TLC27M4ACD [TI]

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS; LinCMOSE精密四路运算放大器
TLC27M4ACD
型号: TLC27M4ACD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
LinCMOSE精密四路运算放大器

运算放大器
文件: 总37页 (文件大小:556K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
D, J, N, OR PW PACKAGE  
(TOP VIEW)  
Trimmed Offset Voltage:  
TLC27M9 . . . 900 µV Max at T = 25°C,  
A
V
= 5 V  
DD  
1OUT  
1IN–  
1IN+  
4OUT  
4IN–  
4IN+  
GND  
3IN+  
3IN–  
3OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, Including the First 30 Days  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
0°C to 70°C . . . 3 V to 16 V  
V
DD  
2IN+  
2IN–  
40°C to 85°C . . . 4 V to 16 V  
55°C to 125°C . . . 4 V to 16 V  
2OUT  
8
Single-Supply Operation  
FK PACKAGE  
(TOP VIEW)  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix,  
I-Suffix Types)  
Low Noise . . . Typically 32 nV/Hz  
at f = 1 kHz  
3
2
1
20 19  
18  
4IN+  
1IN+  
NC  
4
5
6
7
8
NC  
17  
16  
15  
14  
Low Power . . . Typically 2.1 mW at  
GND  
NC  
V
T = 25°C, V  
= 5 V  
DD  
A
DD  
NC  
Output Voltage Range Includes Negative  
Rail  
3IN+  
2IN+  
9 10 11 12 13  
12  
High Input Impedance . . . 10 Typ  
ESD-Protection Circuitry  
Small-Outline Package Option Also  
Available in Tape and Reel  
NC – No internal connection  
Designed-In Latch-Up Immunity  
DISTRIBUTION OF TLC27M9  
INPUT OFFSET VOLTAGE  
description  
40  
35  
30  
25  
20  
15  
10  
5
301 Units Tested From 2 Wafer Lots  
The TLC27M4 and TLC27M9 quad operational  
amplifiers combine a wide range of input offset  
voltage grades with low offset voltage drift, high  
input impedance, low noise, and speeds  
comparable to that of general-purpose bipolar  
devices.These devices use Texas Instruments  
V
T
A
= 5 V  
DD  
= 25°C  
N Package  
silicon-gate LinCMOS  
technology, which  
provides offset voltage stability far exceeding the  
stability available with conventional metal-gate  
processes.  
The extremely high input impedance, low bias  
currents, make these cost-effective devices ideal  
for applications that have previously been  
reserved for general-purpose bipolar products,  
but with only a fraction of the power consumption.  
0
1200  
600  
0
600  
1200  
V
IO  
– Input Offset Voltage – µV  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
description (continued)  
Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27M4 (10  
mV) to the high-precision TLC27M9 (900 µV). These advantages, in combination with good common-mode  
rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as  
well as for upgrading existing designs.  
In general, many features associated with bipolar technology are available on LinCMOS operational  
amplifiers, without the power penalties of bipolar technology. General applications such as transducer  
interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the  
TLC27M4 and TLC27M9. The devices also exhibit low voltage single-supply operation, and low power  
consumption, making them ideally suited for remote and inaccessible battery-powered applications. The  
common-mode input voltage range includes the negative rail.  
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand 100-mA surge currents without sustaining latch-up.  
The TLC27M4 and TLC27M9 incorporate internal ESD-protection circuits that prevent functional failures at  
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015; however, care should be exercised in  
handling these devices, as exposure to ESD may result in the degradation of the device parametric  
performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of 55°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGE  
CHIP  
FORM  
(Y)  
V
max  
CHIP  
CARRIER  
(FK)  
PLASTIC  
DIP  
IO  
SMALL  
OUTLINE  
(D)  
CERAMIC  
DIP  
T
A
TSSOP  
(PW)  
AT 25°C  
(J)  
(N)  
900 µV  
2 mV  
TLC27M9CD  
TLC27M4BCD  
TLC27M4ACD  
TLC27M4CD  
TLC27M9ID  
TLC27M9CN  
TLC27M4BCN  
TLC27M4ACN  
TLC27M4CN  
TLC27M9IN  
0°C to 70°C  
5 mV  
10 mV  
900 µV  
2 mV  
TLC27M4CPW  
TLC27M4Y  
TLC27M4BID  
TLC27M4AID  
TLC27M4ID  
TLC27M4BIN  
TLC27M4AIN  
TLC27M4IN  
40°C to 85°C  
55°C to 125°C  
5 mV  
10 mV  
900 µV  
10 mV  
TLC27M41PW  
TLC27M9MD  
TLC27M4MD  
TLC27M9MFK TLC27M9MJ  
TLC27M4MFK TLC27M4MJ  
TLC27M9MN  
TLC27M4MN  
The D and PW package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
R1  
R2  
N5  
C1  
IN–  
IN+  
P5  
P6  
P1  
P2  
R5  
OUT  
N3  
D2  
N1  
R3  
N2  
D1  
N4  
N6  
R7  
N7  
R4  
GND  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TLC27M4Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLC27M4C. Thermal compression  
or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
V
DD  
(4)  
(14)  
(11)  
(8)  
(13)  
(12)  
(10)  
(9)  
(3)  
(2)  
+
1IN+  
1IN–  
(1)  
1OUT  
(5)  
(6)  
+
2IN+  
2IN–  
(7)  
2OUT  
(10)  
(9)  
68  
+
3IN+  
3IN–  
(8)  
3OUT  
(12)  
(13)  
+
4IN+  
4IN–  
(14)  
4OUT  
(11)  
GND  
(2)  
(3)  
(6)  
(1)  
(5)  
(4)  
108  
(7)  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (11) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
ID  
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, l (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or PW package . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
494 mW  
715 mW  
715 mW  
819 mW  
POWER RATING  
A
D
FK  
J
950 mW  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
12.6 mW/°C  
5.6 mW/°C  
608 mW  
