TLC27M2CPS [TI]

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS;
TLC27M2CPS
型号: TLC27M2CPS
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS

放大器 光电二极管
文件: 总49页 (文件大小:1800K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
D
Trimmed Offset Voltage:  
TLC27M7 . . . 500 µV Max at 25°C,  
= 5 V  
D
D
D
D
D
D
D
Low Noise . . . Typically 32 nV/Hz at  
f = 1 kHz  
V
DD  
Low Power . . . Typically 2.1 mW at 25°C,  
D
D
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, Including the First 30 Days  
Wide Range of Supply Voltages Over  
Specified Temperature Ranges:  
0°C to 70°C . . . 3 V to 16 V  
−40°C to 85°C . . . 4 V to 16 V  
−55°C to 125°C . . . 4 V to 16 V  
Single-Supply Operation  
V
= 5 V  
DD  
Output Voltage Range Includes Negative  
Rail  
12  
High Input impedance . . . 10 Typ  
ESD-Protection Circuitry  
Small-Outline Package Option Also  
Available in Tape and Reel  
D
D
Designed-In Latch-Up Immunity  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix,  
I-Suffix Types)  
DISTRIBUTION OF TLC27M7  
INPUT OFFSET VOLTAGE  
D, JG, P OR PW PACKAGE  
(TOP VIEW)  
FK PACKAGE  
(TOP VIEW)  
30  
340 Units Tested From 2 Wafer Lots  
1OUT  
1IN −  
1IN +  
GND  
V
CC  
1
2
3
4
8
7
6
5
V
T
= 5 V  
DD  
= 25°C  
25  
20  
2OUT  
2IN −  
2IN +  
A
P Package  
3
2
1
20 19  
18  
NC  
NC  
1IN −  
NC  
4
5
6
7
8
2OUT  
NC  
17  
16  
15  
14  
15  
10  
5
2IN −  
NC  
1IN +  
NC  
9 10 11 12 13  
0
800  
400  
0
400  
800  
NC − No internal connection  
V
IO  
− Input Offset Voltage − µV  
AVAILABLE OPTIONS  
PACKAGE  
V
max  
IO  
T
A
SMALL OUTLINE  
CHIP CARRIER  
(FK)  
CERAMIC DIP  
(JG)  
PLASTIC DIP  
(P)  
TSSOP  
(PW)  
AT 25°C  
(D)  
500 µV  
2 mV  
TLC27M7CD  
TLC27M2BCD  
TLC27M2ACD  
TLC27M2CD  
TLC27M7ID  
TLC27M2BID  
TLC27M2AID  
TLC27M2ID  
TLC27M7MD  
TLC27M2MD  
TLC27M7CP  
TLC27M2BCP  
TLC27M2ACP  
TLC27M2CP  
TLC27M7IP  
0°C to 70°C  
5 mV  
10 mV  
500 µV  
2 mV  
TLC27M2CPW  
TLC27M2BIP  
TLC27M2AIP  
TLC27M2IP  
40°C to 85°C  
55°C to 125°C  
5 mV  
10 mV  
500 µV  
10 mV  
TLC27M2IPW  
TLC27M7MFK  
TLC27M2MFK  
TLC27M7MJG  
TLC27M2MJG  
TLC27M7MP  
TLC27M2MP  
The D and PW package are available taped and reeled. Add R suffix to the device type (e.g.,TLC27M7CDR). For the most current package and  
ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.  
LinCMOS is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.  
ꢀꢞ  
Copyright 1987 − 2008, Texas Instruments Incorporated  
ꢚ ꢞ ꢛ ꢚꢉ ꢊꢨ ꢖꢕ ꢙ ꢡꢡ ꢟꢙ ꢗ ꢙ ꢘ ꢞ ꢚ ꢞ ꢗ ꢛ ꢣ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢅꢋ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
description  
The TLC27M2 and TLC27M7 dual operational amplifiers combine a wide range of input offset voltage grades  
with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose  
bipolar devices.These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset  
voltage stability far exceeding the stability available with conventional metal-gate processes.  
The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices  
ideal for applications which have previously been reserved for general-purpose bipolar products, but with only  
a fraction of the power consumption. Four offset voltage grades are available (C-suffix and I-suffix types),  
ranging from the low-cost TLC27M2 (10 mV) to the high-precision TLC27M7 (500 µV). These advantages, in  
combination with good common-mode rejection and supply voltage rejection, make these devices a good  
choice for new state-of-the-art designs as well as for upgrading existing designs.  
In general, many features associated with bipolar technology are available on LinCMOS operational amplifiers,  
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog  
calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27M2 and  
TLC27M7. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote  
and inaccessible battery-powered applications. The common-mode input voltage range includes the negative  
rail.  
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand −100-mA surge currents without sustaining latch-up.  
The TLC27M2 and TLC27M7 incorporate internal ESD-protection circuits that prevent functional failures at  
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in  
handling these devices as exposure to ESD may result in the degradation of the device parametric performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of −55°C to 125°C.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
R1  
R2  
N5  
C1  
IN −  
P5  
P6  
P1  
P2  
IN +  
R5  
OUT  
N3  
D2  
N1  
R3  
N2  
D1  
N4  
N6  
R7  
N7  
R4  
GND  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V  
V
ID  
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
464 mW  
880 mW  
672 mW  
640 mW  
377 mW  
715 mW  
546 mW  
520 mW  
1375 mW  
275 mW  
210 mW  
1050 mW  
1000 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN  
3
MAX  
16  
MIN  
4
MAX  
16  
MIN  
4
MAX  
Supply voltage, V  
DD  
16  
3.5  
8.5  
125  
V
V
V
= 5 V  
0.2  
0.2  
0
3.5  
8.5  
70  
0.2  
0.2  
40  
3.5  
8.5  
85  
0
DD  
Common-mode input voltage, V  
IC  
V
= 10 V  
0
DD  
Operating free-air temperature, T  
55  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
= 0,  
O
S
IC  
R = 100 kΩ  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
