TLC2943IDB [TI]

HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK; 高性能双锁相环积木
TLC2943IDB
型号: TLC2943IDB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK
高性能双锁相环积木

文件: 总27页 (文件大小:425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
DB PACKAGE  
(TOP VIEW)  
Dual TLC2933 by Multichip Module  
(MCM) Technology  
Voltage-Controlled Oscillators (VCO)  
Section  
Complete Oscillator Using Only One  
External Bias Resistor (RBIAS)  
Recommended Lock Frequency  
Range  
LOGIC_1 V  
VCO_1 V  
DD  
1
DD  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
TEST_1  
R
_1  
2
BIAS  
VCO_1 OUT  
VCOIN_1  
3
F
F
-A_1  
-B_1  
VCO_1 GND  
4
IN  
IN  
VCO_1 INHIBIT  
5
PFD_1 OUT  
PFD_1 INHIBIT  
6
37 MHz to 60 MHz  
LOGIC_1 GND  
NC  
7
(V  
to 75°C)  
= 3.3 V ± 0.15 V, T = 20°C  
DD  
A
GND  
NC  
GND  
NC  
8
9
43 MHz to 100 MHz  
NC  
NC  
10  
11  
12  
13  
14  
15  
(V  
to 75°C)  
= 5 V ± 0.25 V, T = 20°C  
DD  
A
NC  
NC  
GND  
GND  
Includes a High Speed Edge-Triggered  
Phase Frequency Detector (PFD) With  
Internal Charge Pump  
Independent VCO, PFD Power-Down  
Mode  
LOGIC_2 V  
VCO_2 V  
DD  
DD  
TEST_2  
R
_2  
BIAS  
VCO_2 OUT  
VCOIN_2  
F
F
-A_2 16  
-B_2 17  
VCO_2 GND  
VCO_2 INHIBIT  
PFD_2 INHIBIT  
NC  
IN  
IN  
PFD_2 OUT 18  
19  
description  
LOGIC_2 GND  
The TLC2943 is a multichip module product that  
uses two TLC2933 chips. The TLC2933 chip is  
composed of a voltage-controlled oscillator (VCO) and an edge-triggered-type phase frequency detector  
(PFD). The oscillation frequency range of the VCO is set by an external bias resistor (R BIAS ). The high-speed  
PFD with internal charge pump detects the phase difference between the reference frequency input and signal  
frequency input from the external counter. Both the VCO and the PFD have inhibit functions that can be used  
as a power-down mode. The high-speed and stable VCO characteristics of the TLC2933 make the TLC2943  
suitable for use in dual high-performance phase-locked loop (PLL) systems.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SMALL OUTLINE (DB)  
TLC2943IDB  
20°C to 75°C  
TLC2943IDBR (Tape and Reel)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
functional block diagram  
VCO_1 OUT  
VCO_2 OUT  
VCO_1 INHIBIT  
VCO_2 INHIBIT  
VCO_1  
PFD_1  
VCO_2  
PFD_2  
VCOIN_2  
VCOIN_1  
F
F
-A_1  
-B_1  
F
F
-A_2  
-B_2  
IN  
IN  
IN  
IN  
PFD_1 INHIBIT  
PFD_2 INHIBIT  
PFD_1 OUT  
PFD_2 OUT  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
8, 31  
12, 27  
Common GND for chip 1  
GND  
Common GND for chip 2  
Reference frequency signal input and comparison frequency signal input for PFD_1. fREF–IN_1 inputs  
F
F
–A_1,  
–B_1  
4
5
IN  
IN  
I
I
to F -A_1, and comparison frequency input from external counter logic to F –B_1, for a lag-lead filter  
IN  
IN  
use as LPF.  
Reference frequency signal input and comparison frequency signal input for PFD_2. fREF–IN_2 inputs  
F
IN  
F
IN  
–A_2,  
–B_2  
16  
17  
toF -A_2, andcomparisonfrequencyinputfromexternalcounterlogictoF -B_2, foralag-leadfilteruse  
IN  
as LPF.  
IN  
LOGIC_1 GND  
LOGIC_2 GND  
7
Ground for the internal logic of chip 1  
Ground for the internal logic of chip 2  
19  
Power supply for the internal logic of chip 1. This power supply should be separate from VCO V  
reduce cross-coupling between supplies.  
to  
to  
DD  
LOGIC_1 V  
LOGIC_2 V  
1
DD  
DD  
Power supply for the internal logic of chip 2. This power supply should be separate from VCO V  
reduce cross-coupling between supplies.  
DD  
13  
9, 10,  
11, 20,  
28, 29,  
30, 32  
NC  
No internal connection  
PFD inhibit control for chip 1. When PFD_1 INHIBIT is high, PFD_1 OUT is in the high-impedance state,  
see Table 2.  
PFD_1 INHIBIT  
PFD_2 INHIBIT  
33  
21  
I
I
PFD inhibit control for chip 2. When PFD_2 INHIBIT is high, PFD_2 OUT is in the high-impedance state,  
see Table 2.  
PFD_1 OUT  
PFD_2 OUT  
6
O
O
PFD output of chip 1. When the PFD_1 INHIBIT is high, PFD_1 OUT is in the high-impedance state.  
