TLC320AD545 [TI]

具有混合运算放大器和扬声器驱动器的单通道编解码器;
TLC320AD545
型号: TLC320AD545
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有混合运算放大器和扬声器驱动器的单通道编解码器

放大器 驱动 运算放大器 编解码器 驱动器
文件: 总35页 (文件大小:174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Manual  
1999  
Mixed Signal Products  
SLAS206B  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Analog Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
2
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1  
2.2  
2.3  
2.4  
Device Requirements and System Overview . . . . . . . . . . . . . . . . . . . . 2–1  
Codec Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Hybrid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Miscellaneous Logic and Other Circuitry . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Codec Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
ADC Signal Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
DAC Signal Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Sigma-Delta ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Sigma-Delta DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Interpolation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Analog and Digital Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Software Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.10 Test Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.11 Power Supply Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Serial Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4
5
4.1  
4.2  
4.3  
4.4  
4.5  
Primary Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
FS Low Mode Primary Communication Timing . . . . . . . . . . . . . . . . . . 4–2  
Secondary Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
FS High Mode Secondary Communication Timing . . . . . . . . . . . . . . . 4–4  
FS Low Mode Secondary Communication Timing . . . . . . . . . . . . . . . . 4–4  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
5.1  
Absolute Maximum Ratings Over Operating Free-Air  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
5.2  
5.3  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
Electrical Characteristics Over Recommended Operating Free-Air  
Temperature Range DV  
= 5 V/3.3 V, AV  
= 5 V/3.3 V,  
DD  
DD  
MV  
= 5 V/3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2  
DD  
5.3.1  
Digital Inputs and Outputs, f = 8 kHz,  
s
Outputs Not Loaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2  
iii  
5.3.2  
5.3.3  
ADC Channel, f = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2  
s
ADC Dynamic Performance, f = 8 kHz . . . . . . . . . . . . . . . . 5–2  
s
5.3.3.1  
5.3.3.2  
5.3.3.3  
ADC Signal-to-Noise . . . . . . . . . . . . . . . . . . . . . 5–2  
ADC Signal-to-Distortion . . . . . . . . . . . . . . . . . . 5–2  
ADC Signal-to-Distortion + Noise . . . . . . . . . . 5–3  
5.3.4  
5.3.5  
5.3.6  
ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3  
DAC Channel, f = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3  
s
DAC Dynamic Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3  
5.3.6.1  
5.3.6.2  
5.3.6.3  
DAC Signal-to-Noise . . . . . . . . . . . . . . . . . . . . . 5–3  
DAC Signal-to-Distortion . . . . . . . . . . . . . . . . . . 5–3  
DAC Signal-to-Distortion + Noise . . . . . . . . . . 5–4  
5.3.7  
5.3.8  
5.3.9  
5.3.10  
5.3.11  
DAC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4  
Logic DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . 5–4  
Power-Supply Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4  
Power-Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4  
Flash Write Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
5.4  
5.5  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
5.4.1  
5.4.2  
Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5  
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
Appendix A – Programmable Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1  
iv  
List of Illustrations  
Figure  
Title  
Page  
4–1 Primary Communication DIN and DOUT Data Format . . . . . . . . . . . . . . . . . 4–1  
4–2 FS High Mode Primary Serial Communication Timing . . . . . . . . . . . . . . . . . . 4–2  
4–3 FS Low Mode Primary Serial Communication Timing . . . . . . . . . . . . . . . . . . 4–2  
4–4 Secondary Communication DIN and DOUT Data Format . . . . . . . . . . . . . . . 4–3  
4–5 FS Output During Software Secondary Serial Communication Request  
(FS High Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
4–6 FS Output During Software Secondary Serial Communication Request  
(FS Low Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
5–1 Serial Communication Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6  
5–2 ADC Decimation Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6  
5–3 ADC Decimation Filter Passband Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7  
5–4 DAC Interpolation Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7  
5–5 DAC Interpolation Filter Passband Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8  
6–1 Functional Block of a Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
6–2 Differential Configuration Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2  
6–3 Single-Ended Configuration Typical Application . . . . . . . . . . . . . . . . . . . . . . . 6–3  
List of Tables  
Table  
Title  
Page  
4–1 Least-Significant-Bit Control Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
v
vi  
Introduction  