12  
I
mV  
0.9  
220  
185  
5
V
R
= 1.4 V,  
= 50 ,  
V
= 0,  
O
IC  
R = 100 kΩ  
Full range  
25°C  
6.5  
S
I
V
IO  
Input offset voltage  
2000  
3000  
500  
1500  
V
R
= 1.4 V,  
= 50 ,  
V
= 0,  
O
IC  
R = 100 kΩ  
Full range  
25°C  
S
I
µV  
V
R
= 1.4 V,  
= 50 ,  
V
= 0,  
O
IC  
R = 100 kΩ  
Full range  
S
I
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1.7  
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
60  
300  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
O
O
IC  
0.6  
40  
I
IB  
pA  
IC  
600  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
0°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
3
0
50  
50  
50  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
70°C  
25°C  
0°C  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
200  
140  
91  
91  
92  
93  
92  
94  
210  
250  
170  
Large-signal differential voltage  
amplification  
A
R
= 100 kΩ  
VD  
L
70°C  
25°C  
0°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
70°C  
25°C  
0°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
70°C  
25°C  
0°C  
560  
640  
440  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢍꢎ  
ꢏꢂ  
ꢐꢌ  
ꢋꢑ  
ꢒꢓ  
ꢇꢁ  
ꢍꢏ  
ꢎꢇꢀ  
ꢐꢋ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
mV  
0.9  
224  
190  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
800  
1900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
2.1  
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
60  
300  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
O
O
IC  
0.7  
50  
I
IB  
pA  
IC  
600  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
0°C  
8
7.8  
7.8  
8.7  
8.7  
8.7  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= −100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
50  
50  
50  
0
I
OL  
OL  
70°C  
25°C  
0°C  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
320  
230  
94  
Large-signal differential voltage  
amplification  
A
R
= 100 kΩ  
VD  
L
70°C  
25°C  
0°C  
94  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
70°C  
25°C  
0°C  
94  
93  
92  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
70°C  
25°C  
0°C  
94  
285  
345  
220  
600  
800  
560  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
13  
mV  
0.9  
220  
185  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
500  
2000  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
1.7  
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
24  
60  
1000  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
O
O
IC  
0.6  
200  
I
IB  
pA  
IC  
2000  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
40°C  
85°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
25°C  
0
50  
50  
50  
40°C  
85°C  
0
= −100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
0
25°C  
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
270  
130  
91  
90  
90  
93  
91  
94  
210  
315  
160  
Large-signal differential voltage  
amplification  
40°C  
85°C  
A
R
= 100 kΩ  
VD  
L
25°C  
40°C  
85°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
25°C  
40°C  
85°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
25°C  
560  
800  
400  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢍꢎ  
ꢏꢂ  
ꢋꢑ  
ꢇꢁ  
ꢍꢏ  
ꢎꢇꢀ  
ꢐꢋ  
ꢑꢇ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
13  
mV  
0.9  
224  
190  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
800  
2900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
VIO  
2.1  
µV/°C  
25°C  
85°C  
25°C  
0.1  
26  
60  
1000  
60  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
pA  
IO  
O
O
IC  
0.7  
I
IB  
pA  
200  
0
IC  
85°C  
220  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
40°C  
85°C  
8
7.8  
7.8  
8.7  
8.7  
8.7  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
25°C  
50  
50  
50  
40°C  
85°C  
0
I
OL  
OL  
0
25°C  
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
390  
220  
94  
Large-signal differential voltage  
amplification  
40°C  
85°C  
A
VD  
R
= 100 kΩ  
L
25°C  
40°C  
85°C  
93  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
94  
25°C  
93  
40°C  
85°C  
91  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
94  
25°C  
285  
450  
205  
600  
900  
520  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M2M  
TLC27M7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2M  
TLC27M7M  
12  
V
IO  
Input offset voltage  
mV  
185  
500  
3750  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
VIO  
1.7  
µV/°C  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
60  
15  
60  
35  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
IO  
O
O
IC  
I
IB  
IC  
125°C  
0
to  
4
0.3  
to  
4.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
3.5  
25°C  
55°C  
125°C  
25°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
0
50  
50  
50  
55°C  
125°C  
25°C  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
290  
120  
91  
89  
91  
93  
91  
94  
210  
340  
140  
Large-signal differential voltage  
amplification  
55°C  
125°C  
25°C  
A
VD  
R
= 100 kΩ  
L
55°C  
125°C  
25°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
55°C  
125°C  
25°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
560  
880  
360  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢅꢋ  
  
