TLC27M4CNS [TI]

LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS;
TLC27M4CNS
型号: TLC27M4CNS
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

放大器 光电二极管
文件: 总47页 (文件大小:1542K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS  
Check for Samples: TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
1
FEATURES  
D, J, N, OR PW PACKAGE  
(TOP VIEW)  
2
Trimmed Offset Voltage  
TLC27M9 . . . 900 µV Max at TA = 25°C,  
VDD = 5 V  
1OUT  
1IN–  
1IN+  
VDD  
4OUT  
4IN–  
4IN+  
GND  
3IN+  
3IN–  
3OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, Including the First 30 Days  
Wide Range of Supply Voltages Over Specified  
Temperature Range:  
2IN+  
2IN–  
2OUT  
0°C to 70°C . . . 3 V to 16 V  
–40°C to 85°C . . . 4 V to 16 V  
–55°C to 125°C . . . 4 V to 16 V  
8
FK PACKAGE  
(TOP VIEW)  
Single-Supply Operation  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix,  
I-Suffix Types)  
3
2
1 20 19  
18  
4IN+  
1IN+  
4
5
6
7
8
Low Noise . . . Typically 32 nV/Hz  
at f = 1 kHz  
NC  
NC  
VDD  
NC  
17  
16  
15  
14  
GND  
NC  
Low Power . . . Typically 2.1 mW at  
TA = 25°C, VDD = 5 V  
3IN+  
2IN+  
Output Voltage Range Includes Negative Rail  
High Input Impedance . . . 1012 Ω Typ  
ESD-Protection Circuitry  
9 10 11 12 13  
Small-Outline Package Option Also Available  
in Tape and Reel  
NC – No internal connection  
Designed-In Latch-Up Immunity  
DISTRIBUTION OF TLC27M9  
INPUT OFFSET VOLTAGE  
DESCRIPTION  
40  
35  
30  
25  
20  
15  
10  
5
The TLC27M4 and TLC27M9 quad operational  
amplifiers combine a wide range of input offset  
voltage grades with low offset voltage drift, high input  
impedance, low noise, and speeds comparable to  
that of general-purpose bipolar devices. These  
devices use Texas Instruments silicon-gate  
LinCMOS™ technology, which provides offset voltage  
stability far exceeding the stability available with  
conventional metal-gate processes.  
301 Units Tested From 2 Wafer Lots  
V
T
= 5 V  
DD  
= 25°C  
A
N Package  
The extremely high input impedance, low bias  
currents, make these cost-effective devices ideal for  
applications that have previously been reserved for  
general-purpose bipolar products, but with only a  
fraction of the power consumption.  
0
1200  
600  
0
600  
1200  
V
– Input Offset Voltage – μV  
IO  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 1987–2012, Texas Instruments Incorporated  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27M4 (10 mV)  
to the high-precision TLC27M9 (900 μV). These advantages, in combination with good common-mode rejection  
and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for  
upgrading existing designs.  
In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers,  
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog  
calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27M4 and  
TLC27M9. The devices also exhibit low voltage single-supply operation, and low power consumption, making  
them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage  
range includes the negative rail.  
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand 100-mA surge currents without sustaining latch-up.  
The TLC27M4 and TLC27M9 incorporate internal ESD-protection circuits that prevent functional failures at  
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015; however, care should be exercised in  
handling these devices, as exposure to ESD may result in the degradation of the device parametric performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for  
operation from –40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of –55°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGE  
CHIP  
FORM  
(Y)  
VIOmax  
AT 25°C  
SMALL  
OUTLINE  
(D)(1)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
TA  
TSSOP  
(PW)(1)  
(J)  
(N)  
900 µV  
2 mV  
TLC27M9CD  
TLC27M4BCD  
TLC27M4ACD  
TLC27M4CD  
TLC27M9ID  
TLC27M9CN  
TLC27M4BCN  
TLC27M4ACN  
TLC27M4CN  
TLC27M9IN  
0°C to 70°C  
5 mV  
10 mV  
900 µV  
2 mV  
TLC27M4CPW TLC27M4Y  
TLC27M4BID  
TLC27M4AID  
TLC27M4ID  
TLC27M4BIN  
TLC27M4AIN  
TLC27M4IN  
–40°C to 85°C  
–55°C to 125°C  
5 mV  
10 mV  
900 µV  
10 mV  
TLC27M41PW  
TLC27M9MD  
TLC27M4MD  
TLC27M9MFK  
TLC27M4MFK  
TLC27M9MJ  
TLC27M4MJ  
TLC27M9MN  
TLC27M4MN  
(1) The D and PW package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).  
2
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
EQUIVALENT SCHEMATIC (EACH AMPLIFIER)  
V
DD  
P3  
P4  
R6  
R1  
R2  
N5  
IN–  
IN+  
P5  
P6  
P1  
P2  
C1  
R5  
OUT  
N3  
D2  
N1  
R3  
N2  
D1  
N4  
N6  
R7  
N7  
R4  
GND  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
TLC27M4Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLC27M4C. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive  
epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
V
DD  
(4)  
(14)  
(11)  
(8)  
(13)  
(12)  
(10)  
(9)  
(3)  
(2)  
+
1IN+  
1IN–  
(1)  
1OUT  
(5)  
(6)  
+
2IN+  
2IN–  
(7)  
2OUT  
(10)  
(9)  
68  
+
3IN+  
3IN–  
(8)  
3OUT  
(12)  
(13)  
+
4IN+  
4IN–  
(14)  
4OUT  
(11)  
GND  
(2)  
(3)  
(6)  
(1)  
(5)  
(4)  
(7)  
108  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 ´ 4 MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (11) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
4
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
UNIT  
(2)  
Supply voltage, VDD  
18  
V
(3)  
Differential input voltage, VID  
±VDD  
Input voltage range, VI (any input)  
Input current, II  
–0.3 V to VDD  
±5  
mA  
mA  
mA  
mA  
Output current, lO (each output)  
Total current into VDD  
±30  
45  
Total current out of GND  
45  
Duration of short-circuit current at (or below) 25°C(4)  
unlimited  
Continuous total dissipation  
See Dissipation Rating Table  
C suffix  
I suffix  
M suffix  
0 to 70  
–40 to 85  
–55 to 125  
–65 to 150  
260  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
Operating free-air temperature, TA  
Storage temperature range  
Case temperature for 60 seconds: FK package  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or PW package  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package  
260  
300  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground.  
(3) Differential voltages are at IN+ with respect to IN –.  
(4) The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation  
rating is not exceeded (see application section).  
DISSIPATION RATINGS  
T
A 25°C  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
TA = 125°C  
POWER RATING  
PACKAGE  
POWER RATING  
D
FK  
J
950 mW  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
12.6 mW/°C  
5.6 mW/°C  
608 mW  
880 mW  
880 mW  
1008 mW  
448 mW  
494 mW  
715 mW  
