  
single-supply operation  
V
DD  
While the TLC27L1 performs well using dual  
power supplies (also called balanced or split  
supplies), the design is optimized for  
single-supply operation. This includes an input  
common-mode voltage range that encompasses  
ground as well as an output voltage range that  
pulls down to ground. The supply voltage range  
extendsdownto3V(C-suffixtypes), thusallowing  
operation with supply levels commonly available  
for TTL and HCMOS; however, for maximum  
dynamic range, 16-V single-supply operation is  
recommended.  
R4  
R1  
+
V
I
R2  
V
O
V
R3  
R1 R3  
ref  
V
V
ref  
DD  
ref  
R3  
C
0.01 µF  
R4  
V )  
V
(V  
V
O
I
ref  
R2  
Figure 38. Inverting Amplifier With Voltage  
Reference  
Many single-supply applications require that a  
voltage be applied to one input to establish a  
reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference  
level (see Figure 38). The low-input bias-current consumption of the TLC27L1 permits the use of very large  
resistive values to implement the voltage divider, thus minimizing power consumption.  
TheTLC27L1workswellinconjunctionwithdigitallogic;however, whenpoweringbothlineardevicesanddigital  
logic from the same power supply, the following precautions are recommended:  
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device  
supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.  
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
APPLICATION INFORMATION  
single-supply operation (continuted)  
+
Power  
Supply  
Logic  
Logic  
Logic  
OUT  
(a) COMMON SUPPLY RAILS  
+
Power  
Supply  
OUT  
Logic  
Logic  
Logic  
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)  
Figure 39. Common Versus Separate Supply Rails  
input offset voltage nulling  
The TLC27L1 offers external input-offset null control. Nulling of the input-offset voltage may be achieved by  
adjustinga25-kpotentiometerconnectedbetweentheoffsetnullterminalswiththewiperconnectedasshown  
in Figure 40. Total nulling may not be possible.  
+
IN–  
IN+  
IN–  
IN+  
OUT  
OUT  
N2  
N2  
V
DD  
+
25 kΩ  
25 kΩ  
N1  
N1  
GND  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 40. Input Offset-Voltage Null Circuit  
input characteristics  
The TLC27L1 is specified with a minimum and a maximum input voltage that, if exceeded at either input, could  
cause the device to malfunction. Exceeding this specified range is a common problem, especially in  
single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit  
is specified at V  
– 1 V at T = 25°C and at V  
– 1.5 V at all other temperatures.  
DD  
A
DD  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
APPLICATION INFORMATION  
input characteristics (continued)  
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27L1 very good input  
offset-voltage drift characteristics relative to conventional metal-gate processes. Offset-voltage drift in CMOS  
devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant  
implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the  
polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The  
offset-voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of  
operation.  
Because of the extremely high input impedance and resulting low bias-current requirements, the TLC27L1 is  
well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can  
easily exceed bias-current requirements and cause a degradation in device performance. It is good practice  
to include guard rings around inputs (similar to those of Figure 36 in the Parameter Measurement Information  
section). These guards should be driven from a low-impedance source at the same voltage level as the  
common-mode input (see Figure 41).  
noise performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differentialamplifier. Thelow-inputbias-currentrequirementsoftheTLC27L1resultsinavery-lownoisecurrent,  
which is insignificant in most applications. This feature makes the devices especially favorable over bipolar  
devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit greater noise  
currents.  
V
I
V
O
V
O
V
O
+
+
+
V
I
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 41. Guard-Ring Schemes  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
APPLICATION INFORMATION  
feedback  
Operational amplifier circuits almost always  
employ feedback, and since feedback is the first  
prerequisite for oscillation, a little caution is  
appropriate. Most oscillation problems result from  
driving capacitive loads and ignoring stray input  
capacitance. A small-value capacitor connected  
in parallel with the feedback resistor is an effective  
remedy (see Figure 42). The value of this  
capacitor is optimized empirically.  
V
O
+
Figure 42. Compensation for Input  
Capacitance  
electrostatic discharge protection  
The TLC27L1 incorporates an internal ESD protection circuit that prevents functional failures at voltages up to  
2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling  
these devices as exposure to ESD may result in the degradation of the device parametric performance. The  
protection circuit also causes the input bias currents to be temperature dependent and have the characteristics  
of a reverse-biased diode.  
latch-up  
BecauseCMOSdevicesaresusceptibletolatch-upduetotheirinherentparasiticthyristors, theTLC27L1inputs  
and output were designed to withstand 100-mA surge currents without sustaining latch-up; however,  
techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes  
should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage  
by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply  
transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails  
as close to the device as possible.  
The current path established when latch-up occurs is usually between the positive supply rail and ground and  