ꢋꢑ  
ꢇꢁ  
ꢍꢏ  
ꢎꢇꢀ  
ꢑꢇ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M2M  
TLC27M7M  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2M  
TLC27M7M  
12  
V
IO  
Input offset voltage  
mV  
190  
800  
4300  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
2.1  
µV/°C  
pA  
VIO  
25°C  
125°C  
25°C  
0.1  
1.8  
0.7  
10  
60  
15  
60  
35  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
O
O
IC  
I
IB  
pA  
IC  
125°C  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
8.5  
25°C  
55°C  
125°C  
25°C  
8
7.8  
7.8  
8.7  
8.6  
8.8  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
50  
50  
50  
55°C  
125°C  
25°C  
0
I
OL  
OL  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
420  
190  
94  
Large-signal differential voltage  
amplification  
55°C  
125°C  
25°C  
A
R
= 100 kΩ  
VD  
L
55°C  
125°C  
25°C  
93  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
93  
93  
55°C  
125°C  
25°C  
91  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
94  
285  
490  
180  
600  
1000  
480  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
ꢂꢅ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.46  
0.36  
0.40  
0.43  
0.34  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 100 k,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 2.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
0°C  
55  
60  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
kHz  
B
B
Maximum output-swing bandwidth  
OM  
See Figure 1  
70°C  
25°C  
0°C  
50  
525  
600  
400  
40°  
41°  
39°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
kHz  
Unity-gain bandwidth  
Phase margin  
1
70°C  
25°C  
0°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.67  
0.51  
0.56  
0.61  
0.46  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 100 k,  
L
L
70°C  
25°C  
0°C  
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 5.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
0°C  
35  
40  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
30  
635  
710  
510  
43°  
44°  
42°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
kHz  
1
70°C  
25°C  
0°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢅꢋ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.51  
0.35  
0.40  
0.48  
0.32  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 100 k,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
40°C  
85°C  
= 2.5 V  
I(PP)  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
40°C  
85°C  
55  
75  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
45  
25°C  
525  
770  
370  
40°  
43°  
38°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
40°C  
85°C  
Unity-gain bandwidth  
Phase margin  
kHz  
1
25°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.77  
0.47  
0.56  
0.70  
0.44  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 100 k,  
L
L
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
40°C  
85°C  
= 5.5 V  
I(PP)  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
40°C  
85°C  
35  
45  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
25  
25°C  
635  
880  
480  
43°  
46°  
41°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
40°C  
85°C  
Unity-gain bandwidth  
Phase margin  
kHz  
1
25°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M2M  
TLC27M7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.54  
0.29  
0.40  
0.49  
0.28  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 100 k,  
L
L
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
55°C  
125°C  
V
= 2.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
55  
80  
V
R
= V  
OH  
,
C
= 20 pF,  
O
L
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
= 100 k, See Figure 1  
40  
525  
850  
330  
40°  
44°  
36°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
55°C  
125°C  
25°C  
Unity-gain bandwidth  
Phase margin  
kHz  
1
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M2M  
TLC27M7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.81  
0.38  
0.56  
0.73  
0.35  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 100 k,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
55°C  
125°C  
V
= 5.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
35  
50  
V
R
= V  
OH  
,
C
= 20 pF,  
O
L
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
= 100 k, See Figure 1  
20  
635  
960  
440  
43°  
47°  
39°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
55°C  
125°C  
25°C  
Unity gain bandwidth  
Phase margin  
kHz  
1
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢅꢋ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC27M2 and TLC27M7 are optimized for single-supply operation, circuit configurations used for  