275 mW  
275 mW  
1375 mW  
1375 mW  
1575 mW  
700 mW  
880 mW  
880 mW  
N
1008 mW  
448 mW  
PW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
V
MIN  
3
MAX  
MIN  
4
MAX  
MIN  
4
MAX  
16  
Supply voltage, V  
16  
3.5  
8.5  
70  
16  
3.5  
8.5  
85  
DD  
V
V
= 5 V  
0.2  
0.2  
0
0.2  
0.2  
40  
0
3.5  
DD  
Common-mode input voltage, V  
V
IC  
Operating free-air temperature, T  
= 10 V  
0
8.5  
DD  
55  
125  
°C  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M4C  
TLC27M4AC  
TLC274BC  
TLC279C  
mV  
0.9  
250  
210  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
900  
1500  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1.7  
µV/°C  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
pA  
IO  
O
IC  
300  
600  
0.6  
40  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
4
4.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
3.5  
25°C  
0°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
3
0
50  
50  
50  
= 100 mV,  
= 0.25 V to 2 V,  
I
0
mV  
V/mV  
dB  
OL  
OL  
70°C  
25°C  
0°C  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
200  
140  
91  
91  
92  
93  
92  
94  
420  
500  
340  
Large-signal differential  
voltage amplification  
A
VD  
R
= 100 kΩ  
L
70°C  
25°C  
0°C  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
IC  
70°C  
25°C  
0°C  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
70°C  
25°C  
0°C  
1120  
1280  
880  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
mV  
0.9  
260  
220  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
1200  
1900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
2.1  
µV/°C  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
pA  
IO  
O
IC  
300  
600  
0.7  
50  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
9
9.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
8.5  
25°C  
0°C  
8
7.8  
7.8  
8.7  
8.7  
8.7  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
50  
50  
50  
I
0
mV  
V/mV  
dB  
OL  
OL  
70°C  
25°C  
0°C  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
320  
230  
94  
Large-signal differential  
voltage amplification  
A
VD  
R
= 100 kΩ  
L
70°C  
25°C  
0°C  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
94  
IC  
70°C  
25°C  
0°C  
94  
93  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
92  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
70°C  
25°C  
0°C  
94  
570  
690  
440  
1200  
1600  
1120  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
13  
mV  
0.9  
250  
210  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
900  
2000  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
1.7  
µV/°C  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
24  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
pA  
IO  
O
IC  
1000  
2000  
0.6  
200  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
4
4.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
3.5  
25°C  
40°C  
85°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
OH  
ID  
ID  
O
L
3
25°C  
0
50  
50  
50  
= –100 mV,  
= 0.25 V to 2 V,  
I
40°C  
85°C  
0
mV  
V/mV  
dB  
OL  
OL  
0
25°C  
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
270  
130  
91  
90  
90  
93  
91  
94  
420  
630  
320  
Large-signal differential  
voltage amplification  
A
VD  
R
= 100 kΩ  
40°C  
85°C  
L
25°C  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
40°C  
85°C  
IC  
25°C  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
40°C  
85°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
25°C  
1120  
1600  
800  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
13  
mV  
0.9  
260  
220  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
1200  
2900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
2.1  
µV/°C  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
26  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
pA  
IO  
O
IC  
1000  
2000  
0.7  
220  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
9
9.2  
Common-mode input  
voltage range (see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
8.5  
25°C  
40°C  
85°C  
8
7.8  
7.8  
8.7  
8.7  
8.7  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
OH  
ID  
ID  
O
L
25°C  
50  
50  
50  
I
40°C  
85°C  
0
mV  
V/mV  
dB  
OL  
OL  
0
25°C  
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
390  
220  
94  
Large-signal differential  
voltage amplification  
A
VD  
R
= 100 kΩ  
40°C  
85°C  
L
25°C  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
40°C  
85°C  
93  
IC  
94  
25°C  
93  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
40°C  
85°C  
91  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
94  
25°C  
570  
900  
410  
1200  
1800  
1040  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M4M  
TLC27M9M  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M4M  
TLC27M9M  
mV  
12  
V
IO  
Input offset voltage  
210  
900  
3750  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
µV  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
1.7  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
IO  
O
IC  
15  
35  
I
IB  
O
IC  
125°C  
0
to  
4
0.3  
to  
4.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
3.5  
25°C  
55°C  
125°C  
25°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
0
50  
50  
50  
= 100 mV,  
= 0.25 V to 2 V,  
I
55°C  
125°C  
25°C  
0
OL  
OL  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
290  