The TLC320AD545 single channel data/fax codec is a mixed signal broadband connectivity device. The  
TLC320AD545is comprised of a single channel codec and analog hybrid circuitry with a serial port for communication  
with the host processor. The device also contains programmable gain control and one AT41 speaker driver. The  
device operates with either a 5-V analog, a 5-V digital, and a 5-V monitor power supply or a 3.3-V analog, a 3.3-V  
digital, and a 3.3-V monitor power supply or 5-V analog, 3.3-V digital, and a 5-V monitor power supply. The device  
will be packaged in a single 48-pin PT (TQFP) package.  
1.1 Features  
Analog, Digital, and Monitor Amp Power Supplies: 5 V or 3.3 V  
Differential and Single-Ended Driving of Analog Output  
Software Power-Down Mode  
Sample Rate Up to 11.025 kHz  
16-Bit Signal Processing in the Codec With 2s-Complement Data Format  
Typical 80-db Dynamic Range  
Total Signal-to-Noise + Distortion of 80 dB for the ADCs  
Total Signal-to-Noise + Distortion of 78 dB for the DACs  
Programmable Gain Amplifier  
600-Driver  
8-AT41 Differential Speaker Driver With Programmable Gain Amplifier  
Flash Write Enable Circuit Provide Power for Writing the Flash Memory Device  
Available in 48-Pin PT (TQFP) Package Operating From –40 C to 85 C  
Transformer Reference ( 2.5 mA Source and Sink at 2.5 V for 5 V-Supply and 1.5 V for 3.3-V Supply) to allow  
Single-Ended Driving  
1.2 Functional Block Diagram  
1–1  
H
Y
B
R
I
Data  
Channel  
Serial  
Port  
Data Channel  
Codec  
D
A
M
P
Flash  
Write  
Enable  
DRVR  
Control  
Logic  
1.3 Analog Block Diagram  
DTRX_FB  
Data (Hybrid)  
+
DTRXM  
DTRXP  
16-Bit  
ADC  
+
MonOut PGA  
0/3/6/9/12 dB Gain  
with Mute  
Data_In PGA  
0/6/12/18 dB Gain  
with Mute  
2.5 V  
DT_REF  
2.5 V/1.5 V  
+
M
U
X
16-Bit  
DAC  
DTTX_OUTP  
DTTX_INM  
+
Data (Hybrid)  
2.5 V/1.5 V  
MONOUTP  
MONOUTM  
+
+
DTTX_INP  
8-Speaker Buffer  
0 dB or Mute  
DTTX_OUTM  
+
DT_BUFP  
DT_BUFM  
2.5 V/1.5 V  
+
0/-6/-12/-18 dB or Mute  
600-Data_Out PGA  
1–2  
1.4 Terminal Assignments  
4847 46 45 44 43 42 41 40 39 3837  
DREFP_DAC  
DREFM_DAC  
NC  
1
2
3
4
5
NC  
NC  
36  
35  
34  
33  
DT_MCLK  
DT_DIN  
DT_SCLK  
DT_DOUT  
DT_FS  
NC  
NC  
DAV  
DAV  
DD  
SS  
32  
31  
30  
6
7
TLC320AD545  
NC  
8
NC  
29  
28  
27  
9
DTRX_FB  
DTRXM  
RESET  
10  
DV  
SS  
NC 11  
DTRXP 12  
26 NC  
25 NC  
13 14 1516 17 1819 20 21 22 2324  
NC–Make no external connection  
1.5 Ordering Information  
PACKAGE  
T
A
PLASTIC QUAD  
FLATPACK (PT)  
0°C to 70°C  
TLC320AD545PT  
TLC320AD545IPT  
–40°C to 85°C  
1.6 Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
NC  
3, 4, 7, 8,  
11, 21, 25,  
26, 35, 36,  
45  
No connection  
DAV  
DAV  
5
6
I
I
Analog power supply (5 V/3.3 V)  
Analog ground  
DD  
SS  
DREFM_ADC  
48  
O
ADC voltage reference filter output. DREFM_ADC provides lowpass filtering for the internal bandgap  
reference. The optimal ceramic capacitor value is 0.1 uF connected between DREFM_ADC and  
DREFP_ADC. The nominal dc voltage at this terminal is 0 V.  
DREFM_DAC  
2
O
DAC voltage reference filter output. DREFM_DAC provides for lowpass filtering the internal bandgap  
reference. The optimal ceramic capacitor value is 0.1 µF connected between DREFM_ADC and  
DREFP_ADC. The nominal dc voltage at this terminal is 0 V.  
1–3  
1.6 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
DREFP_ADC  
47  
O
ADC voltage reference filter output. DREFP_ADC provides lowpass filtering for the internal bandgap reference.  
The optimal ceramic capacitor value is 0.1 µF connected between DREFM_ADC and DREFP_ADC. The dc  
voltage at this terminal is 3.375 V with a 5-V DAV  
supply and 2.25 V with a 3.3-V DAV supply.  
DD  
DD  
DREFP_DAC  
1
O
DAC voltage reference filter output. DREFP_DAC provides for lowpass filtering the internal bandgap reference.  
The optimal ceramic capacitor value is 0.1 µF connected between DREFM_DAC and DREFP_DAC. The dc  
voltage at this terminal is 3.375 V at 5-V DAV  
supply and 2.25 V at 3.3-V DAV supply.  
DD  
DD  
DT_BUFM  
DT_BUFP  
19  
18  
O
O
Buffer amp analog inverting output. DT_BUFM can be programmed for 0 dB, -6 dB, -12 dB, and -18 dB gain or  
muted using the control registers. This output is normally fed to the DTTX_INM terminal through an input resistor.  
Buffer amp analog noninverting output. DT_BUFP can be programmed for 0 dB, -6 dB, -12 dB and -18 dB gain  
or muted using the control registers. This output is normally fed to the DTTX_INP terminal through an input  
resistor. DT_BUFP must be left unconnected in single-ended hybrid.  
DT_DIN  
DT_DOUT  
DT_FS  
33  
31  
30  
I
Digital data input. DT_DIN handles DAC input data as well as control register programming information during  
frame sync interval and is synchronized to DT_SCLK.  
O
O
Digital data output. ADC output bits transmit data during the frame sync period which is synchronized to  
DT_SCLK. DT_DOUT is at high impedance when DT_FS is not activated.  
Serial port frame sync signal. DT_FS signals the beginning of transmit for ADC data and receiving of DAC data.  
This signal can be active high (FS high mode) or active low (FS low mode) depending on the voltage applied to  
SI_SEL (see Section 4, Serial Communications).  
DT_MCLK  
DT_REF  
34  
13  
I
Master clock input. All internal clocks are derived from this clock.  
O
Reference voltage for the transformer at 2.5 V for a 5-V DAV  
supply and 1.5 V for a 3.3-V DAV supply. The  
