TLC2932IPWR [TI]

HIGH-PERFORMANCE PHASE-LOCKED LOOP; 高性能锁相环
TLC2932IPWR
型号: TLC2932IPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-PERFORMANCE PHASE-LOCKED LOOP
高性能锁相环

信号电路 锁相环或频率合成电路 光电二极管
文件: 总24页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
Voltage-Controlled Oscillator (VCO)  
Section:  
PW PACKAGE  
(TOP VIEW)  
– Complete Oscillator Using Only One  
LOGIC V  
1
2
3
4
5
6
7
VCO V  
BIAS  
VCO IN  
VCO GND  
VCO INHIBIT  
PFD INHIBIT  
NC  
14  
13  
12  
11  
10  
9
DD  
DD  
External Bias Resistor (R  
– Lock Frequency:  
)
BIAS  
SELECT  
VCO OUT  
FIN–A  
FIN–B  
PFD OUT  
LOGIC GND  
22 MHz to 50 MHz (V  
= 5 V ±5%,  
DD  
T = 20°C to 75°C, ×1 Output)  
A
11 MHz to 25 MHz (V  
= 5 V ±5%,  
DD  
T = 20°C to 75°C, ×1/2 Output)  
A
8
– Output Frequency . . . ×1 and ×1/2  
Selectable  
Availablein tape and reel only and ordered as the  
TLC2932IPWLE.  
Phase-Frequency Detector (PFD) Section  
Includes a High-Speed Edge-Triggered  
Detector With Internal Charge Pump  
NC – No internal connection  
Independent VCO, PFD Power-Down Mode  
Thin Small-Outline Package (14 terminal)  
CMOS Technology  
Typical Applications:  
– Frequency Synthesis  
– Modulation/Demodulation  
– Fractional Frequency Division  
Application Report Available  
CMOS Input Logic Level  
description  
The TLC2932 is designed for phase-locked-loop (PLL) systems and is composed of a voltage-controlled  
oscillator (VCO) and an edge-triggered-type phase frequency detector (PFD). The oscillation frequency range  
of the VCO is set by an external bias resistor (R  
). The VCO has a 1/2 frequency divider at the output stage.  
BIAS  
The high-speed PFD with internal charge pump detects the phase difference between the reference frequency  
input and signal frequency input from the external counter. Both the VCO and the PFD have inhibit functions,  
which can be used as a power-down mode. The TLC2932 is suitable for use as a high-performance PLL due  
to the high speed and stable oscillation capability of the device.  
functional block diagram  
12  
VCO IN  
4
5
9
13  
10  
2
Voltage-  
Controlled  
Oscillator  
Phase  
Frequency  
Detector  
FINA  
FINB  
BIAS  
VCO INHIBIT  
SELECT  
3
6
VCO OUT  
PFD OUT  
PFD INHIBIT  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SMALL OUTLINE  
(PW)  
20°C to 75°C  
TLC2932IPWLE  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TLC2932 Phase-Locked-Loop Building Block With Analog Voltage-Controlled Oscillator and Phase Frequency Detector (SLAA011).  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
Terminal Functions  
TERMINAL  
NAME  
FIN–A  
I/O  
DESCRIPTION  
NO.  
4
I
I
Input reference frequency f  
(REF IN)  
is applied to FINA.  
FIN–B  
5
Input for VCO external counter output frequency f . FIN–B is nominally provided from the external  
(FINB)  
counter.  
LOGIC GND  
7
1
GND for the internal logic.  
LOGIC V  
Power supply for the internal logic. This power supply should be separate from VCO V  
cross-coupling between supplies.  
to reduce  
DD  
DD  
NC  
8
9
No internal connection.  
PFD INHIBIT  
PFD OUT  
BIAS  
I
O
I
PFD inhibit control. When PFD INHIBIT is high, PFD output is in the high-impedance state, see Table 3.  
PFD output. When the PFD INHIBIT is high, PFD output is in the high-impedance state.  
6
13  
Bias supply. An external resistor (R  
oscillation frequency range.  
) between VCO V and BIAS supplies bias for adjusting the  
BIAS DD  
SELECT  
VCO IN  
2
I
I
I
VCO output frequency select. When SELECT is high, the VCO output frequency is ×1/2 and when low, the  
output frequency is ×1, see Table 1.  
12  
VCO control voltage input. Nominally the external loop filter output connects to VCO IN to control VCO  
oscillation frequency.  
VCO INHIBIT  
VCO GND  
VCO OUT  
10  
11  
3
VCO inhibit control. When VCO INHIBIT is high, VCO OUT is low (see Table 2).  
GND for VCO.  
O
VCO output. When the VCO INHIBIT is high, VCO output is low.  
VCO V  
DD  
14  
Power supply for VCO. This power supply should be separated from LOGIC V  
between supplies.  
to reduce cross-coupling  
DD  
detailed description  
VCO oscillation frequency  
The VCO oscillation frequency is determined by an external resistor (R  
) connected between the VCO V  
DD  
BIAS  
and the BIAS terminals. The oscillation frequency and range depends on this resistor value. The bias resistor  
value for the minimum temperature coefficient is nominally 3.3 kwith 3-V at the VCO V terminal and  
DD  
nominally 2.2 kwith 5-V at the VCO V  
terminal. For the lock frequency range refer to the recommended  
DD  
operating conditions. Figure 1 shows the typical frequency variation and VCO control voltage.  
VCO Oscillation Frequency Range  
Bias Resistor (R  
)
BIAS  
1/2 V  
DD  
VCO Control Voltage (VCO IN)  
Figure 1. VCO Oscillation Frequency  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
VCO output frequency 1/2 divider  
The TLC2932 SELECT terminal sets the f  
or 1/2 f  
VCO output frequency as shown in Table 1. The 1/2  
osc  
osc  
f
output should be used for minimum VCO output jitter.  
osc  
Table 1. VCO Output 1/2 Divider Function  
SELECT  
Low  
VCO OUTPUT  
f
osc  
1/2 f  
High  
osc  
VCO inhibit function  
The VCO has an externally controlled inhibit function which inhibits the VCO output. A high level on the VCO  
INHIBIT terminal stops the VCO oscillation and powers down the VCO. The output maintains a low level during  
the power-down mode, refer to Table 2.  
Table 2. VCO Inhibit Function  
VCO INHIBIT  
Low  
VCO OSCILLATOR  
Active  
VCO OUTPUT  
Active  
I
DD(VCO)  
Normal  
High  
Stopped  
Low level  
Power Down  
PFD operation  
The PFD is a high-speed, edge-triggered detector with an internal charge pump. The PFD detects the phase  
difference between two frequency inputs supplied to FIN–A and FIN–B as shown in Figure 2. Nominally the  
reference is supplied to FIN–A, and the frequency from the external counter output is fed to FIN–B.  
FINA  
FINB  
V
OH  
PFD OUT  
Hi-Z  
V
OL  
Figure 2. PFD Function Timing Chart  
PFD output control  
A high level on the PFD INHIBIT terminal places the PFD output in the high-impedance state and the PFD stops  
phase detection as shown in Table 3. A high level on the PFD INHIBIT terminal also can be used as the  
power-down mode for the PFD.  
Table 3. VCO Output Control Function  
PFD INHIBIT  
Low  
DETECTION  
Active  
PFD OUTPUT  
Active  
I
DD(PFD)  
Normal  
High  
Stopped  
Hi-Z  
Power Down  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
schematics  
VCO block schematic  
R
BIAS  
BIAS  
1/2  
M
U
X
VCO  
Output  
Bias  
Control  
VCO OUT  
VCO IN  
SELECT  
VCO INHIBIT  
PFD block schematic  
Charge Pump  
V
DD  
FIN–A  
PFD OUT  
Detector  
FIN–B  
PFD INHIBIT  
absolute maximum ratings  
Supply voltage (each supply), V  
Input voltage range (each input), V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
+ 0.5 V  
I
DD  
Input current (each input), I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
I
Output current (each output), I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O
Continuous total power dissipation, at (or below) T = 25°C (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . 700 mW  
Operating free-air temperature range, T  
A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20°C to 75°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values are with respect to network GND.  
2. For operation above 25°C free-air temperature, derate linearly at the rate of 5.6 mW/°C.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
recommended operating conditions  
PARAMETER  
MIN NOM  
MAX  
3.15  
5.25  
UNIT  
V
= 3 V  
= 5 V  
2.85  
4.75  
0
3
5
DD  
DD  
Supply voltage, V  