120  
91  
89  
91  
93  
91  
94  
420  
680  
280  
Large-signal differential  
voltage amplification  
A
VD  
R
= 100 kΩ  
55°C  
125°C  
25°C  
L
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V  
min  
ICR  
55°C  
125°C  
25°C  
IC  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
55°C  
125°C  
25°C  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
1120  
1760  
720  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M4M  
TLC27M9M  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M4M  
TLC27M9M  
mV  
12  
V
IO  
Input offset voltage  
220  
1200  
4300  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
µV  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
2.1  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.8  
0.7  
10  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
IO  
O
IC  
15  
35  
I
IB  
O
IC  
125°C  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
8.5  
25°C  
55°C  
125°C  
25°C  
8
7.8  
7.8  
8.7  
8.6  
8.8  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
50  
50  
50  
I
55°C  
125°C  
25°C  
0
OL  
OL  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
420  
190  
94  
Large-signal differential  
voltage amplification  
A
VD  
R
= 100 kΩ  
55°C  
125°C  
25°C  
L
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
55°C  
125°C  
25°C  
93  
IC  
93  
93  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
55°C  
125°C  
25°C  
91  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
94  
570  
980  
360  
1200  
2000  
960  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
DD  
A
TLC27M4Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
V
IO  
Input offset voltage  
1.1  
10  
mV  
Temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
T
= 25°C to 70°C  
= 2.5 V,  
1.7  
0.1  
0.6  
µV/°C  
pA  
α
A
VIO  
I
V
V
V
= 2.5 V  
= 2.5 V  
IO  
IB  
O
O
IC  
I
Input bias current (see Note 4)  
V
= 2.5 V,  
pA  
IC  
0.2  
to  
0.3  
to  
4.2  
V
ICR  
Common-mode input voltage range (see Note 5)  
V
4
V
V
High-level output voltage  
V
V
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
3.2  
3.9  
0
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
Low-level output voltage  
= –100 mV,  
I
= 0  
50  
OL  
OL  
A
VD  
Large-signal differential voltage amplification  
= 0.25 V to 2 V, R = 100 kΩ  
25  
65  
70  
170  
91  
93  
L
CMRR Common-mode rejection ratio  
= V  
min  
IC  
ICR  
= 5 V to 10 V,  
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
V
V
= 1.4 V  
= 2.5 V,  
dB  
SVR  
DD  
DD  
O
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
420  
1120  
µA  
DD  
No load  
electrical characteristics, V  
= 10 V, T = 25°C (unless otherwise noted)  
DD  
A
TLC27M4Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
V
IO  
Input offset voltage  
1.1  
10  
mV  
Temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
T
= 25°C to 70°C  
= 5 V,  
2.1  
0.1  
0.7  
µV/°C  
pA  
α
A
VIO  
I
V
V
V
= 5 V  
= 5 V  
IO  
IB  
O
O
IC  
I
Input bias current (see Note 4)  
V
= 5 V,  
pA  
IC  
0.2  
to  
0.3  
to  
9.2  
V
ICR  
Common-mode input voltage range (see Note 5)  
V
9
V
V
High-level output voltage  
V
V
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
8
8.7  
0
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
Low-level output voltage  
I
50  
OL  
OL  
A
VD  
Large-signal differential voltage amplification  
R
= 100 kΩ  
25  
65  
70  
275  
94  
93  
L
CMRR Common-mode rejection ratio  
= V  
min  
IC  
ICR  
= 5 V to 10 V,  
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
V
V
= 1.4 V  
dB  
SVR  
DD  
DD  
O
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
570  
1200  
µA  
DD  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.46  
0.36  
0.40  
0.43  
0.34  
MAX  
25°C  
0°C  
V
V
= 1 V  
IPP  
R
C
= 100 ,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 2.5 V  
IPP  
70°C  
f = 1 kHz  
See Figure 2  
R
= 20 Ω  
,
S
L
V
B
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
n
25°C  
0°C  
55  
60  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
50  
525  
610  
400  
40°  
41°  
39°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
1
Unity-gain bandwidth  
Phase margin  
kHz  
70°C  
25°C  
0°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.67  
0.51  
0.56  
0.61  
0.46  
MAX  
25°C  
0°C  
V
V
= 1 V  
IPP  
R
C
= 100 ,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 5.5 V  
IPP  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
B
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
n
25°C  
0°C  
35  
40  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
30  
635  
710  
510  
43°  
44°  
42°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
1
Unity-gain bandwidth  
Phase margin  
kHz  
70°C  
25°C  
0°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.51  
0.35  
0.40  
0.48  
0.32  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
IPP  
R
C
= 100 ,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
= 2.5 V  
40°C  
85°C  
IPP  
f = 1 kHz  
See Figure 2  
R
= 20 ,  
,
S
L
V
B
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
n
25°C  
40°C  
85°C  
55  
75  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
45  
25°C  
525  
770  
370  
40°  
43°  
38°  
V = 10 mV,  
I
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
40°C  
85°C  
kHz  
1
See Figure 3  
25°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.77  
0.47  
0.56  
0.70  
