TLC320AC02 [TI]

Single-Supply Analog Interface Circuit; 单电源模拟接口电路
TLC320AC02
型号: TLC320AC02
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Single-Supply Analog Interface Circuit
单电源模拟接口电路

文件: 总84页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC320AC02C, TLC320AC02I  
Data Manual  
Single-Supply Analog Interface Circuit  
SLAS084C  
October 1997  
Printed on Recycled Paper  
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any  
semiconductor product or service without notice, and advises its customers to obtain the latest  
version of relevant information to verify, before placing orders, that the information being relied  
on is current.  
TIwarrantsperformanceofitssemiconductorproductsandrelatedsoftwaretothespecifications  
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality  
control techniques are utilized to the extent TI deems necessary to support this warranty.  
Specific testing of all parameters of each device is not necessarily performed, except those  
mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death,  
personal injury, or severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES  
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer.  
Use of TI products in such applications requires the written approval of an appropriate TI officer.  
Questions concerning potential risk applications should be directed to TI through a local SC  
sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and  
operating safeguards should be provided by the customer to minimize inherent or procedural  
hazards.  
TI assumes no liability for applications assistance, customer product design, software  
performance, or infringement of patents or services described herein. Nor does TI warrant or  
represent that any license, either express or implied, is granted under any patent right, copyright,  
mask work right, or other intellectual property right of TI covering or relating to any combination,  
machine, or process in which such semiconductor products or services might be or are used.  
Copyright 1997, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
1.3 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
1.4 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5  
1.5 Register Functional Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8  
2
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1 Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.2 Reset and Power-Down Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.2.1 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.2.2 Conditions of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.2.3 Software and Hardware Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.2.4 Register Default Values After POR, Software Reset,  
or RESET Is Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.3 Master-Slave Terminal Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.4 ADC Signal Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.5 DAC Signal Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.6 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.7 Number of Slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5  
2.8 Required Minimum Number of MCLK Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2.8.1 TLC320AC02 AIC Master-Slave Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2.8.2 Notes on TLC320AC01/02 AIC Master-Slave Operation . . . . . . . . . . . . . . . 2–7  
2.9 Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
2.9.1 Master and Stand-Alone Operating Frequencies . . . . . . . . . . . . . . . . . . . . . 2–9  
2.9.2 Slave and Codec Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
2.10 Switched-Capacitor Filter Frequency (FCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
2.11 Filter Bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
2.12 Master and Stand-Alone Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
2.12.1 Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
2.12.2 Master and Stand-Alone Functional Sequence . . . . . . . . . . . . . . . . . . . . . . 2–10  
2.13 Slave and Codec Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10  
2.13.1 Slave and Codec Functional Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11  
2.13.2 Slave Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11  
2.14 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11  
2.14.1 Frame-Sync Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11  
2.14.2 Data Out (DOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12  
2.14.3 Data In (DIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12  
2.14.4 Hardware Program Terminals (FC1 and FC0) . . . . . . . . . . . . . . . . . . . . . . . 2–12  
2.14.5 Midpoint Voltages (ADC V  
and DAC V  
) . . . . . . . . . . . . . . . . . . . . . . 2–13  
MID  
MID  
iii  
2.15 Device Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13  
2.15.1 Phase Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13  
2.15.2 Analog Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14  
2.15.3 16-Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14  
2.15.4 Free-Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14  
2.15.5 Force Secondary Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14  
2.15.6 Enable Analog Input Summing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15  
2.15.7 DAC Channel (sin x)/x Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15  
2.16 Serial Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15  
2.16.1 Stand-Alone and Master-Mode Word Sequence and Information Content  
During Primary and Secondary Communications . . . . . . . . . . . . . . . . . . . . 2–15  
2.16.2 Slave and Codec-Mode Word Sequence and Information Content During  
Primary and Secondary Communications . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16  
2.17 Request for Secondary Serial Communication and Phase Shift . . . . . . . . . . . . . 2–17  
2.17.1 Initiating a Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17  
2.17.2 Normal Combinations of Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17  
2.17.3 Additional Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17  
2.18 Primary Serial Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18  
2.18.1 Primary Serial Communications Data Format . . . . . . . . . . . . . . . . . . . . . . . 2–19  
2.18.2 Data Format From DOUT During Primary Serial Communications . . . . . 2–19  
2.19 Secondary Serial Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19  
2.19.1 Data Format to DIN During Secondary Serial Communications . . . . . . . . 2–19  
2.19.2 Control Data-Bit Function in Secondary Serial Communication . . . . . . . . 2–19  
2.20 Internal Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–20  
2.20.1 Pseudo-Register 0 (No-Op Address) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–20  
2.20.2 Register 1 (A Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–20  
2.20.3 Register 2 (B Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–21  
2.20.4 Register 3 (ARegister) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–21  
2.20.5 Register 4 (Amplifier Gain-Select Register) . . . . . . . . . . . . . . . . . . . . . . . . . 2–22  
2.20.6 Register 5 (Analog Configuration Register) . . . . . . . . . . . . . . . . . . . . . . . . . 2–22  
2.20.7 Register 6 (Digital Configuration Register) . . . . . . . . . . . . . . . . . . . . . . . . . . 2–23  
2.20.8 Register 7 (Frame-Sync Delay Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–23  
2.20.9 Register 8 (Frame-Sync Number Register) . . . . . . . . . . . . . . . . . . . . . . . . . 2–24  
3
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . . 3–1  
3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.3 Electrical Characteristics Over Recommended Range of Operating Free-Air  
Temperature, MCLK = 5.184 MHz, V  
= 5 V, Outputs Unloaded,  
DD  
Total Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.4 Electrical Characteristics Over Recommended Range of Operating Free-Air  
Temperature, V  
= 5 V, Digital I/O Terminals (DIN, DOUT, EOC,  
DD  
FC0, FC1, FS, FSD, MCLK, M/S, SCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.5 Electrical Characteristics Over Recommended Range of Operating Free-Air  
Temperature, V  
= 5 V, ADC and DAC Channels . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
DD  
3.5.1 ADC Channel Filter Transfer Function, FCLK = 144 kHz, f = 8 kHz . . . . 3–2  
3.5.2 ADC Channel Input, V  
3.5.3 ADC Channel Signal-to-Distortion Ratio, V  
s
= 5 V, Input Amplifier Gain = 0 dB . . . . . . . . . . . 3–3  
DD  
= 5 V, f = 8 kHz . . . . . . . . 3–3  
DD  
s
iv  
3.5.4 DAC Channel Filter Transfer Function, FCLK = 144 kHz, f = 9.6 kHz,  
s
V
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
DD  
3.5.5 DAC Channel Signal-to-Distortion Ratio, V  
3.5.6 System Distortion, V  
= 5 V, f = 8 kHz . . . . . . . . 3–4  
= 5 V, f = 8 kHz, FCLK = 144 kHz . . . . . . . . . . . . 3–4  
DD  
s
DD  
s
3.5.7 Noise, Low-Pass and Band-Pass Switched-Capacitor Filters Included,  
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
V
DD  
3.5.8 Absolute Gain Error, V  
3.5.9 Relative Gain and Dynamic Range, V  
3.5.10 Power-Supply Rejection, V  
3.5.11 Crosstalk Attenuation, V  
= 5 V, f = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
DD  
s
= 5 V, f = 8 kHz . . . . . . . . . . . . . 3–5  
s
DD  
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
DD  
DD  
3.5.12 Monitor Output Characteristics, V  
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
DD  
3.6 Timing Requirements and Specifications in Master Mode . . . . . . . . . . . . . . . . . . . 3–8  
3.6.1 Recommended Input Timing Requirements for Master Mode,  
V
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
DD  
3.6.2 Operating Characteristics Over Recommended Range of Operating Free-Air  
Temperature, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
DD  
3.7 Timing Requirements and Specifications in Slave Mode and Codec  
Emulation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3.7.1 Recommended Input Timing Requirements for Slave Mode,  
V
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
DD  
3.7.2 Operating Characteristics Over Recommended Range of Operating Free-Air  
Temperature, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
DD  
4
5
6
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
v
List of Illustrations  
Figure  
Title  
Page  
1–1 Control Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7  
2–1 Functional Sequence for Primary and Secondary Communication . . . . . . . . . . . . . 2–5  
2–2 Timing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2–3 Master and Stand-Alone Functional Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16  
2–4 Slave and Codec Functional Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16  
4–1 IN+ and INGain-Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4–2 AIC Stand-Alone and Master-Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2  
4–3 AIC Slave and Codec Emulation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2  
4–4 Master or Stand-Alone FS and FSD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
4–5 Slave FS to FSD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
4– 6 Slave SCLK to FSD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
4–7 DOUT Enable Timing From Hi-Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
4–8 DOUT Delay Timing to Hi-Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
4–9 EOC Frame Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
4–10 Master-Slave Frame-Sync Timing After a Delay Has Been Programmed  
Into the FSD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
4–11 Master and Slave Frame-Sync Sequence with One Slave . . . . . . . . . . . . . . . . . . . . 4–5  
5–1 ADC Low-Pass Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
5–2 ADC Low-Pass Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2  
5–3 ADC Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3  
5–4 ADC Band-Pass Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4  
5–5 ADC Band-Pass Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
5–6 ADC High-Pass Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6  
5–7 ADC Band-Pass Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7  
5–8 DAC Low-Pass Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8  
5–9 DAC Low-Pass Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9  
5–10 DAC Low-PASS Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–10  
5–11 DAC (sin x)/x Correction Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–11  
5–12 DAC (sin x)/x Correction Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–12  
5–13 DAC (sin x)/x Correction Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–13  
vi  
List of Tables  
Table  
Title  
Page  
1–1 Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7  
2–1 Master-Slave Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2–2 Sampling Variation With A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13  
2–3 Software and Hardware Requests for Secondary Serial-Communication and  
Phase-Shift Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18  
4–1 Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
vii  
1
Introduction  
The TLC320AC02 analog interface circuit (AIC) is an audio-band processor that provides an  
analog-to-digitaland digital-to-analog input/output interface system on a single monolithic CMOS chip. This  
device integrates  
a band-pass switched-capacitor antialiasing input filter, a 14-bit-resolution  
analog-to-digital converter (ADC), a 14-bit-resolution digital-to-analog converter (DAC), a low-pass  
switched-capacitor output-reconstruction filter, (sin x)/x compensation, and a serial port for data and control  
transfers.  
The internal circuit configuration and performance parameters are determined by reading control  
information into the eight available data registers. The register data sets up the device for a given mode of  
operation and application.  
The major functions of the TLC320AC02 are:  
1. To convert audio-signal data to digital format by the ADC channel  
2. To provide the interface and control logic to transfer data between its serial input and output  
terminals and a digital signal processor (DSP) or microprocessor  
3. To convert received digital data back to an audio signal through the DAC channel  
Theantialiasinginputlow-passfilterisaswitched-capacitorfilterwithasixth-orderellipticcharacteristic. The  
high-pass filter is a single-pole filter to preserve low-frequency response as the low-pass filter cutoff is  
adjusted. Thereisathree-polecontinuous-timefilterthatprecedesthisfiltertoeliminateanyaliasingcaused  
by the filter clock signal.  
Theoutput-reconstructionswitched-capacitorfilterisasixth-orderelliptictransitionallow-passfilterfollowed  
by a second-order (sin x)/x correction filter. This filter is followed by a three-pole continuous-time filter to  
eliminate images of the filter clock signal.  
The TLC320AC02 consists of two signal-processing channels, an ADC channel and a DAC channel, and  
the associated digital control. The two channels operate synchronously; data reception at the DAC channel  
and data transmission from the ADC channel occur during the same time interval. The data transfer is in  
2s-complement format.  
There are three basic modes of operation available: the stand-alone analog-interface mode, the  
master-slave mode, and the linear-codec mode. In the stand-alone mode, the TLC320AC02 generates the  
shiftclockandframesynchronizationforthedatatransfersandistheonlyAICused. Themaster-slavemode  
has one TLC320AC02 as the master that generates the master-shift clock and frame synchronization; the  
remaining AICs are slaves to these signals. In the linear-codec mode, the shift clock and the frame-  
synchronization signals are externally generated and the timing can be any of the standard codec-timing  
patterns.  
Typical applications for this device include modems, speech processing, analog interface for DSPs,  
industrial-process control, acoustical-signal processing, spectral analysis, data acquisition, and  
instrumentation recorders.  
The TLC320AC02C is characterized for operation from 0°C to 70°C and the TLC320AC02I is characterized  
for operation from –40°C to 85°C.  
The TLC320AC02 is functionally equivalent to the TLC320AC01 and differs in the electrical specifications as shown  
in Appendix C.  
1–1  
1.1 Features  
General-Purpose Signal-Processing Analog Front End (AFE)  
Single 5-V Power Supply  
Power Dissipation . . . 100 mW Typ  
Signal-to-Distortion Ratio . . . 70 dB Typ  
Programmable Filter Bandwidths (Up to 10.8 kHz) and Synchronous ADC and DAC Sampling  
Serial-Port Interface  
Monitor Output With Programmable Gains of 0 dB, 8 dB, 18 dB, and Squelch  
Two Sets of Differential Inputs With Programmable Gains of 0 dB, 6 dB, 12 dB, and Squelch  
Differential or Single-Ended Analog Output With Programmable Gains of 0 dB, 6 dB, 12 dB,  
and Squelch  
Differential Outputs Drive 3-V Peak Into a 600-Differential Load  
Differential Architecture Throughout  
1-µm Advanced LinEPIC Process  
14-Bit Dynamic-Range ADC and DAC  
2s-Complement Data Format  
LinEPIC is a trademark of Texas Instruments Incorporated.  
1–2  
1.2 Functional Block Diagram  
26  
25  
28  
27  
Filter  
IN+  
M
U
X
M
U
X
IN–  
AUX IN+  
AUX IN–  
11  
12  
Serial  
Port  
DOUT  
FS  
ADC  
1
MON OUT  
M/S  
14  
13  
MCLK  
SCLK  
18  
ADC Channel  
DAC Channel  
Internal  
Voltage  
Reference  
15  
16  
FC0  
FC1  
10  
17  
19  
DIN  
Filter  
FSD  
EOC  
3
4
OUT+  
OUT–  
(sin x)/x  
DAC  
21  
Correction  
2
5
7
20  
DGTL DGTL  
GND  
9
23  
24  
22  
6
8
PWR  
DWN  
DAC  
DAC  
GND  
ADC ADC  
ADC SUBS DAC  
RESET  
V
V
V
V
GND  
V
DD  
DD  
MID  
DD  
MID  
Terminal numbers shown are for the FN package.  
1.3 Terminal Assignments  
FN PACKAGE  
(TOP VIEW)  
4
3
2 1 28 27 26  
DAC V  
DAC V  
IN–  
5
25  
24  
DD  
6
ADC V  
MID  
DD  
7
DAC GND  
23 ADC V  
MID  
8
22  
21  
20  
19  
RESET  
ADC GND  
9
DGTL V  
SUBS  
DD  
10  
11  
DIN  
DGTL GND  
EOC  
DOUT  
12 13 14 15 16 17 18  
1–3  
1.3 Terminal Assignments (Continued)  
PM PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DIN  
NC  
1
48 NC  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
NC  
DOUT  
FS  
3
OUT–  
NC  
4
NC  
5
NC  
NC  
6
OUT+  
PWR DWN  
NC  
NC  
7
SCLK  
NC  
8
9
MON OUT  
NC  
10  
11  
12  
13  
14  
15  
16  
MCLK  
FC0  
FC1  
NC  
AUXIN+  
AUXIN–  
IN+  
FSD  
NC  
IN–  
NC  
M/S  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC – No internal connection  
1–4  
1.4 Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
Analog supply voltage for the ADC channel  
NAME  
NO.  
NO.  
ADC V  
24  
32  
I
DD  
ADC V  
23  
30  
O
MidsupplyfortheADCchannel(requiresabypasscapacitor). ADCV  
buffered when used as an external reference.  
mustbe  
MID  
MID  
MID  
ADC GND  
AUX IN+  
AUX IN–  
22  
28  
27  
5
27  
38  
37  
49  
51  
I
I
Analog ground for the ADC channel  
Noninverting input to auxiliary analog input amplifier  
Inverting input to auxiliary analog input amplifier  
Digital supply voltage for the DAC channel  
I
DAC V  
DAC V  
I
DD  
6
O
MidsupplyfortheDACchannel(requiresabypasscapacitor). DACV  
buffered when used as an external reference.  
mustbe  
MID  
DAC GND  
DIN  
7
54  
1
I
I
Analog ground for the DAC channel  
10  
Data input. DIN receives the DAC input data and command information and is  
synchronized with SCLK.  
DOUT  
11  
3
O
Data output. DOUT outputs the ADC data results and register read contents.  
DOUT is synchronized with SCLK.  
DGTL V  
9
20  
19  
59  
22  
17  
I
I
Digital supply voltage for control logic  
Digital ground for control logic  
DD  
DGTL GND  
EOC  
O
End-of-conversion output. EOC goes high at the start of the ADC conversion  
periodandlowwhenconversioniscomplete. EOCremainslowuntilthenextADC  
conversion period begins and indicates the internal device conversion period.  
FC0  
FC1  
FS  
15  
16  
12  
11  
12  
4
I
I
Hardwarecontrolinput. FC0isusedinconjunctionwithFC1torequestsecondary  
communication and phase adjustments. FC0 should be tied low if it is not used.  
Hardwarecontrolinput. FC1isusedinconjunctionwithFC0torequestsecondary  
communication and phase adjustments. FC1 should be tied low if it is not used.  
I/O Frame synchronization. When FS goes low, DIN begins receiving data bits and  
DOUT begins transmitting data bits. In master mode, FS is low during the  
simultaneous 16-bit transmission to DIN and from DOUT. In slave mode, FS is  
externallygeneratedandmustbelowforoneshift-clockperiodminimumtoinitiate  
the data transfer.  
FSD  
17  
14  
O
Frame-synchronization delayed output. This active-low output synchronizes a  
slave device to the frame synchronization timing of the master device. FSD is  
applied to the slave FS input and is the same duration as the master FS signal but  
delayed in time by the number of shift clocks programmed in the FSD register.  
IN+  
26  
25  
14  
1
36  
35  
10  
40  
I
I
Noninverting input to analog input amplifier  
IN–  
Inverting input to analog input amplifier  
MCLK  
MON OUT  
I
The master-clock input drives all the key logic signals of the AIC.  
O
The monitor output allows monitoring of analog input and is a high-impedance  
output.  
M/S  
18  
16  
I
Master/slave select input. When M/S is high, the device is the master and when  
low, it is a slave.  
Terminal numbers shown are for the FN package.  
Terminal numbers shown are for the PM package.  
1–5  
1.4 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
NO.  
OUT+  
3
43  
O
Noninvertingoutputofanalogoutputpoweramplifier. OUT+candrivetransformer  
hybrids or high-impedance loads directly in a differential connection or a  
single-ended configuration with a buffered V  
MID  
.
OUT–  
4
2
46  
42  
O
I
Inverting output of analog output power amplifier. OUT– is functionally identical  
with and complementary to OUT+.  
PWR DWN  
Power-down input. When PWR DWN is taken low, the device is powered down  
such that the existing internally programmed state is maintained. When PWR  
DWN is brought high, full operation resumes.  
RESET  
SCLK  
8
13  
21  
57  
I
Reset input that initializes the internal counters and control registers. RESET  
initiates the serial data communications, initializes all of the registers to their  
default values, and puts the device in a preprogrammed state. After a low-going  
pulse on RESET, the device registers are initialized to provide a 16-kHz  
data-conversion rate and 7.2-kHz filter bandwidth for a 10.368-MHz master clock  
input signal.  
8
I/O Shift clock. SCLK clocks the digital data into DIN and out of DOUT during the  
frame-synchronization interval. When configured as an output (M/S high), SCLK  
isgeneratedinternallybydividingthemasterclocksignalfrequencybyfour.When  
configured as an input (M/S low), SCLK is generated externally and  
synchronously to the master clock. This signal clocks the serial data into and out  
of the device.  
SUBS  
24  
I
Substrate connection. SUBS should be tied to ADC GND.  
Terminal numbers shown are for the FN package.  
Terminal numbers shown are for the PM package.  
1–6  
Processor  
5.184 MHz  
10.368 MHz  
MCLK  
SCLK  
Divide by 4  
1.296 MHz  
2.592 MHz  
A Register + ARegister  
(8 bits)  
A Register  
(8 bits)  
2s Complement  
FCLK [low-pass filter and  
(sin x)/x filter clock]  
Control  
Normal  
Phase Shift  
B Register  
(8 bits)  
Single, A-Counter  
Period  
One-Shot  
Conversion  
Rate  
Program Divide  
A Counter  
(8 bits)  
Divide by 2  
B Counter  
576 kHz  
288 kHz  
Figure 1–1. Control Flow Diagram  
Table 1–1. Operating Frequencies  
LOW-PASS FILTER  
B REGISTER CONTENTS  
(Program No. of Filter Clocks)  
(Decimal)  
CONVERSION  
RATE  
HIGH-PASS  
POLE FREQUENCY  
(Hz)  
FCLK  
(kHz)  
BANDWIDTH  
(kHz)  
(kHz)  
144  
288  
432  
3.6  
20 (see Note 1)  
18  
15  
7.2  
8
9.6  
14.4  
36  
40  
48  
72  
10 (see Note 2)  
7.2  
20 (see Note 1)  
18  
15  
14.4  
16  
19.2  
28.8  
72  
80  
96  
10 (see Notes 2 and 3)  
144  
10.8  
20 (see Note 1)  
18  
15 (see Note 3)  
10 (see Notes 2 and 3)  
21.6  
24  
28.8  
43.2  
108  
120  
144  
216  
NOTES: 1. The B register can be programmed for values greater than 20; however, since the sample rate is lower than  
7.2 kHz and the internal filter remains at 3.6 kHz, an external antialiasing filter is required.  
2. When the B register is programmed for a value less than 10, the ADC and the DAC conversions are not  
completed before the next frame-sync signal and the results are in error.  
3. The maximum sampling rate for the ADC channel is 43.2 kHz. The maximum rate for the DAC channel is  
25 kHz.  
1–7  
1.5 Register Functional Summary  
There are nine data registers that are used as follows:  
Register 0  
The No-op register. The 0 address allows phase adjustments to be made without  
reprogramming a data register.  
Register 1  
Register 2  
Register 3  
The A register controls the count of the A counter.  
The B register controls the count of the B counter.  
The Aregister controls the phase adjustment of the sampling period. The adjustment is  
equal to the register value multiplied by the input master period.  
Register 4  
Register 5  
The amplifier gain register controls the gains of the input, output, and monitor amplifiers.  
The analog configuration register controls:  
The addition/deletion of the high-pass filter to the ADC signal path  
The enable/disable of the analog loopback  
The selection of the regular inputs or auxiliary inputs  
The function that allows processing of signals that are the sum of the regular inputs and  
the auxiliary inputs (V + V  
)
IN  
AUX IN  
Register 6  
The digital configuration register controls:  
Selection of the free-run function  
FSD [frame-synchronization (sync) delay] output enable/disable  
Selection of 16-bit function  
Forcing secondary communications  
Software reset  
Software power down  
Register 7  
Register 8  
The frame-sync delay register controls the time delay between the master-device frame  
sync and slave-device frame sync. Register 7 must be the last register programmed when  
using slave devices since all register data is latched and valid on the sixteenth falling edge  
of SCLK. On the sixteenth falling edge of SCLK, all delayed frame-sync intervals are shifted  
by this programmed amount.  
The frame-sync number register informs the master device of the number of slaves that are  
connected in the chain. The frame-sync number is equal to the number of slaves plus one.  
1–8  
2
Detailed Description  
2.1 Definitions and Terminology  
ADC Channel  
Codec Mode  
d
All signal processing circuits between the analog input and the digital conversion  
results at DOUT  
The operating mode under which the device receives shift clock and frame-sync  
signals from a host processor. The device has no slaves.  
The d represents valid programmed or default data in the control register format  
(see Section 2.19) when discussing other data-bit portions of the register.  
Dxx  
Bit position in the primary data word (xx is the bit number)  
DAC Channel  
All signal processing circuits between the digital data word applied to DIN and the  
differential output analog signal available at OUT+ and OUT–  
Data Transfer Interval The time during which data is transferred from DOUT and to DIN. This interval is 16  
shiftclocksregardlessofwhethertheshiftclockisinternallyorexternallygenerated.  
The data transfer is initiated by the falling edge of the frame-sync signal.  
DSxx  
FCLK  
Bit position in the secondary data word (xx is the bit number)  
An internal clock frequency that is a division of MCLK that controls the low-pass filter  
and (sinx)/x filter clock (see Figure 1–1 and Table 1-1).  
f
The analog input frequency of interest  
i
Frame Sync  
The falling edge of the signal that initiates the data-transfer interval. The primary  
framesyncstartstheprimarycommunications, andthesecondaryframesyncstarts  
the secondary communications.  
Frame Sync and  
Sampling Period  
The time between falling edges of successive primary frame-sync signals  
Frame-Sync Interval The time period occupied by 16 shift clocks. Regardless of the mode of operation,  
there is always an internal frame-sync interval signal that goes low on the rising  
edge of SCLK and remains low for 16 shift clocks. It is used for synchronization of  
the serial-port internal signals. It goes high on the seventeenth rising edge of SCLK.  
f
The sampling frequency that is the reciprocal of the sampling period.  
Any processing system that interfaces to DIN, DOUT, SCLK, or FS.  
s
Host  
Master Mode  
The operating mode under which the device generates and uses its own shift clock  
and frame-sync signal and generates all delayed frame-sync signals necessary to  
support slave devices.  
Phase Adjustment  
The programmed time variation from the falling edge of one frame-sync signal to the  
falling edge of the next frame sync signal. The time variation is determined by the  
contents of the Aregister. Since the time between falling edges of successive  
frame-sync signals is the the sampling period, the sampling period is adjusted.  
Primary (Serial)  
Communications  
The digital data-transfer interval. Since the device is synchronous, the signal data  
words from the ADC channel and to the DAC channel occur simultaneously.  
Secondary (Serial)  
Communications  
The digital control and configuration data-transfer interval into DIN and the register  
read-data cycle from DOUT. The data-transfer interval occurs when requested by  
hardware or software.  
Signal Data  
Slave Mode  
The input signal and all of the converted representations through the ADC channel  
and return through the DAC channel to the analog output. This is contrasted with  
the purely digital software-control data.  
The operating mode under which the device receives shift clock and frame-sync  
signals from a master device.  
2–1  
Stand-Alone Mode  
X
The operating mode under which the device generates and uses its own shift clock  
and frame-sync signal. The device has no slave devices.  
The X represents a don’t-care bit position within the control register format.  
2.2 Reset and Power-Down Functions  
2.2.1  
Reset  
The TLC320AC02 resets both the internal counters and registers, including the programmed registers, by  
any of the following:  
Applying power to the device, causing a power-on reset (POR)  
Applying a low reset pulse to RESET  
Reading in the programmable software reset bit (DS01 in register 6)  
PWR DWN resets the counters only and preserves the programmed register contents.  
2.2.2  
Conditions of Reset  
The two internal reset signals used for the reset and synchronization functions are as follows:  
1. Counter reset: This signal resets all flip-flops and latches that are not externally programmed with  
the exception of those generating the reset pulse itself. In addition, this signal resets the software  
power-down bit.  
Counter reset = power-on reset + RESET + RESET bit + PWR DWN  
2. Register reset: This signal resets all flip-flops and latches that are not reset by the counter reset  
except those generating the reset pulse itself.  
Register reset = power-on reset + RESET + RESET bit  
Both reset signals are at least one master-clock period long and release on the falling edge of the master  
clock.  
2.2.3  
Software and Hardware Power-Down  
Given the definitions and conditions of RESET, the software-programmed power-down condition is cleared  
by resetting the software bit (DS00 in register 6) to zero. It is also cleared by either cycling the power to the  
device, bringing PWR DWN low, or bringing RESET low.  
PWR DWN powers down the entire chip ( < 1 mA ). The software-programmable power-down bit only  
powers down the analog section of the chip ( < 3 mA ), which allows a software power-up function. Cycling  
PWR DWN high to low and back to high resets all flip-flops and latches that are not externally programmed,  
thereby preserving the register contents.  
When PWR DWN is not used, it should be tied high.  
2.2.4  
Register Default Values After POR, Software Reset, or RESET Is Applied  
Register 1 – The A Register  
The default value of the A-register data is decimal 18 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
1
0
0
1
0
2–2  
Register 2 – The B Register  
The default value of the B-register data is decimal 18 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
1
0
0
1
0
Register 3 – The ARegister  
The default value of the A-register data is decimal 0 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
0
Register 4 – The Amplifier Gain-Select Register  
The default value of the amplifier gain-select register data is shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
1
0
1
Register 5 – The Analog Control-Configuration Register  
The power-up and reset conditions are as shown below. In the read mode, 8 bits are read but the 4 LSBs  
are repeated as the 4 MSBs.  
DS03 DS02 DS01 DS00  
0
0
0
1
Register 6 – The Digital Configuration Register  
The default value of DS07 – DS00 is 0 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
0
Register 7 – The Frame-Sync Delay Register  
The default value of DS07 – DS00 is 0 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
0
Register 8 – The Frame-Sync Number Register  
The default value of DS07 – DS00 is 1 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
1
2–3  
2.3 Master-Slave Terminal Function  
Table 2–1 describes the function of the master/slave (M/S) input. The only difference between master and  
slave operations in the TLC320AC02 is that SCLK and FS are outputs when M/S is high and inputs when  
M/S is low.  
Table 2–1. Master-Slave Selection  
MODE  
M/S  
H
FS  
SCLK  
Output  
Input  
Master and Stand Alone  
Slave and Codec Emulation  
Output  
Input  
L
When the stand-alone mode is desired or when the device is  
permanently in the master mode, M/S must be high.  
2.4 ADC Signal Channel  
To produce excellent common-mode rejection of unwanted signals, the analog signal is processed  
differentially until it is converted to digital data. The signal is amplified by the input amplifier at one of three  
software-selectable gains (typically 0 dB, 6 dB, or 12 dB). A squelch mode can also be programmed for the  
input amplifier.  
The amplifier output is filtered and applied to the ADC input. The ADC converts the signal into discretedigital  
words in 2s-complement format corresponding to the analog-signal value at the sampling time. These 16-bit  
digital words, representing sampled values of the analog input signal, are clocked out of the serial port  
(DOUT), one word for each primary communication interval. During secondary communications, the data  
previously programmed into the registers can be read out with the appropriate register address and with the  
read bit set to 1. When a register read is not requested, all 16 bits are 0.  
2.5 DAC Signal Channel  
DIN receives the 16-bit serial data word (2s complement) from the host during the primary communications  
interval and latches the data on the seventeenth rising edge of SCLK. The data are converted to an analog  
voltage by the DAC with a sample and hold and then through a (sin x)/x correction circuit and a smoothing  
filter. An output buffer with three software-programmable gains (0 dB, 6 dB, and 12 dB), as shown in  
register 4, drives the differential outputs OUT+ and OUT. A squelch mode can also be programmed for  
the output buffer. During secondary communications, the configuration program data are read into the  
device control registers.  
2.6 Serial Interface  
The digital serial interface consists of the shift clock, the frame-synchronization signal, the ADC-channel  
data output, and the DAC-channel data input. During the primary 16-bit frame-synchronization interval, the  
SCLK transfers the ADC channel results from DOUT and transfers 16-bit DAC data into DIN.  
During the secondary frame-synchronization interval, the SCLK transfers the register read data from DOUT  
when the read bit is set to a 1. In addition, the SCLK transfers control and device parameter information into  
DIN. The functional sequence is shown in Figure 2–1.  
2–4  
[ (B register)/2] FCLK Periods  
Frame-Sync Interval  
(primary communication)  
Frame-Sync Interval  
(secondary  
communication)  
SCLK  
FS  
16 SCLKs  
16 SCLKs  
ADC Conversion Result  
DAC Input Data  
Register Read Data or All 0s  
DOUT  
DIN  
Control and Device Parameter  
Data  
The time between the primary and secondary frame sync is the time equal to filter clock (FCLK) period multiplied by the  
B-register contents divided by two. The time interval is rounded to the nearest shift clock. The secondary frame-sync  
signal goes from high to low on the next shift clock low-to-high transition after (B register/2) filter clock periods.  
Figure 2–1. Functional Sequence for Primary and Secondary Communication  
2.7 Number of Slaves  
The maximum number of slaves is determined by the sum of the individual device delays from the  
frame-sync (FS) input low to the frame-sync delayed (FSD) low for all slaves according to equation 1:  
(1)  
(n) / tp(FSFSD) < 1/2 shift-clock period  
Where:  
n is the number of slave devices.  
Example:  
From equation 1 above, the number of slaves is given by equation 2:  
1
2
1
(2)  
(n)  
x (SCLK period) x  
(
)
FSD  
tp FS  
assuming the master clock is 10.368 MHz and the shift clock is 2.5965 MHz and tp(FS – FSD) is 40 ns, then  
according to equation 3, the number of slaves is:  
1000  
192  
1
1
2
1
(3)  
n
x
x
4.8  
40 ns  
2.5965 MHz  
The maximum number of slaves under these conditions is four.  
2–5  
2.8 Required Minimum Number of MCLK Periods  
Master with slave operation is summarized in the following sections.  
2.8.1  
TLC320AC02 AIC Master-Slave Summary  
After initial setup and the master and slave frame syncs are separated, when secondary communication is  
needed for a slave device, a 11 must be placed in the 2 LSBs of each primary data word for all devices in  
the system, master and slave, by the host processor. In other words, all AICs must receive secondary frame  
requests.  
The host processor must issue the command by setting D01 and D00 to a 1 in the primary frame sync data  
word of all devices. Then the master generates the master primary frame sync and, after the number of shift  
clocks set by the FSD register value, the slave primary frame sync intervals. Then, after (B register value/2)  
FCLK periods, the master secondary frame sync occurs first, and then the slave secondary frame sync  
occurs. These are also rippled through the slave devices.  
In other words, when a secondary communications interval is requested by the host processor as described  
above:  
1. The master outputs the master primary frame sync interval, and then the slave primary frame  
sync intervals after the FSD register value number of shift clocks.  
2. After (B register value/2) FCLK periods, the master then outputs the master secondary frame  
sync interval, and after the FSD register value number of shift clocks, the slave secondary frame  
sync intervals.  
This sequence is shown in Figure 2–2.  
The host must keep track of whether the master or a slave is then being addressed and also the number  
of slave devices. The master always outputs a 00 in the last 2 bits of the DOUT word, and a slave always  
outputs a 1 in the LSB of the DOUT word. This information allows the system to recognize a starting point  
by interrogating the least significant bit of the DOUT word. If the LSB is 0, then that device is the master,  
and the system is at the starting point.  
Note: This identification always happens except in 16-bit mode when the 2 LSBs are not available  
for identification purposes.  
(B Register Value/2) FCLK Periods  
Sampling Period  
FSD Value  
in SCLKs  
Frame Sync  
Sequence  
MP  
SP1  
SP2  
SPn  
MS  
SS1  
SS2  
SSn  
MP  
Period Symbol  
Periods shown: Each period must be a minimum of 16 SCLKs plus 2 additional SCLKs  
MP  
= Master Primary Period  
= 1st Slave Primary Period  
= 2nd Slave Primary Period  
= nth Slave Primary Period  
MS  
= Master Secondary Period  
SP1  
SP2  
SPn  
SS1  
SS2  
SSn  
= 1st Slave Secondary Period  
= 2nd Slave Secondary Period  
= nth Slave Secondary Period  
Figure 2–2. Timing Sequence  
2–6  
2.8.2  
Notes on TLC320AC01/02 AIC Master-Slave Operation  
Master/slave operational detail is summarized in the following notes:  
1. The slave devices can be programmed independently of the master as long as the clock divide  
register numbers are not changed. The gain settings, for example, can be changed  
independently.  
2. The method that is used to program a slave independently is to request a secondary  
communicationofthemasterandallslavesandripplethedelayedframesynctothedesiredslave  
device to be programmed.  
3. Secondary frame syncs must be requested for all devices in the system or none. This is required  
so that the master generates secondary frames for the slaves and allows the slaves to know that  
the second frame syncs they receive are secondary frame syncs. Each device in the system must  
receive a secondary frame request in its corresponding primary frame sync period (11 in the last  
2 LSBs).  
4. Calculation of the sampling frequency in terms of the master clock and the shift clock and the  
respective register ratios is (see equations 4–6):  
FCLK  
B register value  
Sampling frequency  
f
s
(
)
f MCLK  
(4)  
(5)  
(
)
B register value  
2 (A register value)  
Therefore,  
(
)
f MCLK  
(
)
(
)
B register value  
2
A register value  
f
s
and in terms of the shift clock frequency, since  
f(MCLK)  
4
f(SCLK)  
then  
(
)
B register value  
f(SCLK)  
(A register value)  
2
f
s
Number of SCLK periods  
Sampling period  
(6)  
5. The minimum number of shift clocks between falling edges of any two frame syncs is 18 because  
the frame sync delay register minimum number is 18.  
When a secondary communication is requested by the host, the master secondary frame sync  
begins at the middle of the sampling period (followed by the slave secondary frame syncs), so all  
primary frame sync intervals (master and slave) must occur within one-half the sampling time.  
2–7  
The first secondary frame-sync falling edge, therefore, occurs at the following time (see  
equation 7):  
B register value  
(
)
FCLK periods  
Time to first secondary frame sync  
2
A register value  
A register value  
B register value (number of MCLK periods)  
B register value  
(number of SCLK periods)  
(7)  
4
6. Number of frame sync intervals using equation 8.  
All master and slave primary frame sync intervals must occur within the time of equation 7.  
Since 18 shift clocks are required for each frame sync interval, then the number of frame sync  
intervals from equation 8 is:  
A register value  
B register value  
Number of frame sync intervals  
4
18 (SCLKs frame sync interval)  
A register value  
B register value  
(8)  
72  
7. Number of devices, master and slave, in terms of f(MCLK) and f .  
s
Substituting the value from equation 5 for the A × B register value product gives the total number  
of devices, including the master and all slaves that can be used, for a given master clock and  
sampling frequency. Therefore, using equation 9:  
f(MCLK)  
Number of devices  
(9)  
144  
f
s
8. Number of devices, master and slave, if slave devices are reprogrammed.  
Equation 9 does not include reprogramming the slave devices after the frame sync delay occurs.  
So if programming is required after shifting the slave frame syncs by the FSD register, then the  
total number of devices is given by equation 10 is:  
f(MCLK)  
Number of devices  
(10)  
288  
f
s
9. Example of the maximum number of devices if the slave devices are reprogrammed assuming  
the following values:  
f(MCLK)  
10.368 MHz, f  
8 kHz  
s
then from equation 10,  
Maximum number of devices  
10.368 MHz  
288 (8 kHz)  
4.5  
therefore, one master and three slaves can be used.  
2–8  
2.9 Operating Frequencies  
2.9.1  
Master and Stand-Alone Operating Frequencies  
The sampling (conversion) frequency is derived from the master-clock (MCLK) input by equation 11:  
MCLK  
f
s
Sampling (conversion) frequency  
(11)  
(A register value)  
(B register value)  
2
The inverse is the time between the falling edges of two successive primary frame-synchronization signals.  
The input and output data clock (SCLK) frequency is given in equation 12:  
MCLK frequency  
(12)  
SCLK frequency  
4
2.9.2  
Slave and Codec Operating Frequencies  
The slave operating frequencies are either the default values or programmed by the control data word from  
the master and codec conversion and the data frequencies are determined by the externally applied SCLK  
and FS signals.  
2.10 Switched-Capacitor Filter Frequency (FCLK)  
The filter clock (FCLK) is an internal clock signal that determines the filter band-pass frequency and is the  
B counter clock. The frequency of the filter clock is derived by equation 13:  
MCLK  
(A register value)  
(13)  
FCLK  
2
2.11 Filter Bandwidths  
The low-pass (LP) filter 3 dB corner is derived in equation 14:  
FCLK  
40  
MCLK  
(A register value)  
(14)  
(15)  
f (LP)  
40  
2
The high-pass (HP) filter 3 dB corner is derived in equation 15:  
Sampling frequency  
f (HP)  
MCLK  
200  
200  
2
(A register value)  
(B register value)  
2.12 Master and Stand-Alone Modes  
The difference between the master and stand-alone modes is that in the stand-alone mode there are no  
slave devices. Functionally these two modes are the same. In both, the AIC internally generates the shift  
clock and frame-sync signal for the serial communications. These signals and the filter clock (FCLK) are  
derived from the input master clock.The master clock applied at the MCLK input determines the internal  
device timing. The shift clock frequency is a divide-by-four of the master clock frequency and shifts both the  
input and output data at DIN and DOUT, respectively, during the frame-sync interval (16 shift clocks long).  
To begin the communication sequence, the device is reset (see Section 2.2.1), and the first frame sync  
occurs approximately 648 master clocks after the reset condition disappears.  
2.12.1 Register Programming  
All register programming occurs during secondary communications, and data is latched and valid on the  
sixteenth falling edge of SCLK. After a reset condition, eight primary and secondary communications cycles  
are required to set up the eight programmable registers. Registers 1 through 8 are programmed in  
secondary communications intervals 1 through 8, respectively. If the default value for a particular register  
is desired, that register does not need to be addressed during the secondary communications. The no-op  
command addresses the pseudo-register (register 0), and no register programming takes place during this  
communications. The no-op command allows phase shifts of the sampling period without reprogramming  
any register.  
During the eight register programming cycles, DOUT is in the high-impedance state. DOUT is released on  
the rising edge of the eighth primary internal frame-sync interval. In addition, each register can be read back  
2–9  
during DOUT secondary communications by setting the read bit to 1 in the appropriate register. Since the  
register is in the read mode, no data can be written to the register during this cycle. To return this register  
to the write mode requires a subsequent secondary communication (see Section 2.19 for detailed register  
description).  
2.12.2 Master and Stand-Alone Functional Sequence  
The A counter counts according to the contents of the A register, and the A counter frequency is divided by  
two to produce the filter clock (FCLK). The B counter is clocked by FCLK with the following functional  
sequence:  
1. The B counter starts counting down from the B register value minus one. Each count remains in  
the counter for one FCLK period including the zero count. This total counter time is referred to  
as the B cycle. The end of the zero count is called the end of B cycle.  
2. When the B counter gets to a count of nine, the analog-to-digital (A-to-D) conversion starts.  
3. The A-to-D conversion is complete ten FCLK periods later.  
4. FS goes low on a rising edge of SCLK after the A-to-D conversion is complete. That rising edge  
of SCLK must be preceded by a falling edge of SCLK, which is the first falling edge to occur after  
the end of B cycle.  
5. The D-to-A conversion cycle begins on the rising edge of the internal frame-sync interval and is  
complete ten FCLK periods later.  
2.13 Slave and Codec Modes  
The only difference between the slave and codec modes is that the codec mode is controlled directly by the  
host and does not use a delayed frame-sync signal. In both modes, the shift clock and the frame sync are  
bothexternallygeneratedandmustbesynchronouswithMCLK. Theconversionfrequencyissetbythetime  
interval of externally applied frame-sync falling edges except when the free-run function is selected by bit 5  
of register 6 (see Section 2.15.4). The slave device or devices share the shift clock generated by the master  
device but receive the frame sync from the previous slave in the chain. The Nth slave FS receives the  
(N1)st slave FSD output and so on. The first slave device in the chain receives FSD from the master.  
2–10  
2.13.1 Slave and Codec Functional Sequence  
The A counter counts according to the contents of the A register, and the A counter frequency is divided by  
two to produce the FCLK. The device function in the slave or codec mode is the same as steps 1 through  
3 of the B cycle description in the master mode but differs as follows:  
1. Same as master  
2. Same as master  
3. Same as master  
4. All internal clocks stop 1/2 FCLK before the end of count 0 in the B counter cycle.  
5. All internal clocks are restarted on the first rising edge of MCLK after the external FS input goes  
low. This operation provides the synchronization necessary when using an external FS signal.  
6. The D-to-A conversion starts on the rising edge of the internally generated frame-sync interval  
at the end of the 16-shift clock data transfer.  
In the slave mode, the master controls the phase adjustments for itself and all slaves since all devices are  
programmed in the same frame-sync interval. In the codec mode, the shift clock and frame sync are  
externally generated and provide the timing for the ADC and DAC if the free-run function has not been  
selected (see Subsection 2.15.4). In the codec mode, there is usually no need for phase adjustments;  
however, any required phase adjustments must be made by adjusting the external frame-sync timing  
(sampling time).  
2.13.2 Slave Register Programming  
When slave devices are used on power-up or reset, all slave frame-sync signals occur at the same time as  
the master frame-sync signal and all slave devices are programmed during the master secondary frame-  
sync interval with the same data as the master. The last register programmed must be the frame-sync delay  
(FSD) register because the delay starts immediately on the rising edge of the seventeenth shift clock of that  
frame- sync interval. After the FSD register programming is completed for the master and slave, the slave  
primary frame interval is shifted in time (time slot allocated) according to the data contained in the slave FSD  
registers. The master then generates frame-sync intervals for itself and each slave to synchronize the host  
serial port for data transfers for itself and all slave devices.  
The number of slaves is specified in the FSN register (register 8); therefore, the number of frame-sync  
intervals generated by the master is equal to the number of slaves plus one (see Section 2.7). These master  
frame-sync intervalsareseparatedintimebythedelaytimespecifiedbytheFSDregister(register7). These  
master-generated intervals are the only frame-sync interval signals applied to the host serial port to provide  
the data-transfer time slot for the slave devices.  
2.14 Terminal Functions  
2.14.1 Frame-Sync Function  
The frame-sync signal indicates that the device is ready to send and receive data for both master and slave  
modes. The data transfer begins on the falling edge of the frame-sync signal.  
2.14.1.1 Frame Sync (FS), Master Mode  
The frame sync is generated internally. FS goes low on the rising edge of SCLK and remains low for the  
16-bit data transfer. In addition to generating its own frame-sync interval, the master also outputs a frame  
sync for each slave that is being used.  
2–11  
2.14.1.2 Frame-Sync Delayed (FSD), Master Mode  
For the master, the frame-sync delayed output occurs 1/2 shift-clock period ahead of FS to compensate for  
the time delay through the master and slave devices. The timing relationships are as follows:  
1. When the FSD register data is 0, then FSD goes low on the falling edge of SCLK prior to the rising  
edge of SCLK when FS goes low (see Figure 44).  
2. When the FSD register data is greater than 17, then FSD goes low on a rising edge of SCLK that  
is the FSD register number of SCLKs after the falling edge of FS.  
Register data values from 1 to 17 should not be used.  
2.14.1.3 Frame Sync (FS), Slave Mode  
The frame-sync timing is generated externally, applied to FS, and controls the ADC and DAC timing (see  
Subsection 2.15.4). The external frame-sync width must be a minimum of one shift clock to be recognized  
and can remain low until the next data frame is required.  
2.14.1.4 Frame-Sync Delayed (FSD), Slave Mode  
This output is fed from the master to the first slave and the first slave FSD output to the second and so on  
down the chain. The FSD timing sequence in the slave mode is as follows:  
1. When the FSD register data is 0, then FSD goes low after FS goes low (see Figure 45).  
2. When the FSD register data is greater than 17, FSD goes low on a rising edge of SCLK that is  
the FSD register number of SCLKs after the falling edge of FS.  
Data values from 1 to 17 should not be used.  
2.14.2 Data Out (DOUT)  
DOUT is placed in the high-impedance state on the seventeenth rising edge of SCLK (internal or external)  
after the falling edge of frame sync. In the primary communication, the data word is the ADC conversion  
result. In the secondary communication, the data is the register read results when requested by the  
read/write (R/W) bit with the eight MSBs set to 0 (see Section 2.16). If no register read is requested, the  
secondary word is all zeroes.  
2.14.2.1 Data Out, Master Mode  
In the master mode, DOUT is taken from the high-impedance state by the falling edge of frame sync. The  
most significant data bit then appears on DOUT.  
2.14.2.2 Data Out, Slave Mode  
In the slave mode, DOUT is taken from the high-impedance state by the falling edge of the external frame  
sync or the rising edge of the external SCLK, whichever occurs first (see Figure 47). The falling edge of  
frame sync can occur ±1/4 SCLK period around the SCLK rising edge (see Figure 43). The most  
significant data bit then appears on DOUT.  
2.14.3 Data In (DIN)  
In the primary communication, the data word is the digital input signal to the DAC channel. In the secondary  
communication, the data is the control and configuration data to set up the device for a particular function  
(see Section 2.16).  
2.14.4 Hardware Program Terminals (FC1 and FC0)  
These inputs provide for hardware programming requests for secondary communication or phase  
adjustment. These inputs work in conjunction with the control bits D01 and D00 of the primary data word  
or control bits DS15 and DS14 of the secondary data word. The data on FC1 and FC0 are latched on the  
rising edge of the next internally generated primary or secondary frame-sync interval. These inputs should  
be tied low if not used (see Section 2.17 and Table 2–3).  
2–12  
2.14.5 Midpoint Voltages (ADC V  
and DAC V  
)
MID  
MID  
Since the device operates at a single-supply voltage, two midpoint voltages are generated for internal signal  
processing. ADC V is used for the ADC channel reference, and DAC V is used for the DAC channel  
MID  
MID  
reference. Two references minimize channel-to-channel noise and crosstalk. ADC V  
and DAC V  
MID  
MID  
must be buffered when used as a reference for external signal processing.  
2.15 Device Functions  
2.15.1 Phase Adjustment  
In some applications, such as modems, the device sampling period may require an adjustment to  
synchronize with the incoming bit stream to improve the signal-to-noise ratio. The TLC320AC02 can adjust  
the sampling period through the use of the Aregister and the control bits.  
2.15.1.1 Phase-Adjustment Control  
A phase adjustment is a programmed variation in the sampling period. A sampling period is adjusted  
according to the data value in the Aregister, and the phase adjustment is that number of master clocks  
(MCLK). An adjustment is made during device operation with data bits D01 and D00 in the primary  
communication, with data bits DS15 and DS14 in the secondary word or in combination with the hardware  
terminals FC1 and FC0 (see Table 23). This adjustment request is latched on the rising edge of the next  
internal frame-sync interval and is only valid for the next sampling period. To repeat the phase adjustment,  
another phase request must be initiated.  
2.15.1.2 Use of the ARegister for Phase Adjustment  
The Aregister value makes slight timing adjustments to the sampling period. The sampling period  
increases or decreases according to the sign of the programmed Aregister value and the state of data bits  
D01 and D00 in the primary data word.  
The general equation for the conversion frequency is given in equation 16:  
MCLK  
f = conversion frequency  
(16)  
s
(2  
A register value  
B register value)  
(A register value)  
Therefore, if A= 0, the device conversion (sampling) frequency and period is constant.  
If a nonzero Avalue is programmed, the sampling frequency and period responds as shown in Table 2–2.  
Table 2–2. Sampling Variation With A′  
SIGN OF THE AREGISTER VALUE  
D01  
D00  
PLUS VALUE  
(+)  
NEGATIVE VALUE  
(–)  
1
Frequency decreases,  
period increases  
Frequency increases,  
period decreases  
0
1
(increase command)  
0
Frequency increases,  
period decreases  
Frequency decreases,  
period increases  
(decrease command)  
An adjustment to the sampling period, which must be requested through D01 and D00 of the primary data  
word to DIN, is valid for the following sampling period only. When the adjustment is required for the  
subsequent sampling period, it must be requested again through D01 and D00 of the primary data word.  
For each request, only the sampling period occurring immediately after the primary data word request is  
affected.  
2–13  
The amount of time shift in the entire sampling period (1/f ) is as follows:  
s
When the sampling period is set to 125 µs (8 kHz), the Aregister is loaded with decimal 10 and the  
TLC320AC02masterclockfrequencyis10.386MHz. Theamountoftimeeachsamplingperiodisincreased  
or decreased, when requested, is given in equation 17:  
Time shift = (Aregister value) × (MCLK period)  
(17)  
The device changes the entire sampling period by only the MCLK period times the Aregister value as given  
in equation 18:  
Change in sampling period = contents of Aregister × master clock period  
= 10 × 96.45 ns = 964 ns (less than 1% of the sampling period)  
(18)  
The sampling period changes by 964.5 ns each time the phase adjustment is requested by the primary data  
word (i.e., once per sampling period).  
It is evident then that the change in sampling period is very small compared to the sampling period. To  
observe this effect over a long period of time (> sampling period), this change must be continuously  
requested by the primary data word. If the adjustment is not requested again, the sampling period changes  
onlyonceanditmayappearthattherewasnoexecutionofthecommand. Thisisespeciallytruewhenbench  
testing the device. Automatic test equipment can test for results within a single sampling period.  
Internally, the Aregister value only affects one cycle (period) of the A counter. The A and Avalues are  
additive, but only for one A-counter period. The A counter begins the first count at the default or programmed  
A-register value and counts down to the A-register value. As the Avalue increases or decreases, the first  
clock cycle from the A counter is lengthened or shortened. The initial A-counter period is the only counter  
period affected by the Aregister such that only this single period is increased or decreased.  
2.15.2 Analog Loopback  
This function allows the circuit to be tested remotely. In loopback, OUT+ and OUT– are internally connected  
to IN+ and IN. The DAC data bits D15 to D02 that are applied to DIN can be compared with the ADC output  
data bits D15 to D02 at DOUT. There are some differences due to the ADC and DAC channel offset. The  
loopback function is implemented by setting DS01 and DS00 to zero in control register 5 (see Section 2.19).  
When analog loopback is enabled, the external inputs to IN+ and IN– are disconnected, but the signals at  
OUT+ and OUT– may still be read.  
2.15.3 16-Bit Mode  
In the 16-bit mode, the device ignores the last two control bits (D01 and D00) of the primary word and  
requests continual secondary communications to occur. By ignoring the last two primary communication  
bits, compatibility with existing 16-bit software can be maintained. This function is implemented by setting  
bit DS03 to 1 in register 6. To return to normal operation, DS03 must be reprogrammed to 0.  
2.15.4 Free-Run Mode  
With the free-run bit set in register 6, the external shift clock and frame sync control only the data transfer.  
The ADC and DAC timing are controlled by the A and B register values, and the phase-shift adjustment must  
be done as if the device is in stand-alone mode (by the software or the state of FC1 and FC0).  
Phase adjustment cannot be made by adjustment of the frame-sync timing. The external frame sync must  
occur within 1/2 FCLK period of the internal frame sync (FCLK as determined by the values of the A and  
B registers).  
When the external frame sync occurs simultaneously with the internal load, the data-transfer request by the  
external frame sync takes precedence over an internal load command. The latching of the ADC conversion  
data in the output register is inhibited until the current 16 bits are shifted out of the register by the shift clock.  
2.15.5 Force Secondary Communication  
With bit 2 in register 6 set to 1, secondary communication is requested continuously. It overrides all software  
and hardware requests concerning secondary communication. Phase shifting, however, can still be  
performed with the software and hardware.  
2–14  
2.15.6 Enable Analog Input Summing  
By setting bits DS01 and DS00 to 11 in register 5, the normal analog input voltage is summed with the  
auxiliaryinputvoltage. ThegainfortheanaloginputamplifierissetbydatabitsDS03andDS02inregister 4.  
2.15.7 DAC Channel (sin x)/x Error Correction  
The (sin x)/x compensation filter is designed for zero (sin x)/x error using a B-register value of 15. Since the  
filter cannot be removed from the signal path, operation using another B-register value results in an error  
in the reconstructed analog output. The error is given by equation 19. Any error compensation needed by  
a given application can be performed in the software.  
2
f
A
B
sin  
sin  
f
MCLK  
15  
B
DAC channel frequency response error  
20  
log  
(19)  
10  
30  
f
A
f
MCLK  
where:  
f
= the frequency of interest  
f
= the TLC320AC02 master-clock frequency  
= the A-register value  
MCLK  
A
B
= the B-register value  
and the arguments of the sin functions are in radians.  
2.16 Serial Communications  
2.16.1 Stand-Alone and Master-Mode Word Sequence and Information Content During  
Primary and Secondary Communications  
For the stand-alone and master modes, the sequence in Figure 2–2 shows the relationship between the  
primary and secondary communications interval, the data content into DIN, and the data content from  
DOUT.  
The TLC320AC02 can provide a phase-shift command or the next secondary communications interval by  
decoding 1) the programmed state of the FC1 and FC0 inputs and the D01 and D00 data bits in the primary  
data word, or 2) the state of the FC1 and FC0 inputs and the DS15 and DS14 data bits in the secondary  
data word (see Table 23). When DS13 (the R/W bit) is the default value of 0, all 16 bits from DOUT are  
0 during secondary communication. However, when the R/W bit is set to 1 in the secondary communication  
control word, the secondary transmission from DOUT still contains 0s in the eight MSBs. The lower order  
8 bits contain the data of the register currently being addressed. This function provides register status  
information for the host.  
2–15  
[ (B register)/2] FCLK Periods  
Primary Frame Sync  
(16 SCLKs long)  
Secondary Frame Sync  
(16 SCLKs long)  
FS  
DOUT  
DIN  
2s-Complement ADC Output  
(14 bits plus 00 for the two LSBs)  
16 Bits All 0s, Except When in  
Read Mode (then least significant  
8 bits are register data)  
Input Data for the Internal Registers  
(16 bits containing control,  
address, and data information)  
2s-Complement Input for the DAC  
Channel (14 bits plus two  
function bits). If the 2 LSBs Are  
Set to 1, Secondary Frame Sync Is  
Generated by the TLC320AC02  
The time between the primary and secondary frame sync is the time equal to filter clock (FCLK) period multiplied by the  
B-register contents divided by two. The time interval is rounded to the nearest shift clock. The secondary frame-sync  
signal goes from high to low on the next shift clock low-to-high transition after (B register/2) filter clock periods.  
Figure 2–3. Master and Stand-Alone Functional Sequence  
2.16.2 Slave and Codec-Mode Word Sequence and Information Content During  
Primary and Secondary Communications  
For the slave and codec modes, the sequence is basically the same as the stand-alone and master modes  
with the exception that the frame sync and the shift clock are generated and controlled externally as shown  
in Figure 2–3. For the codec mode, the frame-sync pulse width needs to be a minimum of one shift clock  
long. The timing relationship between the frame sync and shift clock is shown in the timing diagrams. Phase  
shifting is usually not required in the slave or codec mode because the frame-sync timing can be adjusted  
externally if required.  
1 SCLK Minimum  
1 SCLK Minimum  
FS  
Primary Frame Sync  
Secondary Frame Sync  
2s-Complement ADC Output  
(14 bits plus 00 for the 2 LSBs in  
master and stand-alone mode and  
01 in slave mode)  
16 Bits, All 0s, Except When in  
Read Mode (then least significant  
8 bits are register data)  
DOUT  
Input Data for the Internal  
Registers (16 bits containing  
control, address, and data  
information)  
DIN  
2s-Complement Input for the DAC  
Channel (14 bits plus two  
function bits)  
NOTE A: The time between the primary and secondary frame syncs is determined by the application; however, enough  
time must be provided so that the host can execute the required number of software instructions in the time  
between the end of the primary data transfer (rising edge of the primary frame-sync interval) and the falling  
edge of the secondary frame sync (start of secondary communications).  
Figure 2–4. Slave and Codec Functional Sequence  
2–16  
2.17 Request for Secondary Serial Communication and Phase Shift  
The following paragraphs describe a request for secondary serial communication and phase shift using  
hardware control inputs FC1 and FC0, primary data bits D01 and D00, and secondary data bits DS15 and  
DS14.  
2.17.1 Initiating a Request  
Combinations of FC1 and FC0 input conditions, bits D01 and D00 in the primary serial data word, FC1 and  
FC0, and bits DS15 and DS14 in the secondary serial data word can initiate a secondary serial  
communication or request a phase shift according to the following rules (see Table 2–3).  
1. Primary word phase shifts can be requested by either the hardware or software when the other  
set of signals are 11 or 00. If both hardware and software request phase shifts, the software  
request is performed.  
2. Secondary words can be requested by either the software or hardware at the same time that the  
other set of signals is requesting a phase shift.  
3. Hardware inputs FC1 and FC0 are ignored during the secondary word unless DS15 and DS14  
are 11. When DS15 and DS14 are 01 or 10, the corresponding phase shift is performed. When  
DS15 and DS14 are 00, no phase shift is performed even when the hardware requests a phase  
shift.  
2.17.2 Normal Combinations of Control  
The normal combinations of control are as follows:  
1. Use D01 and D00 and DS15 and DS14 to request phase shifts and secondary words by holding  
FC1 and FC0 to 00.  
2. Use FC1 and FC0 exclusively to request phase shifts and secondary words by holding D01 and  
D00 to 00 and DS15 and DS14 to 11.  
3. Use D01 and D00 only to request secondary words and FC1 and FC0 to perform phase shifts  
once per period by holding DS15 and DS14 to 00.  
2.17.3 Additional Control Options  
Additional control options are unusual and are rarely needed or used; however, they are as follows:  
1. Use D01 and D00 only to request secondary words and FC1 and FC0 to perform phase shifts  
twice per period by holding DS15 and DS14 to 11.  
2. UseFC1andFC0exclusivelytorequestsecondarywordsandD01andD00andDS15andDS14  
to perform phase shifts twice per period.  
3. Use FC1 and FC0 to perform the phase shift after the primary word and DS15 and DS14 to  
perform a phase shift after the secondary word by holding D01 and D00 to 11.  
2–17  
Table 2–3. Software and Hardware Requests for  
Secondary Serial-Communication and Phase-Shift Truth Table  
PHASE-SHIFT  
CONTROL  
BITS  
HARDWARE  
TERMINALS  
ADJUSTMENT  
WITHIN PRIMARY  
OR SECONDARY  
DATA WORD  
SECONDARY  
REQUEST  
(see Note 1)  
(see Section 2.15.1)  
D01  
D00  
FC1  
FC0  
EARLIER  
LATER  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
0
1
Primary  
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
0
1
0
0
1
0
0
1
1
1
1
DS15 DS14  
FC1  
FC0  
EARLIER  
LATER  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
No request can be made for  
secondary communication  
within the secondary word.  
Secondary  
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
0
1
0
0
1
0
0
NOTE 1: The 0 state indicates that a secondary communication is not being requested. The 1 state indicates that a  
secondary communication is being requested.  
2.18 Primary Serial Communications  
Primary serial communications transfer the 14-bit DAC input plus two control bits (D01 and D00) to DIN of  
the TLC320AC02.They simultaneously transfer the 14-bit ADC conversion result from DOUT to the  
processor. The 2 LSBs are set to 0 in the ADC result.  
2–18  
2.18.1 Primary Serial Communications Data Format  
D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00  
14-bit DAC Conversion Result  
2s-Complement Format  
Control Bits  
Sincethesupplyvoltageissingleended,thereferencefor2s-complementformatisADCV  
this reference have a 0 as the MSB, and voltages below this reference have a 1 as the MSB.  
. Voltagesabove  
MID  
During primary serial communications, when D01 and D00 are both high in the DAC data word to DIN, a  
subsequent 16 bits of control information is received by the device at DIN during a secondary  
serial-communication interval. This secondary serial-communication interval begins at 1/2 theprogrammed  
conversion time when the B register data value is even or 1/2 the programmed value minus one FCLK when  
the B register data value is odd. The time between primary and secondary serial communication is  
measured from the falling edge of the primary frame sync to the falling edge of the secondary frame sync  
(see Section 2.19 for function and format of control words).  
2.18.2 Data Format From DOUT During Primary Serial Communications  
D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00  
14-Bit ADC Conversion Result  
2s-Complement Format  
D15 is the Sign Bit  
D01  
D00  
0
0
Master Mode  
Slave Mode  
D01  
D00  
0
1
2.19 Secondary Serial Communications  
2.19.1 Data Format to DIN During Secondary Serial Communications  
There are nine 16-bit configuration and control registers numbered from zero to eight. All register data  
contents are represented in 2s-complement format. The general format of the commands during secondary  
serial communications is as follows.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W  
(2 bits) Bit  
Register Address  
(5 bits)  
Register Data Value  
(8 bits)  
All control register words are latched in the register and valid on the sixteenth falling edge of SCLK.  
2.19.2 Control Data-Bit Function in Secondary Serial Communication  
2.19.2.1 DS15 and DS14  
In the secondary data word, bits DS15 and DS14 perform the same control function as the primary control  
bits D01 and D00 do in the primary data word.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W  
Register Address  
Register Data  
Hardware terminals FC1 and FC0 are valid inputs when DS15 and DS14 are both high, and they are ignored  
for all other conditions.  
2–19  
2.19.2.2 DS13 (R/W Bit)  
Reset and power-up procedures set this bit to a 0, placing the device in the write mode. When this bit is set  
to 1, however, the previous data content of the register being addressed is read out to the host from DOUT  
as the least significant 8 bits of the 16-bit secondary word. The first 8 bits remain set to 0. Reading the data  
out is nondestructive, and the contents of the register remain unchanged.  
A. Write Mode (DS13 = 0)  
Data In. The data word to DIN has the following general format in the write mode.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits  
0
Register Address  
Register Data  
Data Out. The shift clock shifts out all 0s as the pattern to the host from DOUT.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
B. Read Mode (DS13 = 1)  
Data In. The data word to DIN has the following format to allow a register read. Phase shifts can  
also be done in the read mode.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits  
1
Register Address  
Ignored  
Data Out. The shift clock clocks out the data of the register addressed from DOUT in the read mode in  
the 8 LSBs.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
0
Register Data  
2.20 Internal Register Format  
2.20.1 Pseudo-Register 0 (No-Op Address)  
This address represents a no-operation command. No register I/O operation takes place, so the device can  
receive secondary commands for phase adjustment without reprogramming any register. A read of the  
no-op is 0. The format of the command word is as follows:  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits  
X
0
0
0
0
0
X
X
X
X
X
X
X
X
2.20.2 Register 1 (A Register)  
The following command loads DS07 (MSB) – DS00 into the A register.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W Register Data  
0
0
0
0
1
The data in DS07 – DS00 determines the division of the master clock to produce the internal FCLK.  
FCLK frequency = MCLK/(A register contents × 2)  
2–20  
The default value of the A-register data is decimal 18 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
1
0
0
1
0
2.20.3 Register 2 (B Register)  
The following command loads DS07 (MSB) – DS00 into the B register.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W Register Data  
0
0
0
1
0
The data in DS07 – DS00 controls the division of FCLK to generate the conversion clock as given in  
equation 20:  
Conversion frequency  
FCLK (B register contents)  
MCLK  
A register contents  
(20)  
2
B register contents  
The default value of the B-register data is decimal 18 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
1
0
0
1
0
2.20.4 Register 3 (ARegister)  
The following command contains the A-register address and loads DS07(MSB) – DS00 into the Aregister.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W  
0
0
0
1
1
Register Data  
The data in DS07 – DS00 is in 2s-complement format and controls the number of master-clock periods that  
the sampling time is shifted.  
The default value of the A-register data is 0 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
0
2–21  
2.20.5 Register 4 (Amplifier Gain-Select Register)  
The following command contains the amplifier gain-select register address with selection code for the  
monitor output (DS05DS04), analog input (DS03DS02), and analog output (DS01DS00)  
programmable gains.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W  
0
0
1
0
0
X
X
*
*
*
*
*
*
Monitor output gain = squelch  
Monitor output gain = 0 dB  
Monitor output gain = 8 dB  
Monitor output gain = 18 dB  
0
0
0
1
1
1
0
1
Analog input gain = squelch  
Analog input gain = 0 dB  
Analog input gain = 6 dB  
Analog input gain = 12 dB  
0
0
1
0
1
0
1
1
Analog output gain = squelch  
Analog output gain = 0 dB  
Analog output gain = 6 dB  
Analog output gain = 12 dB  
0
0
1
0
1
0
1
1
Thedefaultvalueofthemonitoroutputgainissquelch, whichcorrespondstodatabitsDS05andDS04equal  
to 00 (binary).  
The default value of the analog input gain is 0 dB, which corresponds to data bits DS03 and DS02 equal  
to 01 (binary).  
The default value of the analog output gain is 0 dB, which corresponds to data bits DS01 and DS00 equal  
to 01 (binary).  
The default data value is shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
1
0
1
2.20.6 Register 5 (Analog Configuration Register)  
The following command loads the analog configuration register with the individual bit functions described  
below.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W  
Must be set to 0  
0
0
1
0
1
X
X
X
X
*
0
*
*
*
High-pass filter disabled  
High-pass filter enabled  
1
0
Analog loopback enabled  
0
0
1
1
0
1
0
1
Enables IN+ and IN(disables AUXIN+ and AUXIN)  
Enables AUXIN+ and AUXIN(disables IN+ and IN)  
Enable analog input summing  
The default value of the high-pass-filter enable bit is 0, which places the high-pass filter in the signal path.  
The default values of DS01 and DS00 are 0 and 1 which enables IN+ and IN.  
2–22  
The power-up and reset conditions are as shown below.  
DS03 DS02 DS01 DS00  
0
0
0
1
In the read mode, eight bits are read but the 4 LSBs are repeated as the 4 MSBs.  
2.20.7 Register 6 (Digital Configuration Register)  
The following command loads the digital configuration register with the individual bit functions described  
below.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W  
0
0
1
1
0
X
X
*
*
*
*
*
*
ADC and DAC conversion free run  
Inactive  
1
0
FSD output disable  
Enable  
1
0
16-Bit mode, ignore primary LSBs  
Normal operation  
1
0
Force secondary communications  
Normal operation  
1
0
Software reset  
(upon reset, this bit is automatically reset to 0)  
Inactive reset  
1
0
Software power-down active (automatically reset to 0  
after PWR DWN is cycled high to low and back to high)  
1
0
Power-down function external  
(uses PWR DWN)  
The default value of DS07DS00 is 0 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
0
2.20.8 Register 7 (Frame-Sync Delay Register)  
The following command contains the frame-sync delay (FSD) register address and loads DS07  
(MSB)DS00 into the FSD register. The data byte (DS01DS00) determines the number of SCLKs  
between FS and the delayed frame-sync signal, FSD. The minimum data value for this register is  
decimal 18.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W  
0
0
1
1
1
Register Data  
The default value of DS07 – DS00 is 0 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
0
When using a slave device, register 7 must be the last register programmed.  
2–23  
2.20.9 Register 8 (Frame-Sync Number Register)  
The following command contains the frame-sync number (FSN) register address and loads DS07  
(MSB)DS00 into the FSN register. The data byte determines the number of frame-sync signals generated  
by the TLC320AC02. This number is equal to the number of slaves plus one.  
DS15 DS14 DS13 DS12 DS11 DS10 DS09 DS08 DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
Control Bits R/W  
0
1
0
0
0
Register Data  
The default value of DS07DS00 is 1 as shown below.  
DS07 DS06 DS05 DS04 DS03 DS02 DS01 DS00  
0
0
0
0
0
0
0
1
2–24  
3
Specifications  
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
(Unless Otherwise Noted)  
Supply voltage range, DGTL V  
(see Notes 1 and 2) . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
DD  
Supply voltage range, DAC V  
Supply voltage range, ADC V  
Differential supply voltage range, DGTL V  
(see Notes 1 and 2) . . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
(see Notes 1 and 2) . . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
DD  
DD  
to DAC V  
. . . . . . . . . . . . 0.3 V to 6.5 V  
DD  
DD  
Differential supply voltage range, all positive supply voltages to  
ADC GND, DAC GND, DGTL GND, SUBS . . . . . . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
Output voltage range, DOUT . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DGTL V  
Input voltage range, DIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DGTL V  
Ground voltage range, ADC GND, DAC GND,  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DGTL GND, SUBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DGTL V  
+ 0.3 V  
DD  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These  
are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for  
extended periods may affect device reliability.  
3.2 Recommended Operating Conditions (see Note 2)  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
V
DD  
Positive supply voltage  
4.5  
5
Steady-state differential voltage between any two supplies  
High-level digital input voltage  
0.1  
V
V
V
2.2  
V
IH  
Low-level digital input voltage  
0.8  
V
IL  
I
O
Load output current from ADC V  
and DAC  
MID  
100  
µA  
Conversion time for the ADC and DAC channels  
Master-clock frequency  
10 FCLK periods  
f
10.368  
6
15  
70  
MHz  
V
MCLK  
V
Analog input voltage (differential, peak to peak)  
ID(PP)  
Differential output load resistance  
600  
R
L
Single-ended to buffered DAC V  
Operating free-air temperature  
voltage load resistance  
300  
0
MID  
T
°C  
A
NOTES: 1. VoltagevaluesforDGTLV  
arewithrespecttoDGTLGND, voltagevaluesforDACV  
arewithrespect  
arewithrespecttoADCGND. Forthesubsequentelectrical,  
DD  
toDACGND, andvoltagevaluesforADCV  
DD  
DD  
operating, and timing specifications, the symbol V  
DGTL GND, and SUBS are at 0 V unless otherwise specified.  
denotes all positive supplies. DAC GND, ADC GND,  
DD  
2. To avoid possible damage to these CMOS devices and associated operating parameters, the sequence  
below should be followed when applying power:  
(1) Connect SUBS, DGTL GND, ADC GND, and DAC GND to ground.  
(2) Connect voltages ADC V ,and DAC V  
.
DD DD  
(3) Connect voltage DGTL V  
DD  
.
(4) Connect the input signals.  
When removing power, follow the steps above in reverse order.  
3–1  
3.3 Electrical Characteristics Over Recommended Range of Operating  
Free-Air Temperature, MCLK = 5.184 MHz, V  
Unloaded, Total Device  
= 5 V, Outputs  
DD  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
PWR DWN = 1 and clock signals  
present  
20  
1
22  
mA  
Supply  
current  
I
DD  
PWR DWN = 0 after 500 µs and  
clock signals present  
2
mA  
mW  
mW  
mW  
V
PWR DWN = 1 and clock signals  
present  
100  
5
Power  
PWR DWN = 0 after 500 µs and  
dissipation clock signals present  
P
D
Software power down, (bit D00,  
register 6 set to 1)  
15  
20  
Midpoint  
voltage  
ADC V /2  
DD  
ADC V /2  
DD  
ADC V  
DAC V  
No load  
No load  
MID  
MID  
0.1  
+0.1  
Midpoint  
voltage  
DAC V /2  
DD  
DAC V /2  
DD  
V
0.1  
+0.1  
3.4 Electrical Characteristics Over Recommended Range of Operating  
Free-Air Temperature, V = 5 V, Digital I/O Terminals (DIN, DOUT, EOC,  
DD  
FC0, FC1, FS, FSD, MCLK, M/S, SCLK)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
V
I
I
= 1.6 mA  
= 1.6 mA  
2.4  
OH  
OH  
0.4  
10  
10  
V
OL  
OL  
I
I
High-level input current, any digital input V = 2.2 V to DGTL V  
DD  
µA  
µA  
pF  
pF  
IH  
I
Low-level input current, any digital input  
Input capacitance  
V = 0 V to 0.8 V  
I
IL  
C
C
5
5
i
Output capacitance  
o
All typical values are at V  
= 5 V and T = 25°C.  
A
DD  
3.5 Electrical Characteristics Over Recommended Range of Operating  
Free-Air Temperature, V = 5 V, ADC and DAC Channels  
DD  
ADC Channel Filter Transfer Function, FCLK = 144 kHz, f = 8 kHz  
3.5.1  
s
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
–2  
UNIT  
f = 50 Hz  
i
f = 200 Hz  
1.8  
0.15  
0.35  
–1  
0.2  
0.2  
i
f = 300 Hz to 3 kHz  
i
Gain relative to gain at f = 1020 Hz (see Note 3)  
f = 3.3 kHz  
i
0.03  
0.1  
14  
32  
dB  
i
f = 3.4 kHz  
i
f = 4 kHz  
i
f 4.6 kHz  
i
NOTE 3: The differential analog input signals are sine waves at 6 V peak to peak. The reference gain is at 1020 Hz.  
3–2  
3.5.2  
ADC Channel Input, V  
Noted)  
= 5 V, Input Amplifier Gain = 0 dB (Unless Otherwise  
DD  
PARAMETER  
TEST CONDITIONS  
Single-ended  
MIN TYP  
MAX  
UNIT  
V
3
6
V
I(PP)  
Peak-to-peak input voltage (see Note 4)  
Differential  
V
ADC converter offset error  
Band-pass filter selected  
10  
30  
mV  
Common-mode rejection ratio at IN+, IN,  
AUX IN+, AUX IN(see Note 5)  
CMRR  
55  
dB  
kΩ  
dB  
Input resistance at IN+, IN, AUX IN+,  
AUX IN–  
r
i
100  
60  
DS03, DS02 = 0 in  
register 4  
Squelch  
All typical values are at V  
= 5 V and T = 25°C.  
A
DD  
NOTES: 4. The differential range corresponds to the full-scale digital output.  
5. Common-mode rejection ratio is the ratio of the ADC converter offset error with no signal and the ADC  
converter offset error with a common-mode nonzero signal applied to either IN+ and INtogether or  
AUX IN+ and AUX INtogether.  
3.5.3  
ADC Channel Signal-to-Distortion Ratio, V  
Otherwise Noted)  
= 5 V, f = 8 kHz (Unless  
DD s  
A
= 0 dB  
A
= 6 dB  
A = 12 dB  
V
V
V
PARAMETER  
TEST CONDITIONS  
V = 6 dB to 1 dB  
UNIT  
MIN  
64  
59  
56  
50  
44  
38  
32  
26  
MAX  
MIN  
MAX  
MIN  
MAX  
I
V = 12 dB to 6 dB  
I
64  
59  
56  
50  
44  
38  
32  
V = 18 dB to 12 dB  
I
64  
59  
56  
50  
44  
38  
ADC channel signal-to-  
distortion ratio  
(see Note 6)  
V = 24 dB to 18 dB  
I
dB  
V = 30 dB to 24 dB  
I
V = 36 dB to 30 dB  
I
V = 42 dB to 36 dB  
I
V = 48 dB to 42 dB  
I
NOTE 6: The analog-input test signal is a 1020-Hz sine wave with 0 dB = 6 V peak to peak as the reference level for  
the analog-input signal.  
3.5.4  
DAC Channel Filter Transfer Function, FCLK = 144 kHz, f = 9.6 kHz, V  
= 5 V  
DD  
s
PARAMETER  
TEST CONDITIONS  
f < 200 Hz  
MIN  
MAX  
UNIT  
0.15  
0.2  
i
f = 200 Hz  
i
0.5  
0.15  
0.35  
–1  
f = 300 Hz to 3 kHz  
i
0.2  
Gain relative to gain at f = 1020 Hz (see Note 7)  
f = 3.3 kHz  
i
0.03  
0.1  
14  
32  
dB  
i
f = 3.4 kHz  
i
f = 4 kHz  
i
f 4.6 kHz  
i
NOTE 7: The input signal is the digital equivalent of a 1020-Hz sine wave (digital full scale = 0 dB). The nominal  
differential DAC channel output with this input condition is 6 V peak to peak.  
3–3  
3.5.5  
DAC Channel Signal-to-Distortion Ratio, V  
Otherwise Noted)  
= 5 V, f = 8 kHz (Unless  
DD s  
A
= 0 dB  
A
= 6 dB  
A = 12 dB  
V
V
V
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
64  
59  
56  
50  
44  
38  
32  
26  
MAX  
MIN  
MAX  
MIN  
MAX  
V
V
V
V
V
V
V
V
= 6 dB to 0 dB  
O
O
O
O
O
O
O
O
= 12 dB to 6 dB  
= 18 dB to 12 dB  
= 24 dB to 18 dB  
= 30 dB to 24 dB  
= 36 dB to 30 dB  
= 42 dB to 36 dB  
= 48 dB to 42 dB  
64  
59  
56  
50  
44  
38  
32  
64  
59  
56  
50  
44  
38  
DAC channel signal-to-  
distortion ratio  
(see Note 8)  
dB  
NOTE 8: The input signal, V , is the digital equivalent of a 1020-Hz sine wave (full-scale analog output at full-scale digital  
I
input = 0 dB). The nominal differential DAC channel output with this input condition is 6 V peak to peak. The  
load impedance for the DAC output buffer is 600 from OUT+ to OUT.  
3.5.6  
System Distortion, V  
Noted)  
= 5 V, f = 8 kHz, FCLK = 144 kHz (Unless Otherwise  
DD s  
PARAMETER  
TEST CONDITIONS  
Single-ended input (see Note 9)  
Differential input (see Note 9)  
Single-ended input (see Note 9)  
Differential input (see Note 9)  
Single-ended output  
MIN TYP  
MAX  
UNIT  
82  
82  
77  
77  
Second harmonic  
64  
64  
ADC channel  
attenuation  
Third harmonic and  
higher harmonics  
dB  
82  
(buffered DAC V  
(see Note 10)  
)
MID  
Second harmonic  
DAC channel  
attenuation  
Differential output (see Note 10)  
64  
64  
82  
77  
77  
Single-ended output  
(see Note 10)  
Third harmonic and  
higher harmonics  
Differential output (see Note 10)  
All typical values are at V  
= 5 V and T = 25°C.  
A
DD  
NOTES: 9. The input signal is a 1020-Hz sine wave for the ADC channel. Harmonic distortion is defined for an input  
level of 1 dB.  
10. The input signal is the digital equivalent of a 1020-Hz sine wave (digital full scale = 0 dB). The nominal  
differential DAC channel output with this input condition is 6 V peak to peak. The load impedance for the  
DAC output buffer is 600 from OUT+ to OUT. Harmonic distortion is specified for a signal input level  
of 0 dB.  
3–4  
3.5.7  
Noise, Low-Pass and Band-Pass Switched-Capacitor Filters Included,  
= 5 V (Unless Otherwise Noted)  
V
DD  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
Inputs tied to ADC V  
,
MID  
ADC idle-channel noise  
180  
300  
f = 8 kHz, FCLK = 144 kHz,  
s
(see Note 11)  
µVrms  
Broad-band noise  
Noise (0 to 7.2 kHz)  
Noise (0 to 3.6 kHz)  
180  
180  
180  
300  
300  
300  
DIN INPUT = 00000000000000,  
f = 8 kHz, FCLK = 144 kHz,  
s
(see Note 12)  
DAC idle-channel  
noise  
All typical values are at V  
= 5 V and T = 25°C.  
A
DD  
NOTES: 11. The ADC channel noise is calculated by taking the RMS value of the digital output codes of the ADC  
channel and converting to microvolts.  
12. The DAC channel noise is measured differentially from OUT+ to OUTacross 600 .  
3.5.8  
Absolute Gain Error, V  
= 5 V, f = 8 kHz (Unless Otherwise Noted)  
DD s  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
ADC channel absolute gain error (see Note 13)  
1-dB input signal  
0-dB input signal,  
T
= –40 – 85°C  
±1  
A
dB  
DAC channel absolute gain error (see Note 14)  
T
A
= –40 – 85°C  
±1  
R
= 600 Ω  
L
NOTES: 13. ADC absolute gain error is the variation in gain from the ideal gain over the specified input signal levels.  
Thegain is measured with a 1-dB, 1020-Hz sine wave. The 1-dB input signal allows for any positive gain  
or offset error that may affect gain measurements at or close to 0-dB input signal levels.  
14. The DAC input signal is the digital equivalent of a 1020-Hz sine wave (full-scale analog output at digital full-  
scaleinput=0dB). ThenominaldifferentialDACchanneloutputvoltagewiththisinputconditionis6Vpeak  
to peak. The load impedance for the DAC output buffer is 600 from OUT+ to OUT.  
3.5.9  
Relative Gain and Dynamic Range, V  
Noted)  
= 5 V, f = 8 kHz (Unless Otherwise  
DD s  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
ADC channel relative gain tracking error  
(see Note 15)  
48-dB to 1-dB input signal range  
48-dB to 0-dB input signal range  
±0.2  
dB  
DAC channel relative gain tracking error  
(see Note 16)  
±0.2  
R
= 600 Ω  
L(diff)  
NOTES: 15. ADC gain tracking is the ratio of the measured gain at one ADC channel input level to the gain measured  
at any other input level. The ADC channel input is a –1-dB 1020-Hz sine wave input signal. A –1-dB input  
signalallowsforanypositivegainoroffseterrorthatmayaffectgainmeasurementsatorcloseto0-dBADC  
input signal levels.  
16. DAC gain tracking is the ratio of the measured gain at one DAC channel digital input level to the gain  
measured at any other input level. The DAC-channel input signal is the digital equivalent of a 1020-Hz sine  
wave (digital full scale =0dB). ThenominaldifferentialDACchanneloutputvoltagewiththisinputcondition  
is 6 V peak to peak. The load impedance for the DAC output buffer is 600 from OUT+ to OUT.  
3–5  
3.5.10 Power-Supply Rejection, V  
= 5 V (Unless Otherwise Noted) (see Note 17)  
DD  
PARAMETER  
TEST CONDITIONS MIN TYP  
MAX  
UNIT  
f = 0 to 30 kHz  
50  
55  
40  
45  
50  
55  
i
ADC V  
DAC V  
Supply-voltage rejection ratio, ADC channel  
Supply-voltage rejection ratio, DAC channel  
Supply-voltage rejection ratio, ADC channel  
DD  
DD  
f = 30 to 50 kHz  
i
f = 0 to 30 kHz  
i
f = 30 to 50 kHz  
i
f = 0 to 30 kHz  
i
DGTL V  
DD  
f = 30 to 50 kHz  
i
dB  
Single ended,  
f = 0 to 30 kHz  
i
40  
45  
40  
45  
f = 30 to 50 kHz  
i
DGTL V  
Supply-voltage rejection ratio, DAC channel  
DD  
Differential,  
f = 0 to 30 kHz  
i
f = 30 to 50 kHz  
i
All typical values are at V  
= 5 V and T = 25°C.  
A
DD  
NOTE 17: Power supply rejection measurements are made with both the ADC and the DAC channels idle and a 200-mV  
peak-to-peak signal applied to the appropriate supply.  
3.5.11 Crosstalk Attenuation, V  
= 5 V (Unless Otherwise Noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
DAC channel idle with  
DIN = 00000000000000,  
ADC input = 0 dB,  
1020-Hz sine wave,  
Gain = 0 dB (see Note 18)  
ADC channel crosstalk attenuation  
DAC channel crosstalk attenuation  
80  
dB  
ADC channel idle with INP, INM,  
AUX IN+, and AUX INat ADC V  
80  
80  
MID  
dB  
DAC channel input = digital equivalent  
of a 1020-Hz sine wave (see Note 19)  
All typical values are at V  
= 5 V and T = 25°C.  
A
DD  
NOTES: 18. The test signal is a 1020-Hz sine wave with a 0 dB = 6-V peak-to-peak reference level for the analog input  
signal.  
19. The input signal is the digital equivalent of a 1020-Hz sine wave (digital full scale = 0 dB). The nominal  
differential DAC channel output with this input condition is 6 V peak to peak. The load impedance for the  
DAC output buffer is 600 from OUT+ to OUT.  
3–6  
3.5.12 Monitor Output Characteristics, V  
(see Note 20)  
= 5 V (Unless Otherwise Noted)  
DD  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Peak-to-peak ac output  
voltage  
Quiescent level = ADC V  
MID  
V
V
V
1.3  
1.5  
5
V
O(PP)  
Z
L
= 10 kand 60 pF  
No load, single ended  
relative to ADC V  
Output offset voltage  
10  
mV  
OO  
MID  
0.4 ADC 0.5 ADC 0.6 ADC  
Output common-mode voltage No load  
DC output resistance  
V
OC  
V
DD  
V
DD  
50  
V
DD  
r
o
Gain = 0 dB  
0.2  
8.2  
0
0.2  
7.8  
Gain 2 = 8 dB  
Gain 3 = 18 dB  
–8  
A
Voltage gain (see Note 21)  
dB  
V
18.4  
18  
17.6  
60  
Squelch (see Note 22)  
= 5 V and T = 25°C.  
All typical values are at V  
DD  
A
NOTES: 20. All monitor output tests are performed with a 10-kload resistance.  
21. Monitor gains are measured with a 1020-Hz, 6-V peak-to-peak sine wave applied differentially between  
IN+ and IN.The monitor output gains are nominally 0 dB, 8 dB, and 18 dB relative to its input; however,  
the output gains are 6 dB relative to IN+ and INor AUX IN+ and AUX IN.  
22. Squelch is measured differentially with respect to ADC V  
.
MID  
3–7  
3.6 Timing Requirements and Specifications in Master Mode  
3.6.1  
Recommended Input Timing Requirements for Master Mode, V  
= 5 V  
DD  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
Master clock rise time  
5
5
r(MCLK)  
Master clock fall time  
ns  
f(MCLK)  
Master clock duty cycle  
40%  
1 MCLK  
25  
60%  
t
t
t
RESET pulse duration  
w(RESET)  
su(DIN)  
h(DIN)  
DIN setup time before SCLK low (see Figure 4–2)  
DIN hold time after SCLK low (see Figure 4–2)  
ns  
ns  
20  
3.6.2  
Operating Characteristics Over Recommended Range of Operating Free-Air  
Temperature, V = 5 V (Unless Otherwise Noted) (see Note 23)  
DD  
PARAMETER  
MIN TYP  
MAX  
18  
UNIT  
ns  
t
t
Shift clock fall time (see Figure 4–2)  
Shift clock rise time (see Figure 4–2)  
Shift clock duty cycle  
13  
13  
f(SCLK)  
18  
ns  
r(SCLK)  
45%  
55%  
Delay time from SCLK high to FSD low  
(see Figures 4–2 and 4–4 and Note 24)  
t
t
t
5
5
20  
20  
20  
ns  
ns  
ns  
d(CH-FL)  
Delay time from SCLK high to FS high (see Figure 4–2)  
d(CH-FH)  
Delay time from SCLK high to DOUT valid  
(see Figures 4–2 and 4–7)  
d(CH-DOUT)  
Delay time from SCLKto DOUT in high-impedance state  
(see Figure 4–8)  
t
20  
ns  
d(CH-DOUTZ)  
t
t
t
t
Delay time from MCLK low to EOC low (see Figure 4–9)  
Delay time from MCLK low to EOC high (see Figure 4–9)  
EOC fall time (see Figure 4–9)  
40  
40  
13  
13  
ns  
ns  
ns  
ns  
d(ML-EL)  
d(ML-EH)  
f(EL)  
EOC rise time (see Figure 4–9)  
r(EH)  
t
t
Delay time from MCLK high to SCLK high  
Delay time from MCLK high to SCLK low  
50  
50  
ns  
ns  
d(MH-CH)  
d(MH-CL)  
All typical values are at V  
= 5 V and T = 25°C.  
A
DD  
NOTES: 23. All timing specifications are valid with C = 20 pF.  
L
24. FSD occurs 1/2 shift-clock cycle ahead of FS when the device is operating in the master mode.  
3–8  
3.7 Timing Requirements and Specifications in Slave Mode and Codec  
Emulation Mode  
3.7.1  
Recommended Input Timing Requirements for Slave Mode, V  
= 5 V  
DD  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
Master clock rise time  
5
5
r(MCLK)  
Master clock fall time  
ns  
f(MCLK)  
Master clock duty cycle  
40%  
1 MCLK  
20  
60%  
t
t
t
t
RESET pulse duration  
w(RESET)  
DIN setup time before SCLK low (see Figure 4–3)  
DIN hold time after SCLK high (see Figure 4–3)  
Setup time from FS low to SCLK high  
ns  
ns  
ns  
su(DIN)  
20  
±SCLK/4  
h(DIN)  
su(FL-CH)  
3.7.2  
Operating Characteristics Over Recommended Range of Operating Free-Air  
Temperature, V = 5 V (Unless Otherwise Noted) (see Note 23)  
DD  
PARAMETER  
MIN TYP  
MAX  
UNIT  
ns  
t
t
t
Shift clock cycle time (see Figure 4–3)  
Shift clock fall time (see Figure 4–3)  
Shift clock rise time (see Figure 4–3)  
Shift clock duty cycle  
125  
c(SCLK)  
f(SCLK)  
r(SCLK)  
18  
18  
ns  
ns  
45%  
55%  
50  
t
t
Delay time from SCLK high to FSD low (see Figure 4–6)  
Delay time from SCLK high to FSD high  
ns  
ns  
d(CH-FDL)  
40  
d(CH-FDH)  
Delay time from FS low to FSD low (slave to slave)  
(see Figure 4–5)  
t
t
t
40  
40  
ns  
ns  
ns  
d(FL-FDL)  
Delay time from SCLK high to DOUT valid  
(see Figures 4–3 and 4–7)  
d(CH-DOUT)  
d(CH-DOUTZ)  
Delay time from SCLKto DOUT in high-impedance state  
(see Figure 4–8)  
20  
t
t
t
t
t
t
Delay time from MCLK low to EOC low (see Figure 4–9)  
Delay time from MCLK low to EOC high (see Figure 4–9)  
EOC fall time (see Figure 4–9)  
40  
40  
13  
13  
ns  
ns  
ns  
ns  
ns  
ns  
d(ML-EL)  
d(ML-EH)  
f(EL)  
EOC rise time (see Figure 4–9)  
r(EH)  
Delay time from MCLK high to SCLK high  
Delay time from MCLK high to SCLK low  
50  
50  
d(MH-CH)  
d(MH-CL)  
All typical values are at V  
= 5 V and T = 25°C.  
A
DD  
NOTE 23: All timing specifications are valid with C = 20 pF.  
L
3–9  
4
Parameter Measurement Information  
R
fb  
_
+
R
R
+
_
IN+ or AUX IN+  
INor AUX IN–  
To Multiplexer  
R
fb  
R
R
R
= R for DS03 = 0 and DS02 = 1  
= 2R for DS03 = 1 and DS02 = 0  
= 4R for DS03 = 1 and DS02 = 1  
fb  
fb  
fb  
R = 100 knominal  
Figure 41. IN+ and INGain-Control Circuitry  
Table 41. Gain Control (Analog Input Signal Required for  
Full-Scale Bipolar A/D-Conversion 2s Complement)  
CONTROL REGISTER 4  
A/D CONVERSION  
RESULT  
INPUT CONFIGURATION  
ANALOG INPUT  
DS03  
DS02  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
All  
Squelch  
±Full scale  
±Full scale  
±Full scale  
Squelch  
Differential configuration  
Analog input = IN+ – IN–  
= AUX IN+ – AUX IN–  
V
V
V
= ±3 V  
= ±1.5 V  
= ±0.75 V  
All  
ID  
ID  
ID  
§
Single-ended configuration  
V = ±1.5 V  
±Half scale  
±Full scale  
±Full scale  
I
Analog input = IN+ – V  
MID  
= AUX IN+ – V  
V = ±1.5 V  
I
MID  
V = ±0.75 V  
I
V
V
= 5 V  
DD  
ID  
= differential input voltage, V = input voltage referenced to ADC V  
with INor AUX INconnected to  
. In order to minimize distortion, it is recommended that the analog input not exceed 0.1 dB below full scale.  
I
MID  
ADC V  
MID  
For single-ended inputs, the analog input voltage should not exceed the supply rails. All single-ended inputs should be  
referenced to the internal reference voltage, ADC V , for best common-mode performance.  
§
MID  
4–1  
t
f(SCLK)  
t
r(SCLK)  
2 V  
2 V  
2 V  
SCLK  
0.8 V  
t
t
d(CH-FH)  
d(CH-FL)  
2 V  
FS  
0.8 V  
t
d(CH-DOUT)  
D15  
D15  
D14  
D13  
D13  
D12  
D11  
D2  
D2  
D1  
D1  
D0  
DOUT  
t
su(DIN)  
DIN  
D14  
D12  
D11  
D0  
t
h(DIN)  
The time between falling edges of two primary FS signals is the conversion period.  
The data on DOUT are shifted out on the rising edge of the shift clock, and the data on DIN are shifted in on the falling  
edge of the shift clock.  
Figure 42. AIC Stand-Alone and Master-Mode Timing  
t
f(SCLK)  
t
t
c(SCLK)  
r(SCLK)  
2 V  
2 V  
2 V  
2 V  
SCLK  
0.8 V  
§
FS  
t
d(CH-DOUT)  
D15  
D15  
D14  
D13  
D13  
D12  
D11  
D2  
D1  
D0  
D0  
DOUT  
t
su(DIN)  
DIN  
D14  
D12  
D11  
D2  
D1  
t
h(DIN)  
The time between falling edges of two primary FS signals is the conversion period.  
The data on DOUT are shifted out on the rising edge of the shift clock, and the data on DIN are shifted in on the falling  
edge of the shift clock.  
§
The high-to-low transition of FS must must occur within ±1/4 of a shift-clock period around the 2-V level of the shift clock  
for the codec mode.  
Figure 43. AIC Slave and Codec Emulation Mode  
4–2  
2.4 V  
SCLK  
FSD  
SCLK Period/2  
0.8 V  
t
d(CH-FL)  
FS  
0.8 V  
NOTE A: Timing shown is for the TLC320AC02 operating as the master or as a stand-alone device.  
Figure 44. Master or Stand-Alone FS and FSD Timing  
FS  
0.8 V  
t
d(FL-FDL)  
FSD  
0.8 V  
NOTE A: Timing shown is for the TLC320AC02 operating in the slave mode (FS and SCLK signals are generated  
externally). The programmed data value in the FSD register is 0.  
Figure 45. Slave FS to FSD Timing  
2.4 V  
SCLK  
0.8 V  
t
d(CH-FDL)  
FSD  
0.8 V  
NOTE A: Timing shown is for the TLC320AC02 operating in the slave mode (FS and SCLK signals are generated  
externally). There is a data value in the FSD register greater than 18 (decimal).  
Figure 4 – 6. Slave SCLK to FSD Timing  
4–3  
2 V  
SCLK  
DOUT  
0.8 V  
t
d(CH-DOUT)  
Hi-Z  
2.4 V  
0.4 V  
2.4 V  
0.4 V  
Figure 47. DOUT Enable Timing From Hi-Z  
2 V  
SCLK  
0.8 V  
t
d(CH-DOUTZ)  
Hi-Z  
0.8 V  
DOUT  
Figure 48. DOUT Delay Timing to Hi-Z  
t
d(ML-EH)  
2 V  
2 V  
0.8 V  
MCLK  
EOC  
0.8 V  
t
t
r(EH)  
d(ML-EL)  
2.4 V  
2.4 V  
0.4 V  
0.4 V  
t
f(EL)  
Internal ADC  
Conversion Time  
Figure 49. EOC Frame Timing  
4–4  
Delay Is m Shift Clocks  
Master  
FS  
Delay Is m Shift Clocks  
Master FSD,  
Slave Device 1 FS  
Delay Is m Shift Clocks  
Slave Device 1 FSD,  
Slave Device 2 FS  
Slave Device 2 FSD,  
Slave Device 3 FS  
Slave Device  
(n – 1) FSD,  
Slave Device n FS  
The delay time from any FS signals to the corresponding FSD signals is m shift clocks with the value of m being the  
numerical value of the data programmed into the FSD register. In the master mode with slaves, the same data word  
programs the master and all slave devices; therefore, master to slave 1, slave 1 to slave 2, slave 2 to slave 3, etc., have  
the same delay time.  
Figure 410. Master-Slave Frame-Sync Timing After a Delay Has Been  
Programmed Into the FSD Registers  
t = 0  
t = 1  
t = 2  
Sampling  
Period  
Master AIC  
Only Primary  
Frame Sync  
FS  
FS  
MP  
MP  
MP  
1/2 Period  
Master AIC  
Only Primary  
and Secondary  
Frame Sync  
MP  
MS  
MP  
MS  
MP  
FSD  
Value  
Master and Slave  
AIC Primary  
Frame Sync  
FS  
MP  
MP  
SP  
SP  
MP  
MP  
SP  
SP  
MP  
MP  
SP  
SP  
Master and Slave  
AIC Primary and  
Secondary  
FS  
MS  
SS  
MS  
SS  
MS  
SS  
Frame Sync  
MP = Master Primary  
MS = Master Secondary  
SP = Slave Primary  
SS = Slave Secondary  
Figure 411. Master and Slave Frame-Sync Sequence with One Slave  
4–5  
5
Typical Characteristics  
ADC LOW-PASS RESPONSE  
0
10  
20  
T
= 25°C  
A
FCLK = 144 kHz  
30  
40  
50  
60  
0
1
2
3
4
5
6
7
8
9
10  
f – Input Frequency – kHz  
i
Normalized Frequency  
144  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
Figure 5–1  
5–1  
ADC LOW-PASS RESPONSE  
0.5  
0.4  
0.3  
0.2  
T
= 25°C  
A
FCLK = 144 kHz  
0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
f – Input Frequency – kHz  
i
Normalized Frequency  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
144  
Figure 5–2  
5–2  
ADC GROUP DELAY  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
T
= 25°C  
A
FCLK = 144 kHz  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
f – Input Frequency – kHz  
i
Normalized Frequency  
144  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
Figure 5–3  
5–3  
ADC BAND-PASS RESPONSE  
0
10  
20  
T
= 25°C  
= 8 kHz  
A
f
s
FCLK = 144 kHz  
30  
40  
50  
60  
0
1
2
3
4
5
6
7
8
f – Input Frequency – kHz  
i
Normalized Frequency  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
144  
Figure 5–4  
5–4  
ADC BAND-PASS RESPONSE  
0.5  
0.4  
T
= 25°C  
= 8 kHz  
A
f
s
FCLK = 144 kHz  
0.3  
0.2  
0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
f – Input Frequency – kHz  
i
Normalized Frequency  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
144  
Figure 5–5  
5–5  
ADC HIGH-PASS RESPONSE  
–0  
–5  
10  
15  
20  
25  
30  
T
= 25°C  
= 8 kHz  
A
f
s
FCLK = 144 kHz  
150 200  
f – Input Frequency – kHz  
0
50  
100  
250  
i
Normalized Frequency  
144  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
Figure 5–6  
5–6  
ADC BAND-PASS GROUP DELAY  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
T
= 25°C  
= 8 kHz  
A
f
s
FCLK = 144 kHz  
0.2  
0.1  
0
7
0
1
2
3
4
5
6
8
f – Input Frequency – kHz  
i
Normalized Frequency  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
144  
Figure 5–7  
5–7  
DAC LOW-PASS RESPONSE  
0
10  
20  
T
= 25°C  
= 9.6 kHz  
A
f
s
FCLK = 144 kHz  
30  
40  
50  
60  
0
1
2
3
4
5
6
7
8
9
10  
f – Input Frequency – kHz  
i
Normalized Frequency  
144  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
Figure 5–8  
5–8  
DAC LOW-PASS RESPONSE  
0.5  
0.4  
0.3  
0.2  
T
= 25°C  
= 9.6 kHz  
A
f
s
FCLK = 144 kHz  
0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
f – Input Frequency – kHz  
i
Normalized Frequency  
144  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
Figure 5–9  
5–9  
DAC LOW-PASS GROUP DELAY  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
T
= 25°C  
= 9.6 kHz  
A
f
s
FCLK = 144 kHz  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
f – Input Frequency – kHz  
i
Normalized Frequency  
144  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
Figure 510  
5–10  
DAC (sin x)/x CORRECTION FILTER RESPONSE  
4
2
0
– 2  
– 4  
– 6  
T
= 25°C  
A
Input = ± 3-V Sine Wave  
0
2
4
6
8
10 12 14 16 18 20  
Normalized Frequency  
Normalized Frequency  
288  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
Figure 511  
5–11  
DAC (sin x)/x CORRECTION FILTER RESPONSE  
500  
T
A
= 25°C  
Input = ± 3-V Sine Wave  
400  
300  
200  
100  
0
0
2
4
6
8
10 12 14 16 18 20  
Normalized Frequency  
Normalized Frequency  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
288  
Figure 512  
5–12  
DAC (sin x)/x CORRECTION ERROR  
2
1.6  
T
= 25°C  
A
Input = ± 3-V Sine Wave  
1.2  
(sin x) /x Correction  
Error  
0.8  
0.4  
0
– 0.4  
– 0.8  
19.2-kHz (sin x) /x  
Distortion  
–1.2  
–1.6  
– 2  
0
1
2
3
4
5
6
7
8
9
10  
Normalized Frequency  
Normalized Frequency  
288  
FCLK (kHz)  
NOTE A : Absolute Frequency (kHz)  
Figure 513  
5–13  
6
Application Information  
TMS320C2x/3x  
TLC320AC02  
DAC V  
5
6
5 V  
0.1 µF  
DD  
14  
CLKOUT  
MCLK  
DIN  
DAC V  
MID  
10  
0.1 µF  
0.1 µF  
DX  
7
DAC GND  
11  
DR  
DOUT  
FS  
24  
23  
5 V  
0.1 µF  
ADC V  
DD  
12  
FSX  
ADC V  
MID  
FSR  
22  
9
13  
ADC GND  
DGTL V  
CLKX  
SCLK  
5 V  
0.1 µF  
CLKR  
DD  
DGTL GND  
20  
D
A
GND  
GND  
NOTE A: Terminal numbers shown are for the FN package.  
Figure 61. Stand-Alone Mode (to DSP Interface)  
TMS320C2x/3x  
TLC320AC02  
14  
10  
CLKOUT  
MCLK  
DX  
DR  
DIN  
11  
12  
DOUT  
FS  
FSX  
FSR  
13  
CLKX  
CLKR  
SCLK  
NOTE A: Terminal numbers shown are for the FN package.  
Figure 62. Codec Mode (to DSP Interface)  
6–1  
TMS320C2x/3x  
TLC320AC02  
14  
10  
CLKOUT  
MCLK  
DX  
DR  
DIN  
11  
12  
DOUT  
FS  
Master Mode  
FSX  
FSR  
FSD  
SCLK  
13  
CLKX  
CLKR  
TLC320AC02  
14  
10  
MCLK  
DIN  
11  
12  
DOUT  
FS  
FSD  
13  
Slave Mode  
SCLK  
NOTE A: Terminal numbers shown are for the FN package.  
Figure 63. Master With Slave (to DSP Interface)  
10 kΩ  
10 kΩ  
+
IN+  
V
I
+
TLE2022  
10 kΩ  
10 kΩ  
+
IN–  
ADC V  
MID  
TLE2022  
The V source must be capable of sinking a current equal to [ADC V  
+ |V |(max)]/10 k.  
I
I
MID  
Figure 64. Single-Ended Input (Ground Referenced)  
6–2  
IN+  
10 kΩ  
10 kΩ  
10 kΩ  
V
I
10 kΩ  
+
+
IN–  
TLE2064  
TLE2064  
4
4
10 kΩ  
+
ADC V  
MID  
TLE2064  
4
10 kΩ  
The V source must be capable of sinking a current equal to [(ADC V  
/2) + |V |(max)]/10 k.  
I
I
MID  
Figure 65. Single-Ended to Differential Input (Ground Referenced)  
OUT–  
600-Ω  
Load  
OUT+  
Figure 66. Differential Load  
10 kΩ  
5 V  
10 kΩ  
+
OUT–  
OUT+  
600-Ω  
Load  
TLE2062  
10 kΩ  
– 5 V  
10 kΩ  
NOTE A: When a signal changes from a single supply with a nonzero reference system to a  
grounded load, the operational amplifier must be powered from plus and minus supplies  
or the load must be capacitively coupled.  
Figure 67. Differential Output Drive (Ground Referenced)  
6–3  
+
OUT+  
OUT–  
TLE2062  
TLE2062  
600-Ω  
Load  
+
Figure 68. Low-Impedance Output Drive  
100 kΩ  
5 V  
100 kΩ  
600-Ω  
Load  
+
OUT+  
DAC V  
MID  
TLE2062  
– 5 V  
100 kΩ  
100 kΩ  
NOTE A: When a signal changes from a single supply with a nonzero reference system to a  
grounded load, the operational amplifier must be powered from plus and minus supplies  
or the load must be capacitively coupled.  
Figure 69. Single-Ended Output Drive (Ground Referenced)  
6–4  
Appendix A  
Primary Control Bits  
The function of the primary-word control bits D01 and D00 and the hardware terminals FC0 and FC1 are  
shown below. Any combinational state of D01, D00, FC1, and FC0 not shown is ignored.  
CONTROL FUNCTION OF CONTROL BITS  
BITS  
TERMINALS  
D01  
D00  
FC1  
FC0  
0
0
0
0
On the next falling edge of FS, the AIC receives DAC data D15D02 to DIN and  
transmits the ADC data D15D00 from DOUT.  
0
0
0
1
On the next falling edge of FS, the AIC receives DAC data D15D02 to DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of FC1 and FC0 such that on the  
next rising edge of the next internal FS, the next ADC/DAC sampling time occurs later  
by the number of MCLK periods equal to the value contained in the Aregister. When  
the Aregister value is negative, the internal falling edge of FS occurs earlier.  
0
0
1
0
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of FC1 and FC0 such that on the  
rising edge of the next internal FS, the next ADC/DAC sample time occurs earlier by  
the number of MCLK periods determined by the value contained in the Aregister.  
When the Aregister value is negative, the internal falling edge of FS occurs later.  
0
0
0
1
1
0
1
0
On the next falling edge of the primary FS, the AIC receives DAC data D15D02 at  
DIN and transmits the ADC data D15D00 from DOUT.  
When FC0 and FC1 are both taken high, the AIC initiates a secondary FS to receive  
a secondary control word at DIN. The secondary frame sync occurs at 1/2 the  
sampling time as measured from the falling edge of the primary FS.  
On the next falling edge of FS, the AIC receives DAC data D15D02 to DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of D01 and D00 such that on the  
next rising edge of FS, the next ADC/DAC sampling time occurs later by the number  
of MCLK periods determined by the value contained in the Aregister. When the A′  
register value is negative, the falling edge of FS occurs earlier.  
1
1
0
1
0
0
0
0
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of D01 and D00. On the next rising  
edge of FS, the next ADC/DAC sampling time occurs earlier by the number of MCLK  
periods determined by the value contained in the Aregister. When the Aregister  
value is negative, the internal falling edge of FS occurs later.  
On the next falling edge of FS, the AIC receives DAC data D15D02 to DIN and  
transmits the ADC data D15D00 from DOUT.  
When D00 and D01 are both high, the AIC initiates a secondary FS to receive a  
secondary control word at DIN. The secondary frame sync occurs at 1/2 the sampling  
time as measured from the falling edge of the primary FS.  
A–1  
CONTROL FUNCTION OF CONTROL BITS (Continued)  
BITS  
TERMINALS  
D01  
0
D00  
FC1  
FC0  
1
1
1
On the next falling edge of FS, the AIC receives DAC data D15D02 to DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of D01 and D00 such that on the  
next rising edge of FS, the next ADC/DAC sampling time occurs later by the number  
of MCLK periods determined by the value contained in the Aregister. When the A′  
register value is negative, FS occurs earlier.  
When FC0 and FC1 are both taken high, the AIC initiates a secondary FS to receive  
a secondary control word at DIN. The secondary frame sync occurs at 1/2 the  
sampling time as measured from the falling edge of the primary FS.  
1
0
1
1
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of D01 and D00. On the next rising  
edge of FS, the next ADC/DAC sample time occurs earlier by the number of MCLK  
periods determined by the value contained in the Aregister. When the Aregister  
value is negative, FS occurs later.  
When FC0 and FC1 are both taken high, the AIC initiates a secondary FS to receive  
a secondary control word at DIN. The secondary frame sync occurs at 1/2 the  
sampling time as measured from the falling edge of the primary FS.  
1
1
1
1
1
0
1
1
On the next falling edge of the primary FS, the AIC receives DAC data D15D02 at  
DIN and transmits the ADC data D15D00 from DOUT.  
When FC1 and FC0 are both high or D01 and D00 are both high, the AIC initiates a  
secondary FS to receive a secondary control word at DIN. The secondary FS occurs  
at 1/2 the sampling time measured from the falling edge of the primary FS.  
On the next falling edge of FS, the AIC receives DAC data D15D02 to DIN and  
transmits the ADC data D15D00 from DOUT.  
When D00 and D01 are high, the AIC initiates a secondary FS to receive a secondary  
control word at DIN. The secondary frame sync occurs at 1/2 the sampling time as  
measured from the falling edge of the primary FS.  
The phase adjustment is determined by the state of FC1 and FC0 such that on the  
next rising edge of FS, the next ADC/DAC sampling time occurs later by the number  
of MCLK periods determined by the value contained in the Aregister. When the A′  
register value is negative, FS occurs earlier.  
1
1
1
0
On the next falling edge of FS, the AIC receives DAC data D15D02 to DIN and  
transmits the ADC data D15D00 from DOUT.  
When D00 and D01 are high, the AIC initiates a secondary FS to receive a secondary  
control word at DIN. The secondary frame sync occurs at 1/2 the sampling time as  
measured from the falling edge of the primary FS.  
The phase adjustment is determined by the state of FC1 and FC0 such that on the  
next rising edge of FS, the next ADC/DAC sampling time occurs later by the number  
of MCLK periods determined by the value contained in the Aregister. When the A′  
register value is negative, FS occurs earlier.  
1
1
1
1
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
When FC1 and FC0 are both high or D01 and D00 are both high, the AIC initiates a  
secondary FS to receive a secondary control word at DIN. The secondary FS occurs  
at 1/2 the sampling time measured from the falling edge of the primary FS.  
A–2  
Appendix B  
Secondary Communications  
The function of the control bits DS15 and DS14 and the hardware terminals FC0 and FC1 are shown below.  
Any combinational state of DS15, DS14, FC1, and FC0 not shown is ignored.  
CONTROL FUNCTION OF SECONDARY COMMUNICATION  
BITS  
TERMINALS  
FC1 FC0  
Ignored  
DS15 DS14  
0
0
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
0
1
Ignored  
Ignored  
On the next falling edge of the FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of DS15 and DS14 such that on the  
next rising edge of FS, the next ADC/DAC sampling time occurs later by the number  
of MCLK periods determined by the value contained in the Aregister. When the A′  
register value is negative, FS occurs earlier.  
1
0
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of D01 and D00. On the next rising  
edge of FS, the next ADC/DAC sampling time occurs earlier by the number of MCLK  
periods determined by the value contained in the Aregister. When the Aregister  
value is negative, FS occurs later.  
1
1
1
1
0
0
1
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
0
1
1
On the next falling edge of the FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of FC1 and FC0 such that on the  
next rising edge of FS, the next ADC/DAC sampling time occurs later by the number  
of MCLK periods determined by the value contained in the Aregister. When the A′  
register value is negative, FS occurs earlier.  
1
1
1
1
0
1
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
The phase adjustment is determined by the state of FC1 and FC0 such that on the  
nextrisingedgeofFS, thenextADC/DACsamplingtimeoccursearlierbythenumber  
of MCLK periods determined by the value contained in the Aregister. When the A′  
register value is negative, FS occurs later.  
On the next falling edge of FS, the AIC receives DAC data D15D02 at DIN and  
transmits the ADC data D15D00 from DOUT.  
B–1  
Appendix C  
TLC320AC01C/TLC320AC02C Specification Comparisons  
Texas Instruments manufactures the TLC320AC01C and the TLC320AC02C specified for the 0°C to 70°C  
commercial temperature range and the TLC320AC02I specified for the 40°C to 85°C temperature range.  
The TLC320AC02C and TLC320AC02I operate at a relaxed TLC320AC01C specification. The differences  
are listed in the following tables.  
ADC Channel Signal-to-Distortion Ratio, V  
Otherwise Noted) (see Note 1)  
= 5 V, f = 8 kHz (Unless  
s
DD  
A
= 0 dB  
A
= 6 dB  
A = 12 dB  
V
V
V
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
68  
64  
63  
59  
57  
56  
51  
50  
45  
44  
39  
38  
33  
32  
27  
26  
MAX  
MIN  
MAX  
MIN  
MAX  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
V = 6 dB to 1 dB  
I
68  
64  
63  
59  
57  
56  
51  
50  
45  
44  
39  
38  
33  
32  
V = 12 dB to 6 dB  
I
68  
64  
63  
59  
57  
56  
51  
50  
45  
44  
39  
38  
V = 18 dB to 12 dB  
I
V = 24 dB to 18 dB  
I
dB  
V = 30 dB to 24 dB  
I
V = 36 dB to 30 dB  
I
V = 42 dB to 36 dB  
I
V = 48 dB to 42 dB  
I
NOTE 1: The analog-input test signal is a 1020-Hz sine wave with 0 dB = 6 V peak to peak as the reference level for  
the analog input signal.  
C–1  
DAC Channel Signal-to-Distortion Ratio, V  
Otherwise Noted) (see Note 2)  
= 5 V, f = 8 kHz (Unless  
s
DD  
A
= 0 dB  
A
= 6 dB  
A = 12 dB  
V
V
V
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
68  
64  
63  
59  
57  
56  
51  
50  
45  
44  
39  
38  
33  
32  
27  
26  
MAX  
MIN  
MAX  
MIN  
MAX  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
V
O
V
O
V
O
V
O
V
O
V
O
V
O
V
O
= 6 dB to 0 dB  
68  
64  
63  
59  
57  
56  
51  
50  
45  
44  
39  
38  
33  
32  
= 12 dB to 6 dB  
= 18 dB to 12 dB  
= 24 dB to 18 dB  
= 30 dB to 24 dB  
= 36 dB to 30 dB  
= 42 dB to 36 dB  
= 48 dB to 42 dB  
68  
64  
63  
59  
57  
56  
51  
50  
45  
44  
39  
38  
dB  
NOTE 2: The input signal, V , is the digital equivalent of a 1020-Hz sine wave (full-scale analog output at full-scale digital  
I
input = 0 dB). The nominal differential DAC channel output with this input condition is 6 V peak to peak. The  
load impedance for the DAC output buffer is 600 from OUT+ to OUT.  
C–2  
System Distortion, ADC Channel Attenuation, V  
FCLK = 144 kHz (Unless Otherwise Noted)  
= 5 V, f = 8 kHz,  
s
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
70  
MAX  
UNIT  
dB  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
Second harmonic  
64  
dB  
Differential input  
(see Note 3)  
70  
dB  
Third harmonic and higher harmonics  
64  
dB  
NOTE 3: The input signal is a 1020 Hz-sine wave for the ADC channel. Harmonic distortion is defined for an input level  
of 1 dB.  
System Distortion, DAC Channel Attenuation, V  
FCLK = 144 kHz (Unless Otherwise Noted)  
= 5 V, f = 8 kHz,  
s
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
70  
MAX  
UNIT  
dB  
TLC320AC01  
TLC320AC02  
TLC320AC01  
TLC320AC02  
Second harmonic  
64  
dB  
Differential output  
(see Note 4)  
70  
dB  
Third harmonic and higher harmonics  
64  
dB  
NOTE 4: The input signal is the digital equivalent of a 1020-Hz sine wave (digital full scale = 0 dB). The nominal  
differential DAC channel output with this input condition is 6 V peak to peak. The load impedance for the DAC  
output buffer is 600 from OUT+ to OUT. Harmonic distortion is specified for a signal input level of 0 dB.  
C–3  
Appendix D  
Multiple TLC320AC01/02 Analog Interface Circuits on One  
TMS320C5X DSP Serial Port  
In many applications, digital signal processors (DSP) must obtain information from multiple analog-to-digital  
(A/D) channels and transmit digital data to multiple digital-to-analog (D/A) conversion channels. The  
problem is how to do it easily and efficiently.  
This application report addresses the issue of connecting two channels of an analog interface circuit (AIC)  
to one TMS320C5X DSP serial port. In this application report, the AIC is the TLC320AC02.  
The TLC320AC02 (and TLC320AC01) analog interface circuit contains both A/D and D/A converters and  
using the master/slave mode, it is possible to connect two of them to one TMS320C5X DSP serial port with  
no additional logic. The hardware schematic is shown in Figure D–1.  
D–1  
TMS320C5x  
TLC320AC02  
14  
10  
CLKOUT  
MCLK  
DX  
DR  
DIN  
11  
12  
DOUT  
FS  
Master Mode  
FSX  
FSR  
FSD  
SCLK  
13  
CLKX  
CLKR  
TLC320AC02  
14  
10  
MCLK  
DIN  
11  
12  
DOUT  
FS  
FSD  
13  
Slave Mode  
SCLK  
NOTE A: Terminal numbers shown are for the FN package.  
Figure D–1. Master With Slave (to DSP Interface)  
HARDWARE AND SOFTWARE SOLUTION  
Once the hardware connections are completed, the issue becomes distinguishing one channel from  
another. Fortunately, this is very easy to do in software and adds very little overhead. The mode that the  
AC02s run in is called master/slave mode. One AC02 is the master and all of the rest of the AC02s are  
slaves. The master can be distinguished from all of the slaves by examining the least significant bit (LSB)  
in the receive word coming from the AC02. The master has a 0 in the LSB and all of the slaves have a 1  
in the LSB.  
The AC02s in master/slave mode take turns communicating with the DSP serial port. They do this is a round  
robin or circular fashion. Synchronizing the system involves looking for the master AC02 and then starting  
the software associated with the first AC02. All other AC02s follow in order. It is possible to have different  
software for each AC02.  
A reference design was constructed using a TMS320C5X DSP starter kit (DSK). The AC02s were  
connected to the TDM serial port which is available at the headers on the edge of the DSK.  
A listing of the DSK assembly code for a simple stereo input/output program is included in the following  
section.  
D–2  
SOFTWARE MODULE  
*****************************************************************************  
MODULE NAME: INOUTB.ASM  
In-out routine for C5X DSK with two TLC320AC02s on the  
TDM serial port of the C5X in master/slave mode.  
This version performs the in/out task for both the master  
and slave TLC320AC02 in the receive interrupt service  
routine.  
*****************************************************************************  
*
.mmregs  
.ds  
01000h  
0104h  
0219h  
0300h  
0405h  
0501h  
0600h  
0730h  
0802h  
0800h  
0800h  
0200h  
0400h  
PR1  
.word  
.word  
.word  
.word  
.word  
.word  
.word  
.word  
.word  
.word  
.word  
.word  
;A register  
PR2  
;B register  
PR3  
;A prime register  
PR4  
;amplifier gain register  
;analog configuration register  
;digital configuration register  
;frame synch delay register  
;frame synch number register  
PR5  
PR6  
PR7  
PR8  
value  
value2  
val_add  
val_add2  
*****************************************************************************  
Set up the ISR vector  
*****************************************************************************  
.ps  
080ah  
rint:  
xint:  
trint:  
txint:  
B
RECEIVE  
TRANSMIT  
TDMREC  
TDMTX  
; 0A; Serial port receive interrupt RINT.  
; 0C; Serial port transmit interrupt XINT.  
B
B
B
;
******************************************************************************  
TMS320C5X INITIALIZATION  
*****************************************************************************  
.ps 0a00h  
.entry  
START:  
SETC  
LDP  
INTM  
; Disable interrupts  
#0  
; Set data page pointer  
OPL  
#0834h,PMST  
#0  
LACC  
SAMM  
SAMM  
CWSR  
PDWSR  
D–3  
splk  
SPLK  
call  
#00c8h  
082h,IMR  
AC02INIT  
CLRC  
SPM  
OVM  
; OVM = 0  
0
; PM = 0  
SPLK  
SPLK  
CLRC  
#042h,IMR  
#0C8h,TSPC  
INTM  
; TDMA ser port rec interrupt  
;
; enable interrupts  
loop  
; main program here does nothing.  
nop  
b
; a user program can be inserted.  
;
loop  
;
;
end of main program  
;
; TDM serial port receiver interrupt service routine  
;
TDMREC:  
; This loop insures that the master AC02  
; is the first one that is written to in the  
; loop. the slave AC02(s) will follow in  
; sequential order. The master AC02 has a  
; 0 in the 1sb. the slave AC02(s) have a 1  
; in the 1sb of the receive word.  
ldp  
#trcv  
bit  
trcv,15  
xxx,tc  
bcnd  
ldp  
#trcv  
trcv  
lacc  
and  
#0fffch  
;
; user code would go here for master AC02  
;
sacl  
b
tdxr  
yyy  
xxx  
ldp  
#trcv  
trcv  
lacc  
and  
#0fffch  
;
; user code would go here for slave AC02  
;
sacl  
rete  
tdxr  
yyy  
D–4  
;
; TDM serial port transmit interrupt service routine  
;
TDMTX:  
rete  
;
; RECEIVER INTERRUPT SERVICE ROUTINE  
;
RECEIVE:  
rete  
TRANSMIT:  
RETE  
D–5  
AC02INIT  
SPLK  
SPLK  
MAR  
#020h,TCR  
#01h,PRD  
*,AR0  
LACC  
SACL  
LACC  
SACL  
SETC  
#0008h  
TSPC  
#00c8h  
TSPC  
SXM  
;
;
;
;
LDP  
#PR1  
LACC  
CALL  
PR1  
AC02_2ND  
LDP  
#PR2  
LACC  
CALL  
PR2  
AC02_2ND  
LDP  
#PR8  
LACC  
CALL  
PR8  
AC02_2ND  
LDP  
#PR7  
LACC  
CALL  
PR7  
AC02_2ND  
ret  
AC02_2ND:  
LDP  
#0  
SACH  
CLRC  
IDLE  
ADD  
TDXR  
INTM  
;
#6h, 15  
TDXR  
; 0000 0000 0000 0011 XXXX XXXX XXXX XXXX b  
;
SACH  
IDLE  
SACL  
IDLE  
LACL  
SACL  
IDLE  
SETC  
RET  
TDXR  
;
#0  
;
TDXR  
; make sure the word got sent  
INTM  
;
D–6  
Appendix E  
Mechanical Data  
PLASTIC J-LEADED CHIP CARRIER  
FN/S-PQCC-J**  
20-PIN SHOWN  
D
0.180 (4,57) MAX  
0.120 (3,05) MAX  
D
1
0.048 (1,22)  
× 45°  
0.020 (0,51) MIN  
0.042 (1,07)  
3
1
19  
4
8
18  
14  
D /E  
3
3
E
E
1
D /E  
2
2
9
13  
0.050 (1,27) TYP  
D /E  
D/E  
D /E  
D /E  
3 3  
1
1
2
2
JEDEC  
OUTLINE  
NO. OF  
PINS**  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
TYP  
0.385  
(9,78)  
0.395  
(10,03)  
0.350  
(8,89)  
0.356  
(9,04)  
0.290  
(7,34)  
0.330  
(8,38)  
0.200  
(5,08)  
MO-047AA  
MO-047AB  
MO-047AC  
MO-047AD  
MO-047AE  
MO-047AF  
20  
28  
44  
52  
68  
84  
0.485  
(12,32)  
0.495  
(12,57)  
0.450  
(11,43)  
0.456  
(11,58)  
0.390  
(9,91)  
0.430  
(10,92)  
0.300  
(7,62)  
0.685  
(17,40)  
0.695  
(17,65)  
0.650  
(16,51)  
0.656  
(16,66)  
0.590  
(14,99)  
0.630  
(16,00)  
0.500  
(12,70)  
0.785  
(19,94)  
0.795  
(20,19)  
0.750  
(19,05)  
0.756  
(19,20)  
0.690  
(17,53)  
0.730  
(18,54)  
0.600  
(15,24)  
0.985  
(25,02)  
0.995  
(25,27)  
0.950  
(24,13)  
0.956  
(24,28)  
0.890  
(22,61)  
0.930  
(23,62)  
0.800  
(20,32)  
1.185  
(30,10)  
1.195  
(30,35)  
1.150  
(29,21)  
1.158  
(29,41)  
1.090  
(27,69)  
1.130  
(28,70)  
1.000  
(25,40)  
4040005/A–07/93  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Dimensions D and E do not include mold flash or protrusion. Protrusion shall not exceed 0.010 (0,25)  
1
1
on any side.  
D. All dimensions conform to JEDEC Specification MO-047.  
E. Maximum deviation from coplanarity is 0.004 (0,10).  
E–1  
PM/S-PQFP-G64  
PLASTIC QUAD FLAT PACKAGE  
0,26  
0,14  
0,50 TYP  
48  
33  
32  
49  
Pin # 1  
Indicator  
64  
17  
0,177  
0,147  
1
16  
1,50  
1,30  
7,50 SQ TYP  
10,10  
SQ  
9,90  
12,20  
SQ  
11,80  
1,70 MAX  
0,00 MIN  
Seating Plane  
0°–10°  
0,70  
0,30  
4040152/A–07/93  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Maximum deviation from coplanarity is 0,08 mm.  
D. Body dimensions do not include mold flash or protrusion.  
E–2  

相关型号:

TLC320AC02C

Single-Supply Analog Interface Circuit
TI

TLC320AC02CFN

Single-Supply Analog Interface Circuit
TI

TLC320AC02CFNR

Single Channel Codec-Bandwidth Independent of Sampling Rate 28-PLCC 0 to 70
TI

TLC320AC02CPM

Single-Supply Analog Interface Circuit
TI

TLC320AC02CPMR

SPECIALTY ANALOG CIRCUIT, PQFP64, PLASTIC, QFP-64
TI

TLC320AC02C_15

Single-Supply Analog Interface Circuit
TI

TLC320AC02I

Single-Supply Analog Interface Circuit
TI

TLC320AC02IFN

Single-Supply Analog Interface Circuit
TI

TLC320AC02IFNR

Single Channel Codec-Bandwidth Independent of Sampling Rate 28-PLCC -40 to 85
TI

TLC320AC02IPM

Single-Supply Analog Interface Circuit
TI

TLC320AC02IPMR

SPECIALTY ANALOG CIRCUIT, PQFP64, PLASTIC, QFP-64
TI

TLC320AD50

SIGMA-DELTA ANALOG INTERFACE CIRCUITS WITH MASTER-SLAVE FUNCTION
TI