the various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either  
circuit gives the same result.  
V
DD  
+
V
DD  
V
O
V
O
+
+
V
I
V
I
R
C
R
C
L
L
L
L
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD  
V
DD  
+
20 Ω  
+
1/2 V  
DD  
V
O
V
O
20 Ω  
+
20 Ω  
20 Ω  
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD  
+
V
DD  
100 Ω  
100 Ω  
+
+
V
I
V
I
V
O
V
O
1/2 V  
DD  
C
L
C
L
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
ꢂꢅ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Because of the high input impedance of the TLC27M2 and TLC27M7 operational amplifiers, attempts to  
measure the input bias current can result in erroneous readings. The bias current at normal room ambient  
temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two  
suggestions are offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using  
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated  
by subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
One word of caution—many automatic testers as well as some bench-top operational amplifier testers  
use the servo-loop technique with a resistor in series with the device input to measure the input bias  
current (the voltage drop across the series resistor is measured and the bias current is calculated). This  
method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an  
open-socket reading is not feasible using this method.  
5
8
8
5
V = V  
IC  
1
4
Figure 4. Isolation Metal Around Device Inputs (JG and P packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. If conditions other than these are to  
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢅꢋ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
PARAMETER MEASUREMENT INFORMATION  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage, since  
the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained  
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 1 kHz  
(b) B  
> f > 1 kHz  
(c) f = B  
OM  
(d) f > B  
OM  
OM  
Figure 5. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
IO  
Input offset voltage  
Distribution  
α
Temperature coefficient  
Distribution  
8, 9  
VIO  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
V
OH  
High-level output voltage  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
14, 15  
16  
17  
V
OL  
Low-level output voltage  
vs Low-level output current  
18, 19  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
20  
21  
32, 33  
A
VD  
Differential voltage amplification  
I
/I  
Input bias and input offset current  
Common-mode input voltage  
vs Free-air temperature  
vs Supply voltage  
22  
23  
IB IO  
V
IC  
vs Supply voltage  
vs Free-air temperature  
24  
25  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
V
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
30  
31  
B
Unity-gain bandwidth  
Phase margin  
1
vs Supply voltage  
vs Free-air temperature  
vs Capacitive loads  
34  
35  
36  
φ
m
V
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
37  
n
φ
32, 33  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC27M2  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27M2  
INPUT OFFSET VOLTAGE  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
612 Amplifiers Tested From 4 Wafer Lots  
612 Amplifiers Tested From 4 Wafer Lots  
V
= 5 V  
DD  
= 25°C  
V
T
A
= 10 V  
DD  
= 25°C  
T
A
P Package  
P Package  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC27M2 AND TLC27M7  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27M2 AND TLC27M7  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
224 Amplifiers Tested From 6 Wafer Lots  
224 Amplifiers Tested From 6 Wafer Lots  
V
T
A
= 5 V  
V
T
A
= 10 V  
DD  
= 25°C to 125°C  
DD  
= 25°C to 125°C  
P Package  
Outliers:  
(1) 33.0 µV/°C  
P Package  
Outliers:  
(1) 34.6 µV/°C  
10 8 −6 −4 −2  
0
2
4
6
8
10  
10 8 −6 −4 −2  
0
2
4
6
8
10  
α
− Temperature Coefficient − µV/°C  
α
− Temperature Coefficient − µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
= 100 mV  
ID  
= 25°C  
V
= 100 mV  
ID  
= 25°C  
T
A
T
A
V
= 16 V  
DD  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
V
DD  
= 3 V  
6
4
2
0
0
−2  
−4  
−6  
−8  
10  
0
10  
20  
30  
40  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OH  
OH  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
V
V
V
V
1.6  
1.7  
1.8  
1.9  
−2  
16  
14  
12  
10  
8
DD  
DD  
DD  
V
R
T
= 100 mV  
ID  
I
= 5 mA  
OH  
= 100 kΩ  
= 25°C  
L
V
= 100 mA  
ID  
V
DD  
= 5 V  
A
DD  
V
DD  
V
DD  
= 10 V  
V
DD  
V
DD  
V
DD  
V
DD  
2.1  
2.2  
2.3  
2.4  
6
4
2
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
700  
500  
450  
400  
350  
300  
250  
V
= 5 V  
= 5 mA  
= 25°C  
DD  
V
DD  
= 10 V  
650  
600  
I
T
OL  
A
I
= 5 mA  
OL  
T
A
= 25°C  
550  
500  
450  
400  
V
= 100 mV  
ID  
V
ID  
V
ID  
V
ID  
= 100 mV  
= 1 V  
= 2.5 V  
V
ID  
= 1 V  
350  
300  
0
1
2
3
4
5
6
7
8
7
10  
0
1
2
3
4
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
I
OL  
= 5 mA  
= 1 V  
= 0.5 V  
I
V
= 5 mA  
OL  
V
ID  
V
IC  
= |V /2|  
ID  
IC  
= 25°C  
T
A
V
= 5 V  
DD  
V
= 5 V  
DD  
V
DD  
= 10 V  
V
= 10 V  
DD  
75 50 25  
0
25  
50  
75  
100 125  
0
−1 −2 −3 −4 −5 −6 −7 −8 −9 −10  
T
A
− Free-Air Temperature − °C  
V
ID  
− Differential Input Voltage − V  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
3
2.5  
2
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 1 V  
= 0.5 V  
= 25°C  
ID  
V
V
= 1 V  
ID  
V
IC  
T
= 0.5 V  
IC  
A
V
= 16 V  
DD  
T
A
= 25°C  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
6
7
8
I
− Low-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OL  
OL  
Figure 18  
Figure 19  
LARGE-SIGNAL  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 55°C  
40°C  
A
R
= 100 kΩ  
R
= 100 kΩ  
L
L
0°C  
V
= 10 V  
25°C  
70°C  
DD  
85°C  
125°C  
V
0
= 5 V  
DD  
0
0
75 50 25  
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢅꢋ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
COMMON-MODE  
INPUT BIAS CURRENT AND INPUT OFFSET  
INPUT VOLTAGE POSITIVE LIMIT  
CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
16  
14  
12  
10  
8
10000  
1000  
100  
10  
V
V
= 10 V  
T = 25°C  
A
DD  
= 5 V  
IC  
See Note A  
I
IB  
I
IO  
6
4
1
2
0
0.1  
0
2
4
V
6
8
10  
12  
14  
16  
25  
45  
A
65  
85  
105  
125  
− Supply Voltage − V  
T
− Free-Air Temperature − °C  
DD  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
800  
V
= V /2  
DD  
V
= V /2  
DD  
O
O
T
= 55°C  
700  
600  
500  
400  
300  
200  
100  
0
No Load  
A
No Load  
40°C  
V
= 10 V  
DD  
0°C  
25°C  
70°C  
V
= 5 V  
DD  
125°C  
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
A
= 1  
= 1 V  
= 100 kΩ  
= 20 pF  
V
A
R
C
= 1  
= 100 kΩ  
= 20 pF  
V
R
C
V
L
L
IPP  
L
V
V
= 10 V  
= 5.5 V  
DD  
I(PP)  
L
See Figure 1  
T
= 25°C  
A
See Figure 1  
V
V
= 10 V  
DD  
= 1 V  
I(PP)  
V
V
= 5 V  
DD  
I(PP)  
= 1 V  
V
V
= 5 V  
DD  
= 2.5 V  
I(PP)  
0
2
4
6
8
10  
12  
14  
16  
− 75 − 50 − 25  
0
25  
50  
75  
100 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 26  
Figure 27  
MAXIMUM PEAK-TO-PEAK OUTPUT  
NORMALIZED SLEW RATE  
vs  
VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
1.4  
1.3  
1.2  
1.1  
1
10  
9
8
7
6
5
4
3
2
1
0
A
= 1  
V
V
R
C
= 1 V  
I(PP)  
V
= 10 V  
DD  
= 100 kΩ  
= 20 pF  
L
L
V
V
= 10 V  
DD  
V
DD  
= 5 V  
T
= 125°C  
= 25°C  
A
T
A
T
= 55°C  
A
0.9  
0.8  
0.7  
0.6  
0.5  
= 5 V  
DD  
R
= 100 kΩ  
L
See Figure 1  
−75 −50 −25  
0
25  
50  
75  
100 125  
1
10  
100  
1000  
T
A
− Free-Air Temperature − °C  
f − Frequency − kHz  
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢅꢋ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
UNITY-GAIN BANDWIDTH  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
900  
800  
700  
600  
500  
400  
300  
800  
750  
700  
650  
600  
550  
500  
450  
400  
V = 10 mV  
V
= 5 V  
I
DD  
V = 10 mV  
C
= 20 pF  
= 25°C  
L
I
C
T
= 20 pF  
A
L
See Figure 3  
See Figure 3  
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − C  
V
DD  
− Supply Voltage − V  
Figure 30  
Figure 31  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
V
= 5 V  
= 100 kΩ  
= 25°C  
DD  
R
L
T
A
0°  
30°  
A
VD  
60°  
90°  
Phase Shift  
10  
1
120°  
150°  
180°  
0.1  
0
10  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
V
R
T
A
= 10 V  
= 100 kΩ  
= 25°C  
DD  
L
0°  
30°  
A
VD  
60°  
90°  
Phase Shift  
10  
1
120°  
150°  
180°  
0.1  
0
10  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
Figure 33  
PHASE MARGIN  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
45°  
43°  
41°  
39°  
37°  
35°  
50°  
48°  
46°  
44°  
42°  
40°  
38°  
V
= 5 V  
V = 10 mV  
DD  
V = 10 mV  
I
C
T
A
= 20 pF  
= 25°C  
I
L
C
= 20 pF  
L
See Figure 3  
See Figure 3  
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − C  
V
DD  
− Supply Voltage − V  
Figure 34  
Figure 35  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
44°  
42°  
40°  
38°  
36°  
34°  
32°  
30°  
V
= 5 V  
DD  
V = 10 mV  
I
T
A
= 25°C  
See Figure 3  
28°  
0
10 20 30 40 50 60 70 80 90 100  
C
− Capacitive Load − pF  
L
Figure 36  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
300  
250  
200  
150  
100  
50  
V
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
R
T
A
See Figure 2  
0
1
10  
100  
1000  
f −Frequency − Hz  
Figure 37  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
APPLICATION INFORMATION  
single-supply operation  