0.44  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
IPP  
R
C
= 100 ,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
= 5.5 V  
40°C  
85°C  
IPP  
f = 1 kHz  
See Figure 2  
R
= 20 ,  
,
S
L
V
B
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
n
25°C  
40°C  
85°C  
35  
45  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
25  
25°C  
635  
880  
480  
43°  
46°  
41°  
V = 10 mV,  
I
B
Unity-gain bandwidth  
Phase margin  
C
= 20 pF,  
L
40°C  
85°C  
kHz  
1
See Figure 3  
25°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M4M  
TLC27M9M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.54  
0.29  
0.40  
0.50  
0.28  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
IPP  
IPP  
R
C
= 100 ,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
V
= 2.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
B
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
n
25°C  
55°C  
125°C  
25°C  
55  
80  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
L
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
40  
525  
850  
330  
40°  
44°  
36°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
1
Unity-gain bandwidth  
Phase margin  
55°C  
125°C  
25°C  
kHz  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
55°C  
125°C  
C
= 20 pF,  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M4M  
TLC27M9M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.81  
0.38  
0.56  
0.73  
0.35  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
IPP  
IPP  
R
C
= 100 ,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
V
= 5.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
B
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
n
25°C  
55°C  
125°C  
25°C  
35  
50  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
L
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
20  
635  
960  
440  
43°  
47°  
39°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
1
Unity-gain bandwidth  
Phase margin  
55°C  
125°C  
25°C  
kHz  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
55°C  
125°C  
C
= 20 pF,  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
operating characteristics, V  
= 5 V, T = 25°C  
A
DD  
TLC27M4Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
R
C
= 100 k,  
= 20 pF,  
V
V
= 1 V  
0.43  
L
L
IPP  
SR  
Slew rate at unity gain  
V/µs  
= 2.5 V  
0.40  
32  
See Figure 1  
IPP  
f = 1 kHz  
See Figure 2  
R
= 20 ,  
,
S
L
V
B
B
Equivalent input noise voltage  
nV/Hz  
kHz  
n
V
R
= V  
,
C
= 20 pF,  
O
OH  
= 100 k,  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
55  
525  
40°  
OM  
1
See Figure 1  
C = 20 pF,  
L
L
V = 10 mV,  
I
See Figure 3  
kHz  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
C
= 20 pF,  
L
operating characteristics, V  
= 10 V, T = 25°C  
A
DD  
TLC27M4Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
R
C
= 100 k,  
= 20 pF,  
V
= 1 V  
0.62  
L
L
IPP  
SR  
Slew rate at unity gain  
V/µs  
V
IPP  
= 5.5 V  
0.56  
32  
See Figure 1  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
B
B
Equivalent input noise voltage  
nV/Hz  
kHz  
n
V
R
= V  
,
C
= 20 pF,  
O
OH  
= 100 k,  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
35  
635  
43°  
OM  
1
See Figure 1  
C = 20 pF,  
L
L
V = 10 mV,  
I
See Figure 3  
kHz  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
C
= 20 pF,  
L
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC27M4 and TLC27M9 are optimized for single-supply operation, circuit configurations used for  
the various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
thenegativerail. Acomparisonofsingle-supplyversussplit-supplytestcircuitsisshownbelow. Theuseofeither  
circuit gives the same result.  
V
DD  
V
DD+  
V
O
V
O
+
+
V
I
V
I
C
R
C
R
L
L
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
V
DD  
DD+  
20 Ω  
V
O
1/2 V  
V
O
DD  
+
+
20 Ω  
20 Ω  
20 Ω  
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD+  
100 Ω  
V
DD  
+
V
I
100 Ω  
V
O
V
I
V
L
O
+
1/2 V  
C
L
DD  
C
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Because of the high input impedance of the TLC27M4 and TLC27M9 operational amplifiers, attempts to  
measure the input bias current can result in erroneous readings. The bias current at normal room ambient  
temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two  
suggestions are offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between  
the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using  
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated  
by subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
One word of caution—many automatic testers as well as some bench-top operational amplifier testers use the  
servo-loop technique with a resistor in series with the device input to measure the input bias current; the voltage  
dropacrosstheseriesresistorismeasuredandthebiascurrentiscalculated. Thismethodrequiresthatadevice  
be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible  
using this method.  
7
1
V = V  
IC  
8
14  
Figure 4. Isolation Metal Around Device Inputs  
(J and N packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. If conditions other than these are to  
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
PARAMETER MEASUREMENT INFORMATION  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generally measured by monitoring the distortion level of the output, while increasing the frequency of a  