PFD output of chip 2. When the PFD_2 INHIBIT is high, PFD_2 OUT is in the high-impedance state.  
18  
Bias supply for VCO_1. An external resistor (R  
) between VCO_1 V  
and BIAS_1 supplies bias for  
BIAS  
adjusting the oscillation frequency range of VCO_1.  
DD  
R
R
_1  
37  
25  
I
I
BIAS  
BIAS  
Bias supply for VCO_2. An external resistor (R  
BIAS  
adjusting the oscillation frequency range of VCO_2.  
) between VCO_2 V  
and BIAS_2 supplies bias for  
DD  
_2  
TEST_1  
2
Test terminal. TEST connects to LOGIC_1 GND for normal operation.  
Test terminal. TEST connects to LOGIC_2 GND for normal operation.  
GND for VCO_1  
TEST_2  
14  
35  
23  
34  
22  
3
VCO_1 GND  
VCO_2 GND  
VCO_1 INHIBIT  
VCO_2 INHIBIT  
VCO_1 OUT  
VCO_2 OUT  
GND for VCO_2  
I
VCO inhibit control for chip 1. When VCO_1 INHIBIT is high, VCO_1 OUT is low (see Table 1).  
VCO inhibit control for chip 2. When VCO_2 INHIBIT is high, VCO_2 OUT is low (see Table 1).  
VCO output of chip 1. When VCO_1 INHIBIT is high, VCO_1 OUT is low.  
I
O
O
15  
VCO output of chip 2. When VCO_2 INHIBIT is high, VCO_2 OUT is low.  
Power supply for VCO_1. This power supply should be separate from LOGIC V  
cross-coupling between supplies.  
to reduce  
to reduce  
DD  
VCO_1 V  
VCO_2 V  
VCOIN_1  
VCOIN_2  
38  
26  
36  
24  
DD  
Power supply for VCO_2. This power supply should be separate from LOGIC V  
cross-coupling between supplies.  
DD  
DD  
VCO_1 control voltage input. Nominally the external loop filter output connects to VCO IN to control VCO  
oscillation frequency.  
I
I
VCO_2 control voltage input. Nominally the external loop filter output connects to VCO IN to control VCO  
oscillation frequency.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
detailed description  
MCM (multichip module) technology for TLC2943  
The TLC2943 is a multichip module (MCM) product that uses two TLC2933 chips. Inside the package, two chips  
are completely isolated by a special formed lead-frame. Therefore,when using the TLC2943 in two  
asynchronous PLL circuits, there is no performance degradation by electrical interference between chips inside  
the package. So, the same performance as TLC2933 can be easily expected by using TLC2943.  
The NC terminals in the middle on both sides of the package are to achieve complete isolation inside the  
package. To get the best performance from this MCM technology, it is better to make a careful board layout of  
the external power supply, ground, and signal lines.  
voltage controlled oscillator (VCO)  
VCO_1 and VCO_2 have the same typical characteristics. Each VCO oscillation frequency is determined by  
anexternalresistor(R  
)connectedbetweentheVCOV andtheBIASterminals.Theoscillationfrequency  
BIAS  
DD  
and range depend on this resistor value. The bias resistor value for the minimum temperature coefficient is  
nominally 2.2 kwith V = 3.3 V and nominally 2.4 kwith V = 5 V. For the lock frequency range, refer to  
DD  
DD  
the recommended operating conditions. Figure 1 shows the typical frequency variation and VCO control  
voltage.  
VCO Oscillation Frequency (f  
)
osc  
VCO Oscillation Frequency Range  
BIAS Resistor (R  
BIAS)  
VCO Control Voltage (V  
COIN  
)
Figure 1. VCO_1 and VCO_2 Oscillation Frequency  
VCO inhibit function  
Each VCO has an externally controlled inhibit function that inhibits the VCO output. The VCO oscillation is  
stopped during a high level on VCOINHIBIT, so the high level can also be used as the power-down mode. The  
VCO output maintains a low level during the power-down mode (see Table 1 and Table 2).  
Table 1. VCO_1 Inhibit Function  
VCO_1 INHIBIT  
VCO_1 OSCILLATOR  
VCO_1 OUT  
Active  
VCO_1 I  
DD  
Low  
Active  
Stop  
Normal  
High  
Low  
Power down  
Table 2. VCO_2 Inhibit Function  
VCO_2 INHIBIT  
VCO_2 OSCILLATOR  
VCO_2 OUT  
Active  
VCO_2 I  
DD  
Low  
Active  
Stop  
Normal  
High  
Low  
Power down  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