DD  
DD  
maximumsourceorsinkcurrentatthisterminalis2.5mA.DT_REFmustbeleftunconnectedindifferentialhybrid.  
DTRX_FB  
9
O
Receive path amplifier feedback node. DTRX_FB terminal is connected to the noninverting output of the receive  
path amplifier and allows a parallel resistor/capacitor to be placed in the amplifier feedback path for setting gain  
and filter poles.  
DTRXM  
DTRXP  
10  
12  
32  
I
I
Receive path amplifier analog inverting input  
Receive path amplifier analog noninverting input  
DT_SCLK  
O
Shift clock signal. DT_SCLK clocks serial data into DT_DIN and out of DT_DOUT during the frame-sync interval.  
DT_SCLK rate is DT_MCLK/2.  
DTTX_INM  
DTTX_INP  
15  
16  
I
I
Transmit amplifier analog inverting input. This node is normally fed by the DT_BUFM output through an input  
resistor.  
Transmit amplifier analog noninverting input. This node is normally fed by the DT_BUFP output through an input  
resistor. DTTX_INP must be shorted to DTTX_OUTM in single-ended hybrid.  
DTTX_OUTM  
DTTX_OUTP  
17  
14  
22  
27  
46  
O
O
I
Transmit amplifier analog inverting output. DTTX_OUTM must be shorted to DTTX_INP in single-ended hybrid.  
Transmit amplifier analog noninverting output  
DV  
DV  
Digital and RESET circuit power supply (5 V/3.3 V)  
DD  
SS  
I
Digital and RESET circuit ground  
FILT  
O
Bandgap filter node. FILT provides decoupling of the bandgap reference voltage. This reference is 3.375 V with  
a 5-V supply and 2.25 V with a 3.3-V supply. The optimal capacitor value is 0.1 µF (ceramic). This node should  
not be used as a voltage source.  
FLSH_IN  
24  
23  
I
External ASIC logic input. When brought low, FLSH_IN enables the FLSH_OUT output.  
FLSH_OUT  
O
Power output to write/erase flash EEPROM device (such as Intel 28F400B or AMD Am29F400). Supplies 45  
mA maximum from 5 V when FLSH_IN is brought low.  
MONOUTM  
MONOUTP  
42  
40  
41  
O
O
I
Analog output from 8-monitor speaker amplifier which can be set for 0-dB gain or muted through the control  
registers.  
Analog output from 8-monitor speaker amplifier which can be set for 0-dB gain or muted through the control  
registers.  
MV  
DD  
Monitor amplifier supply (5 V/3.3 V)  
Intel is a trademark of Intel Systems, Inc.  
AMD is a trademark of Advanced Micro Devices, Inc.  
1–4  
1.6 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
39  
MV  
I
I
I
Monitor amplifier ground  
Codec device reset. RESET initializes all device internal registers to default values. This signal is active low.  
Serial interface mode select. When SI_SEL is tied to DV the serial port is in FS high mode. When SI_SEL is  
SS  
RESET  
SI_SEL  
28  
37  
DD,  
tied to DV , the serial port is in FS low mode. (see Section 4, Serial Communications).  
SS  
TCLK  
38  
O
Test output port. TCLK is for factory test only and should be either connected to ground or left unconnected.  
TEST1  
TEST2  
43 I/O Test input port. TEST1 is for factory test only and should be either connected to ground or left unconnected.  
44 I/O Test input port. TEST2 is for factory test only and should be either connected to ground or left unconnected.  
V
SS  
20  
I
Internal substrate connection. V  
SS  
should be tied to DAV  
SS .  
1–5  
1–6  
2 Functional Description  
2.1 Device Requirements and System Overview  
The TLC320AD545 device consists of single codec channel, a hybrid circuit with external resistors and capacitors  
for setting gain and filter poles, serial port, and miscellaneous other logic functions.  
2.2 Codec Functions  
The codec portion of the device performs the functions for:  
One channel of analog-to-digital conversion  
Digital-to-analog conversion  
Lowpass filtering  
Control of analog input and output gains  
Internal oversampling coupled with internal decimation and interpolation  
A 16-bit serial port interface to the host processor.  
The maximum sample rate is 11.025 kHz.  
2.3 Hybrid Functions  
The hybrid circuitry has integrated amplifiers whose gains and filter pole frequencies are set by external resistors and  
capacitors. This allows maximum flexibility to make adjustments for board variations and international standards  
while providing integration of the function. The filter amplifier stages are followed by a programmable gain amplifier,  
which feeds an 8 differential speaker driver for the AT41 call progress monitor speaker. The monitor speaker driver  
can be programmed for 0 dB gain or muted through control register 2. The source for the monitor speaker input can  
be chosen to be either the amplified DAC output (Data_Out PGA) or the ADC input signal through control register  
1 (see Appendix A).  
A 2.5 V/1.5 V reference voltage (DT_REF) is provided as a reference for the transformer. It is necessary to reference  
to 2.5 V/1.5 V (rather than ground), since the amplifiers are powered off by single-rail supplies. DT_REF is 2.5 V when  
DAV  
is 5 V and 1.5 V when DAV  
is 3.3 V.  
DD  
DD  
2.4 Miscellaneous Logic and Other Circuitry  
The logic functions include the circuitry required to implement serial port and control register programming through  
secondary communication on those serial ports. Two control registers can be programmed during secondary  
communications from the serial port. These control registers set amplifier gains, select loopback functions, and read  
ADC overflow flags. In addition, a flash write enable (FWE) circuit takes an external logic input and provides current  