While the TLC27M2 and TLC27M7 perform well using dual power supplies (also called balanced or split  
supplies), the design is optimized for single-supply operation. This design includes an input common-mode  
voltage range that encompasses ground, as well as an output voltage range that pulls down to ground. The  
supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly  
available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is  
recommended.  
Many single-supply applications require that a voltage be applied to one input to establish a reference level that  
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).  
The low input bias current of the TLC27M2 and TLC27M7 permits the use of very large resistive values to  
implement the voltage divider, thus minimizing power consumption.  
The TLC27M2 and TLC27M7 work well in conjunction with digital logic; however, when powering both linear  
devices and digital logic from the same power supply, the following precautions are recommended:  
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear  
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital  
logic.  
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, high-frequency applications may require RC decoupling.  
V
DD  
R4  
R3  
)
R1  
R3  
V
+ V  
R2  
REF  
DD  
R1  
R3  
+
V
I
R4  
R2  
V
O
ǒVREF–V Ǔ  
V
+
)
V
O
I
REF  
V
REF  
C
0.01µF  
Figure 38. Inverting Amplifier With Voltage Reference  
Power  
Supply  
Logic  
Logic  
Logic  
Output  
+
(a) COMMON SUPPLY RAILS  
Power  
Supply  
Logic  
Logic  
Logic  
Output  
+
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)  
Figure 39. Common Versus Separate Supply Rails  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
APPLICATION INFORMATION  
input characteristics  
The TLC27M2 and TLC27M7 are specified with a minimum and a maximum input voltage that, if exceeded at  
either input, could cause the device to malfunction. Exceeding this specified range is a common problem,  
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper  
range limit is specified at V  
−1 V at T = 25°C and at V  
−1.5 V at all other temperatures.  
DD  
A
DD  
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27M2 and TLC27M7  
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage  
drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus  
dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)  
alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.  
The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of  
operation.  
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27M2 and  
TLC27M7 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards  
and sockets can easily exceed bias current requirements and cause a degradation in device performance. It  
is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement  
Information section). These guards should be driven from a low-impedance source at the same voltage level  
as the common-mode input (see Figure 40).  
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.  
noise performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias current requirements of the TLC27M2 and TLC27M7 result in a very  
low noise current, which is insignificant in most applications. This feature makes the devices especially  
favorable over bipolar devices when using values of circuit impedance greater than 50 k, since bipolar devices  
exhibit greater noise currents.  
V
I
V
O
+
+
V
O
V
I
+
V
O
V
I
(c) UNITY-GAIN AMPLIFIER  
(b) INVERTING AMPLIFIER  
(a) NONINVERTING AMPLIFIER  
Figure 40. Guard-Ring Schemes  
output characteristics  
The output stage of the TLC27M2 and TLC27M7 is designed to sink and source relatively high amounts of  
current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current  
capability can cause device damage under certain conditions. Output current capability increases with supply  
voltage.  
All operating characteristics of the TLC27M2 and TLC27M7 were measured using a 20-pF load. The devices  
drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole  
occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many  
cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
ꢂꢅ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
APPLICATION INFORMATION  
(a) C = 20 pF, R = NO LOAD  
(b) C = 170 pF, R = NO LOAD  
L L  
L
L
2.5 V  
V
O
+
T
= 25°C  
A
V
I
C
f = 1 kHz  
= 1 V  
L
V
I(PP)  
2.5 V  
(d) TEST CIRCUIT  
(c) C = 190 pF, R = NO LOAD  
L
L
Figure 41. Effect of Capacitive Loads and Test Circuit  
output characteristics (continued)  
Although the TLC27M2 and TLC27M7 possess excellent high-level output voltage and current capability,  
methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup  