detailed description (continued)  
phase frequency detector (PFD)  
The PFD is a high-speed, edge-triggered detector with an internal charge pump. The PFD detects the phase  
difference between two frequency inputs supplied to F -A and F -B as shown in Figure 2. Nominally the  
IN  
IN  
reference is supplied to F -A, and the frequency from the external counter output is fed to F -B. For clock  
IN  
IN  
recovery PLL systems, other types of phase detectors should be used.  
F
-A_1, 2  
-B_1, 2  
IN  
IN  
F
VOH  
HI-Z  
VOL  
PFD_1, 2 OUT  
Figure 2. PFD Function Timing Chart  
PFD output control  
A high level on PFD INHIBIT places the PFD OUT in the high impedance state and the PFD stops phase  
detectionasshowninTable 3 and Table4. AhighlevelonPFDinhibitalsocanbeusedasthepower-downmode  
for the PFD.  
Table 3. PFD_1 Inhibit Function  
PFD_1 INHIBIT  
PFD_1  
Active  
Stop  
PFD_1 OUT  
Active  
PFD_1 I  
DD  
Low  
Normal  
High  
Hi-Z  
Power down  
Table 4. PFD_2 Inhibit Function  
PFD_2 INHIBIT  
PFD_2  
Active  
Stop  
PFD_2 OUT  
Active  
PFD_2 I  
DD  
Low  
Normal  
High  
Hi-Z  
Power down  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
internal function block diagram  
BIAS  
Resistor  
VCO OUT  
BIAS  
Circuit  
Output  
Buffer  
VCO Control  
V
COIN  
Figure 3. VCO Block Schematic (VCO_1, VCO_2)  
Charge Pump  
F
F
-A  
-B  
IN  
PFD OUT  
Detector  
IN  
Figure 4. PFD Block Schematic (PFD_1, PFD_2)  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage (each supply), V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
Input voltage range (each input), V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 to V  
+ 0.5 V  
I
DD  
Input current (each input), I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
I
Output current (each output), I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O
Continuous total power dissipation at (or below) T = 25°C (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . 1160 mW  
A
Operating free-air temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20°C to 75°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values are with respect to network ground terminal.  
2. For operation above 25°C free-air temperature, derate linearly at the rate of 9.3 mW/°C.  
recommended operating conditions  
MIN NOM  
MAX  
3.15  
3.45  
5.25  
UNIT  
V
DD  
V
DD  
V
DD  
= 3 V  
2.85  
3.15  
4.75  
0
3
3.3  
5
Supply voltage (each supply, see Notes 3 and 4 ), V  
DD  
= 3.3 V  
= 5 V  
V
Input voltage range (input except for VCOIN_1, 2), V  
V
DD  
V
mA  
V
I
Output current (each output), I  
Control voltage, VCOIN  
0
±2  
O
1
V
DD  
55  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3 V  
37  
Clock frequency, f  
= 3.3 V  
= 5 V  
37  
60  
MHz  
43  
100  
2.7  
3.0  
3.0  
75  
= 3 V  
1.8  
1.8  
2.2  
20  
Oscillation frequency range set resistor (each RBIAS), R  
Top operating temperature range  
VCO  
= 3.3 V  
= 5 V  
kΩ  
BIAS  
C
NOTES: 3. It is recommended that the logic supply terminal (LOGIC V ) and the VCO supply terminal (VCO V ) be at the same voltage and  
DD DD  
separated from each other.  
4. Insert bypass capacitors locating the nearest point to each power supply terminal.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted)  
= 3 V  
DD  
VCO section  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
V
V
V
I
I
= 2 mA  
= 2 mA  
2.4  
OH  
OH  
Low-level output voltage  
0.3  
2.1  
±1  
V
OL  
OL  
Positive input threshold voltage  
Input current  
0.9  
1.5  
V
(TH+)  
I
I
V = V or GND  
I DD  
µA  
MΩ  
µA  
mA  
Z
VCOIN input impedance  
VCOIN = 1/2V  
See Note 5  
See Note 6  
10  
0.01  
5.1  
(VCOIN)  
DD(INH)  
DD(VCO)  
DD  
I
I
VCO supply current (inhibit) (for one chip)  
VCO supply current (for one chip)  
1
15  
NOTES: 5. The current into VCO V  
and LOGIC V  
DD  
when VCO INHIBIT = V  
when VCO IN = 1/2 V  
DD BIAS  
and PFD INHIBIT is high.  
DD  
DD  
DD  
, R  
6. The current into VCO V  
is high.  
and LOGIC V  
= 2.4 k, VCO INHIBIT = ground, and PFD INHIBIT  
DD  
PFD section  
PARAMETER  
TEST CONDITIONS  
= 2 mA  
MIN NOM  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
I
I
2.7  
OH  
OH  
= 2 mA  
0.2  
V
OL  
OL  
I
High-impedance state output current  
PFD INHIBIT = high,  
V
O
= V or GND  
DD  
±1  
µA  
V
OZ  
V
High-level input voltage at F –A, F –B  
2.1  
IH  
IL  
IN IN  
V
Low-level input voltage at F –A, F –B  
IN IN  
0.9  
2.1  
V
Positive input threshold voltage at PFD  
INHIBIT  
V
0.9  
1.5  
V
(TH+)  
C
Input capacitance at F –A, F –B  
IN IN  
5
10  
pF  
MΩ  
mA  
I
Z
I
Input impedance at F –A, F –B  
IN IN  
I
PFD supply current  
See Note 7  
0.7  
4
DD(PFD)  
NOTE 7: Thecurrent into LOGIC V  
when F –A and F –B = 30 MHz (V I(PP) = 3 V, rectangular wave), PFD INHIBIT = GND, PFD OUT open,  
DD  
and VCO OUT is inhibited.  
IN  
IN  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted) (continued)  
= 3.3 V  
DD  
VCO section  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
V
V
V
I
I
= 2 mA  
= 2 mA  
2.7  
OH  
OH  
Low-level output voltage  
0.4  
2.3  
±1  
V
OL  
OL  
Positive input threshold voltage  
Input current  
1
1.65  
V
(TH+)  
I
I
V = V or GND  
I DD  
µA  
MΩ  
µA  
mA  
Z
VCOIN input impedance  
VCOIN = 1/2V  
See Note 5  
See Note 6  
10  
0.01  
6.2  
(VCOIN)  
DD(INH)  
DD(VCO)  
DD  
I
I
VCO supply current (inhibit) (for one chip)  
VCO supply current (for one chip)  
1
16  
NOTES: 5. The current into VCO V  
and LOGIC V  
DD  
when VCO INHIBIT = V  
when VCO IN = 1/2 V  
DD BIAS  
and PFD INHIBIT is high.  
DD  
DD  
DD  
, R  
6. The current into VCO V  
is high.  
and LOGIC V  
= 2.4 k, VCO INHIBIT = ground, and PFD INHIBIT  
DD  
PFD section  
PARAMETER  
TEST CONDITIONS  
= 2 mA  
MIN NOM  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
I
I
3
OH  
OH  
= 2 mA  
0.2  
V
OL  
OL  
I
High-impedance state output current  
PFD INHIBIT = high,  
V
O
= V or GND  
DD  
±1  
µA  
V
OZ  
V
High-level input voltage at F –A, F –B  
2.3  
IH  
IL  
IN IN  
V
Low-level input voltage at F –A, F –B  
IN IN  
1
V
Positive input threshold voltage at PFD  
INHIBIT  
V
(TH+)  
1
1.65  
2.3  
V
C
Input capacitance at F –A, F –B  
IN IN  
5
10  
pF  
MΩ  
mA  
I
Z
I
Input impedance at F –A, F –B  
IN IN  
I
PFD supply current  
See Note 8  
0.8  
5
DD(PFD)  
NOTE 8: The current into LOGIC V  
when F –A and F –B = 30 MHz (V I(PP) = 3.3 V, rectangular wave), PFD INHIBIT = GND, PFD OUT  
IN IN  
DD  
open, and VCO OUT is inhibited.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted) (continued)  
= 5 V  
DD  
VCO section  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
V
V
V
I
I
= 2 mA  
= 2 mA  
4.5  
OH  
OH  
Low-level output voltage  
0.5  
3.5  
±1  
V
OL  
OL  
Positive input threshold voltage  
Input current  
1.5  
2.5  
V
(TH+)  
I
I
V = V or GND  
I DD  
µA  
MΩ  
µA  
mA  
Z
VCOIN input impedance  
VCOIN = 1/2V  
See Note 5  
See Note 6  
10  
0.01  
14  
(VCOIN)  
DD(INH)  
DD(VCO)  
DD  
I
I
VCO supply current (inhibit) (for one chip)  
VCO supply current (for one chip)  
1
35  
NOTES: 5. The current into VCO V  
and LOGIC V  
DD  
when VCO INHIBIT = V  
when VCO IN = 1/2 V  
DD BIAS  
and PFD INHIBIT is high.  
DD  
DD  
DD  
, R  
6. The current into VCO V  
is high.  
and LOGIC V  
= 2.4 k, VCO INHIBIT = ground, and PFD INHIBIT  
DD  
PFD section  
PARAMETER  
TEST CONDITIONS  
= 2 mA  
MIN NOM  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
I
I
4.5  
OH  
OH  
= 2 mA  
0.2  
V
OL  
OL  
I
High-impedance state output current  
PFD INHIBIT = high,  
V
O
= V or GND  
DD  
±1  
µA  
V
OZ  
V
High-level input voltage at F –A, F –B  
3.5  
IH  
IL  
IN IN  
V
Low-level input voltage at F –A, F –B  
IN IN  
1.5  
3.5  
V
Positive input threshold voltage at PFD  
INHIBIT  
V
1.5  
2.5  
V
(TH+)  
C
Input capacitance at F –A, F –B  
IN IN  
7
10  
pF  
MΩ  
mA  
I
Z
I
Input impedance at F –A, F –B  
IN IN  
I
PFD supply current  
See Note 9  
2.6  
8
DD(PFD)  
NOTE 9: ThecurrentintoLOGICV  
when F AandF B = 50 MHz (V I(PP) = 5 V, rectangular wave), PFD INHIBIT = GND, PFD OUT open,  
IN IN  
DD  
and VCO OUT is inhibited.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
operating characteristics at V  
= 3 V, T = 25°C (unless otherwise noted)  
DD  
A
VCO section  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
58  
UNIT  
MHz  
µs  
f
t
t
t
f
Oscillation frequency  
Time to stable oscillation  
Output rise time  
Output fall time  
R
= 2.4 k,  
BIAS  
See Note 10  
VCOIN = 1/2V  
38  
48  
(OSC)  
DD  
10  
(STB)  
C
C
R
R
= 15 pF,  
= 15 pF,  
See Figure 5  
See Figure 5  
VCOIN = 1/2V  
VCOIN = 1/2V  
3.3  
2
10  
ns  
r
L
L
8
ns  
f
Duty cycle  
= 2.4 k,  
45%  
50%  
55%  
(DUTY)  
BIAS  
DD  
DD  
Temperature coefficient of oscillation  
frequency  
= 2.4 k,  
BIAS  
f
0.03  
0.04  
%/°C  
(TA)  
Top = –20°C to 75°C  
Supply voltage coefficient of oscillation  
frequency supply  
R
= 2.4 k,  
BIAS  
= 2.85 V to 3.15 V  
VCOIN = 1.5 V,  
f
%/mV  
(VDD)  
V
DD  
NOTE 10: The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
f
t
t
t
t
t
t
Maximum operating frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
30  
MHz  
MAX  
PLZ  
PHZ  
PZL  
PZH  
r
20  
40  
40  
18  
18  
9
ns  
ns  
ns  
18  
See Figure 6 and Figure 7, and Table 5  
4.1  
4.8  
3.1  
1.5  
C
= 15 pF,  
See Figure 6  
L
Fall time  
9
f
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
operating characteristics at V  
= 3.3 V, T = 25°C (unless otherwise noted)  
A
DD  
VCO section  
PARAMETER  
TEST CONDITIONS  
= 2.4 k, VCOIN = 1/2V  
MIN NOM  
MAX  
62  
UNIT  
MHz  
µs  
f
t
t
t
f
Oscillation frequency  
Time to stable oscillation  
Output rise time  
Output fall time  
R
42  
52  
(OSC)  
BIAS  
See Note 10  
DD  
10  
(STB)  
C
C
R
R
= 15 pF,  
= 15 pF,  
See Figure 5  
See Figure 5  
VCOIN = 1/2V  
VCOIN = 1/2V  
3
1.9  
8
ns  
r
L
L
7
ns  
f
Duty cycle  
= 2.4 k,  
45%  
50%  
55%  
(DUTY)  
BIAS  
DD  
DD  
Temperature coefficient of oscillation  
frequency  
= 2.4 k,  
BIAS  
f
0.03  
0.04  
%/°C  
(TA)  
Top = –20°C to 75°C  
Supply voltage coefficient of oscillation  
frequency supply  
R
= 2.4 k,  
BIAS  
= 3.15 V to 3.45 V  
VCOIN = 1.65 V,  
f
%/mV  
(VDD)  
V
DD  
NOTE 10: The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
f
t
t
t
t
t
t
Maximum operating frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
30  
20  
18  
MHz  
MAX  
PLZ  
PHZ  
PZL  
PZH  
r
40  
40  
16  
16  
8
ns  
ns  
ns  
See Figure 6 and Figure 7, and Table 5  
C
= 15 pF,  
See Figure 6  
L
Fall time  
8
f
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
operating characteristics at V  
= 5 V, T = 25°C (unless otherwise noted)  
DD  
A
VCO section  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
96  
UNIT  
MHz  
µs  
f
t
t
t
f
Oscillation frequency  
Time to stable oscillation  
Output rise time  
Output fall time  
R
= 2.4 k,  
BIAS  
See Note 10  
VCOIN = 1/2V  
64  
80  
(OSC)  
DD  
10  
(STB)  
C
C
R
R
= 15 pF,  
= 15 pF,  
See Figure 5  
See Figure 5  
VCOIN = 1/2V  
VCOIN = 1/2V  
2.1  
1.5  
5
ns  
r
L
L
4
ns  
f
Duty cycle  
= 2.4 k,  
45%  
50%  
55%  
(DUTY)  
BIAS  
DD  
DD  
Temperature coefficient of oscillation  
frequency  
= 2.4 k,  
BIAS  
f
0.03  
0.02  
%/°C  
(TA)  
Top = –20°C to 75°C  
Supply voltage coefficient of oscillation  
frequency supply  
R
= 2.4 k,  
BIAS  
= 4.75 V to 5.25 V  
VCOIN = 2.5 V,  
f
%/mV  
(VDD)  
V
DD  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
f
t
t
t
t
t
t
Maximum operating frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
50  
MHz  
MAX  
PLZ  
PHZ  
PZL  
PZH  
r
20  
40  
40  
10  
10  
5
ns  
ns  
ns  
17  
See Figure 6 and Figure 7, and Table 5  
3.7  
3.5  
1.7  
1.3  
C
= 15 pF,  
See Figure 6  
L
Fall time  
5
f
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
90%  
90%  
10%  
10%  
VCO OUT  
t
t
f
r
Figure 5. VCO Output Voltage Waveform (Each VCO)  
V
DD  
V
DD  
50%  
F
F
-A  
-B  
IN  
GND  
GND  
V
DD  
V
DD  
50%  
IN  
GND  
GND  
V
DD  
V
DD  
50%  
50%  
PFD INHIBIT  
GND  
GND  
90%  
50%  
10%  
V
V
90%  
50%  
10%  
DD  
DD  
50%  
50%  
PFD OUT  
GND  
t
GND  
t
t
t
PLZ  
PZH  
PHZ  
PZL  
t
t
f
r
Figure 6. PFD Output Voltage Waveform  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
Test Point  
S1  
R
L
DUT  
C
L
S2  
Figure 7. PFD Output Test Conditions  
Table 5. PFD Output Test Conditions  
PARAMETER  
R
C
S1  
S2  
L
L
t
t
PZH  
OPEN  
CLOSE  
PHZ  
t
r
1 kΩ  
15 pF  
t
PZL  
t
CLOSE  
OPEN  
PLZ  
t
f
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
TYPICAL CHARACTERISTICS  
OSCILLATION FREQUENCY  
OSCILLATION FREQUENCY  
vs  
vs  
CONTROL VOLTAGE  
CONTROL VOLTAGE  
120  
120  
V
DD  
R
= 3.3 V  
V
DD  
R
= 3.3 V  
– 20°C  
25°C  
= 2.2 kΩ  
= 1.8 kΩ  
BIAS  
BIAS  
– 20°C  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
25°C  
75°C  
75°C  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
VCOIN – VCO Control Voltage – V  
VCOIN – VCO Control Voltage – V  
Figure 8  
Figure 9  
OSCILLATION FREQUENCY  
vs  
OSCILLATION FREQUENCY  
vs  
CONTROL VOLTAGE  
CONTROL VOLTAGE  
120  
120  
V
DD  
BIAS  
= 3.3 V  
= 2.7 kΩ  
V
DD  
BIAS  
= 3.3 V  
= 3.0 kΩ  
R
R
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
75°C  
25°C  
75°C  
25°C  
– 20°C  
– 20°C  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
VCOIN – VCO Control Voltage – V  
VCOIN – VCO Control Voltage – V  
Figure 10  
Figure 11  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
TYPICAL CHARACTERISTICS  
OSCILLATION FREQUENCY  
vs  
OSCILLATION FREQUENCY  
vs  
CONTROL VOLTAGE  
CONTROL VOLTAGE  
160  
140  
120  
160  
140  
120  
V
R
= 5 V  
25°C  
V
R
= 5 V  
25°C  
– 20°C  
DD  
DD  
= 2.4 kΩ  
= 2.2 kΩ  
BIAS  
BIAS  
– 20°C  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
75°C  
75°C  
0.0  
1
2
3
4
5
0.0  
1
2
3
4
5
VCOIN – VCO Control Voltage – V  
VCOIN – VCO Control Voltage – V  
Figure 12  
Figure 13  
OSCILLATION FREQUENCY  
vs  
OSCILLATION FREQUENCY  
vs  
CONTROL VOLTAGE  
CONTROL VOLTAGE  
160  
140  
120  
160  
140  
120  
25°C  
V = 5 V  
DD  
V
R
= 5 V  
DD  
R = 3.0 kΩ  
25°C  
BIAS  
= 2.7 kΩ  
BIAS  
– 20°C  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
75°C  
75°C  
– 20°C  
0.0  
1
2
3
4
5
0.0  
1
2
3
4
5
VCOIN – VCO Control Voltage – V  
VCOIN – VCO Control Voltage – V  
Figure 14  
Figure 15  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
TYPICAL CHARACTERISTICS  
LOCK FREQUENCY RANGE  
LOCK FREQUENCY RANGE  
vs  
vs  
BIAS RESISTANCE  
BIAS RESISTANCE  
110  
100  
90  
65  
60  
55  
50  
45  
40  
V
T
= 4.75 V – 5.25 V  
= –20°C to 75°C  
DD  
A
V
T
A
= 3.15 V – 3.45 V  
= –20°C to 75°C  
DD  
80  
70  
60  
50  
40  
30  
35  
30  
2.2 k  
2.4 k  
2.6 k  
2.8 k  
3 k  
1.8 k  
2.2 k  
2.4 k  
2.7 k  
3 k  
R
– BIAS Resistance – Ω  
BIAS  
R
– BIAS Resistance – Ω  
BIAS  
Figure 16  
Figure 17  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
APPLICATION INFORMATION  
gain of VCO and PFD  
Divider  
(K = 1/N)  
N
Figure 18 is a block diagram of the PLL. The  
divider N value depends on the input frequency  
and the desired VCO output frequency according  
to the system application requirements. The K  
and K values are obtained from the operating  
V
characteristics of the device as shown in  
PFD  
(K )  
p
VCO  
(K )  
V
p
f REF  
TLC2933  
LPF  
Figure 18. K is defined from the phase detector  
p
OH  
V
and V  
specifications and the equation  
OL  
shown in Figure 18(b). K is defined from  
Figures 8, 9, 10, and 11 as shown in Figure 18(c).  
V
(K )  
f
V
OH  
(a)  
The parameters for the block diagram with the  
units are as follows:  
2π π  
0
π
2π  
f
MAX  
K : VCO gain (rad/s/V)  
V
V
OH  
K : PFD gain (V/rad)  
p
K : LPF gain (V/V)  
f
f
K : countdown divider gain (1/N)  
N
MIN  
V
OL  
Range of  
Comparison  
external counter  
V
V
IN MIN  
IN MAX  
When a large N counter is required by the  
application, there is a possibility that the PLL  
response becomes slow due to the counter  
response delay time. In the case of a high  
frequency application, the counter delay time  
should be accounted for in the overall PLL design.  
V
– V  
OL  
2π(f  
– f )  
OH  
4π  
MAX MIN  
– V  
K
=
K
=
p
V
V
IN MAX  
IN MIN  
(b)  
(c)  
Figure 18. Example of a PLL Block Diagram  
R
BIAS  
The external bias resistor sets the VCO center frequency with 1/2 V  
applied to the VCO IN terminal. For the  
DD  
most accurate results, a metal-film resistor is the better choice, but a carbon-composition resistor can also be  
used with excellent results. A 0.22 µF capacitor should be connected from the BIAS terminal to ground as close  
to the device terminals as possible.  
hold-in range  
From the technical literature, the maximum hold-in range for an input frequency step for the three types of filter  
configurations shown in Figure 17 is as follows:  
0.8 K  
K
K ( )  
(1)  
p
H
V
f
Where  
K () = the filter transfer function value at ω = ∞  
f
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
APPLICATION INFORMATION  
low-pass-filter (LPF) configurations  
References that include detailed design information about LPFs should be consulted for additional information.  
Lag-lead filters or active filters are often used. Examples of LPFs are shown in Figure 19. When the active filter  
of Figure 19(c) is used, the reference should be applied to F -B because of the amplifier inversion. Also, in  
IN  
practical filter implementations, C2 is used as additional filtering at the VCO input. The value of C2 should be  
equal to or less than one tenth the value of C1.  
C2  
R1  
V
I
V
O
R1  
C1  
R2  
V
I
V
O
C2  
R2  
C1  
T1 = C1R1  
T2 = C1R2  
C1  
T1 = C1R1  
V
I
A
V
O
R1  
T1 = C1R1  
T2 = C1R2  
(a) LAG FILTER  
(b) LAG-LEAD FILTER  
(c) ACTIVE FILTER  
Figure 19. LPF Examples for PLL  
passive filter  
The transfer function for the low-pass filter shown in Figure 17(b) is;  
V
O
1
s
T2  
(2)  
V
(
)
T1 T2  
1
s
IN  
Where  
T1  
R1 C1 and T2  
R2 C1  
Using this filter makes the closed-loop PLL system a type 1 second-order system. The response curves of this  
system to a unit step are shown in Figure 20.  
active filter  
When using the active filter shown in Figure 19(c), the phase detector inputs must be reversed, since the filter  
adds an additional inversion. Therefore, the input reference frequency should be applied to the F -B terminal  
IN  
and the output of the VCO divider should be applied to the input reference terminal, F -A.  
IN  
The transfer function for the active filter shown in Figure 19(c) is:  
1
s
R2  
R1 C1  
C1  
F(s)  
(3)  
s
Using this filter makes the closed-loop PLL system a type 2 second-order system. The response curves of this  
system to a unit step are shown in Figure 21.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
APPLICATION INFORMATION  
Using the lag-lead filter in Figure 19(b) and divider N value, the transfer function for phase and frequency are  
shown in equations 4 and 5. Note that the transfer function for phase differs from the transfer function for  
frequency by only the divider N value. The difference arises from the fact that the feedback for phase is unity,  
while the feedback for frequency is 1/N.  
Hence, the transfer function of Figure 19(a) for phase is  
K
K
2(s)  
1(s)  
p
(
V
1
s
T2  
T2  
(4)  
)
N
T1 T2  
K
K
K
K
p
p
V
V
2
s
s
1
N
(T1 T2)  
N
(T1 T2)  
and the transfer function for frequency is  
F
F
K
K
OUT(s)  
p
V
)
1
s
T2  
T2  
(5)  
(
T1 T2  
K
K
K
K
V
REF(s)  
p
N
p
V
2
s
s
1
(T1 T2)  
N
(T1 T2)  
2
2
The standard 2-pole denominator is D = s + 2 ζ ω s + ω and comparing the coefficients of the denominator  
n
n
of equation (4) and (5) with the standard 2-pole denominator gives the following results.  
K
K
(6)  
p
V
n
N
(T1 T2)  
Solving for T1 + T2  
K
K
p
V
2
T1 T2  
N
n
and by using this value for T1 + T2 in equation (6) the damping factor is  
n
N
(7)  
(8)  
(9)  
T2  
2
K
K
p
V
solving for T2  
T2  
2
N
K
K
p
V
then by substituting for T2 in equation (6)  
K
K
p
2
V
N
N
T1  
2
K
K
n
p
V
n
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
APPLICATION INFORMATION  
From the circuit constants and the initial design parameters then  
2
N
1
C1  
R2  
R1  
(10)  
(11)  
K
K
n
p
V
K
K
v
p
2
N
1
C1  
2
K
p
K
n
N
V
n
The capacitor, C1, is usually chosen between 1 µF and 0.1 µF to allow for reasonable resistor values and  
physical capacitor size.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
APPLICATION INFORMATION  
1.9  
1.8  
1.7  
1.6  
= 0.1  
= 0.2  
= 0.3  
= 0.4  
= 0.5  
1.5  
1.4  
1.3  
= 0.6  
= 0.7  
1.2  
1.1  
1
= 0.8  
0.9  
0.8  
= 1.0  
= 1.5  
0.7  
0.6  
0.5  
= 2.0  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ω
ω t = 4.5  
n s  
nt  
Figure 20. Type 1 Second-Order Step Response  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
APPLICATION INFORMATION  
1.9  
1.8  
1.7  
1.6  
ζ = 0.1  
ζ = 0.2  
ζ = 0.3  
1.5  
1.4  
1.3  
ζ = 0.4  
ζ = 0.5  
ζ = 0.6  
ζ = 0.7  
1.2  
1.1  
1
0.9  
0.8  
ζ = 0.8  
ζ = 1.0  
0.7  
0.6  
0.5  
ζ = 2.0  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ω
nt  
Figure 21. Type 2 Second-Order Step Response  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
APPLICATION INFORMATION  
PCB layout considerations  
The TLC2943 contains high frequency analog oscillators; therefore, very careful breadboarding and  
printed-circuit-board (PCB) layout is required for evaluation.  
The following design recommendations benefit the TLC2943 user:  
External analog and digital circuitry should be physically separated and shielded as much as possible to  
reduce system noise.  
RF breadboarding or RF PCB techniques should be used throughout the evaluation and production  
process.  
Wide ground leads or a ground plane should be used on the PCB layouts to minimize parasitic inductance  
and resistance. The ground plane is the better choice for noise reduction.  
LOGIC V  
and VCO V  
should be separate PCB traces and connected to the best filtered supply point  
DD  
DD  
available in the system to minimize supply cross-coupling.  
VCO V to GND and LOGIC V to GND should be decoupled with a 0.1-µF capacitor placed as close  
DD  
DD  
as possible to the appropriate device terminals.  
The no-connection (NC) terminal on the package should be connected to GND.  
The evaluation and operation schematic for the TLC2943 is shown in Figure 22.  
AV  
DD  
V
DD  
PLL1  
(digital)  
VCO  
VCO V  
1
2
3
4
5
6
7
38  
37  
36  
35  
34  
33  
31  
LOGIC V  
TEST  
DD  
DD  
R1  
BIAS  
0.22 µF  
R3  
C1  
VCO OUT  
VCOIN  
REF IN  
DGND  
F
–A  
–B  
IN  
IN  
C2  
R2  
VCO GND  
F
VCOINHIBIT  
AGND  
PFD OUT  
PFD INHIBIT  
GND  
Phase  
Comparator  
LOGIC GND (Digital)  
DGND  
Divide  
By  
N
S1  
S2  
PLL2  
DGND  
R5  
R6  
DV  
DD  
R
resistor  
BIAS  
Figure 22. Evaluation and Operation Schematic  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2943  
HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK  
SLAS249 – NOVEMBER 1999  
MECHANICAL DATA  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°8°  
1,03  
0,63  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
8
14  
16  
20  
24  
28  
30  
38  
DIM  
3,30  
2,70  
6,50  
5,90  
6,50  
5,90  
7,50  
6,90  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
9,90  
12,30  
4040065 /C 10/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLC2943IDBR

HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK
TI

TLC2H-433-5

UHF Narrow Band FM Low Cost multi channel radio modules
RADIOMETRIX

TLC32040

ANALOG INTERFACE CIRCUIT
TI

TLC32040C

ANALOG INTERFACE CIRCUITS
TI

TLC32040CFN

ANALOG INTERFACE CIRCUITS
TI

TLC32040CN

ANALOG INTERFACE CIRCUITS
TI

TLC32040I

ANALOG INTERFACE CIRCUITS
TI

TLC32040IFN

PCM CODEC, PQCC28
TI

TLC32040IFNR

PCM CODEC, PQCC28
TI

TLC32040IN

ANALOG INTERFACE CIRCUITS
TI

TLC32040M

ANALOG INTERFACE CIRCUIT
TI

TLC32040MFK

ANALOG INTERFACE CIRCUIT
TI