can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the  
supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and  
the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance  
of latch-up occurring increases with increasing temperature and supply voltages.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
APPLICATION INFORMATION  
output characteristics  
The output stage of the TLC27L1 is designed to  
sink and source relatively high amounts of current  
(see Typical Characteristics). If the output is  
subjected to a short-circuit condition, this high  
current capability can cause device damage  
undercertainconditions. Outputcurrentcapability  
increases with supply voltage (see Figure 43).  
2.5 V  
+
V
O
T
= 25°C  
V
I
A
C
L
f = 1 kHz  
V = 1 V  
I(PP)  
All operating characteristics of the TLC27L1 were  
measured using a 20-pF load. The devices drive  
higher capacitive loads; however, as output load  
capacitance increases, the resulting response  
pole occurs at lower frequencies, thereby causing  
ringing, peaking, or even oscillation (see Figure  
44). In many cases, adding some compensation  
in the form of a series resistor in the feedback loop  
alleviates the problem.  
– 2.5 V  
Figure 43. Test Circuit for Output  
Characteristics  
(a) C = 20 pF, R = NO LOAD  
(b) C = 260 pF, R = NO LOAD  
(c) C = 310 pF, R = NO LOAD  
L L  
L
L
L
L
Figure 44. Effect of Capacitive Loads in Low-Bias Mode  
Although the TLC27L1 possesses excellent high-level output voltage and current capability, methods are  
available for boosting this capability, if needed. The simplest method involves the use of a pullup resistor (R )  
P
connected from the output to the positive supply rail (see Figure 45). There are two disadvantages to the use  
of this circuit. First, the NMOS pulldown transistor, N4 (see equivalent schematic) must sink a comparatively  
large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between  
approximately 60 and 180 , depending on how hard the operational amplifier input is driven. With very low  
values of R , a voltage offset from 0 V at the output occurs. Secondly, pullup resistor R acts as a drain load  
P
P
to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the  
output current.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
APPLICATION INFORMATION  
V
DD  
R
+
V
I
P
I
P
V
–V  
DD  
I
O
I
R
P
I
F
L
P
V
O
I
P
= Pullup current required  
by the operational amplifier  
(typically 500 mA)  
I
F
I
R2  
R1  
R
L
L
Figure 45. Resistive Pullup to Increase V  
OH  
10 kΩ  
10 kΩ  
0.016 µF  
0.016 µF  
5 V  
10 kΩ  
V
I
5 V  
10 kΩ  
TLC27L1  
+
5 V  
10 kΩ  
TLC27L1  
+
TLC27L1  
+
Low Pass  
High Pass  
Band Pass  
5 kΩ  
R = 5 k(3/d-1)  
(see Note A)  
NOTE A: d = damping factor, I/O  
Figure 46. State-Variable Filter  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
APPLICATION INFORMATION  
V
O
(see Note A)  
9 V  
C = 0.1 µF  
9 V  
10 kΩ  
10 kΩ  
9 V  
100 kΩ  
R2  
TLC27L1  
+
V
O
(see Note B)  
TLC27L1  
+
1
R1  
F
O
4C(R2) R3  
R1, 100 kΩ  
R3, 47 kΩ  
NOTES: A.  
B.  
V
V
= 8 V  
= 4 V  
O(PP)  
O(PP)  
Figure 47. Single-Supply Function Generator  
V
DD  
+
V
I
TLC27L1  
V
I
V
DD  
90 kΩ  
C
S1  
S2  
X1  
B
B
1
2
TLC4066  
A
C
1
Select  
S
S
2
1
9 kΩ  
1 kΩ  
X2  
A
V
10  
100  
Analog  
Switch  
A
2
NOTE A: V  
DD  
= 5 V to 12 V  
Figure 48. Amplifier With Digital-Gain Selection  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
APPLICATION INFORMATION  
5 V  
+
500 kΩ  
TLC27L1  
V
O1  
5 V  
500 kΩ  
+
V
O2  
TLC27L1  
0.1 µF  
500 kΩ  
500 kΩ  
Figure 49. Multivibrator  
10 kΩ  
V
DD  
20 kΩ  
+
V
I
V
O
TLC27L1  
100 kΩ  
NOTE A: V  
DD  
= 5 V to 16 V  
Figure 50. Full-Wave Rectifier  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
APPLICATION INFORMATION  
10 kΩ  
V
DD  
100 kΩ  
100 kΩ  
Set  
+
TLC27L1  
Reset  
33 Ω  
NOTE A: V  
= 5 V to 16 V  
DD  
Figure 51. Set/Reset Flip-Flop  
0.016 µF  
5 V  
10 kΩ  
10 kΩ  
+
V
i
V
O
TLC27L1  
0.016 µF  
NOTE A: Normalized to F = 1 kHz and R = 10 kΩ  
C
L
Figure 52. Two-Pole Low-Pass Butterworth Filter  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L1, TLC27L1A, TLC27L1B  
LinCMOS LOW-POWER  
OPERATIONAL AMPLIFIERS  
SLOS154 – DECEMBER 1995  
MECHANICAL INFORMATION  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
PINS **  
0.050 (1,27)  
8
14  
16  
DIM  
0.020 (0,51)  
0.010 (0,25)  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
M
0.014 (0,35)  
A MAX  
A MIN  
14  
8
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
7
A
0.010 (0,25)  
0°8°  
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
4040047/ B10/94  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Four center pins are connected to die mount pad.  
E. Falls within JEDEC MS-012  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLC27L1A

LinCMOSE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC27L1ACD

LinCMOSE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC27L1ACDG4

OP-AMP, 6500uV OFFSET-MAX, 0.085MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
TI

TLC27L1ACDR

OP-AMP, 6500uV OFFSET-MAX, 0.085MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
TI

TLC27L1ACP

LinCMOSE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC27L1ACP

OP-AMP, 6500uV OFFSET-MAX, 0.085MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
ROCHESTER

TLC27L1ACPE4

OP-AMP, 6500uV OFFSET-MAX, 0.085MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
TI

TLC27L1ACS-13

Operational Amplifier, 1 Func, 6500uV Offset-Max, CMOS, PDSO8, GREEN, SOP-8
DIODES

TLC27L1AID

LinCMOSE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLC27L1AID

OP-AMP, 7000 uV OFFSET-MAX, 0.085 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
ROCHESTER

TLC27L1AIDRG4

OP-AMP, 7000uV OFFSET-MAX, 0.085MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
TI

TLC27L1AIP

LinCMOSE LOW-POWER OPERATIONAL AMPLIFIERS
TI