sinusoidal input signal until the maximum frequency is found above which the output contains significant  
distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion,  
above which full peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. Thefrequencyisthenincreaseduntilthemaximumpeak-to-peakoutputcannolongerbemaintained  
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 1 kHz  
(b) 1 kHz < f < B  
OM  
(c) f = B  
OM  
(d) f > B  
OM  
Figure 5. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
Input offset voltage  
Distribution  
Distribution  
IO  
α
Temperature coefficient of input offset voltage  
8, 9  
VIO  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
V
V
A
High-level output voltage  
Low-level output voltage  
OH  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
14, 15  
16  
17  
OL  
vs Low-level output current  
18, 19  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
20  
21  
32, 33  
Differential voltage amplification  
VD  
I
I
Input bias current  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
22  
22  
23  
IB  
Input offset current  
IO  
V
Common-mode input voltage  
IC  
vs Supply voltage  
vs Free-air temperature  
24  
25  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
30  
31  
Unity-gain bandwidth  
Phase shift  
1
vs Frequency  
32, 33  
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
34  
35  
36  
φ
m
Phase margin  
V
n
Equivalent input noise voltage  
vs Frequency  
37  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC27M4  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27M4  
INPUT OFFSET VOLTAGE  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
612 Amplifiers Tested From 6 Wafer Lots  
612 Amplifiers Tested From 4 Wafer Lots  
V
T
= 5 V  
V
T
= 10 V  
DD  
= 25°C  
DD  
= 25°C  
A
A
N Package  
N Package  
10  
0
10  
0
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC27M4 AND TLC27M9  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27M4 AND TLC27M9  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
60  
60  
50  
40  
30  
20  
10  
0
224 Amplifiers Tested From 6 Wafer Lots  
224 Amplifiers Tested From 6 Wafer Lots  
V
T
A
= 5 V  
V
= 10 V  
DD  
= 25°C to 125°C  
DD  
T = 25°C to 125°C  
A
50  
40  
30  
20  
10  
0
N Package  
Outliers:  
(1) 33.0 µV/C  
N Package  
Outliers:  
(1) 34.6 µV/°C  
10 8 –6 –4 –2  
0
2
4
6
8
10  
10 8 –6 –4 –2  
0
2
4
6
8
10  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
= 100 mV  
ID  
= 25°C  
V
= 100 mV  
ID  
= 25°C  
T
A
T
A
V
= 16 V  
DD  
V
DD  
= 5 V  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
6
4
2
0
0
–5 –10 15 20 25 30 35 40  
0
–2  
–4  
–6  
–8  
10  
I
– High-Level Output Current – mA  
I
– High-Level Output Current – mA  
OH  
OH  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
16  
14  
12  
10  
8
V
V
V
V
1.6  
1.7  
1.8  
1.9  
DD  
DD  
DD  
DD  
V
= 100 mV  
I
= 5 mA  
ID  
OH  
R
= 100 kΩ  
L
V
= 100 mA  
ID  
T
A
= 25°C  
V
DD  
= 5 V  
V
–2  
DD  
V
= 10 V  
DD  
6
V
DD  
V
DD  
V
DD  
V
DD  
2.1  
2.2  
2.3  
2.4  
4
2
0
0
2
4
V
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
– Supply Voltage – V  
DD  
T
A
– Free-Air Temperature – °C  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
700  
500  
450  
400  
350  
300  
250  
V
= 5 V  
DD  
V
= 10 V  
= 5 mA  
DD  
650  
600  
550  
500  
450  
I
= 5 mA  
OL  
I
OL  
T
A
= 25°C  
T
A
= 25°C  
V
= 100 mV  
ID  
V
ID  
V
ID  
V
ID  
= 100 mV  
= 1 V  
= 2.5 V  
400  
350  
300  
V
= 1 V  
ID  
0
1
2
4
6
8
10  
3
5
7
9
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
V
IC  
– Common-Mode Input Voltage – V  
V
IC  
– Common-Mode Input Voltage – V  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
I
= 5 mA  
OL  
I
= 5 mA  
OL  
V
V
= 1 V  
= 0.5 V  
ID  
IC  
V
= |V /2|  
ID  
= 25°C  
700  
600  
500  
400  
300  
200  
100  
0
IC  
T
A
V
= 5 V  
DD  
V
= 5 V  
DD  
V
DD  
= 10 V  
V
= 10 V  
DD  
75 50 25  
0
25  
50  
75  
100 125  
–3  
–5  
–7  
–9  
10  
0
–1 –2  
–4  
–6  
–8  
T
A
– Free-Air Temperature – °C  
V
ID  
– Differential Input Voltage – V  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
V
V
T
= 1 V  
= 0.5 V  
= 25°C  
ID  
IC  
A
V
V
T
= 1 V  
= 0.5 V  
= 25°C  
ID  
IC  
A
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
1
I
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
– Low-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OL  
OL  
Figure 18  
Figure 19  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 55°C  
A
R
= 100 kΩ  
R
= 100 kΩ  
L
L
40°C  
0°C  
25°C  
70°C  
V
= 10 V  
DD  
85°C  
T
= 125°C  
A
V
DD  
= 5 V  
0
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
COMMON-MODE  
INPUT VOLTAGE POSITIVE LIMIT  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10000  
1000  
100  
10  
16  
14  
12  
10  
8
V
V
= 10 V  
= 5 V  
See Note A  
DD  
IC  
T
A
= 25°C  
I
IB  
I
IO  
6
4
1
2
0.1  
0
25  
0
2
4
6
8
10  
12  
14  
16  
45  
65  
85  
105  
125  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 22  
Figure 23  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
vs  
SUPPLY VOLTAGE  
1600  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= V /2  
DD  
V
= V  
/2  
O
O
DD  
T
= 55°C  
No Load  
No Load  
A
1400  
1200  
1000  
800  
600  
400  
200  
0
40°C  
V
= 10 V  
DD  
0°C  
25°C  
70°C  
V
= 5 V  
DD  
T
A
= 125°C  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
A
= 1  
= 1 V  
= 100 kΩ  
= 20 pF  
= 25°C  
V
A
R
= 1  