to power the write enable circuit of an external memory device. The flash write enable circuit is powered from the  
digital power supply.  
2–1  
2–2  
3 Codec Functional Description  
3.1 Operating Frequencies  
The TLC320AD545 is capable of supporting any sample rate up to the maximum sample rate of 11.025 kHz. The  
sample rate is set by the frequency of the codec master clock.  
The sampling (conversion) frequency is derived from the codec master clock by the internal clock divider circuit by  
equation (1):  
DT_FS= Sampling (conversion) frequency = DT_MCLK/512  
(1)  
The shift clock (SCLK) is derived from the codec master clock divider circuit by equation (2):  
DT_SCLK (frequency)= DT_MCLK/2  
(2)  
Where MCLK is codec clock fed to the codec externally by the clock rate divider circuit which divides the system  
master clock to get the necessary clock frequency to feed the codec.  
The conversion period is the inverse of sampling frequency.  
3.2 ADC Signal Channel  
The input signals are amplified and filtered by on-chip buffers before being applied to ADC input. The ADC converts  
the signal into discrete output digital words in 2s-complement format, corresponding to the analog signal value at the  
sampling time. These 16-bit digital words, representing sampled values of the analog input signal, are sent to the host  
through the serial port interface. If the ADC reaches its maximum value, a control register flag is set. This overflow  
bit resides at D0 in control register 2. This bit can only be read from the serial port, and the overflow flag is only cleared  
if it is read through the serial port. The ADC and DAC conversions are synchronous and phase-locked.  
3.3 DAC Signal Channel  
The DAC receives 16-bit data words (2s complement) from the host through the serial port interface. The data is  
converted to an analog voltage by the sigma-delta DAC comprised of a digital interpolation filter and a digital  
modulator. The DAC output is then passed to an internal low-pass filter to complete the signal reconstruction resulting  
in an analog signal. This analog signal is then buffered and amplified by differential output driver capable of driving  
the required load. The gain of the DAC output amplifier is programmed by the codec control register as shown in  
Appendix A.  
3.4 Sigma-Delta ADC  
The ADC is an oversampling sigma-delta modulator. The ADC provides high resolution and low noise performance  
using oversampling techniques and the noise shaping advantages of sigma-delta modulators.  
3.5 Decimation Filter  
The decimation filter reduces the digital data rate to the sampling rate. This is accomplished by decimating with a ratio  
equal to the oversampling ratio. The output of this filter is a sixteen-bit 2s-complement data word clocking at the  
selected sample rate.  
3.6 Sigma-Delta DAC  
The DAC is an oversampling sigma-delta modulator. The DAC perform high-resolution, low-noise digital-to-analog  
conversion using oversampling sigma-delta techniques.  
3–1  
3.7 Interpolation Filter  
The interpolation filter resamples the digital data at a rate of N times the incoming sample rate where N is the  
oversampling ratio. The high-speed data output from this filter is then applied to the sigma-delta DAC.  
3.8 Analog and Digital Loopbacks  
The test capabilities include an analog loopback and digital loopback. The loopbacks provide a means of testing the  
ADC/DAC channels and can be used for in-circuit system-level tests.  
Analog loopback loops the DAC output back into the ADC input. Digital loopback loops the ADC output back into the  
DAC input. Analog loopback is enabled by setting bit D4 in the control register 1. Digital loopback is enabled by setting  
bit D5 high in control register 1. The analog loopback function tests only the codec portion of the device and does  
not include the hybrid amplifier.  
3.9 Software Power Down  
The software power down resets all internal counters but leaves the contents of the programmable control registers  
unchanged. The software power down feature is invoked by setting bit D6 high in control register 1. There is no  
hardware power down function in the TLC320AD545.  
3.10 Test Module  
The test module serves the purpose of facilitating design verification test and simplifying factory production testing.  
There are three input/output terminals (TEST1, TEST2 and TCLK) dedicated to implementing the test functions. The  
function of these terminals is for factory self-test only and NO CONNECTION (NC) should be made to either of these  
terminals.  
3.11 Power Supply Options  
ANALOG SUPPLY  
(DAV  
DIGITAL SUPPLY  
(DV  
MONITOR SUPPLY  
(MV  
)
)
)
DD  
5 V  
DD  
5 V  
DD  
5 V  
Option 1  
Option 2  
Option 3  
3.3 V  
5 V  
3.3 V  
3.3 V  
3.3 V  
5 V  
3–2  
4 Serial Communications  
DT_DOUT, DT_DIN, DT_SCLK, and DT_FS, are the serial communication signals for the serial port. The digital  
output data from the ADC is taken from DT_DOUT. The digital input data for the DAC is applied to DT_DIN. The  
synchronization clock for the serial communication data and the frame-sync is taken from DT_SCLK. The frame-sync  
pulse, which signals the beginning of the ADC and DAC data transfer interval, is taken from DT_FS.  
For signal data transmitted from the ADC or to the DAC, a primary serial communication is used. A secondary  