(each supply, see Note 3)  
V
DD  
V
Input voltage, V (inputs except VCO IN)  
V
DD  
V
mA  
V
I
Output current, I (each output)  
O
0
±2  
VCO control voltage at VCO IN  
0.9  
14  
22  
7
V
DD  
21  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
Lock frequency (×1 output)  
MHz  
MHz  
kΩ  
50  
10.5  
25  
Lock frequency (×1/2 output)  
11  
2.2  
1.5  
3.3  
2.2  
4.3  
3.3  
Bias resistor, R  
BIAS  
NOTE 3: It is recommended that the logic supply terminal (LOGIC V ) and the VCO supply terminal (VCO V ) should be at the same voltage  
DD DD  
and separated from each other.  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted)  
= 3 V  
DD  
VCO section  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
V
I
= 2 mA  
= 2 mA  
2.4  
OH  
OL  
IT  
OH  
OL  
Low-level output voltage  
I
0.3  
2.1  
±1  
V
Input threshold voltage at SELECT, VCO INHIBIT  
Input current at SELECT, VCO INHIBIT  
Input impedance  
0.9  
1.5  
V
I
I
V = V or GND  
I DD  
µA  
MΩ  
µA  
mA  
Z
VCO IN = 1/2 V  
See Note 4  
10  
0.01  
5
i(VCO IN)  
DD(INH)  
DD  
I
I
VCO supply current (inhibit)  
VCO supply current  
1
See Note 5  
15  
DD(VCO)  
NOTES: 4. Current into VCO V , when VCO INHIBIT = V , PFD is inhibited.  
DD DD  
5. Current into VCO V , when VCO IN = 1/2 V , R  
= 3.3 k, VCO INHIBIT = GND, and PFD is inhibited.  
DD  
DD BIAS  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
I
I
= 2 mA  
= 2 mA  
2.7  
OH  
OH  
Low-level output voltage  
0.2  
V
OL  
OL  
PFD INHIBIT = high,  
V = V or GND  
I
High-impedance-state output current  
±1  
µA  
OZ  
I
DD  
V
V
V
High-level input voltage at FIN–A, FIN–B  
Low-level input voltage at FIN–A, FIN–B  
Input threshold voltage at PFD INHIBIT  
Input capacitance at FIN–A, FIN–B  
Input impedance at FIN–A, FIN–B  
High-impedance-state PFD supply current  
PFD supply current  
2.7  
0.9  
V
V
IH  
IL  
IT  
0.5  
2.1  
1.5  
5
V
C
pF  
MΩ  
µA  
mA  
i
Z
i
10  
I
I
See Note 6  
See Note 7  
0.01  
0.1  
1
DD(Z)  
1.5  
DD(PFD)  
NOTES: 6. Current into LOGIC V , when FIN–A, FIN–B = GND, PFD INHIBIT = V , no load, and VCO OUT is inhibited.  
DD  
DD  
DD  
= 3 V, rectangular wave), NC = GND, no load, and VCO OUT is  
7. Current into LOGIC V , when FIN–A, FIN–B = 1 MHz (V  
I(PP)  
inhibited.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
operating characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted)  
= 3 V  
DD  
VCO section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
µs  
f
t
Operating oscillation frequency  
Time to stable oscillation (see Note 8)  
R
= 3.3 k, VCO IN = 1/2 V  
15  
19  
23  
10  
14  
osc  
BIAS  
DD  
Measured from VCO INHIBIT↓  
s(fosc)  
C
C
C
C
R
R
= 15 pF,  
= 50 pF,  
= 15 pF,  
= 50 pF,  
See Figure 3  
See Figure 3  
See Figure 3  
See Figure 3  
7
14  
L
t
Rise time  
Fall time  
ns  
ns  
r
f
L
6
12  
L
t
10  
L
Duty cycle at VCO OUT  
= 3.3 k, VCO IN = 1/2 V  
= 3.3 k, VCO IN = 1/2 V  
,
,
45%  
50%  
55%  
BIAS  
BIAS  
DD  
DD  
α
Temperature coefficient of oscillation frequency  
0.04  
%/°C  
(fosc)  
T
A
= –20°C to 75°C  
R
= 3.3 k, VCO IN = 1.5 V,  
BIAS  
= 2.85 V to 3.15 V  
k
Supply voltage coefficient of oscillation frequency  
Jitter absolute (see Note 9)  
0.02  
100  
%/mV  
ps  
SVS(fosc)  
V
DD  
R
= 3.3 kΩ  
BIAS  
NOTES: 8. The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.  
9. The low-pass-filter (LPF) circuit is shown in Figure 28 with calculated values listed in Table 7. Jitter performance is highly dependent  
on circuit layout and external device characteristics. The jitter specification was made with a carefully designed PCB with no device  
socket.  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f
t
t
t
t
t
t
Maximum operating frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
20  
MHz  
max  
PLZ  
PHZ  
PZL  
PZH  
r
21  
23  
50  
50  
30  
30  
10  
10  
ns  
ns  
See Figures 4 and 5 and Table 4  
11  
10  
2.3  
2.1  
ns  
ns  
C
= 15 pF, See Figure 4  
L
Fall time  
f
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted)  
= 5 V  
DD  
VCO section  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
V
I
I
= 2 mA  
= 2 mA  
4
OH  
OL  
IT  
OH  
Low-level output voltage  
0.5  
3.5  
±1  
V
OL  
Input threshold voltage at SELECT, VCO INHIBIT  
Input current at SELECT, VCO INHIBIT  
Input impedance  
1.5  
2.5  
V
I
I
V = V or GND  
I DD  
µA  
MΩ  
µA  
mA  
Z
VCO IN = 1/2 V  
See Note 4  
10  
0.01  
15  
i(VCO IN)  
DD(INH)  
DD  
I
I
VCO supply current (inhibit)  
VCO supply current  
1
See Note 5  
35  
DD(VCO)  
NOTES: 4. Current into VCO V , when VCO INHIBIT = V , and PFD is inhibited.  
DD DD  
5. Current into VCO V , when VCO IN = 1/2 V , R  
= 3.3 k, VCO INHIBIT = GND, and PFD is inhibited.  
DD  
DD BIAS  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
I
I
= 2 mA  
= 2 mA  
4.5  
OH  
OH  
Low-level output voltage  
0.2  
V
OL  
OL  
PFD INHIBIT = high,  
V = V or GND  
I
High-impedance-state output current  
±1  
µA  
OZ  
I
DD  
V
V
V
High-level input voltage at FIN–A, FIN–B  
Low-level input voltage at FIN–A, FIN–B  
Input threshold voltage at PFD INHIBIT  
Input capacitance at FIN–A, FIN–B  
Input impedance at FIN–A, FIN–B  
High-impedance-state PFD supply current  
PFD supply current  
4.5  
1.5  
V
V
IH  
IL  
IT  
1
2.5  
5
3.5  
V
C
pF  
MΩ  
µA  
mA  
i
Z
i
10  
I
See Note 6  
See Note 7  
0.01  
0.15  
1
3
DD(Z)  
I
DD(PFD)  
NOTES: 6. Current into LOGIC V , when FIN–A, FIN–B = GND, PFD INHIBIT = V , no load, and VCO OUT is inhibited.  
DD  
DD  
= 5 V, rectangular wave), PFD INHIBIT = GND, no load, and  
7. Current into LOGIC V , when FIN–A, FIN–B = 1 MHz (V  
DD  
I(PP)  
VCO OUT is inhibited.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
operating characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted)  
= 5 V  
DD  
VCO section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
µs  
f
t
Operating oscillation frequency  
Time to stable oscillation (see Note 8)  
R
= 2.2 k, VCO IN = 1/2 V  
30  
41  
52  
10  
10  
osc  
BIAS  
DD  
Measured from VCO INHIBIT↓  
s(fosc)  
C
C
C
C
R
R
= 15 pF,  
= 50 pF,  
= 15 pF,  
= 50 pF,  
See Figure 3  
See Figure 3  
See Figure 3  
See Figure 3  
5.5  
8
L
t
Rise time  
Fall time  
ns  
ns  
r
f
L
5
10  
L
t
6
L
Duty cycle at VCO OUT  
= 2.2 k, VCO IN = 1/2 V  
= 2.2 k, VCO IN = 1/2 V  
,
,
45%  
50%  
55%  
BIAS  
BIAS  
DD  
DD  
α
Temperature coefficient of oscillation frequency  
0.06  
%/°C  
(fosc)  
T
A
= –20°C to 75°C  
R
= 2.2 k, VCO IN = 2.5 V,  
BIAS  
= 4.75 V to 5.25 V  
k
Supply voltage coefficient of oscillation frequency  
Jitter absolute (see Note 9)  
0.006  
100  
%/mV  
ps  
SVS(fosc)  
V
DD  
R
= 2.2 kΩ  
BIAS  
NOTES: 8: The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.  
9. The LPF circuit is shown in Figure 28 with calculated values listed in Table 7. Jitter performance is highly dependent on circuit layout  
and external device characteristics. The jitter specification was made with a carefully designed PCB with no device socket.  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f
t
t
t
t
t
t
Maximum operating frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
40  
MHz  
max  
PLZ  
PHZ  
PZL  
PZH  
r
21  
20  
40  
40  
20  
20  
10  
10  
ns  
ns  
See Figures 4 and 5 and Table 4  
7.3  
6.5  
2.3  
1.7  
ns  
ns  
C
= 15 pF, See Figure 4  
L
Fall time  
f
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
PARAMETER MEASUREMENT INFORMATION  
90%  
10%  
90%  
10%  
VCO OUT  
t
t
f
r
Figure 3. VCO Output Voltage Waveform  
V
DD  
V
DD  
FINA  
GND  
GND  
V
DD  
V
DD  
FINB  
GND  
GND  
V
V
DD  
DD  
PFD INHIBIT  
PFD OUT  
50%  
50%  
GND  
GND  
t
t
PHZ  
PLZ  
t
t
f
r
V
OH  
V
DD  
90%  
50%  
90%  
50%  
10%  
50%  
50%  
10%  
V
OL  
GND  
t
PZL  
t
PZH  
(a) OUTPUT PULLDOWN  
(see Figure 5 and Table 4)  
(b) OUTPUT PULLUP  
(see Figure 5 and Table 4)  
FIN–A and FIN–B are for reference phase only, not for timing.  
Figure 4. PFD Output Voltage Waveform  
Table 4. PFD Output Test Conditions  
V
DD  
Test Point  
PARAMETER  
R
C
S
1
S
2
L
L
t
t
t
t
t
t
PZH  
PHZ  
r
S1  
Open  
Close  
Close  
Open  
R
L
PFD OUT  
1 kΩ  
15 pF  
DUT  
PZL  
PLZ  
f
S2  
C
L
Figure 5. PFD Output Test Conditions  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
TYPICAL CHARACTERISTICS  
VCO OSCILLATION FREQUENCY  
vs  
VCO OSCILLATION FREQUENCY  
vs  
VCO CONTROL VOLTAGE  
VCO CONTROL VOLTAGE  
40  
30  
20  
100  
80  
V
R
= 3 V  
DD  
V
R
= 5 V  
DD  
20°C  
= 2.2 kΩ  
BIAS  
= 1.5 kΩ  
25°C  
BIAS  
20°C  
75°C  
25°C  
60  
75°C  
40  
10  
0
20  
0
1
2
3
0
1
2
3
4
5
VCO IN – VCO Control Voltage – V  
VCO IN – VCO Control Voltage – V  
Figure 6  
Figure 7  
VCO OSCILLATION FREQUENCY  
vs  
VCO OSCILLATION FREQUENCY  
vs  
VCO CONTROL VOLTAGE  
VCO CONTROL VOLTAGE  
40  
30  
20  
80  
60  
40  
20  
0
V
R
= 5 V  
DD  
V
R
= 3 V  
DD  
= 2.2 kΩ  
BIAS  
= 3.3 kΩ  
BIAS  
20°C  
20°C  
75°C  
75°C  
25°C  
25°C  
10  
0
0
1
2
3
0
1
2
3
4
5
VCO IN – VCO Control Voltage – V  
VCO IN – VCO Control Voltage – V  
Figure 8  
Figure 9  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
TYPICAL CHARACTERISTICS  
VCO OSCILLATION FREQUENCY  
vs  
VCO OSCILLATION FREQUENCY  
vs  
VCO CONTROL VOLTAGE  
VCO CONTROL VOLTAGE  
40  
30  
20  
80  
60  
40  
20  
0
V
R
= 3 V  
DD  
V
R
= 5 V  
= 3.3 kΩ  
BIAS  
DD  
= 4.3 kΩ  
BIAS  
75°C  
25°C  
20°C  
25°C  
10  
0
75°C  
20°C  
0
1
2
3
0
1
2
3
4
5
VCO IN – VCO Control Voltage – V  
VCO IN – VCO Control Voltage – V  
Figure 10  
Figure 11  
VCO OSCILLATION FREQUENCY  
VCO OSCILLATION FREQUENCY  
vs  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
30  
25  
60  
50  
V
= 3 V  
V
= 5 V  
DD  
DD  
VCO IN = 1/2 V  
T
A
VCO IN = 1/2 V  
DD  
T = 25°C  
A
DD  
= 25°C  
20  
15  
10  
40  
30  
20  
2
2.5  
3
3.5  
4
4.5  
1.5  
2
2.5  
3
3.5  
R
– Bias Resistor – kΩ  
R
– Bias Resistor – kΩ  
BIAS  
BIAS  
Figure 12  
Figure 13  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
TYPICAL CHARACTERISTICS  
TEMPERATURE COEFFICIENT OF  
OSCILLATION FREQUENCY  
vs  
TEMPERATURE COEFFICIENT OF  
OSCILLATION FREQUENCY  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
0.4  
0.4  
0.3  
0.2  
0.1  
0
V
= 3 V  
DD  
VCO IN = 1/2 V  
V
= 5 V  
DD  
DD  
= 20°C to 75°C  
VCO IN = 1/2 V  
DD  
T = 20°C to 75°C  
A
T
A
0.3  
0.2  
0.1  
0
2
2.5  
3
3.5  
4
4.5  
1.5  
2
2.5  
3
3.5  
2.2  
R
BIAS  
3.3  
– Bias Resistor – kΩ  
R
– Bias Resistor – kΩ  
BIAS  
Figure 14  
Figure 15  
VCO OSCILLATION FREQUENCY  
VCO OSCILLATION FREQUENCY  
vs  
vs  
VCO SUPPLY VOLTAGE  
VCO SUPPLY VOLTAGE  
48  
44  
24  
R
= 2.2 kΩ  
R
= 3.3 kΩ  
BIAS  
BIAS  
VCO IN = 1/2 V  
T
A
VCO IN = 1.5 V  
= 25°C  
DD  
= 25°C  
T
A
22  
40  
36  
32  
20  
18  
16  
4.75  
5
5.25  
3.05  
3
3.15  
V – VCO Supply Voltage – V  
DD  
V
DD  
– VCO Supply Voltage – V  
Figure 16  
Figure 17  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
TYPICAL CHARACTERISTICS  
SUPPLY VOLTAGE COEFFICIENT OF VCO  
SUPPLY VOLTAGE COEFFICIENT OF VCO  
OSCILLATION FREQUENCY  
OSCILLATION FREQUENCY  
vs  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
0.05  
0.04  
0.03  
V
= 2.85 V to 3.15 V  
V
= 4.75 V to 5.25 V  
DD  
VCO IN = 1/2 V  
DD  
VCO IN = 1/2 V  
DD  
DD  
T
A
= 25°C  
T
A
= 25°C  
0.01  
0.02  
0.01  
0
0.005  
0
1.5  
2
2.5  
3
3.5  
2
2.5  
3
3.5  
4
4.5  
R
– Bias Resistor – kΩ  
R
– Bias Resistor – kΩ  
BIAS  
BIAS  
Figure 18  
Figure 19  
RECOMMENDED LOCK FREQUENCY  
RECOMMENDED LOCK FREQUENCY  
(×1 OUTPUT)  
vs  
(×1 OUTPUT)  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
60  
50  
40  
30  
V
T
A
= 2.85 V to 3.15 V  
V
T
A
= 4.75 V to 5.25 V  
= 20°C to 75°C  
DD  
= 20°C to 75°C  
DD  
25  
20  
15  
30  
20  
10  
10  
2
2.5  
3
3.5  
4
4.5  
1.5  
2
2.5  
3
3.5  
R
– Bias Resistor – kΩ  
BIAS  
R
BIAS  
– Bias Resistor – kΩ  
Figure 20  
Figure 21  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
RECOMMENDED LOCK FREQUENCY  
RECOMMENDED LOCK FREQUENCY  
(×1/2 OUTPUT)  
vs  
BIAS RESISTOR  
(×1/2 OUTPUT)  
vs  
BIAS RESISTOR  
30  
25  
20  
V
= 4.75 V to 5.25 V  
DD  
= 20°C to 75°C  
15  
V
= 2.85 V to 3.15 V  
DD  
= 20°C to 75°C  
T
A
T
A
SELECT = V  
DD  
SELECT = V  
DD  
12.5  
10  
15  
10  
5
7.5  
5
1.5  
2
2.5  
3
3.5  
2
2.5  
3
3.5  
4
4.5  
R
– Bias Resistor – kΩ  
BIAS  
R
– Bias Resistor – kΩ  
BIAS  
Figure 22  
Figure 23  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
gain of VCO and PFD  
Divider  
(K = 1/N)  
N
Figure 24 is a block diagram of the PLL. The  
countdown N value depends on the input  
frequency and the desired VCO output frequency  
according to thesystemapplicationrequirements.  
The K and K values are obtained from the  
PFD  
(K )  
p
VCO  
(K )  
V
f REF  
p
V
operating characteristics of the device as shown  
in Figure 24. K is defined from the phase detector  
TLC2932  
LPF  
p
V
and V  
specifications and the equation  
OL  
OH  
shown in Figure 24(b). K is defined from  
V
(K )  
f
Figures 8, 9, 10, and 11 as shown in Figure 24(c).  
V
OH  
(a)  
The parameters for the block diagram with the  
units are as follows:  
2π π  
0
π
2π  
f
MAX  
K : VCO gain (rad/s/V)  
V
V
OH  
K : PFD gain (V/rad)  
p
K : LPF gain (V/V)  
f
f
K : count down divider gain (1/N)  
N
MIN  
V
OL  
Range of  
Comparison  
external counter  
V
V
IN MIN  
IN MAX  
When a large N counter is required by the  
application, there is a possibility that the PLL  
response becomes slow due to the counter  
response delay time. In the case of a high  
frequency application, the counter delay time  
should be accounted for in the overall PLL design.  
V
– V  
OL  
2π(f  
– f )  
OH  
4π  
MAX MIN  
– V  
K
=
K
=
p
V
V
IN MAX  
IN MIN  
(b)  
(c)  
Figure 24. Example of a PLL Block Diagram  
R
BIAS  
The external bias resistor sets the VCO center frequency with 1/2 V applied to the VCO IN terminal. However,  
DD  
for optimum temperature performance, a resistor value of 3.3 kwith a 3-V supply and a resistor value of 2.5  
kfor a 5-V supply is recommended. For the most accurate results, a metal-film resistor is the better choice  
but a carbon-compositiion resistor can be used with excellent results also. A 0.22 µF capacitor should be  
connected from the BIAS terminal to ground as close to the device terminals as possible.  
hold-in range  
From the technical literature, the maximum hold-in range for an input frequency step for the three types of filter  
configurations shown in Figure 25 is as follows:  
0.8 K  
K
K ( )  
p
H
V
f
Where  
K () = the filter transfer function value at ω = ∞  
f
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
low-pass-filter (LPF) configurations  
Many excellent references are available that include detailed design information about LPFs and should be  
consultedforadditionalinformation. Lag-leadfiltersoractivefiltersareoftenused. ExamplesofLPFsareshown  
in Figure 25. When the active filter of Figure 25(c) is used, the reference should be applied to FIN-B because  
of the amplifier inversion. Also, in practical filter implementations, C2 is used as additional filtering at the VCO  
input. The value of C2 should be equal to or less than one tenth the value of C1.  
C2  
R1  
V
I
V
O
R1  
C1  
R2  
V
I
V
O
C2  
R2  
C1  
T1 = C1R1  
T2 = C1R2  
C1  
T1 = C1R1  
V
I
A
V
O
R1  
T1 = C1R1  
T2 = C1R2  
(a) LAG FILTER  
(b) LAG-LEAD FILTER  
(c) ACTIVE FILTER  
Figure 25. LPF Examples for PLL  
the passive filter  
The transfer function for the lag-lead filter shown in Figure 25(b) is;  
V
O
1
s
s
T2  
V
(
)
T1 T2  
1
IN  
Where  
T1  
R1 C1 and T2  
R2 C1  
Using this filter makes the closed loop PLL system a second-order type 1 system. The response curves of this  
system to a unit step are shown in Figure 26.  
the active filter  
When using the active integrator shown in Figure 25(c), the phase detector inputs must be reversed since the  
integrator adds an additional inversion. Therefore, the input reference frequency should be applied to the FIN-B  
terminal and the output of the VCO divider should be applied to the input reference terminal, FIN-A.  
The transfer function for the active filter shown in Figure 25(c) is:  
1
s
R2 C1  
R1 C1  
F(s)  
s
Using this filter makes the closed loop PLL system a second-order type 2 system. The response curves of this  
system to a unit step are shown in Figure 27.  
basic design example  
The following design example presupposes that the input reference frequency and the required frequency of  
the VCO are within the respective ranges of the device.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
basic design example (continued)  
Assume the loop has to have a 100 µs settling time (t ) with a countdown N = 8. Using the Type 1, second order  
s
response curves of Figure 26, a value of 4.5 radians is selected for ω t with a damping factor of 0.7. This  
n s  
selection gives a good combination for settling time, accuracy, and loop gain margin. The initial parameters are  
summarized in Table 5. The loop constants, K and K , are calculated from the data sheet specifications and  
V
p
Table 6 shows these values.  
The natural loop frequency is calculated as follows:  
Since  
t
4.5  
n s  
Then  
4.5  
100  
45 k-radians sec  
n
s
Table 5. Design Parameters  
PARAMETER  
SYMBOL  
VALUE  
UNITS  
Division factor  
N
t
8
Lockup time  
100  
4.5  
0.7  
µs  
Radian value to selected lockup time  
Damping factor  
ω t  
n
rad  
ζ
Table 6. Device Specifications  
PARAMETER  
SYMBOL  
VALUE  
UNITS  
Mrad/V/s  
MHz  
MHz  
V
VCO gain  
76.6  
f
f
70  
MAX  
K
V
20  
5
MIN  
V
V
IN MAX  
0.9  
V
IN MIN  
PFD gain  
K
p
0.342357  
V/rad  
Table 7. Calculated Values  
PARAMETER  
SYMBOL  
VALUE  
UNITS  
rad/sec  
Natural angular frequency  
ω
45000  
3.277  
n
K = (K K )/N  
Mrad/sec  
V
p
Lag-lead filter  
15870  
16000  
Calculated value  
Nearest standard value  
R1  
Calculated value  
Nearest standard value  
308  
300  
R2  
C1  
Selected value  
0.1  
µF  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
Using the low-pass filter in Figure 25(b) and divider ratio N, the transfer function for phase and frequency are  
shown in equations 1 and 2. Note that the transfer function for phase differs from the transfer function for  
frequency by only the divider value N. The difference arises from the fact that the feedback for phase is unity  
while the feedback for frequency is 1/N.  
Hence, transfer function of Figure 24 (a) for phase is  
K
K
2(s)  
1(s)  
p
(
V
1
s
T2  
T2  
(1)  
)
N
T1 T2  
K
K
K
K
p
p
V
V
2
s
s
1
N (T1 T2)  
N (T1 T2)  
and the transfer function for frequency is  
F
F
K
K
OUT(s)  
REF(s)  
p
V
)
1
s
T2  
T2  
(2)  
(
T1 T2  
K
K
K
K
p
p
V
V
2
s
s
1
N (T1 T2)  
N (T1 T2)  
2
2
The standard two-pole denominator is D = s + 2 ζ ω s + ω and comparing the coefficients of the denominator  
n
n
of equation 1 and 2 with the standard two-pole denominator gives the following results.  
K
K
p
V
n
N
(T1 T2)  
Solving for T1 + T2  
K
K
p
V
2
(3)  
T1 T2  
N
n
and by using this value for T1 + T2 in equation 3 the damping factor is  
n
2
N
T2  
K
K
p
V
solving for T2  
T2  
2
N
K
K
p
V
then by substituting for T2 in equation 3  
K
K
p
2
2
V
N
T1  
K
K
n
N
p
V
n
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
From the circuit constants and the initial design parameters then  
2
N
1
C1  
R2  
R1  
K
K
n
p
V
K
K
v
p
2
N
1
C1  
2
K
p
K
n
N
V
n
The capacitor, C1, is usually chosen between 1 µF and 0.1 µF to allow for reasonable resistor values and  
physical capacitor size. In this example, C1 is chosen to be 0.1 µF and the corresponding R1 and R2 calculated  
values are listed in Table 7.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
1.9  
1.8  
1.7  
1.6  
= 0.1  
= 0.2  
= 0.3  
= 0.4  
= 0.5  
1.5  
1.4  
1.3  
= 0.6  
= 0.7  
1.2  
1.1  
1
= 0.8  
0.9  
0.8  
= 1.0  
= 1.5  
0.7  
0.6  
0.5  
= 2.0  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ω
ω t = 4.5  
n s  
nt  
Figure 26. Type 1 Second-Order Step Response  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
1.9  
1.8  
1.7  
1.6  
ζ = 0.1  
ζ = 0.2  
ζ = 0.3  
1.5  
1.4  
1.3  
ζ = 0.4  
ζ = 0.5  
ζ = 0.6  
ζ = 0.7  
1.2  
1.1  
1
0.9  
0.8  
ζ = 0.8  
ζ = 1.0  
0.7  
0.6  
0.5  
ζ = 2.0  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ω
nt  
Figure 27. Type 2 Second-Order Step Response  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
APPLICATION INFORMATION  
AV  
DD  
V
DD  
VCO  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
LOGIC V  
SELECT  
(Digital)  
VCO V  
DD  
DD  
R1  
1/2 f  
BIAS  
osc  
0.22 µF  
R3  
C1  
VCO OUT  
FIN–A  
VCO IN  
REF IN  
DGND  
C2  
R2  
VCO GND  
FIN–B  
VCO INHIBIT  
AGND  
PFD OUT  
PFD INHIBIT  
NC  
Phase  
Comparator  
8
LOGIC GND (Digital)  
DGND  
Divide  
By  
N
S3  
S4  
S5  
R4  
R5  
R6  
DGND  
DV  
DD  
R
resistor  
BIAS  
Figure 28. Evaluation and Operation Schematic  
PCB layout considerations  
The TLC2932 contains a high frequency analog oscillator; therefore, very careful breadboarding and  
printed-circuit-board (PCB) layout is required for evaluation.  
The following design recommendations benefit the TLC2932 user:  
External analog and digital circuitry should be physically separated and shielded as much as possible to  
reduce system noise.  
RF breadboarding or RF PCB techniques should be used throughout the evaluation and production  
process.  
Wide ground leads or a ground plane should be used on the PCB layouts to minimize parasitic inductance  
and resistance. The ground plane is the better choice for noise reduction.  
LOGIC V  
and VCO V  
should be separate PCB traces and connected to the best filtered supply point  
DD  
DD  
available in the system to minimize supply cross-coupling.  
VCO V to GND and LOGIC V to GND should be decoupled with a 0.1-µF capacitor placed as close  
DD  
DD  
as possible to the appropriate device terminals.  
The no-connection (NC) terminal on the package should be connected to GND.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2932  
HIGH-PERFORMANCE PHASE-LOCKED LOOP  
SLAS097E – SEPTEMBER 1994 – REVISED MAY 1997  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,32  
0,17  
0,65  
M
0,13  
14  
8
0,15 NOM  
4,70  
4,30  
6,70  
6,10  
Gage Plane  
0,25  
1
7
0°8°  
0,70  
A
0,40  
Seating Plane  
0,10  
1,20 MAX  
0,10 MIN  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,30  
2,90  
5,30  
4,90  
5,30  
4,90  
6,80  
6,40  
8,10  
7,70  
10,00  
9,60  
A MAX  
A MIN  
4040064/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLC2932PW

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2932PWR

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2933

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2933A

HIGH PERFORMANCE PHASE LOCKED LOOP
TI

TLC2933AIPW

HIGH PERFORMANCE PHASE LOCKED LOOP
TI

TLC2933AIPWG4

锁相环 | PW | 14 | -20 to 75
TI

TLC2933AIPWR

锁相环 | PW | 14 | -20 to 75
TI

TLC2933IPWLE

High Performance Phase Locked Loop 14-TSSOP
TI

TLC2933IPWR

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2933PW

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2933PWLE

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2934

3.3 V 130 MHZ VCO, PHASE FREQUENCY DETECTOR
TI