= 100 kΩ  
= 20 pF  
V
L
V
R
C
IPP  
L
L
V
V
= 10 V  
= 5.5 V  
DD  
IPP  
C
L
See Figure 1  
T
A
See Figure 1  
V
V
= 10 V  
= 1 V  
DD  
IPP  
V
V
= 5 V  
= 1 V  
DD  
IPP  
V
V
= 5 V  
= 2.5 V  
DD  
IPP  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 26  
Figure 27  
NORMALIZED SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
1.4  
10  
9
8
7
6
5
4
3
2
1
0
A
= 1  
V
1.3  
1.2  
1.1  
1
V
R
C
= 1 V  
IPP  
V
DD  
= 10 V  
= 100 kΩ  
V
= 10 V  
L
L
DD  
DD  
= 20 pF  
T
T
A
= 125°C  
= 25°C  
A
V
DD  
= 5 V  
T
A
= 55°C  
V
= 5 V  
0.9  
0.8  
0.7  
0.6  
R
= 100 kΩ  
L
See Figure 1  
1
10  
100  
1000  
75 50 25  
0
25  
50  
75  
100 125  
f – Frequency – kHz  
T
A
– Free-Air Temperature – °C  
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
UNITY-GAIN BANDWIDTH  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
900  
800  
700  
600  
500  
400  
300  
800  
750  
700  
650  
600  
550  
500  
450  
400  
V = 10 mV  
I
V
= 5 V  
DD  
V = 10 mV  
C
= 20 pF  
L
I
C
T
A
= 25°C  
= 20 pF  
L
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 30  
Figure 31  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
10  
V
= 5 V  
= 100 kΩ  
= 25°C  
DD  
R
L
T
A
0°  
A
VD  
30°  
60°  
90°  
Phase Shift  
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
10  
V
= 10 V  
= 100 kΩ  
= 25°C  
DD  
R
L
T
A
0°  
A
VD  
30°  
60°  
90°  
Phase Shift  
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 33  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
50°  
48°  
46°  
44°  
42°  
40°  
38°  
45°  
V = 10 mV  
V
= 5 V  
I
DD  
V = 10 mV  
C
= 20 pF  
L
I
T
A
= 25°C  
T = 25°C  
A
43°  
41°  
39°  
37°  
35°  
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
– 75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 34  
Figure 35  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
44°  
42°  
40°  
38°  
36°  
34°  
32°  
30°  
28°  
V
= 5 V  
DD  
V = 10 mV  
I
A
T
= 25°C  
See Figure 3  
0
10 20 30 40 50 60 70 80 90 100  
C
– Capacitive Load – pF  
L
Figure 36  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
300  
250  
200  
150  
100  
50  
V
R
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
T
A
See Figure 2  
0
1
10  
100  
1000  
f – Frequency – Hz  
Figure 37  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
APPLICATION INFORMATION  
single-supply operation  
While the TLC27M4 and TLC27M9 perform well using dual power supplies (also called balanced or split  
supplies), the design is optimized for single-supply operation. This design includes an input common-mode  
voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The  
supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly  
available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is  
recommended.  
Many single-supply applications require that a voltage be applied to one input to establish a reference level that  
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).  
The low input bias current of the TLC27M4 and TLC27M9 permits the use of very large resistive values to  
implement the voltage divider, thus minimizing power consumption.  
The TLC27M4 and TLC27M9 work well in conjunction with digital logic; however, when powering both linear  
devices and digital logic from the same power supply, the following precautions are recommended:  
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear  
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital  
logic.  
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, high-frequency applications may require RC decoupling.  
V
DD  
R4  
R1  
R3  
R1 + R3  
V
= V  
DD  
REF  
R2  
R3  
V
I
R4  
R2  
V
O
+ V  
+
V
O
= (V  
– V )  
REF I  
REF  
V
REF  
C
0.01 µF  
Figure 38. Inverting Amplifier With Voltage Reference  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
APPLICATION INFORMATION  
single-supply operation (continued)  
+
Power  
Supply  
Output  
Logic  
Logic  
Logic  
(a) COMMON SUPPLY RAILS  
+
Power  
Supply  
Output  
Logic  
Logic  
Logic  
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)  
Figure 39. Common Versus Separate Supply Rails  
input characteristics  
The TLC27M4 and TLC27M9 are specified with a minimum and a maximum input voltage that, if exceeded at  
either input, could cause the device to malfunction. Exceeding this specified range is a common problem,  
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper  
range limit is specified at V  
– 1 V at T = 25°C and at V  
– 1.5 V at all other temperatures.  
DD  
A
DD  
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27M4 and TLC27M9  
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage  
drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus  
dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)  
alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.  
The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of  
operation.  
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27M4 and  
TLC27M9 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards  
and sockets can easily exceed bias current requirements and cause a degradation in device performance. It  
is good practice to include guard rings around inputs (similar to those of Figure 4 in theParameter Measurement  
Information section). These guards should be driven from a low-impedance source at the same voltage level  
as the common-mode input (see Figure 40).  