resistor (R ) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages  
P
to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a  
comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance  
between approximately 60 and 180 , depending on how hard the operational amplifier input is driven. With  
very low values of R , a voltage offset from 0 V at the output occurs. Second, pullup resistor R acts as a drain  
P
P
load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying  
the output current.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
APPLICATION INFORMATION  
output characteristics (continued)  
V
DD  
V
I
R
P
+
I
P
V
O
C
I
I
P
R2  
R1  
R
L
L
V
O
V
* V  
+
DD  
O
R
+
P
I
) I ) I  
F
L
P
I
= Pullup current required by the op-  
P
erational amplifier (typically 500 µA)  
Figure 43. Compensation for Input Capacitance  
Figure 42. Resistive Pullup to Increase V  
OH  
feedback  
Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for  
oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads  
(discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with  
the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.  
electrostatic-discharge protection  
The TLC27M2 and TLC27M7 incorporate an internal electrostatic-discharge (ESD) protection circuit that  
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care  
should be exercised, however, when handling these devices as exposure to ESD may result in the degradation  
of the device parametric performance. The protection circuit also causes the input bias currents to be  
temperature dependent and have the characteristics of a reverse-biased diode.  
latch-up  
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27M2 and  
TLC27M7 inputs and outputs were designed to withstand −100-mA surge currents without sustaining latch-up;  
however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection  
diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply  
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.  
Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the  
supply rails as close to the device as possible.  
The current path established if latch-up occurs is usually between the positive supply rail and ground and can  
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
ꢂꢅ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
APPLICATION INFORMATION  
1N4148  
470 kΩ  
100 kΩ  
5 V  
1/2  
TLC27M2  
+
5 V  
I
S
1/2  
TLC27M7  
47 kΩ  
V
I
V
O
+
100 kΩ  
2N3821  
R2  
68 kΩ  
100 kΩ  
1 µF  
C2  
2.2 nF  
R1  
68 kΩ  
C1  
2.2 nF  
R
NOTES: V  
f
2 V  
NOTES: V = 0 V to 3 V  
I
O(PP)  
1
VI  
+
O
I
+
Ǹ
2p R1R2C1C2  
S
R
Figure 45. Precision Low-Current Sink  
Figure 44. Wien Oscillator  
5 V  
Gain Control  
1 MΩ  
100 kΩ  
(see Note A)  
1µ F  
+
+
10 kΩ  
1 kΩ  
+
+
1/2  
TLC27M2  
0.1 µF  
100 kΩ  
0.1 µF  
100 kΩ  
NOTE A: Low to medium impedance dynamic mike  
Figure 46. Microphone Preamplifier  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
APPLICATION INFORMATION  
10 MΩ  
V
DD  
+
1/2  
TLC27M2  
1 kΩ  
+
V
1/2  
O
TLC27M2  
15 nF  
V
REF  
100 kΩ  
150 pF  
NOTES: V  
= 4 V to 15 V  
DD  
V
ref  
= 0 V to V − 2 V  
DD  
Figure 47. Photo-Diode Amplifier With Ambient Light Rejection  
1 MΩ  
V
DD  
33 pF  
+
V
O
1/2  
TLC27M2  
1N4148  
100 kΩ  
100 kΩ  
NOTES: V  
= 8 V to 16 V  
DD  
= 5 V, 10 mA  
V
O
Figure 48. 5-V Low-Power Voltage Regulator  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢂꢅ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
APPLICATION INFORMATION  
5 V  
1 MΩ  
0.1 µ F  
V
I
0.22 µF  
+
V
O
1/2  
TLC27M2  
1 MΩ  
100 kΩ  
100 kΩ  
10 kΩ  
0.1 µF  
Figure 49. Single-Rail AC Amplifiers  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC27M2ACD  
TLC27M2ACDR  
TLC27M2ACDRG4  
TLC27M2ACP  
TLC27M2ACPE4  
TLC27M2AID  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
SOIC  
D
D
D
P
P
D
D
D
P
D
D
D
P
D
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
27M2AC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
27M2AC  
27M2AC  
TLC27M2AC  
TLC27M2AC  
27M2AI  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
50  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
0 to 70  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TLC27M2AIDR  
TLC27M2AIDRG4  
TLC27M2AIP  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
27M2AI  
Green (RoHS  
& no Sb/Br)  
27M2AI  
Green (RoHS  
& no Sb/Br)  
TLC27M2AI  
27M2BC  
27M2BC  
27M2BC  
TLC27M2BC  
27M2BI  
TLC27M2BCD  
TLC27M2BCDG4  
TLC27M2BCDR  
TLC27M2BCP  
TLC27M2BID  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
TLC27M2BIDG4  
TLC27M2BIDR  
75  
Green (RoHS  
& no Sb/Br)  
27M2BI  
2500  
Green (RoHS  
& no Sb/Br)  
27M2BI  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC27M2BIP  
TLC27M2CD  
ACTIVE  
PDIP  
SOIC  
SOIC  
PDIP  
P
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
50  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
0 to 70  
TLC27M2BI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
75  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
27M2C  
TLC27M2CDR  
TLC27M2CP  
D
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27M2C  
P
Green (RoHS  
& no Sb/Br)  
0 to 70  
TLC27M2CP  
TLC27M2CP  
P27M2  
TLC27M2CPE4  
TLC27M2CPS  
TLC27M2CPSR  
TLC27M2CPW  
TLC27M2CPWR  
TLC27M2ID  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
0 to 70  
SO  
PS  
PS  
PW  
PW  
D
80  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
SO  
2000  
150  
2000  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
P27M2  
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
PDIP  
Green (RoHS  
& no Sb/Br)  
0 to 70  
P27M2  
Green (RoHS  
& no Sb/Br)  
0 to 70  
P27M2  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
27M2I  
TLC27M2IDG4  
TLC27M2IDR  
TLC27M2IP  
D
75  
Green (RoHS  
& no Sb/Br)  
27M2I  
D
2500  
50  
Green (RoHS  
& no Sb/Br)  
27M2I  
P
Green (RoHS  
& no Sb/Br)  
TLC27M2IP  
P27M2I  
P27M2I  
P27M2I  
27M2M  
TLC27M2IPW  
TLC27M2IPWR  
TLC27M2IPWRG4  
TLC27M2MD  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
D
150  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
-55 to 125  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC27M2MDG4  
TLC27M7CD  
TLC27M7CDG4  
TLC27M7CDR  
TLC27M7CP  
TLC27M7CPS  
TLC27M7CPSR  
TLC27M7ID  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
SO  
D
D
8
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-55 to 125  
0 to 70  
27M2M  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
75  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
27M7C  
D
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27M7C  
D
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27M7C  
P
Green (RoHS  
& no Sb/Br)  
0 to 70  
TLC27M7CP  
P27M7  
PS  
PS  
D
80  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
SO  
2000  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
P27M7  
SOIC  
SOIC  
PDIP  
PDIP  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
27M7I  
TLC27M7IDR  
TLC27M7IP  
D
2500  
50  
Green (RoHS  
& no Sb/Br)  
27M7I  
P
Green (RoHS  
& no Sb/Br)  
TLC27M7IP  
TLC27M7IP  
TLC27M7IPE4  
P
50  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC27M2ACDR  
TLC27M2AIDR  
TLC27M2BCDR  
TLC27M2BIDR  
TLC27M2CDR  
TLC27M2CPSR  
TLC27M2CPWR  
TLC27M2IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2000  
2000  
2500  
2000  
2500  
2000  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
6.4  
6.4  
6.4  
6.4  
6.4  
8.35  
7.0  
6.4  
7.0  
6.4  
8.35  
6.4  
5.2  
5.2  
5.2  
5.2  
5.2  
6.6  
3.6  
5.2  
3.6  
5.2  
6.6  
5.2  
2.1  
2.1  
2.1  
2.1  
2.1  
2.5  
1.6  
2.1  
1.6  
2.1  
2.5  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
8.0  
8.0  
8.0  
8.0  
12.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
D
D
D
PS  
PW  
D
TSSOP  
SOIC  
TSSOP  
SOIC  
SO  
TLC27M2IPWR  
TLC27M7CDR  
TLC27M7CPSR  
TLC27M7IDR  
PW  
D
PS  
D
SOIC  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC27M2ACDR  
TLC27M2AIDR  
TLC27M2BCDR  
TLC27M2BIDR  
TLC27M2CDR  
TLC27M2CPSR  
TLC27M2CPWR  
TLC27M2IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2000  
2000  
2500  
2000  
2500  
2000  
2500  
340.5  
340.5  
340.5  
340.5  
340.5  
367.0  
367.0  
340.5  
367.0  
340.5  
367.0  
340.5  
338.1  
338.1  
338.1  
338.1  
338.1  
367.0  
367.0  
338.1  
367.0  
338.1  
367.0  
338.1  
20.6  
20.6  
20.6  
20.6  
20.6  
38.0  
35.0  
20.6  
35.0  
20.6  
38.0  
20.6  
D
D
D
PS  
PW  
D
TSSOP  
SOIC  
TSSOP  
SOIC  
SO  
TLC27M2IPWR  
TLC27M7CDR  
TLC27M7CPSR  
TLC27M7IDR  
PW  
D
PS  
D
SOIC  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLC27M2CPSLE

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2CPSR

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2CPSRG4

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2CPW

LinCMOSE PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2CPW

Operational Amplifier, 2 Func, 12000uV Offset-Max, CMOS, PDSO8, GREEN, PLASTIC, TSSOP-8
ROCHESTER

TLC27M2CPWG4

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2CPWLE

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2CPWLE

Operational Amplifier, 2 Func, 12000uV Offset-Max, CMOS, PDSO8, PLASTIC, TSSOP-8
ROCHESTER

TLC27M2CPWR

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2CPWRG4

LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2ID

LinCMOSE PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLC27M2ID1

Operational Amplifier
ROCHESTER