communication is used to read or write words to the control registers, which control both the options and the circuit  
configurations of the device.  
The purpose of the primary and secondary communications is to allow conversion data and control data to be  
transferred across the same serial port. A primary transfer is always dedicated to conversion data. A secondary  
transfer is used to set up or read the control register values described in Appendix A, Programmable Register Set.  
A primary transfer occurs for every conversion period. A secondary transfer occurs only when requested. Secondary  
serial communication is requested by software (D0 of the primary data input to DT_DIN). Control registers 1 and 2  
can only be read/write from/to the serial port.  
4.1 Primary Serial Communication  
Primary serial communication is used to both transmit and receive conversion signal data. The DAC word length is  
15 bits and the last bit of the primary 16-bit serial communication word is a control bit used to request secondary serial  
communication. For all serial communications, the most significant bit is transferred first. For the 16-bit ADC word,  
D15 is the most significant bit and D0 is the least significant bit. For the 15-bit DAC data word in a primary  
communication, D15 is the most significant bit, D1 is the least significant bit, and D0 is used for the secondary  
communication request control. All digital data values are in 2s-complement data format. Refer to Figure 4–1.  
DT_DIN  
D15–D1  
D0  
Secondary  
Communication Request  
D/A Data  
A/D Data  
DT_DOUT  
D15–D0  
Figure 4–1. Primary Communication DIN and DOUT Data Format  
4–1  
4.1.1  
FS High Mode Primary Communication Timing  
There are two possible modes for serial data transfer. One mode is the FS high mode, which is selected by tying the  
SI_SEL terminal to DV . Figure 4–2 shows the timing relationship for DT_SCLK, DT_FS, DT_DOUT and DT_DIN  
DD  
in a primary communication when in FS high mode. The timing sequence for this operation is as follows:  
1. DT_FS is brought high and remains high for one DT_SCLK period, then goes back low.  
2. A 16-bit word is transmitted from the ADC (DT_DOUT) and a 16-bit word is received for DAC conversion  
(DT_DIN).  
DT_SCLK  
DT_FS  
DT_DIN  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DT_DOUT  
Figure 4–2. FS High Mode Primary Serial Communication Timing  
4.2 FS Low Mode Primary Communication Timing  
ThesecondpossibleserialinterfacemodeistheFSlowmodewhichisselectedbytyingtheSI_SELterminaltoDV  
SS.  
This mode differs from the FS high mode in that the frame sync signal (FS) is active low, data transfer starts on the  
falling edge of DT_FS, and DT_FS remains low throughout the data transfer. Figure 4–3 shows the timing relationship  
for DT_SCLK, DT_FS, DT_DOUT, and DT_DIN in a primary communication when in FS low mode. The timing  
sequence for this operation is as follows:  
1. DT_FS is brought low by the TLC320AD545.  
2. A 16-bit word is transmitted from the ADC (DT_DOUT) and a 16-bit word is received for DAC conversion  
(DT_DIN).  
3. DT_FS is brought high signaling the end of the data transfer.  
4–2  
DT_SCLK  
DT_FS  
DT_DIN  
D15 D14 D13 D12  
D15 D14 D13 D12  
D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D11  
DT_DOUT  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D11 D10  
Figure 4–3. FS Low Mode Primary Serial Communication Timing  
4.3 Secondary Serial Communication  
Secondary serial communication is used to read or write 16-bit words that program both the options and the circuit  
configurations of the device. Register programming always occurs during secondary communication. Control  
registers 1 and 2 can only be written to or read from the serial port. Two primary and secondary communication cycles  
are necessary to program the control registers. If the default value for a particular register is desired, then the register  
addressing can be omitted during secondary communications. The NOOP (no operation) command addresses a  
pseudo-register, register 0, and no register programming takes place during this secondary communication.  
During a secondary communication, a register may be written to or read from. When writing a value to a register, the  
DT_DIN line contains the value to be written. The data returned on DT_DOUT is 00h.  
The method for requesting a secondary communication is by asserting the least significant bit (D0) of DT_DIN high  
as shown in Table 4–1.  
Table 4–1. Least-Significant-Bit Control Function  
CONTROL BIT D0  
CONTROL BIT FUNCTION  
0
1
No secondary communication request  
Secondary communication request  
Figure 4–4 shows the data format XX_DIN and XX_DOUT during secondary communication.  
Don’t Care  
D15  
DT_DIN  
(Read)  
––  
––  
1
0
D12 D11 D10 D9 D8  
D7–D0  
R/W  
––  
Register Address  
D12 D11 D10 D9 D8  
AII 0  
Register Data  
D7–D0  
D15  
––  
DT_DIN  
(Write)  
Register Data  
D7–D0  
DT_DOUT  
(Read)  
D15–D8  
AII 0  
DT_DOUT  
(Write)  
D15–D0  
4–3  
Figure 4–4. Secondary Communication DIN and DOUT Data Format  
4.4 FS High Mode Secondary Communication Timing  
On the rising edge of DT_SCLK, coinciding with the falling edge of FS, D15–D0 is input serially to DT_DIN and  
D15–D0 is output serially on DT_DOUT. If a secondary communication request is made, FS goes high again, 128  
SCLKsafterthebeginningoftheprimaryframe, tosignalthebeginningofthesecondaryframeoneSCLKperiodlater.  
See Figure 4–5.  
128 DT_SCLKs  
P
S
P
P
DT_FS  
DT_DIN  
Data (D0=1)  
Register R/W  
Data (D0=0)  
Secondary Communication  
Request  
No Secondary  
Communication Request  
Figure 4–5. FS Output During Software Secondary Serial Communication Request  
(FS High Mode)  
4.5 FS Low Mode Secondary Communication Timing  
On the falling edge of FS for that channel, D15–D0 is input serially to DT_DIN and D15–D0 is output serially on  
DT_DOUT. FS remains low during the data transfer and then returns high. If a secondary communication request is  
made, FS goes low 128 SCLKs after the beginning of the primary frame to signal the beginning of the secondary  
frame. See Figure 4–6.  
128 DT_SCLKs  
DT_FS  
P
S
P
Data (D0=1)  
Register R/W  
Data (D0=0)  
DT_DIN  
Secondary Communication  
Request  
No Secondary  
Communication Request  
Figure 4–6. FS Output During Software Secondary Serial Communication Request  
(FS Low Mode)  
4–4  
5 Specifications  
5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
(Unless Otherwise Noted)  
Supply voltage range, DV , AV , (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
DD  
DD  
Output voltage range, all digital output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV +0.3 V  
DD  
Input voltage range, all digital input signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV +0.3 V  
DD  
Case temperature for 10 seconds: PM package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 C  
Operating free-air temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40 C to 85 C  
A
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65 C to 150 C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to Vss.  
5.2 Recommended Operating Conditions  
MIN NOM  
MAX  
5.5  
3.6  
3
UNIT  
V
Supply voltage, DAV , MV , DVDD (5-V supply)  
4.5  
3
5
DD  
DD  
Supply voltage, DAV , MV  
DV (3.3-V supply) (see Note 2)  
DD  
3.3  
V
DD  
DD,  
Analog signal peak-to-peak input voltage , DTRXM, DTRXP, V  
(5-V supply)  
V
I(analog)  
I(analog)  
Analog signal peak-to-peak input voltage , DTRXM, DTRXP, V  
(3.3-V supply)  
2
V
Differential output load resistance, R (DT_BUFP, DT_BUFM)  
600  
8
L
Differential output load resistance, R (MONOUTP, MONOUTM)  
L
Input impedance for hybrid amps (DTRXP, DTRXM, DTTX_INP, DTTX_INM)  
Master clock  
50  
8
kΩ  
MHz  
pF  
kHz  
°C  
5.645  
20  
Load capacitance, C  
L
ADC or DAC conversion rate  
Operating free-air temperature, T  
11.025  
70  
0
A
Preamplifier gain set to 0 dB  
NOTE 2: Voltages at analog inputs and outputs and xV  
are respect to the xV terminal.  
SS  
DD  
5–1  
5.3 Electrical Characteristics Over Recommended Operating Free-Air  
Temperature Range DV = 5 V/3.3 V, AV = 5 V/3.3 V, MV = 5 V/3.3 V  
DD  
DD  
DD  
5.3.1 Digital Inputs and Outputs, f = 8 kHz, Outputs Not Loaded  
s
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DV  
+ 0.5  
DD  
V
V
High-level output voltage, any digital output  
I
= –360 µA  
2.4  
V
OH  
O
O
DV  
SS  
Low-level output voltage, any digital output  
I
= 2 mA  
0.4  
V
OL  
– 0.5  
I
I
High-level input current, any digital input  
Low-level input current, any digital input  
Input capacitance, any digital input  
V
V
= 5 V  
10  
10  
µA  
µA  
pF  
pF  
µA  
µA  
IH  
IH  
= 0.6 V  
IL  
IL  
C
C
10  
10  
j
Output capacitance, any digital output  
Input leakage current, any digital input  
Output leakage current, any digital output  
O
I
10  
10  
I(lkg)  
OZ  
I
5.3.2 ADC Channel, f = 8 kHz (see Note 3)  
s
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
–0.5  
TYP  
MAX  
0.2  
UNIT  
–0.25  
–0.35  
0.25  
0.3  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
–3  
4 kHz  
–35  
–74  
4.4 kHz  
NOTE 3: The filter gain outside of the passband is measured with respect to the gain at 1020 Hz. The analog input test signal is a sine wave with  
0 dB=3 V at 5-V supply and 0 db = 2 V at 3.3-V supply differential as the reference level for ADC analog input signal. The –3 dB  
PP  
PP  
passband is 0 to 3600 Hz for an 8-kHz sample rate. This passband scales linearly with the sample rate.  
5.3.3 ADC Dynamic Performance, f = 8 kHz  
s
5.3.3.1 ADC Signal-to-Noise (see Note 4)  
PARAMETER  
TEST CONDITIONS  
V = –1 dB  
MIN  
76  
TYP  
81  
MAX  
UNIT  
I
Signal-to-noise ratio (SNR)  
V = –9 dB  
I
68  
73  
dB  
V = –40 dB  
I
37  
42  
NOTE 4: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output common mode is 2.5 V for 5 V supply and  
1.5 V for 3.3 V supply. The output configuration is in a 5 V differential-ended mode.  
5.3.3.2 ADC Signal-to-Distortion (see Note 4)  
PARAMETER  
TEST CONDITIONS  
V = –3 dB  
MIN  
74  
TYP MAX  
UNIT  
79  
87  
63  
I
Signal-to-total harmonic distortion (THD)  
V = –9 dB  
I
82  
dB  
V = –40 dB  
I
58  
NOTE 4: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output common mode is 2.5 V for 5 V supply and  
1.5 V for 3.3 V supply. The output configuration is in a 5 V differential-ended mode.  
5–2  
5.3.3.3 ADC Signal-to-Distortion + Noise (see Note 4)  
PARAMETER  
TEST CONDITIONS  
V = –3 dB  
MIN  
71  
TYP MAX  
UNIT  
76  
73  
42  
I
Signal-to-total harmonic distortion + noise (THD + N)  
V = –9 dB  
I
68  
dB  
VI = –40 dB  
37  
NOTE 4: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output common mode is 2.5 V for 5-V supply and  
1.5 V for 3.3-V supply. The output configuration is in a 5 V differential-ended mode.  
5.3.4 ADC Characteristics  
PARAMETER  
Peak-input voltage (5.0 V supply)  
Peak-input voltage (3.3 V supply)  
Dynamic range  
TEST CONDITIONS  
Preamp gain = 0 dB  
Preamp gain = 0 dB  
MIN  
TYP MAX  
UNIT  
V
V
V
3
I(PP)  
2
V
I(PP)  
V =–1 dB at 1020 Hz  
I
80  
87  
dB  
dB  
dB  
mV  
dB  
Interchannel isolation  
E
E
Gain error  
V = –1 dB at 1020 Hz  
I
±0.5  
10  
G
ADC channel offset error including hybrid amplifiers  
Common-mode rejection ratio  
Idle channel noise (on-chip reference)  
Channel delay  
O(ADC)  
CMRR  
V = –1 dB at 1020 Hz  
I
80  
50  
17/f  
100 µVrms  
s
s
5.3.5 DAC Channel, f = 8 kHz (see Note 5)  
s
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
–0.5  
TYP MAX  
UNIT  
0.2  
0.25  
0.3  
–0.25  
–0.35  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
–3  
4 kHz  
–35  
NOTE 5: The filter gain outside of the passband is measured with respect to the gain at 1020 Hz. The input signal is the digital equivalent of a  
sine wave (digital full scale = 0 dB). The –3 dB pass band is 0 to 3600 Hz for an 8-kHz sample rate. This pass band scales linearly  
with the sample rate.  
5.3.6 DAC Dynamic Performance  
5.3.6.1 DAC Signal-to-Noise (see Note 6)  
PARAMETER  
TEST CONDITIONS  
V = 0 dB  
MIN  
72  
TYP MAX  
UNIT  
77  
68  
37  
I
Signal-to-noise ratio (SNR)  
V = –9 dB  
I
63  
dB  
V = –40 dB  
I
32  
NOTE 6: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. The output configuration is in a 5 V differential-endedmode.  
5.3.6.2 DAC Signal-to-Distortion (see Note 6)  
PARAMETER  
TEST CONDITIONS  
V = –3 dB  
MIN  
77  
TYP MAX  
UNIT  
82  
77  
66  
I
Signal-to-total harmonic distortion (THD)  
V = –9 dB  
I
72  
dB  
V = –40 dB  
I
61  
NOTE 6: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. The output configuration is in a 5 V differential-endedmode.  
5–3  
5.3.6.3 DAC Signal-to-Distortion + Noise (see Note 6)  
PARAMETER  
TEST CONDITIONS  
VI = –3 dB  
MIN  
73  
TYP MAX  
UNIT  
78  
72  
37  
Signal-to-total harmonic distortion + noise (THD + N)  
VI = –9 dB  
67  
dB  
VI = –40 dB  
32  
NOTE 6: The test condition is a 1020-Hz input signal with an 8-kHz conversion rate. The output configuration is in a 5 V differential-endedmode.  
5.3.7 DAC Characteristics  
PARAMETER  
TEST CONDITIONS  
V = 0 dB at 1020 Hz  
MIN  
TYP MAX  
UNIT  
dB  
Dynamic range  
82  
100  
I
Interchannel isolation  
Gain error  
dB  
E
G
V = 0 dB at 1020 Hz  
I
±0.5  
dB  
Idle channel narrow-band noise  
Channel delay  
0 kHz to 4 kHz (see Note 7)  
75  
18/f  
125 µV rms  
s
s
Differential with respect to common  
mode and full-scale digital input (see  
Note 8)  
V
V
Analog output voltage, MONOUTP-MONOUTM (5.0 V)  
Analog output voltage, MONOUTP-MONOUTM (3.3 V)  
–1.78  
–1.2  
1.78  
1.2  
V
V
O
Differential with respect to common  
mode and full-scale digital input (see  
Note 8)  
O
Differential with respect to common  
mode and full-scale digital input  
V
V
Analog output voltage (5 V)  
Analog output voltage, (3.3 V)  
–3  
–2  
3
2
V
V
O
Differential with respect to common  
mode and full-scale digital input  
O
NOTES: 7. The conversion rate is 8 kHz.  
8. This amplifier should only be used in differential mode. Common mode : 2.5 V in 5-V supply, 1.5 V in 3.3-V supply.  
5.3.8 Logic DC Electrical Characteristics  
PARAMETER  
MIN  
–0.3  
TYP  
MAX  
UNIT  
V
V
V
Low-level input voltage  
High-level input voltage  
Input leakage current  
Output leakage current  
0.8  
IL  
2
DV +0.3  
DD  
V
IH  
I
I
10  
10  
µA  
µA  
V
I(lkg)  
O(lkg)  
V
High-level output voltage at rated load current  
Low-level output voltage at rated load current  
2.4  
DV +0.5  
DD  
OH  
OL  
V
DV –0.5  
SS  
0.4  
V
5.3.9 Power-Supply Rejection (see Note 9)  
PARAMETER  
TEST CONDITIONS  
f = 0 to f /2  
MIN  
TYP  
MAX  
UNIT  
V
DD1  
V
DD2  
V
DD3  
V
DD4  
Supply-voltage rejection ratio, ADC channel, DAV  
Supply-voltage rejection ratio, DAC channel, DAV  
73  
76  
86  
95  
DD  
I
s
f = 0 to f /2  
DD  
I
s
dB  
Supply-voltage rejection ratio, ADC channel, DV  
Supply-voltage rejection ratio, DAC channel, DV  
f = 0 to f /2  
I s  
DD  
f = 0 to 30 kHz  
I
DD  
NOTE 9: Power supply rejection measurements are made with both the ADC and the DAC channels idle and a 200 mV peak-to-peak signal  
applied to the appropriate supply.  
5.3.10 Power-Supply  
PARAMETER  
TEST CONDITIONS  
Operating  
MIN  
TYP  
25  
5
MAX  
UNIT  
mA  
Codec power supply current, analog (including hybrid and  
drivers)  
I
I
(analog)  
(digital )  
DD  
Codec power supply current, digital  
Operating  
mA  
DD  
5–4  
PARAMETER  
TEST CONDITIONS  
Operating  
MIN  
TYP MAX  
UNIT  
mA  
I
I
(monitor) Power supply current, 8 monitor speaker driver (5 V)  
(monitor) Power supply current, 8 monitor speaker driver (3.3 V)  
135  
315  
240  
DD  
Operating  
mA  
DD  
5.3.11 Flash Write Enable Circuit  
PARAMETER  
TEST CONDITIONS  
FLSH_IN low  
MIN  
4.5  
2.8  
0
TYP MAX  
UNIT  
V
V
V
V
Output high-level voltage (5 V supply), FLSH_OUT  
Output high-level voltage (3.3 V supply), FLSH_OUT  
Output low-level voltage, FLSH_OUT  
5
5.5  
3.8  
1.5  
45  
OH(FLSH_OUT)  
OH(FLSH_OUT)  
OL(FLSH_OUT)  
O(FLSH_OUT)  
O(FLSH_OUT)  
FLSH_IN low  
3.3  
V
FLSH_IN high  
FLSH_IN low  
V
I
I
Output current (5 V supply), FLSH_OUT  
40  
25  
mA  
mA  
Output current (3.3 V supply), FLSH_OUT  
FLSH_IN low  
5.4 Timing Characteristics (see Parameter Measurement Information)  
5.4.1 Timing Requirements  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Delay time, DT_SCLKto DT_FS↓  
0
d1  
Setup time, DT_DIN, before DT_SCLK low  
Hold time, DT_DIN, after DT_SCLK high  
Delay time, DT_MCLKto DT_SCLK↑  
Pulse duration, DT_MCLK high  
25  
ns  
su1  
h1  
20  
50  
ns  
ns  
d3  
32  
20  
ns  
wH  
wL  
Pulse duration, DT_MCLK low  
ns  
5.4.2 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
20  
UNIT  
ns  
t
t
t
Delay time, DT_SCLKto DT_DOUT  
Enable time, FSto DT_DOUT  
Disable time, FSto DT_DOUT Hi-Z  
Reset pulse width  
d2  
C
= 20 pF  
L
25  
en1  
dis1  
20  
T
PW  
10MCLK  
ns  
5.5 Parameter Measurement Information  
5–5  
t
wH  
DT_MCLK  
DT_SCLK  
t
t
d3  
wL  
t
d1  
DT_FS  
DT_DOUT  
DT_DIN  
t
dis1  
t
d2  
D15  
D14  
D14  
t
en1  
t
su1  
D15  
t
h1  
Figure 5–1. Serial Communication Timing  
0
–20  
–40  
–60  
–80  
–100  
– 120  
0.8  
1.6  
2.4  
3.2  
4
4.8  
5.6  
6.4  
7.2  
f – Input Frequency – kHz  
I
Figure 5–2. ADC Decimation Filter Response  
5–6  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
f – Input Frequency – kHz  
I
Figure 5–3. ADC Decimation Filter Passband Ripple  
0
–20  
–40  
–60  
–80  
–100  
– 120  
0.8  
1.6  
2.4  
3.2  
4
4.8  
5.6  
6.4  
7.2  
f – Input Frequency – kHz  
I
Figure 5–4. DAC Interpolation Filter Response  
5–7  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
f – Input Frequency – kHz  
I
Figure 5–5. DAC Interpolation Filter Passband Ripple  
5–8  
6 Application Information  
H
Y
B
R
I
Data  
Channel  
Serial  
Port  
Matching  
Network  
POTS  
Data Channel  
Codec  
D
A
M
P
Flash  
Write  
Enable  
Control  
Logic  
AT41  
SPKR  
DRVR  
Figure 6–1. Functional Block of a Typical Application  
6–1  
DTRX_FB  
Data (Hybrid)  
DTRXM  
+
16-Bit  
ADC  
+
MonOut PGA  
0/3/6/9/12 dB Gain  
with Mute  
DTRXP  
Data_In PGA  
T1  
0/6/12/18 dB Gain  
with Mute  
2.5 V/1.5 V  
DT_REF  
2.5 V/1.5 V  
+
M
U
X
Primary  
Line  
16-Bit  
DAC  
DTTX_OUTP  
MONOUTP  
AT41  
+
Data (Hybrid)  
+
DTTX_INM  
DTTX_INP  
8-Speaker Buffer  
2.5 V/1.5 V  
MONOUTM  
0 dB or Mute  
+
DTTX_OUTM  
DT_BUFP  
+
2.5 V/1.5 V  
+
DT_BUFM  
0/-6/-12/-18 dB or Mute  
600-Data_Out PGA  
Required to meet communication standards  
Figure 6–2. Differential Configuration Typical Application  
6–2  
DTRX_FB  
Data (Hybrid)  
DTRXM  
+
+
16-Bit  
ADC  
Mon_Out PGA  
0/3/6/9/12 dB Gain  
with Mute  
DTRXP  
T1  
Data_In PGA  
0/6/12/18 dB Gain  
with Mute  
2.5 V/1.5 V  
DT_REF  
2.5 V/1.5 V  
Primary  
Line  
+
M
U
X
16-Bit  
DAC  
DTTX_OUTP  
MONOUTP  
AT41  
+
Data (Hybrid)  
+
DTTX_INM  
8-Speaker Buffer  
0 dB or Mute  
2.5 V/1.5 V  
MONOUTM  
+
DTTX_INP  
DTTX_OUTM  
+
DT_BUFP(NC)  
DT_BUFM  
2.5 V/1.5 V  
+
0/-6/-12/-18 dB or Mute  
600-Data_Out PGA  
Required to meet communication standards  
Figure 6–3. Single-Ended Configuration Typical Application  
6–3  
6–4  
Appendix A  
Programmable Register Set  
Bits D12–D8 in a secondary serial communication comprise the address of the register that is written with data carried  
in bits D7–D0. D13 determines a read or write cycle to the addressed register. When low (0), a write cycle is selected.  
The following table shows the register map.  
Table A–1. Register Map  
REGISTER NO.  
D15 D14 D13 D12 D11 D10  
D9  
0
D8  
1
REGISTER NAME  
Control 1  
1
2
0
0
0
0
R/W  
R/W  
0
0
0
0
0
0
1
0
Control 2  
Table A–2. Control Register 1  
D0 DESCRIPTION  
D7  
1
D6  
D5  
D4  
D3  
D2  
D1  
Software reset asserted  
Software reset not asserted  
S/W power down enabled  
S/W power down disabled  
Digital loopback asserted  
Digital loopback not asserted  
Analog loopback asserted  
Analog loopback not asserted  
0
1
0
1
0
1
0
1
0
Select data_in PGA for monitor amp input  
Select DAC output for monitor amp input  
Monitor amp PGA gain = 12 dB  
Monitor amp PGA gain = 9 dB  
Monitor amp PGA gain = 6 dB  
Monitor amp PGA gain = 3 dB  
Monitor amp PGA gain = 0 dB  
Monitor amp PGA gain = mute  
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
Default value: 00000000  
A–1  
Table A–3. Control Register 2  
D7  
1
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
DESCRIPTION  
Data in (DTRX) PGA gain = mute  
Data in (DTRX) PGA gain = 18 dB  
Data in (DTRX) PGA gain = 12 dB  
Data in (DTRX) PGA gain = 6 dB  
Data in (DTRX) PGA gain = 0 dB  
DAC data out PGA gain = mute  
DAC data out PGA gain = –18 dB  
DAC data out PGA gain = –12 dB  
DAC data out PGA gain = –6 dB  
DAC data out PGA gain = 0 dB  
0
1
1
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
1
0
1
0
8 monitor speaker driver gain = 0 dB  
8 monitor speaker driver gain = mute  
ADC overflow indicator: 1 = overflow  
X
Default value: 00000000  
A–2  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLC320AD545IPT

Single Channel Data/Fax Codec
TI

TLC320AD545PT

Single Channel Data/Fax Codec
TI

TLC320AD545PTG4

IC SPECIALTY TELECOM CIRCUIT, PQFP48, GREEN, PLASTIC, LQFP-48, Telecom IC:Other
TI

TLC320AD545PTR

具有混合运算放大器和扬声器驱动器的单通道编解码器 | PT | 48 | 0 to 70
TI

TLC320AD545PTRG4

SPECIALTY TELECOM CIRCUIT, PQFP48, GREEN, PLASTIC, LQFP-48
TI

TLC320AD55

Sigma-Delta Analog Interface Circuit
TI

TLC320AD55CDWR

Single Channel Codec 28-SOIC
TI

TLC320AD56

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56C

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56CFN

Sigma-Delta Analog Interface Circuit
TI

TLC320AD56CFNR

Single Channel Codec With 85-87 dB Dynamic Range 28-PLCC 0 to 70
TI

TLC320AD56CPT

Sigma-Delta Analog Interface Circuit
TI