Unused amplifiers should be connected as unity-gain followers to avoid possible oscillation.  
noise performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias current requirements of the TLC27M4 and TLC27M9 result in a very  
low noise current, which is insignificant in most applications. This feature makes the devices especially  
favorable over bipolar devices when using values of circuit impedance greater than 50 k, since bipolar devices  
exhibit greater noise currents.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
APPLICATION INFORMATION  
noise performance (continued)  
+
V
I
V
O
V
O
V
O
+
+
V
I
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 40. Guard-Ring Schemes  
output characteristics  
The output stage of the TLC27M4 and TLC27M9 is designed to sink and source relatively high amounts of  
current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current  
capability can cause device damage under certain conditions. Output current capability increases with supply  
voltage.  
All operating characteristics of the TLC27M4 and TLC27M9 were measured using a 20-pF load. The devices  
drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole  
occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many  
cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.  
(a) C = 20 pF, R = NO LOAD  
(b) C = 170 pF, R = NO LOAD  
L L  
L
L
2.5 V  
+
V
O
V
I
C
T = 25°C  
A
L
f = 1 kHz  
= 1 V  
V
IPP  
2.5 V  
(d) TEST CIRCUIT  
(c) C = 190 pF, R = NO LOAD  
L
L
Figure 41. Effect of Capacitive Loads and Test Circuit  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
APPLICATION INFORMATION  
output characteristics (continued)  
Although the TLC27M4 and TLC27M9 possess excellent high-level output voltage and current capability,  
methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup  
resistor (R ) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages  
P
to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a  
comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance  
between approximately 60 and 180 , depending on how hard the operational amplifier input is driven. With  
very low values of R , a voltage offset from 0 V at the output occurs. Second, pullup resistor R acts as a drain  
P
P
load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying  
the output current.  
V
DD  
C
R
V
I
P
+
I
I
V
– V  
O
P
DD  
+ I + I  
P
Rp =  
I
F
L
V
O
I
P
= Pullup current required  
by the operational amplifier  
(typically 500 µA)  
V
O
F
+
R2  
I
L
R
R1  
L
Figure 42. Resistive Pullup  
to Increase V  
Figure 43. Compensation for  
Input Capacitance  
OH  
feedback  
Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for  
oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads  
(discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with  
the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.  
electrostatic discharge protection  
The TLC27M4 and TLC27M9 incorporate an internal electrostatic discharge (ESD) protection circuit that  
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care  
should be exercised, however, when handling these devices, as exposure to ESD may result in the degradation  
of the device parametric performance. The protection circuit also causes the input bias currents to be  
temperature-dependent and have the characteristics of a reverse-biased diode.  
latch-up  
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27M4 and  
TLC27M9 inputs and outputs were designed to withstand 100-mA surge currents without sustaining latch-up;  
however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection  
diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply  
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.  
Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the  
supply rails as close to the device as possible.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
APPLICATION INFORMATION  
latch-up (continued)  
The current path established if latch-up occurs is usually between the positive supply rail and ground; it can be  
triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
1N4148  
470 kΩ  
100 kΩ  
5 V  
1/4  
TLC27M4  
47 kΩ  
V
O
100 kΩ  
+
R2  
68 kΩ  
100 kΩ  
2 V  
1 µF  
C2  
2.2 nF  
R1  
68 kΩ  
C1  
2.2 nF  
NOTE: V  
OPP  
1
f
O
=
2π R1R2C1C2  
Figure 44. Wien Oscillator  
I
S
5 V  
1/4  
V
I
+
TLC27M9  
2N3821  
R
NOTE: V = 0 V to 3 V  
I
V
R
I
I
S
=
Figure 45. Precision Low-Current Sink  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
APPLICATION INFORMATION  
5 V  
Gain Control  
1 MΩ  
(see Note A)  
100 kΩ  
1 µF  
+
+
10 kΩ  
1 kΩ  
0.1 µF  
+
+
1 µF  
1/4  
TLC27M4  
100 kΩ  
100 kΩ  
NOTE A: Low to medium impedance dynamic mike  
Figure 46. Microphone Preamplifier  
10 MΩ  
V
DD  
+
1/4  
TLC27M4  
1 kΩ  
+
V
1/4  
TLC27M4  
O
V
REF  
15 nF  
100 kΩ  
150 pF  
NOTE: V  
= 4 V to 15 V  
DD  
V
REF  
= 0 V to V  
– 2 V  
DD  
Figure 47. Photo-Diode Amplifier With Ambient Light Rejection  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS093C – OCTOBER 1987 – REVISED MAY 1999  
APPLICATION INFORMATION  
1 MΩ  
V
DD  
33 pF  
+
V
O
1/4  
TLC27M4  
1N4148  
100 kΩ  
100 kΩ  
NOTE: V  
V
= 8 V to 16 V  
= 5 V, 10 mA  
DD  
O
Figure 48. Low-Power Voltage Regulator  
5 V  
1 MΩ  
0.01 µF  
0.22 µF  
V
I
+
V
O
1/4  
TLC27M4  
1 MΩ  
100 kΩ  
100 kΩ  
10 kΩ  
0.1 µF  
Figure 49. Single-Rail AC Amplifier  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLC27M4ACD3