715 mW  
819 mW  
275 mW  
275 mW  
1375 mW  
1375 mW  
1575 mW  
700 mW  
N
PW  
RECOMMENDED OPERATING CONDITIONS  
MIN  
3
MAX  
MIN  
4
MAX  
16  
MIN  
MAX UNIT  
Supply voltage, VDD  
16  
3.5  
8.5  
70  
4
0
16  
3.5  
8.5  
125  
V
VDD = 5 V  
Common mode input voltage, VIC  
VDD = 10 V  
–0.2  
–0.2  
0
–0.2  
–0.2  
–40  
3.5  
8.5  
85  
V
0
Operating free-air temperature, TA  
–55  
°C  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V (unless otherwise noted)  
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN TYP MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
5
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
TLC27M4C  
TLC27M4AC  
TLC274BC  
TLC279C  
mV  
µV  
0.9  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
Full range  
25°C  
6.5  
VIO  
Input offset voltage  
250 2000  
3000  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
Full range  
25°C  
210  
900  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
Full range  
1500  
Average temperature coefficient of input  
offset voltage  
αVIO  
25°C to 70°C  
1.7  
µV/°C  
pA  
25°C  
70°C  
25°C  
70°C  
0.1  
IIO  
Input offset current(2)  
Input bias current(2)  
VO = 2.5 V,  
VO = 2.5 V,  
VIC = 2.5 V  
VIC = 2.5 V  
7
0.6  
300  
600  
IIB  
pA  
V
40  
–0.2 –0.3  
25°C  
to  
4
to  
4.2  
VICR  
Common-mode input voltage range(3)  
–0.2  
to  
3.5  
Full range  
V
V
25°C  
0°C  
3.2  
3
3.9  
3.9  
4
VOH  
High-level output voltage  
Low-level output voltage  
VID = 100 mV,  
VID = –100 mV,  
RL = 100 kΩ  
70°C  
25°C  
0°C  
3
0
50  
50  
50  
VOL  
IOL = 0  
0
mV  
V/mV  
dB  
70°C  
25°C  
0°C  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
200  
140  
91  
91  
92  
93  
92  
94  
Large-signal differential voltage  
amplification  
AVD  
VO = 0.25 V to 2 V, RL = 100 kΩ  
70°C  
25°C  
0°C  
CMRR  
kSVR  
IDD  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
VIC = VICRmin  
70°C  
25°C  
0°C  
VDD = 5 V to 10 V, VO = 1.4 V  
dB  
(ΔVDD/ΔVIO  
)
70°C  
25°C  
0°C  
420 1120  
500 1280  
VO = 2.5 V,  
VIC = 2.5 V,  
No load  
Supply current (four amplifiers)  
µA  
70°C  
340  
880  
(1) Full range is 0°C to 70°C.  
(2) The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
(3) This range also applies to each input individually.  
6
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
ELECTRICAL CHARACTERISTICS  
at specified free-air temperature, VDD = 10 V (unless otherwise noted)  
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
mV  
MIN TYP MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
5
VO = 1.4 V,  
VIC = 0,  
TLC27M4C  
TLC27M4AC  
TLC274BC  
TLC279C  
RS = 50 Ω,  
RL = 100 kΩ  
0.9  
VO = 1.4 V,  
VIC = 0,  
RS = 50 Ω,  
RL = 100 kΩ  
Full range  
25°C  
6.5  
VIO  
Input offset voltage  
260 2000  
3000  
VO = 1.4 V,  
VIC = 0,  
RS = 50 Ω,  
RL = 100 kΩ  
Full range  
25°C  
µV  
220 1200  
1900  
VO = 1.4 V,  
VIC = 0,  
RS = 50 Ω,  
RL = 100 kΩ  
Full range  
Average temperature coefficient of input  
offset voltage  
αVIO  
25°C to 70°C  
2.1  
0.1  
µV/°C  
pA  
25°C  
70°C  
25°C  
70°C  
IIO  
Input offset current(2)  
Input bias current(2)  
VO = 5 V,  
VO = 5 V,  
VIC = 5 V  
VIC = 5 V  
7
0.7  
300  
600  
IIB  
pA  
V
50  
–0.2 –0.3  
25°C  
to  
9
to  
9.2  
VICR  
Common-mode input voltage range(3)  
–0.2  
to  
8.5  
Full range  
V
V
25°C  
0°C  
8
7.8  
7.8  
8.7  
8.7  
8.7  
0
VOH  
High-level output voltage  
Low-level output voltage  
VID = 100 mV,  
VID = –100 mV,  
VO = 1 V to 6 V,  
VIC = VICRmin  
RL = 100 kΩ  
70°C  
25°C  
0°C  
50  
50  
50  
VOL  
IOL = 0  
0
mV  
V/mV  
dB  
70°C  
25°C  
0°C  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
320  
230  
94  
94  
94  
93  
92  
94  
Large-signal differential voltage  
amplification  
AVD  
RL = 100 kΩ  
70°C  
25°C  
0°C  
CMRR  
kSVR  
IDD  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
70°C  
25°C  
0°C  
VDD = 5 V to 10 V, VO = 1.4 V  
dB  
(ΔVDD/ΔVIO  
)
70°C  
25°C  
0°C  
570 1200  
690 1600  
440 1120  
VO = 5 V,  
VIC = 5 V,  
No load  
Supply current (four amplifiers)  
µA  
70°C  
(1) Full range is 0°C to 70°C.  
(2) The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
(3) This range also applies to each input individually.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V (unless otherwise noted)  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN TYP MAX  
25°C  
Full range  
25°C  
1.1  
10  
13  
5
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
mV  
µV  
0.9  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
Full range  
25°C  
6.5  
VIO  
Input offset voltage  
250 2000  
3000  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
Full range  
25°C  
210  
900  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
Full range  
2000  
Average temperature coefficient of input  
offset voltage  
αVIO  
25°C to 85°C  
1.7  
0.1  
µV/°C  
pA  
25°C  
85°C  
25°C  
85°C  
IIO  
Input offset current(2)  
Input bias current(2)  
VO = 2.5 V,  
VO = 2.5 V,  
VIC = 2.5 V  
VIC = 2.5 V  
24 1000  
0.6  
IIB  
pA  
V
200 2000  
–0.2 –0.3  
25°C  
to  
4
to  
4.2  
VICR  
Common-mode input voltage range(3)  
–0.2  
to  
3.5  
Full range  
V
V
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
3.2  
3
3.9  
3.9  
4
VOH  
High-level output voltage  
Low-level output voltage  
VID = 100 mV,  
VID = –100 mV,  
RL = 100 kΩ  
3
0
50  
50  
50  
VOL  
IOL = 0  
0
mV  
V/mV  
dB  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
270  
130  
91  
90  
90  
93  
91  
94  
Large-signal differential voltage  
amplification  
AVD  
VO = 0.25 V to 2 V, RL = 100 kΩ  
CMRR  
kSVR  
IDD  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
VIC = VICRmin  
VDD = 5 V to 10 V, VO = 1.4 V  
dB  
(ΔVDD/ΔVIO  
)
420 1120  
630 1600  
VO = 2.5 V,  
VIC = 2.5 V,  
No load  
Supply current (four amplifiers)  
µA  
320  
800  
(1) Full range is –40°C to 85°C.  
(2) The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
(3) This range also applies to each input individually.  
8
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
ELECTRICAL CHARACTERISTICS  
at specified free-air temperature, VDD = 10 V (unless otherwise noted)  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
mV  
MIN TYP MAX  
25°C  
Full range  
25°C  
1.1  
10  
13  
5
VO = 1.4 V,  
VIC = 0,  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
RS = 50 Ω,  
RL = 100 kΩ  
0.9  
VO = 1.4 V,  
VIC = 0,  
RS = 50 Ω,  
RL = 100 kΩ  
Full range  
25°C  
7
VIO  
Input offset voltage  
260 2000  
3500  
VO = 1.4 V,  
VIC = 0,  
RS = 50 Ω,  
RL = 100 kΩ  
Full range  
25°C  
µV  
220 1200  
2900  
VO = 1.4 V,  
VIC = 0,  
RS = 50 Ω,  
RL = 100 kΩ  
Full range  
Average temperature coefficient of input  
offset voltage  
αVIO  
25°C to 85°C  
2.1  
µV/°C  
pA  
25°C  
85°C  
25°C  
85°C  
0.1  
IIO  
Input offset current(2)  
Input bias current(2)  
VO = 5 V,  
VO = 5 V,  
VIC = 5 V  
VIC = 5 V  
26 1000  
0.7  
IIB  
pA  
V
220 2000  
–0.2 –0.3  
25°C  
to  
9
to  
9.2  
VICR  
Common-mode input voltage range(3)  
–0.2  
to  
8.5  
Full range  
V
V
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
8
7.8  
7.8  
8.7  
8.7  
8.7  
0
VOH  
High-level output voltage  
Low-level output voltage  
VID = 100 mV,  
VID = –100 mV,  
VO = 1 V to 6 V,  
VIC = VICRmin  
RL = 100 kΩ  
50  
50  
50  
VOL  
IOL = 0  
0
mV  
V/mV  
dB  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
390  
220  
94  
93  
94  
93  
91  
94  
Large-signal differential voltage  
amplification  
AVD  
RL = 100 kΩ  
CMRR  
kSVR  
IDD  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
VDD = 5 V to 10 V, VO = 1.4 V  
dB  
(ΔVDD/ΔVIO  
)
570 1200  
900 1800  
410 1040  
VO = 5 V,  
VIC = 5 V,  
No load  
Supply current (four amplifiers)  
µA  
(1) Full range is –40°C to 85°C.  
(2) The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
(3) This range also applies to each input individually.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V (unless otherwise noted)  
TLC27M4M  
TLC27M9M  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN TYP MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
TLC27M4M  
TLC27M9M  
mV  
VIO  
Input offset voltage  
210  
900  
3750  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
µV  
Full range  
Average temperature coefficient of input  
offset voltage  
αVIO  
25°C to 125°C  
1.7  
µV/°C  
25°C  
125°C  
25°C  
85°C  
0.1  
1.4  
0.6  
9
pA  
nA  
pA  
nA  
IIO  
Input offset current(2)  
Input bias current(2)  
VO = 2.5 V,  
VO = 2.5 V,  
VIC = 2.5 V  
VIC = 2.5 V  
15  
35  
IIB  
0
to  
4
–0.3  
to  
4.2  
25°C  
V
V
VICR  
Common-mode input voltage range(3)  
0
to  
Full range  
3.5  
25°C  
–55°C  
125°C  
25°C  
3.2  
3
3.9  
3.9  
4
VOH  
High-level output voltage  
Low-level output voltage  
VID = 100 mV,  
VID = –100 mV,  
RL = 100 kΩ  
V
mV  
V/mV  
dB  
3
0
50  
50  
50  
VOL  
IOL = 0  
–55°C  
125°C  
25°C  
0
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
270  
120  
91  
89  
91  
93  
91  
94  
Large-signal differential voltage  
amplification  
AVD  
VO = 0.25 V to 2 V, RL = 100 kΩ  
–55°C  
125°C  
25°C  
CMRR  
kSVR  
IDD  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
VIC = VICRmin  
–55°C  
125°C  
25°C  
VDD = 5 V to 10 V, VO = 1.4 V  
–55°C  
125°C  
25°C  
dB  
(ΔVDD/ΔVIO  
)
420 1120  
680 1760  
VO = 2.5 V,  
VIC = 2.5 V,  
No load  
Supply current (four amplifiers)  
–55°C  
125°C  
µA  
280  
720  
(1) Full range is –55°C to 125°C.  
(2) The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
(3) This range also applies to each input individually.  
10  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
ELECTRICAL CHARACTERISTICS  
at specified free-air temperature, VDD = 10 V (unless otherwise noted)  
TLC27M4M  
TLC27M9M  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN TYP MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
TLC27M4M  
TLC27M9M  
mV  
VIO  
Input offset voltage  
220 1200  
4300  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
µV  
Full range  
Average temperature coefficient of input  
offset voltage  
αVIO  
25°C to 125°C  
2.1  
0.1  
µV/°C  
25°C  
125°C  
25°C  
pA  
nA  
pA  
nA  
IIO  
Input offset current(2)  
Input bias current(2)  
VO = 5 V,  
VO = 5 V,  
VIC = 5 V  
VIC = 5 V  
1.8  
0.7  
10  
15  
35  
IIB  
125°C  
0
to  
9
–0.3  
to  
9.2  
25°C  
V
V
VICR  
Common-mode input voltage range(3)  
–0.2  
to  
Full range  
8.5  
25°C  
–55°C  
125°C  
25°C  
8
7.8  
7.8  
8.7  
8.6  
8.8  
0
VOH  
High-level output voltage  
Low-level output voltage  
VID = 100 mV,  
VID = –100 mV,  
VO = 1 V to 6 V,  
VIC = VICRmin  
RL = 100 kΩ  
V
mV  
V/mV  
dB  
50  
50  
50  
VOL  
IOL = 0  
–55°C  
125°C  
25°C  
0
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
420  
190  
94  
93  
93  
93  
91  
94  
Large-signal differential voltage  
amplification  
AVD  
RL = 100 kΩ  
–55°C  
125°C  
25°C  
CMRR  
kSVR  
IDD  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
–55°C  
125°C  
25°C  
VDD = 5 V to 10 V, VO = 1.4 V  
–55°C  
125°C  
25°C  
dB  
(ΔVDD/ΔVIO  
)
570 1200  
980 2000  
VO = 5 V,  
VIC = 5 V,  
No load  
Supply current (four amplifiers)  
–55°C  
125°C  
µA  
360  
960  
(1) Full range is –55°C to 70°C.  
(2) The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
(3) This range also applies to each input individually.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
VDD = 5 V, TA = 25°C (unless otherwise noted)  
TLC27M4Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
VIO  
Input offset voltage  
1.1  
1.7  
10  
mV  
Temperature coefficient of input offset  
voltage  
αVIO  
TA = 25°C to 70°C  
µV/°C  
IIO  
IIB  
Input offset current(1)  
Input bias current(1)  
VO = 2.5 V,  
VO = 2.5 V,  
VIC = 2.5 V  
VIC = 2.5 V  
0.1  
0.6  
pA  
pA  
–0.2  
to  
–0.3  
to  
VICR  
Common-mode input voltage range(2)  
V
4
4.2  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VID = 100 mV,  
VID = –100 mV,  
RL = 100 kΩ  
3.2  
3.9  
0
V
IOL = 0  
50  
mV  
Large-signal differential voltage  
amplification  
AVD  
VO = 0.25 V to 2 V, RL= 100 kΩ  
VIC = VICRmin  
25  
65  
70  
170  
91  
V/mV  
dB  
CMRR  
kSVR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
VDD = 5 V to 10 V, VO = 1.4 V  
93  
dB  
(ΔVDD/ΔVIO  
)
VO = 2.5 V,  
No load  
VIC = 2.5 V,  
IDD  
Supply current (four amplifiers)  
420  
1120  
µA  
(1) The typical values of input bias current and input offset current below 5 pA were determined mathematically  
(2) This range also applies to each input individually.  
ELECTRICAL CHARACTERISTICS  
VDD = 10 V, TA = 25°C (unless otherwise noted)  
TLC27M4Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
VO = 1.4 V,  
RS = 50 Ω,  
VIC = 0,  
RL = 100 kΩ  
VIO  
Input offset voltage  
1.1  
1.7  
10  
mV  
Temperature coefficient of input offset  
voltage  
αVIO  
TA = 25°C to 70°C  
µV/°C  
IIO  
IIB  
Input offset current(1)  
Input bias current(1)  
VO = 5 V,  
VO = 5 V,  
VIC = 5 V  
VIC = 5 V  
0.1  
0.6  
pA  
pA  
–0.2  
to  
–0.3  
to  
VICR  
Common-mode input voltage range(2)  
V
9
9.2  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VID = 100 mV,  
VID = –100 mV,  
RL = 100 kΩ  
8
8.7  
0
V
IOL = 0  
50  
mV  
Large-signal differential voltage  
amplification  
AVD  
VO = 1 V to 6 V,  
VIC = VICRmin  
RL= 100 kΩ  
25  
65  
70  
275  
94  
V/mV  
dB  
CMRR  
kSVR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
VDD = 5 V to 10 V, VO = 1.4 V  
93  
dB  
(ΔVDD/ΔVIO  
)
VO = 5 V,  
No load  
VIC = 5 V,  
IDD  
Supply current (four amplifiers)  
570  
1200  
µA  
(1) The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
(2) This range also applies to each input individually.  
12  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V  
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN  
TYP  
0.43  
0.46  
0.36  
0.40  
0.43  
0.34  
MAX  
25°C  
0°C  
VIPP = 1 V  
RL = 100 kΩ,  
CL = 20 pF,  
See Figure 1  
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
VIPP = 2.5 V  
70°C  
f = 1 kHz,  
See Figure 2  
RS = 20 Ω  
Vn  
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
0°C  
55  
60  
Maximum output-swing  
bandwidth  
VO = VOH  
RL = 100 kΩ,  
,
CL = 20 pF,  
See Figure 1  
BOM  
kHz  
70°C  
25°C  
0°C  
50  
525  
610  
400  
40°  
41°  
39°  
VI = 10 mV,  
See Figure 3  
B1  
Unity-gain bandwidth  
Phase margin  
CL = 20 pF  
kHz  
70°C  
25°C  
0°C  
VI = 10 mV,  
CL = 20 pF,  
f = B1,  
See Figure 3  
φm  
70°C  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 10 V  
TLC27M4C  
TLC27M4AC  
TLC27M4BC  
TLC27M9C  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN  
TYP  
0.62  
0.67  
0.51  
0.56  
0.61  
0.46  
MAX  
25°C  
0°C  
VIPP = 1 V  
RL = 100 kΩ,  
CL = 20 pF,  
See Figure 1  
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
VIPP = 5.5 V  
70°C  
f = 1 kHz,  
See Figure 2  
RS = 20 Ω  
Vn  
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
0°C  
35  
40  
Maximum output-swing  
bandwidth  
VO = VOH  
RL = 100 kΩ,  
,
CL = 20 pF,  
See Figure 1  
BOM  
kHz  
70°C  
25°C  
0°C  
30  
635  
710  
510  
43°  
44°  
42°  
VI = 10 mV,  
See Figure 3  
B1  
Unity-gain bandwidth  
Phase margin  
CL = 20 pF  
kHz  
70°C  
25°C  
0°C  
VI = 10 mV,  
CL = 20 pF,  
f = B1,  
See Figure 3  
φm  
70°C  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN  
TYP  
0.43  
0.51  
0.35  
0.40  
0.48  
0.32  
MAX  
25°C  
–40°C  
85°C  
VIPP = 1 V  
RL = 100 kΩ,  
CL = 20 pF,  
See Figure 1  
SR  
Slew rate at unity gain  
V/µs  
25°C  
VIPP = 2.5 V  
–40°C  
85°C  
f = 1 kHz,  
See Figure 2  
RS = 20 Ω  
Vn  
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
55  
75  
Maximum output-swing  
bandwidth  
VO = VOH  
RL = 100 kΩ,  
,
CL = 20 pF,  
See Figure 1  
BOM  
kHz  
45  
525  
770  
370  
40°  
43°  
38°  
VI = 10 mV,  
See Figure 3  
B1  
Unity-gain bandwidth  
Phase margin  
CL = 20 pF  
kHz  
VI = 10 mV,  
CL = 20 pF,  
f = B1,  
See Figure 3  
φm  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 10 V  
TLC27M4I  
TLC27M4AI  
TLC27M4BI  
TLC27M9I  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN  
TYP  
0.62  
0.77  
0.47  
0.56  
0.70  
0.44  
MAX  
25°C  
–40°C  
85°C  
VIPP = 1 V  
RL = 100 kΩ,  
CL = 20 pF,  
See Figure 1  
SR  
Slew rate at unity gain  
V/µs  
25°C  
VIPP = 5.5 V  
–40°C  
85°C  
f = 1 kHz,  
See Figure 2  
RS = 20 Ω  
Vn  
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
35  
45  
Maximum output-swing  
bandwidth  
VO = VOH  
RL = 100 kΩ,  
,
CL = 20 pF,  
See Figure 1  
BOM  
kHz  
25  
635  
880  
480  
43°  
46°  
41°  
VI = 10 mV,  
See Figure 3  
B1  
Unity-gain bandwidth  
Phase margin  
CL = 20 pF  
kHz  
VI = 10 mV,  
CL = 20 pF,  
f = B1,  
See Figure 3  
φm  
14  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V  
TLC27M4M  
TLC27M9M  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN  
TYP  
MAX  
25°C  
–55°C  
125°C  
25°C  
0.43  
VIPP = 1 V  
0.54  
RL = 100 kΩ,  
CL = 20 pF,  
See Figure 1  
0.29  
SR  
Slew rate at unity gain  
V/µs  
0.40  
VIPP = 2.5 V  
–55°C  
125°C  
0.50  
0.28  
f = 1 kHz,  
See Figure 2  
RS = 20 Ω  
Vn  
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
–55°C  
125°C  
25°C  
56  
80  
Maximum output-swing  
bandwidth  
VO = VOH  
RL = 100 kΩ,  
,
CL = 20 pF,  
See Figure 1  
BOM  
kHz  
40  
525  
850  
330  
40°  
44°  
36°  
VI = 10 mV,  
See Figure 3  
B1  
Unity-gain bandwidth  
Phase margin  
CL = 20 pF  
–55°C  
125°C  
25°C  
kHz  
VI = 10 mV,  
CL = 20 pF,  
f = B1,  
See Figure 3  
φm  
–55°C  
125°C  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 10 V  
TLC27M4M  
TLC27M9M  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN  
TYP  
0.62  
0.81  
0.38  
0.56  
0.73  
0.35  
MAX  
25°C  
–55°C  
125°C  
25°C  
VIPP = 1 V  
RL = 100 kΩ,  
CL = 20 pF,  
See Figure 1  
SR  
Slew rate at unity gain  
V/µs  
VIPP = 5.5 V  
–55°C  
125°C  
f = 1 kHz,  
See Figure 2  
RS = 20 Ω  
Vn  
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
–55°C  
125°C  
25°C  
35  
50  
Maximum output-swing  
bandwidth  
VO = VOH  
RL = 100 kΩ,  
,
CL = 20 pF,  
See Figure 1  
BOM  
kHz  
20  
CL = 20 pF  
635  
960  
440  
43°  
47°  
39°  
VI = 10 mV,  
See Figure 3  
B1  
Unity-gain bandwidth  
Phase margin  
–55°C  
125°C  
25°C  
kHz  
VI = 10 mV,  
CL = 20 pF,  
f = B1,  
See Figure 3  
φm  
–55°C  
125°C  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V, TA = 25°C  
TLC27M4Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
RL = 100 kΩ,  
CL = 20 pF,  
See Figure 1  
VIPP = 1 V  
VIPP = 2.5 V  
RS = 20 Ω  
0.43  
SR  
Slew rate at unity gain  
V/µs  
0.40  
32  
f = 1 kHz,  
See Figure 2  
Vn  
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
nV/Hz  
kHz  
VO = VOH  
,
CL = 20 pF,  
See Figure 1  
BOM  
B1  
55  
525  
40°  
RL = 100 kΩ,  
VI = 10 mV,  
See Figure 3  
CL = 20 pF  
kHz  
VI = 10 mV,  
CL = 20 pF,  
f = B1,  
See Figure 3  
φm  
Phase margin  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 10 V, TA = 25°C  
TLC27M4Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
RL = 100 kΩ,  
CL = 20 pF,  
See Figure 1  
VIPP = 1 V  
VIPP = 5.5 V  
RS = 20 Ω  
0.62  
SR  
Slew rate at unity gain  
V/µs  
0.56  
32  
f = 1 kHz,  
See Figure 2  
Vn  
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
nV/Hz  
kHz  
VO = VOH  
RL = 100 kΩ,  
,
CL = 20 pF,  
See Figure 1  
BOM  
B1  
35  
635  
43°  
VI = 10 mV,  
See Figure 3  
CL = 20 pF  
kHz  
VI = 10 mV,  
CL = 20 pF,  
f = B1,  
See Figure 3  
φm  
Phase margin  
16  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
PARAMETER MEASUREMENT INFORMATION  
Single-Supply versus Split-Supply Test Circuits  
Because the TLC27M4 and TLC27M9 are optimized for single-supply operation, circuit configurations used for  
the various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either  
circuit gives the same result.  
V
V
DD+  
DD  
V
V
O
O
+
+
V
V
I
I
C
R
C
L
R
L
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
V
+
DD  
DD+  
20 Ω  
20 Ω  
V
O
1/2 V  
V
DD  
O
+
20 Ω  
20 Ω  
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD+  
100 Ω  
V
+
DD  
V
I
100 Ω  
+
V
V
I
O
V
L
O
1/2 V  
C
L
DD  
C
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
 
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
Input Bias Current  
Because of the high input impedance of the TLC27M4 and TLC27M9 operational amplifiers, attempts to measure  
the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is  
typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are  
offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a  
picoammeter) with no device in the test socket. The actual input bias current can then be calculated by  
subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.  
One word of caution—many automatic testers as well as some bench-top operational amplifier testers use the  
servo-loop technique with a resistor in series with the device input to measure the input bias current; the voltage  
drop across the series resistor is measured and the bias current is calculated. This method requires that a device  
be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible  
using this method.  
7
1
V = V  
IC  
8
14  
Figure 4. Isolation Metal Around Device Inputs  
(J and N packages)  
Low-Level Output Voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well as  
the differential input voltage level. When attempting to correlate low-level output readings with those quoted in  
the electrical specifications, these two conditions should be observed. If conditions other than these are to be  
used, please refer to Figure 14 through Figure 19 in the Typical Characteristics of this data sheet.  
Input Offset Voltage Temperature Coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
18  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
 
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
PARAMETER MEASUREMENT INFORMATION (continued)  
Full-Power Response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generally measured by monitoring the distortion level of the output, while increasing the frequency of a sinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The full-  
peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-  
to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in  
this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude.  
The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5).  
A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak  
output is reached.  
(a) f = 1 kHz  
(b) 1 kHz < f < B  
(c) f = B  
(d) f > B  
OM  
OM  
OM  
Figure 5. Full-Power-Response Output Signal  
Test Time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-  
time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and  
require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with  
reduced supply levels and lower temperatures.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
 
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
VIO  
Input offset voltage  
Distribution  
Distribution  
6, 7  
8, 9  
αVIO  
Temperature coefficient of input offset voltage  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
VOH  
VOL  
AVD  
High-level output voltage  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
14, 15  
16  
17  
Low-level output voltage  
vs Low-level output current  
18, 19  
vs Supply voltage  
vs Free-air temperature Free  
vs Frequency  
20  
21  
32, 33  
Differential voltage amplification  
IIB  
Input bias current  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
22  
22  
23  
IIO  
VIC  
Input offset current  
Common-mode input voltage  
vs Supply voltage  
vs Free-air temperature  
24  
25  
IDD  
SR  
Supply current  
Slew rate  
vs Supply voltage  
vs Free-air temperature  
26  
27  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
VO(PP)  
B1  
Maximum peak-to-peak output voltage  
vs Free-air temperature Free  
vs Supply voltage  
30  
31  
Unity gain bandwidth  
Phase shift  
vs Frequency  
32, 33  
vs Supply voltage  
vs Free-air temperature Free  
vs Load capacitance  
34  
35  
36  
φm  
Phase margin  
Vn  
Equivalent input noise voltage  
vs Frequency  
37  
20  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC27M4  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27M4  
INPUT OFFSET VOLTAGE  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
612 Amplifiers Tested From 4 Wafer Lots  
V
612 Amplifiers Tested From 6 Wafer Lots  
V
= 5 V  
= 25°C  
= 10 V  
DD  
DD  
T = 25°C  
A
T
A
N Package  
N Package  
10  
0
10  
0
–5 –4 –3 –2 –1  
V
0
1
2
3
– Input Offset Voltage – mV  
4
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
IO  
V
– Input Offset Voltage – mV  
IO  
Figure 6.  
Figure 7.  
DISTRIBUTION OF TLC27M4 AND TLC27M9  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27M4 AND TLC27M9  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
224 Amplifiers Tested From 6 Wafer Lots  
224 Amplifiers Tested From 6 Wafer Lots  
V
T
= 10 V  
V
T
= 5 V  
DD  
DD  
= 25°C to 125°C  
= 25°C to 125°C  
A
A
N Package  
Outliers:  
N Package  
Outliers:  
(1) 34.6 μV/°C  
(1) 33.0 μV/C  
10 8 6 –4 –2  
α
0
2
– Temperature Coefficient – μV/°C  
4
6
8
10  
10 –8 –6 –4 2  
α
0
2
4
6
8
10  
– Temperature Coefficient – μV/°C  
VIO  
VIO  
Figure 8.  
Figure 9.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
(1)  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
T
= 100 mV  
ID  
V
= 100 mV  
ID  
= 25°C  
A
T
A
= 25°C  
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
6
4
2
0
0
–2  
–4  
–6  
– High-Level Output Current – mA  
–8  
10  
0
–5  
I
10 15 20 25 30 35 40  
– High-Level Output Current – mA  
I
OH  
OH  
Figure 10.  
Figure 11.  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
V
V
V
V
–1.6  
–1.7  
–1.8  
–1.9  
–2  
16  
14  
12  
10  
8
DD  
DD  
DD  
I
= 5 mA  
OH  
V
= 100 mV  
= 100 kΩ  
= 25°C  
ID  
V
= 100 mA  
ID  
R
L
V
= 5 V  
DD  
T
A
DD  
V
DD  
V
= 10 V  
DD  
V
V
V
V
–2.1  
–2.2  
–2.3  
–2.4  
6
DD  
DD  
DD  
DD  
4
2
0
75 50 25  
T
0
25  
50  
– Free-Air Temperature – °C  
75  
100 125  
0
2
4
6
8
10  
– Supply Voltage – V  
12  
14  
16  
V
A
DD  
Figure 12.  
Figure 13.  
(1) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
(1)  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
700  
500  
450  
400  
350  
300  
250  
V
= 5 V  
DD  
V
= 10 V  
DD  
650  
600  
I
= 5 mA  
OL  
I
= 5 mA  
OL  
T
A
= 25°C  
T
A
= 25°C  
550  
500  
450  
V
= 100 mV  
ID  
V
V
V
= 100 mV  
= 1 V  
ID  
ID  
ID  
= 2.5 V  
400  
350  
300  
V
= 1 V  
ID  
0
1
2
4
6
8
1 0  
3
5
7
9
0
0.5  
V
1
1.5  
2
2.5  
3
– Common-Mode Input Voltage – V  
3.5  
4
V
– Common-Mode Input Voltage – V  
IC  
IC  
Figure 14.  
Figure 15.  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
= 5 mA  
I
= 5 mA  
= 1 V  
ID  
OL  
OL  
V
= |V /2|  
ID  
V
V
IC  
= 0.5 V  
IC  
T
A
= 25°C  
V
= 5 V  
DD  
V
= 5 V  
DD  
V
= 10 V  
DD  
V
= 10 V  
DD  
–3  
–5  
–7  
–9  
10  
0
–1 –2  
V
–4  
–6  
– Differential Input Voltage – V  
–8  
75 50 25  
T
0
25  
50  
– Free-Air Temperature – °C  
75  
100 125  
ID  
A
Figure 16.  
Figure 17.  
(1) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
(1)  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
V
V
T
= 1 V  
= 0.5 V  
ID  
IC  
V
V
T
= 1 V  
= 0.5 V  
ID  
IC  
= 25°C  
A
= 25°C  
A
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
1
2
– Low-Level Output Current – mA  
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
I
I
– Low-Level Output Current – mA  
OL  
OL  
Figure 18.  
Figure 19.  
LARGE-SIGNAL  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
A
= 55°C  
R
= 100 kΩ  
R
= 100 kΩ  
L
L
40°C  
0°C  
25°C  
70°C  
V
= 10 V  
DD  
85°C  
T
A
= 125°C  
V
= 5 V  
DD  
0
0
2
4
6
8
10  
12  
14  
0
16  
75 50 25  
0
25  
50  
75  
100 125  
V
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
DD  
Figure 20.  
Figure 21.  
(1) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
(1)  
TYPICAL CHARACTERISTICS  
COMMON-MODE  
INPUT VOLTAGE POSITIVE LIMIT  
vs  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10000  
1000  
100  
10  
16  
14  
12  
10  
8
V
V
= 10 V  
DD  
T
A
= 25°C  
= 5 V  
IC  
See Note A  
I
IB  
I
IO  
6
4
1
2
0
0.1  
25  
0
2
4
6
8
10  
12  
14  
16  
45  
T
A
65  
85  
– Free-Air Temperature – °C  
105  
125  
V
– Supply Voltage – V  
DD  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 22.  
Figure 23.  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
vs  
SUPPLY VOLTAGE  
1600  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= V /2  
DD  
V = V /2  
O DD  
O
T
A
= 55°C  
No Load  
No Load  
1400  
1200  
1000  
800  
600  
400  
200  
0
40°C  
V
= 10 V  
DD  
0°C  
25°C  
70°C  
V
= 5 V  
DD  
T
A
= 125°C  
0
2
4
6
– Supply Voltage – V  
8
10  
12  
14  
16  
75 50 25  
T
0
– Free-Air Temperature – °C  
25  
50  
75  
100 125  
V
DD  
A
Figure 24.  
Figure 25.  
(1) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
(1)  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
A
= 1  
V
A
V
= 1  
V
R
C
= 1 V  
IPP  
R
C
= 100 kΩ  
L
= 100 kΩ  
= 20 pF  
= 25°C  
V
V
= 10 V  
= 5.5 V  
L
L
DD  
= 20 pF  
L
IPP  
See Figure 1  
T
A
See Figure 1  
V
V
= 10 V  
= 1 V  
DD  
IPP  
V
V
= 5 V  
= 1 V  
DD  
IPP  
V
V
= 5 V  
= 2.5 V  
DD  
IPP  
0
2
4
6
– Supply Voltage – V  
8
10  
12  
14  
16  
75 50 25  
T
0
– Free-Air Temperature – °C  
25  
50  
75  
100 125  
V
DD  
A
Figure 26.  
Figure 27.  
NORMALIZED SLEW RATE  
vs  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
1.4  
1.3  
1.2  
1.1  
1
10  
9
8
7
6
5
4
3
2
1
0
A
= 1  
V
V
R
C
= 1 V  
IPP  
V
= 10 V  
DD  
= 100 kΩ  
V
= 10 V  
L
L
DD  
= 20 pF  
T
= 125°C  
= 25°C  
A
T
A
V
= 5 V  
DD  
T
A
= 55°C  
V
= 5 V  
DD  
0.9  
0.8  
0.7  
0.6  
R
= 100 kΩ  
L
See Figure 1  
75 50 25  
0
25  
50  
75  
100 125  
1
10  
100  
1000  
T
A
– Free-Air Temperature – °C  
f – Frequency – kHz  
Figure 28.  
Figure 29.  
(1) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
26  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
(1)  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
vs  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
800  
750  
700  
650  
600  
550  
500  
450  
400  
900  
800  
700  
600  
500  
400  
300  
V = 10 mV  
I
V
= 5 V  
DD  
C
= 20 pF  
L
V = 10 mV  
I
T
A
= 25°C  
C
= 20 pF  
L
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
DD  
Figure 30.  
Figure 31.  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
10  
V
= 5 V  
DD  
R
= 100 kΩ  
= 25°C  
L
T
A
0°  
A
VD  
30°  
60°  
90°  
Phase Shift  
120°  
150°  
180°  
1
0.1  
10  
100  
1 k  
10 k  
f – Frequency – Hz  
100 k  
1 M  
1
Figure 32.  
(1) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
(1)  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
V
= 10 V  
= 100 kΩ  
= 25°C  
DD  
R
L
T
A
0°  
A
VD  
10  
30°  
60°  
90°  
10  
10  
10  
Phase Shift  
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k  
f – Frequency – Hz  
100 k  
1 M  
Figure 33.  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
45°  
43°  
41°  
39°  
37°  
50°  
48°  
46°  
44°  
42°  
40°  
38°  
V
= 5 V  
V = 10 mV  
I
DD  
V = 10 mV  
I
C
T
= 20 pF  
L
T
A
= 25°C  
= 25°C  
A
See Figure 3  
See Figure 3  
35°  
0
2
4
6
– Supply Voltage – V  
8
10  
12  
14  
16  
– 75 50 25  
0
25  
50  
75  
100 125  
V
T
– Free-Air Temperature – °C  
DD  
A
Figure 34.  
Figure 35.  
(1) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
28  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
44°  
42°  
40°  
38°  
36°  
34°  
32°  
30°  
28°  
V
= 5 V  
DD  
V = 10 mV  
I
T
= 25°C  
A
See Figure 3  
0
10 20 30 40 50 60 70 80 90 100  
C
– Capacitive Load – pF  
L
Figure 36.  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
300  
V
= 5 V  
= 20 Ω  
= 25°C  
DD  
R
S
T
A
250  
200  
150  
100  
50  
See Figure 2  
0
1
10  
100  
1000  
f – Frequency – Hz  
Figure 37.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
APPLICATION INFORMATION  
Single-Supply Operation  
While the TLC27M4 and TLC27M9 perform well using dual power supplies (also called balanced or split  
supplies), the design is optimized for single-supply operation. This design includes an input common-mode  
voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The  
supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly  
available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is  
recommended.  
Many single-supply applications require that a voltage be applied to one input to establish a reference level that  
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).  
The low input bias current of the TLC27M4 and TLC27M9 permits the use of very large resistive values to  
implement the voltage divider, thus minimizing power consumption.  
The TLC27M4 and TLC27M9 work well in conjunction with digital logic; however, when powering both linear  
devices and digital logic from the same power supply, the following precautions are recommended:  
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device  
supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.  
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling  
is often adequate; however, high-frequency applications may require RC decoupling.  
V
DD  
R4  
R1  
R3  
V
= V  
REF  
DD  
R2  
R3  
R1 + R3  
V
I
R4  
V
+ V  
O
+
V
= (V  
– V )  
REF I  
REF  
O
R2  
V
REF  
C
0.01 μF  
Figure 38. Inverting Amplifier With Voltage Reference  
Power  
Supply  
Output  
Logic  
Logic  
Logic  
+
(a) COMMON SUPPLY RAILS  
+
Power  
Supply  
Output  
Logic  
Logic  
Logic  
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)  
Figure 39. Common Versus Separate Supply Rails  
30  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
 
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
Input Characteristics  
The TLC27M4 and TLC27M9 are specified with a minimum and a maximum input voltage that, if exceeded at  
either input, could cause the device to malfunction. Exceeding this specified range is a common problem,  
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper  
range limit is specified at VDD – 1 V at TA = 25°C and at VDD – 1.5 V at all other temperatures.  
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27M4 and TLC27M9  
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage  
drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus  
dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)  
alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.  
The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of  
operation.  
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27M4 and  
TLC27M9 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and  
sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good  
practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement  
Information section). These guards should be driven from a low-impedance source at the same voltage level as  
the common-mode input (see Figure 40).  
Unused amplifiers should be connected as unity-gain followers to avoid possible oscillation.  
Noise Performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias current requirements of the TLC27M4 and TLC27M9 result in a very low  
noise current, which is insignificant in most applications. This feature makes the devices especially favorable  
over bipolar devices when using values of circuit impedance greater than 50 kΩ, since bipolar devices exhibit  
greater noise currents.  
+
+
+
V
I
V
V
V
O
O
O
V
V
I
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 40. Guard-Ring Schemes  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
 
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
Output Characteristics  
The output stage of the TLC27M4 and TLC27M9 is designed to sink and source relatively high amounts of  
current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current  
capability can cause device damage under certain conditions. Output current capability increases with supply  
voltage.  
All operating characteristics of the TLC27M4 and TLC27M9 were measured using a 20-pF load. The devices  
drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs  
at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases,  
adding a small amount of resistance in series with the load capacitance alleviates the problem.  
(a) C = 20 pF, R = NO LOAD  
L
(b) C = 170 pF, R = NO LOAD  
L L  
L
2.5 V  
+
V
O
V
I
C
L
T = 25°C  
A
f = 1 kHz  
= 1 V  
V
IPP  
2.5 V  
(d) TEST CIRCUIT  
(c) C = 190 pF, R = NO LOAD  
L
L
Figure 41. Effect of Capacitive Loads and Test Circuit  
Although the TLC27M4 and TLC27M9 possess excellent high-level output voltage and current capability,  
methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup  
resistor (RP) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages  
to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a  
comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance  
between approximately 60 Ω and 180 Ω, depending on how hard the operational amplifier input is driven. With  
very low values of RP, a voltage offset from 0 V at the output occurs. Second, pullup resistor RP acts as a drain  
load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying  
the output current.  
32  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
 
 
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
V
C
DD  
R
P
V
+
I
I
V
– V  
DD O  
I
P
F
Rp =  
I
+ I + I  
L P  
F
V
O
I
= Pullup current required  
by the operational amplifier  
(typically 500 μA)  
P
V
O
+
R2  
I
R
L
R1  
L
Figure 42. Resistive Pullup to Increase VOH  
Figure 43. Compensation for Input Capacitance  
Feedback  
Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for  
oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed  
previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback  
resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.  
Electrostatic Discharge Protection  
The TLC27M4 and TLC27M9 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents  
functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be  
exercised, however, when handling these devices, as exposure to ESD may result in the degradation of the  
device parametric performance. The protection circuit also causes the input bias currents to be temperature-  
dependent and have the characteristics of a reverse-biased diode.  
Latch-Up  
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27M4 and  
TLC27M9 inputs and outputs were designed to withstand —100-mA surge currents without sustaining latch-up;  
however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection  
diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply  
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.  
Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the  
supply rails as close to the device as possible.  
The current path established if latch-up occurs is usually between the positive supply rail and ground; it can be  
triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
1N4148  
470 kΩ  
100 kΩ  
5 V  
1/4  
TLC27M4  
47 kΩ  
V
O
100 kΩ  
+
R2  
68 kΩ  
100 kΩ  
1 μF  
C2  
2.2 nF  
R1  
68 kΩ  
C1  
2.2 nF  
NOTE: V  
2 V  
OPP  
1
f
=
O
R1R2C1C2  
Figure 44. Wien Oscillator  
34  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
www.ti.com  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
I
S
5 V  
1/4  
TLC27M9  
V
I
+
2N3821  
R
NOTE: V = 0 V to 3 V  
I
V
I
I
=
S
R
Figure 45. Precision Low-Current Sink  
5 V  
Gain Control  
1 MΩ  
(see Note A)  
100 kΩ  
1 μF  
+
ï
+
10 kΩ  
0.1 μF  
+
+
1 μF  
1/4  
TLC27M4  
1 kΩ  
100 kΩ  
100 kΩ  
NOTE A: Low to medium impedance dynamic mike  
Figure 46. Microphone Preamplifier  
10 MΩ  
V
DD  
+
1/4  
TLC27M4  
1 kΩ  
+
V
O
1/4  
TLC27M4  
V
REF  
15 nF  
100 kΩ  
150 pF  
NOTE: VDD = 4 V to 15 V  
VREF = 0 V to VDD 2 V  
Figure 47. Photo-Diode Amplifier With Ambient Light Rejection  
Copyright © 1987–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9  
SLOS093D OCTOBER 1987REVISED OCTOBER 2012  
www.ti.com  
1 MΩ  
V
DD  
33 pF  
+
V
O
1/4  
TLC27M4  
1N4148  
100 kΩ  
100 kΩ  
NOTE: VDD = 8 V to 16 V  
VO = 5 V, 10 mA  
Figure 48. Low-Power Voltage Regulator  
5 V  
1 MΩ  
0.01 μF  
0.22 μF  
V
+
I
V
O
1/4  
TLC27M4  
1 MΩ  
100 kΩ  
100 kΩ  
10 kΩ  
0.1 μF  
Figure 49. Single-Rail AC Amplifier  
36  
Submit Documentation Feedback  
Copyright © 1987–2012, Texas Instruments Incorporated  
Product Folder Links: TLC27M4 TLC27M4A TLC27M4B TLC27M4Y TLC27M9  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC27M4ACD  
TLC27M4ACDG4  
TLC27M4ACDR  
TLC27M4ACDRG4  
TLC27M4ACN  
TLC27M4ACNE4  
TLC27M4AID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
D
D
D
D
N
N
D
D
N
N
D
D
D
N
D
D
D
N
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50  
50  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
27M4AC  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
27M4AC  
2500 RoHS & Green  
2500 RoHS & Green  
0 to 70  
27M4AC  
0 to 70  
27M4AC  
25  
25  
50  
RoHS & Green  
RoHS & Green  
RoHS & Green  
0 to 70  
TLC27M4ACN  
TLC27M4ACN  
27M4AI  
N / A for Pkg Type  
0 to 70  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TLC27M4AIDR  
TLC27M4AIN  
2500 RoHS & Green  
27M4AI  
25  
25  
50  
50  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
TLC27M4AIN  
TLC27M4AIN  
27M4BC  
TLC27M4AINE4  
TLC27M4BCD  
TLC27M4BCDG4  
TLC27M4BCDR  
TLC27M4BCN  
TLC27M4BID  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
27M4BC  
2500 RoHS & Green  
0 to 70  
27M4BC  
25  
50  
50  
RoHS & Green  
RoHS & Green  
RoHS & Green  
0 to 70  
TLC27M4BCN  
27M4BI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TLC27M4BIDG4  
TLC27M4BIDR  
TLC27M4BIN  
27M4BI  
2500 RoHS & Green  
27M4BI  
25  
50  
RoHS & Green  
RoHS & Green  
TLC27M4BIN  
TLC27M4C  
TLC27M4C  
TLC27M4CD  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TLC27M4CDR  
2500 RoHS & Green  
0 to 70  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC27M4CDRG4  
TLC27M4CN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
PDIP  
SO  
D
N
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
TLC27M4C  
25  
50  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TLC27M4CN  
TLC27M4  
TLC27M4  
P27M4  
TLC27M4CNS  
TLC27M4CNSR  
TLC27M4CPWR  
TLC27M4ID  
NS  
NS  
PW  
D
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
SO  
2000 RoHS & Green  
2000 RoHS & Green  
0 to 70  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
0 to 70  
50  
50  
RoHS & Green  
RoHS & Green  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TLC27M4I  
TLC27M4I  
TLC27M4I  
TLC27M4I  
TLC27M4IN  
P27M4I  
TLC27M4IDG4  
TLC27M4IDR  
TLC27M4IDRG4  
TLC27M4IN  
D
D
2500 RoHS & Green  
2500 RoHS & Green  
D
N
25  
90  
RoHS & Green  
RoHS & Green  
TLC27M4IPW  
TLC27M4IPWR  
TLC27M9CD  
PW  
PW  
D
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
2000 RoHS & Green  
50 RoHS & Green  
P27M4I  
TLC27M9C  
TLC27M9C  
TLC27M9C  
TLC27M9CN  
TLC27M9I  
TLC27M9I  
TLC27M9I  
TLC27M9IN  
TLC27M9CDR  
TLC27M9CDRG4  
TLC27M9CN  
D
2500 RoHS & Green  
2500 RoHS & Green  
0 to 70  
D
0 to 70  
N
25  
50  
RoHS & Green  
RoHS & Green  
0 to 70  
TLC27M9ID  
D
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLC27M9IDR  
TLC27M9IDRG4  
TLC27M9IN  
D
2500 RoHS & Green  
2500 RoHS & Green  
D
N
25  
RoHS & Green  
(1) The marketing status values are defined as follows:  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC27M4ACDR  
TLC27M4AIDR  
TLC27M4BCDR  
TLC27M4BIDR  
TLC27M4CDR  
TLC27M4CNSR  
TLC27M4CPWR  
TLC27M4IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2500  
2500  
2500  
2500  
2500  
2000  
2000  
2500  
2000  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
12.4  
16.4  
12.4  
16.4  
16.4  
6.5  
6.5  
6.5  
6.5  
6.5  
8.2  
6.9  
6.5  
6.9  
6.5  
6.5  
9.0  
9.0  
9.0  
9.0  
9.0  
10.5  
5.6  
9.0  
5.6  
9.0  
9.0  
2.1  
2.1  
2.1  
2.1  
2.1  
2.5  
1.6  
2.1  
1.6  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
12.0  
16.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
D
D
D
NS  
PW  
D
TSSOP  
SOIC  
TSSOP  
SOIC  
SOIC  
TLC27M4IPWR  
TLC27M9CDR  
TLC27M9IDR  
PW  
D
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC27M4ACDR  
TLC27M4AIDR  
TLC27M4BCDR  
TLC27M4BIDR  
TLC27M4CDR  
TLC27M4CNSR  
TLC27M4CPWR  
TLC27M4IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2500  
2500  
2500  
2500  
2500  
2000  
2000  
2500  
2000  
2500  
2500  
350.0  
350.0  
350.0  
350.0  
350.0  
853.0  
853.0  
350.0  
853.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
449.0  
449.0  
350.0  
449.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
35.0  
35.0  
43.0  
35.0  
43.0  
43.0  
D
D
D
NS  
PW  
D
TSSOP  
SOIC  
TSSOP  
SOIC  
SOIC  
TLC27M4IPWR  
TLC27M9CDR  
TLC27M9IDR  
PW  
D
D
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLC27M4CNSR

Quad, 16-V, 525-kHz, In to V- operational amplifier | NS | 14 | 0 to 70
TI

TLC27M4CPW

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC27M4CPWLE

暂无描述
TI

TLC27M4CPWLE

Operational Amplifier, 4 Func, 12000uV Offset-Max, CMOS, PDSO14, TSSOP-14
ROCHESTER

TLC27M4CPWR

Quad Precision Single Supply Low-Power Operational Amplifier 14-TSSOP 0 to 70
TI

TLC27M4CPWRG4

QUAD OP-AMP, 12000uV OFFSET-MAX, 0.525MHz BAND WIDTH, PDSO14, GREEN, TSSOP-14
TI

TLC27M4ID

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC27M4IDG4

四路、16V、525kHz、输入接近 V- 的运算放大器 | D | 14 | -40 to 85
TI

TLC27M4IDR

Quad Precision Single Supply Low-Power Operational Amplifier 14-SOIC -40 to 85
TI

TLC27M4IDRG4

Quad, 16-V, 525-kHz, In to V- operational amplifier | D | 14 | -40 to 85
TI

TLC27M4IN

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC27M4INE4

Quad Precision Single Supply Low-Power Operational Amplifier 14-PDIP -40 to 85
TI