IC,OP-AMP,QUAD,CMOS,SOP,14PIN,PLASTIC
TI

TLC27M4ACDP3

IC,OP-AMP,QUAD,CMOS,SOP,14PIN,PLASTIC
TI

TLC27M4ACDR

Quad, 16-V, 525-kHz, In to V-, 5-mV offset voltage operational amplifier | D | 14 | 0 to 70
TI

TLC27M4ACJ4

IC,OP-AMP,QUAD,CMOS,DIP,14PIN,CERAMIC
TI

TLC27M4ACJP4

Operational Amplifier
ROCHESTER

TLC27M4ACN

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC27M4ACN3

IC,OP-AMP,QUAD,CMOS,DIP,14PIN,PLASTIC
TI

TLC27M4ACNE4

四路、16V、525kHz、输入接近 V-、5mV 失调电压运算放大器 | N | 14 | 0 to 70
TI

TLC27M4ACNP3

IC,OP-AMP,QUAD,CMOS,DIP,14PIN,PLASTIC
TI

TLC27M4ACNS

QUAD OP-AMP, 6500uV OFFSET-MAX, 0.525MHz BAND WIDTH, PDSO14, SOP-14
TI

TLC27M4ACNSR

QUAD OP-AMP, 6500uV OFFSET-MAX, 0.525MHz BAND WIDTH, PDSO14, SOP-14
TI

TLC27M4AID

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI