TLC3578IPWRG4 [TI]

5-V ANALOG 3-5V DIGITAL 14-12BIT 200-KSPS 4-8CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH; 5 V模拟3-5V数字14-12BIT 200 KSPS 4-8CHANNEL串行模拟数字转换器与
TLC3578IPWRG4
型号: TLC3578IPWRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5-V ANALOG 3-5V DIGITAL 14-12BIT 200-KSPS 4-8CHANNEL SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH
5 V模拟3-5V数字14-12BIT 200 KSPS 4-8CHANNEL串行模拟数字转换器与

转换器 模数转换器 光电二极管
文件: 总49页 (文件大小:1484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TLC3578, TLC2578  
DW OR PW PACKAGE  
(TOP VIEW)  
D
14-Bit Resolution for TLC3574/78, 12-Bit for  
TLC2574/2578  
D
Maximum Throughput 200-KSPS  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
SCLK  
FS  
SDI  
CSTART  
D
Multiple Analog Inputs:  
− 8 Single-Ended Channels for  
TLC3578/2578  
− 4 Single-Ended Channels for  
TLC3574/2574  
2
AV  
DD  
3
AGND  
COMP  
REFM  
REFP  
AGND  
4
EOC/INT  
SDO  
DGND  
5
6
D
D
D
Analog Input Range: 10 V  
7
DV  
DD  
Pseudodifferential Analog Inputs  
8
CS  
A0  
A1  
A2  
A3  
AV  
A7  
A6  
A5  
A4  
DD  
9
SPI/DSP-Compatible Serial Interfaces With  
SCLK up to 25-MHz  
10  
11  
12  
D
Built-In Conversion Clock and 8x FIFO  
D
Single 5-V Analog Supply; 3-/5-V Digital  
Supply  
TLC3574, TLC2574  
DW, N, OR PW PACKAGE  
(TOP VIEW)  
D
Low-Power  
− 5.8 mA in Normal Operation  
− 20 µA in Power Down  
D
D
Programmable Autochannel Sweep and  
Repeat  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SCLK  
FS  
SDI  
CSTART  
AV  
DD  
AGND  
COMP  
REFM  
REFP  
AGND  
Hardware-Controlled, Programmable  
Sampling Period  
EOC/INT  
SDO  
DGND  
D
Hardware Default Configuration  
D
INL: TLC3574/78: 1 LSB;  
TLC2574/78: 0.5 LSB  
DV  
DD  
CS  
A0  
A1  
AV  
A3  
A2  
DD  
D
D
D
DNL: TLC3574/78: 0.5 LSB;  
TLC2574/78: 0.5 LSB  
SINAD: TLC3574/78: 79 dB;  
TLC2574/78: 72 dB  
THD: TLC3574/78: −82 dB;  
TLC2574/78: −82 dB  
description  
The TLC3574, TLC3578, TLC2574, and TLC2578 are a family of high-performance, low-power, CMOS  
analog-to-digital converters (ADC). TLC3574/78 is a 14-bit ADC; TLC2574/78 is a 12-bit ADC. All parts operate  
from single 5-V analog power supply and 3-V to 5-V digital supply. The serial interface consists of four digital  
input [chip select (CS), frame sync (FS), serial input-output clock (SCLK), serial data input (SDI)], and a 3-state  
serial data output (SDO). CS (works as SS, slave select), SDI, SDO and SCLK form an SPI interface. FS, SDI,  
SDO, and SCLK form DSP interface. The frame sync signal (FS) indicates the start of a serial data frame being  
transferred. When multiple converters connect to one serial port of a DSP, CS works as the chip select to allow  
the host DSP to access the individual converter. CS can be tied to ground if only one converter is used. FS must  
be tied to DV  
if it is not used (such as in an SPI interface). When SDI is tied to DV , the device is set in  
DD  
DD  
hardware default mode after power on and no software configuration is required. In the simplest case, only three  
wires (SDO, SCLK, and CS or FS) are needed to interface with the host.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢩ  
Copyright 2000 − 2003, Texas Instruments Incorporated  
ꢥ ꢩ ꢦ ꢥꢞ ꢟꢳ ꢡꢠ ꢤ ꢬꢬ ꢪꢤ ꢢ ꢤ ꢣ ꢩ ꢥ ꢩ ꢢ ꢦ ꢮ  
1
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
description (continued)  
In addition to being a high-speed ADC with versatile control capability, these devices have an on-chip analog  
multiplexer (MUX) that can select any analog input or one of three self-test voltages. The sample-and-hold  
function is automatically started after the fourth SCLK (normal sampling) or can be controlled by a special pin,  
CSTART, to extend the sampling period (extended sampling). The normal sampling period can also be  
programmed as short sampling (12 SCLKs) or long sampling (44 SCLKs) to accommodate the faster SCLK  
operation popular among high-performance signal processors. The TLC3574/78 and TLC2574/78 are  
designed to operate with low-power consumption. The power saving feature is further enhanced with  
autopower-down mode and programmable conversion speeds. The conversion clock (internal OSC) is built in.  
The converter can also use an external SCLK as the conversion clock for maximum flexibility. The TLC3574/78  
and TLC2574/78 are specified with bipolar input and a full scale range of 10 V.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
20-TSSOP  
(PW)  
20-SOIC  
(DW)  
20-PDIP  
(N)  
24-SOIC  
(DW)  
24-TSSOP  
(PW)  
TLC2574IPW  
TLC3574IPW  
TLC2574IDW  
TLC3574IDW  
TLC2574IN  
TLC3574IN  
TLC2578IDW  
TLC3578IDW  
TLC2578IPW  
TLC3578IPW  
40°C to 85°C  
functional block diagram  
DV  
AV  
DD  
DD  
REFP  
COMP  
REFM  
X8  
X4  
A0 A0  
A1 A1  
A2 A2  
A3 A3  
FIFO  
X8  
SAR  
ADC  
Analog  
MUX  
Signal  
Scaling  
OSC  
A4  
A5  
A6  
A7  
X
X
X
X
SDO  
Conversion  
Clock  
Command  
Decode  
CFR  
SDI  
CMR (4 MSBs)  
SCLK  
CS  
FS  
Control  
Logic  
4-Bit  
EOC/INT  
Counter  
CSTART  
DGND AGND  
TLC3578, TLC2578  
TLC3574, TLC2574  
NOTE: 4-Bit counter counts the CLOCK, SCLK. The CLOCK is gated in by CS falling edge if CS initiates the conversion operation cycle, or gated  
in by the rising edge of FS if FS initiates the operation cycle. SCLK is disabled for serial interface when CS is high.  
2
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
equivalent input circuit  
V
DD  
REFP  
Bipolar Signal Scaling  
MUX  
Digital Input  
3.94 kΩ  
6.6 kΩ  
1.5 kΩ  
9.9 kΩ  
Ain  
R
on  
C
= 30 pF  
(sample)  
Equivalent Digital Input Circuit  
REFM  
Diode Turn on Voltage: 35 V  
Equivalent Analog Input Circuit  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
TLC3574 TLC3578  
TLC2574 TLC2578  
A0  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
9
9
I
Analog signal inputs. Analog input signals applied to these terminals are internally multiplexed. The  
driving source impedance should be less than or equal to 25 for normal sampling. For larger  
source impedance, use the external hardware conversion start signal CSTART (the low time of  
CSTART controls the sampling period) or reduce the frequency of SCLK to increase the sampling  
time.  
A1  
A2  
A3  
10  
11  
12  
10  
11  
12  
13  
14  
15  
16  
AGND  
14, 18  
18, 22  
I
Analog ground return for the internal circuitry. Unless otherwise noted, all analog voltage  
measurements are with respect to AGND.  
AV  
DD  
13, 19  
17  
17, 23  
21  
I
I
I
Analog supply voltage  
COMP  
CS  
Internal compensation pin. Install compensation capacitors 0.1 µF between this pin and AGND.  
8
8
Chip select. When CS is high, SDO is in high-impedance state, SDI is ignored, and SCLK is  
disabled to clock data, but works as conversion clock source if programmed. The falling edge of  
CS input resets the internal 4-bit counter, enables SDI and SCLK, and removes SDO from  
high-impedance state.  
If FS is high at CS falling edge, CS falling edge initiates the operation cycle. CS works as slave  
select (SS) to provide an SPI interface.  
If FS is low at CS falling edge, FS rising edge initiates the operation cycle. CS can be used as chip  
select to allow host to access the individual converter.  
CSTART  
20  
24  
I
External sampling trigger signal, which initiates the sampling from a selected analog input channel  
when the device works in extended sampling mode (asynchronous sampling). A high-to-low  
transition starts the sampling of the analog input signal. A low-to-high transition puts the S/H in hold  
mode and starts the conversion. The low time of the CSTART signal controls the sampling period.  
CSTART signal must stay low long enough for proper sampling. CSTART must stay high long  
enough after the low-to-high transition for the conversion to finish maturely. The activation of  
CSTART is independent of SCLK and the level of CS and FS. However, the first CSTART cannot  
be issued before the rising edge of the eleventh SCLK. Tie this pin to DV  
Digital ground return for the internal circuitry  
Digital supply voltage  
if not used.  
DD  
DGND  
DV  
6
7
6
7
I
I
DD  
3
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
Terminal Functions (Continued)  
TERMINAL  
NO.  
I/O  
TLC3574 TLC3578  
TLC2574 TLC2578  
DESCRIPTION  
NAME  
EOC(INT)  
4
4
O
End of conversion (EOC) or interrupt to host processor (INT)  
EOC: used in conversion mode 00 only. EOC goes from high to low at the end of the sampling and  
remains low until the conversion is complete and data is ready.  
INT: Interrupt to the host processor. The falling edge of INT indicates data is ready for output. INT  
is cleared by the following CS, FS, or CSTART.  
FS  
2
2
I
Frame sync input from DSP. The rising edge of FS indicates the start of a serial data frame being  
transferred (coming into or being sent out of the device). If FS is low at the falling edge of CS, the  
rising edge of FS initiates the operation cycle, resets the internal 4-bit counter, and enables SDI,  
SDO, and SCLK. Tie this pin to DV  
DD  
if FS is not used to initiate the operation cycle.  
REFM  
REFP  
16  
15  
20  
19  
I
I
External low reference input. Connect REFM to AGND.  
External positive reference input. The range of maximum input voltage is determined by the  
difference between the voltage applied to this terminal and to the REFM terminal. Always install  
decoupling capacitors (10 µF in parallel with 0.1 µF) between REFP and REFM.  
SCLK  
SDI  
1
3
1
3
I
I
Serial clock input from the host processor to clock in the input from SDI and clock out the output  
via SDO. It can also be used as the conversion clock source when the external conversion clock  
is selected (see Table 2). When CS is low, SCLK is enabled. When CS is high, SCLK is disabled  
for the data transfer, but can still work as the conversion clock source.  
Serial data input. The first 4 MSBs, ID[15:12], are decoded as one 4-bit command. All trailing bits,  
except for the WRITE CFR command, are filled with zeros. The WRITE CFR command requires  
additional 12-bit data. The MSB of input data, ID(15), is latched at the first falling edge of SCLK  
following FS falling edge if FS starts the operation, or latched at the falling edge of first SCLK  
following CS falling edge when CS initiates the operation.  
The remaining input data (if any) is shifted in on the rising edge of SCLK and latched on the falling  
edge of SCLK. The input via SDI is ignored after the 4-bit counter counts to 16 (clock edges) or a  
low-to-high transition of CS, whichever happens first. Refer to the timing specification for the timing  
requirements. Tie SDI to DV  
DD  
if using hardware default mode (refer to Device Initialization).  
SDO  
5
5
O
The 3-state serial output for the A/D conversion result. All data bits are shifted out through SDO.  
SDO is in the high-impedance state when CS is high. SDO is released after a CS falling edge. The  
output format is MSB (OD15) first.  
When FS initiates the operation, the MSB of output via SDO, OD(15), is valid before the first falling  
edge of SCLK following the falling edge of FS.  
When CS initiates the operation, the MSB, OD(15), is valid before the first falling edge of SCLK  
following the CS falling edge.  
The remaining data bits (if any) are shifted out on the rising edge of SCLK and are valid before the  
falling edge of SCLK. Refer to the timing specification for the details.  
In select/conversion operation, the first 14 bits (for TLC3574/78) or the first 12 bits (for TLC2574/78)  
are the results from the previous conversion (data). In a READ FIFO operation, this data is from  
FIFO. In both cases, the last two bits (for TLC3574/78) or the last four bits (for TLC2574/78) are  
don’t care.  
In a WRITE operation, the output from SDO must be ignored.  
SDO goes into high-impedance state at the 16th falling edge of SCLK after the operation cycle is  
initiated. SDO is in high-impedance state during conversions in modes 01, 10, and 11.  
4
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, GND to AV  
and DV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6.5 V  
DD  
DD  
Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −17 V to 17 V  
Analog input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA MAX  
Reference input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AV  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DV  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 150°C  
J
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1.16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under electrical characteristics and timing  
characteristics is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
general electrical characteristics over recommended operating free-air temperature range,  
single-ended input, normal long sampling, 200 KSPS, AV  
= 5 V, V  
= 4 V, V  
= 0 V,  
DD  
REFP  
REFM  
SCLK frequency = 25 MHz, fixed channel at CONV mode 00, analog input signal source resistance  
= 25 (unless otherwise noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Digital Input  
DV  
DV  
DV  
DV  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
3.8  
2.1  
DD  
DD  
DD  
DD  
V
High-level digital input voltage  
Low-level digital input voltage  
V
IH  
IL  
0.8  
V
V
0.6  
I
I
High-level digital input current  
Low-level digital input current  
Input capacitance  
V = DV  
0.005  
2.5  
µA  
µA  
pF  
IH  
I
DD  
V = DGND  
I
−2.5 −0.005  
20  
IL  
25  
Digital Output  
DV  
DV  
= 5 V  
= 3 V  
4.2  
2.4  
DD  
DD  
V
V
I
High-level digital output at 30 pF load  
Low-level digital output at 30 pF load  
I
= −0.2 mA  
V
V
OH  
o
I
o
I
o
I
o
I
o
= 0.8 mA  
= 50 µA  
= 0.8 mA  
= 50 µA  
0.4  
0.1  
0.4  
0.1  
1
DV  
DV  
= 5 V  
= 3 V  
DD  
OL  
DD  
V
= DV  
DD  
0.02  
Off-state output current  
(high-impedance state)  
O
µA  
CS = DV  
DD  
OZ  
V
= DGND  
−1  
0.02  
O
Power Supply  
AV  
DD  
4.75  
2.7  
5
5
5.5  
5.5  
V
V
Supply voltage  
DV  
DD  
AV  
Al  
current  
current  
DD  
CC  
4.2  
1.6  
5
Conversion clock is internal OSC,  
AV = 5.5 V − 4.5 V, CS = DGND,  
Power supply cur-  
rent  
I
mA  
CC  
DD  
Excluding bipolar input biasing current  
DV  
Dl  
CC  
DD  
2.0  
I
For all digital inputs = DV  
or DGND,  
= 5.5 V, Excluding bipolar input  
SCLK OFF  
SCLK ON  
20  
CC  
DD  
AV  
DD  
µA  
°C  
(autopwrdn):  
Autopower-down power supply  
current  
175  
230  
85  
biasing current, external reference  
Operating temperature  
−40  
All typical values are at T = 25°C.  
A
5
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
general electrical characteristics over recommended operating free-air temperature range, single-  
ended input, normal long sampling, 200 KSPS, AV  
= 5 V, V  
= 4 V, V  
= 0 V,  
DD  
REFP  
REFM  
SCLK frequency = 25 MHz, fixed channel at CONV mode 00, analog input signal source  
resistance = 25 (unless otherwise noted)  
TLC3574/78 and TLC2574/78  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Resolution  
14  
bits  
Analog Input  
Voltage range  
−10  
10  
V
Selected channel at 10 V  
Selected channel at –10 V  
0.8  
−1.2  
10  
1.6  
Selected analog input channel bias current  
mA  
−1.6  
Impedance  
Capacitance  
Reference  
kΩ  
30  
pF  
V
Positive reference voltage  
Negative reference voltage  
3.96  
0
4
4.04  
V
V
REFP  
REFM  
V
AGND  
No conversion (AV  
SCLK=DGND)  
= 5V, CS= DV ,  
DD  
DD  
100  
8.3  
MΩ  
kΩ  
µA  
Input impedance  
Normal long sampling (AV  
DD  
SCLK = 25 MHz, External conversion clock)  
= 5V, CS=DGND,  
12.5  
0.4  
No conversion (AV = 5 V,  
DD  
SCLK = DGND, CS = DV  
1.5  
0.6  
)
DD  
Reference current  
Normal long sampling (AV  
External conversion clock, SCLK = 25 MHz,  
= 5 V, CS = DGND,  
DD  
mA  
V
= 5 V)  
REF  
DV  
Internal oscillation frequency  
Conversion time  
= 2.7 V – 5.5 V  
6.5  
MHz  
DD  
TLC3574/78  
TLC2574/78  
TLC3574/78  
TLC2574/78  
2.785  
2.015  
Internal OSC, 6.5 MHz minimum  
t
µS  
(conv)  
2.895  
2.095  
1.2  
Conversion clock is external source,  
SCLK = 25 MHz (see Note 1)  
Acquisition time  
Normal short sampling  
µS  
Normal long sampling, fixed channel  
in mode 00 or 01  
Throughput rate (see Note 2)  
200  
KSPS  
All typical values are at T = 25°C.  
A
NOTES: 1. Conversion time t  
is (18 × 4 × SCLK) + 15 ns for TLC3574/78. Conversion time is (13 × 4 × SCLK) + 15 ns for TLC2574/78.  
(conv)  
2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required  
to overcome the memory effect of the charge redistribution DAC.  
6
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
AC/DC performance over recommended operating free-air temperature range, single-ended input,  
normal long sampling, 200 KSPS, AV  
= 5 V, V  
= 4 V, V  
= 0 V, SCLK frequency = 25 MHz,  
DD  
REFP  
REFM  
fixed channel at CONV mode 00, analog input signal source resistance = 25 (unless otherwise  
noted)  
TLC3574/78 DW and PW package device AC/DC performance  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
DC Accuracy—Normal Long Sampling  
E
E
E
E
E
Integral linearity error  
Differential linearity error  
Bipolar zero error  
See Note 3  
−1.5  
−1  
1
1.5  
1
LSB  
LSB  
L
0.5  
0.08  
0.04  
0.13  
D
See Note 4  
See Note 4  
See Note 4  
−0.30  
−0.55  
−0.30  
0.36  
0.61  
0.79  
%FS  
%FS  
%FS  
O
Positive full scale error  
Negative full scale error  
FS(+)  
FS(−)  
DC Accuracy—Normal Short Sampling  
E
E
E
E
E
Integral linearity error  
Differential linearity error  
Bipolar zero error  
See Note 3  
1
0.5  
LSB  
LSB  
L
D
See Note 4  
See Note 4  
See Note 4  
0.08  
0.04  
0.13  
%FS  
%FS  
%FS  
O
Positive full scale error  
Negative full scale error  
FS(+)  
FS(−)  
AC Accuracy (see Note 3)—Normal Long Sampling  
f = 20 kHz  
76  
79  
75  
i
SINAD  
THD  
Signal-to-noise ratio + distortion  
Total harmonic distortion  
Signal-to-noise ratio  
dB  
dB  
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
f = 20 kHz  
i
−82  
−78  
80  
−77  
78  
12.3  
78  
SNR  
dB  
78  
12.8  
12.2  
84  
ENOB  
SFDR  
Effective number of bits  
Bits  
Spurious free dynamic range  
Channel-to-channel isolation  
dB  
dB  
f = 100 kHz  
i
79  
Fixed channel in conversion mode 00, f = 35 kHz,  
i
See Notes 2 and 5  
81  
Full power bandwidth, −3 dB  
Full power bandwidth, −1 dB  
1
MHz  
kHz  
Analog input bandwidth  
700  
All typical values are at T = 25°C.  
A
NOTES: 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required  
to overcome the memory effect of the charge redistribution DAC.  
3. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics.  
4. Bipolar zero error is the difference between 10000000000000 and the converted output for zero input voltage; positive full-scale error  
is the difference between 11111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale  
error is the difference between 00000000000000 and the converted output for negative full-scale input voltage (−10 V).  
5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the  
channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the  
converter samples different channels alternately.  
7
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TLC3574/78 DW and PW package device AC/DC performance (continued)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
AC Accuracy—Normal Short Sampling  
f = 20 kHz  
79  
75  
i
SINAD  
THD  
Signal-to-noise ratio + distortion  
Total harmonic distortion  
Signal-to-noise ratio  
dB  
dB  
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
f = 20 kHz  
i
−82  
−78  
80  
SNR  
dB  
f = 100 kHz  
i
78  
f = 20 kHz  
12.8  
12.2  
84  
i
ENOB  
SFDR  
Effective number of bits  
Bits  
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
Spurious free dynamic range  
Channel-to-channel isolation  
dB  
dB  
79  
Fixed channel in conversion mode 00, f = 35 kHz,  
i
See Notes 2 and 5  
81  
Full power bandwidth, −3 dB  
Full power bandwidth, −1 dB  
1
MHz  
kHz  
Analog input bandwidth  
700  
All typical values are at T = 25°C.  
A
NOTES: 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required  
to overcome the memory effect of the charge redistribution DAC.  
5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the  
channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the  
converter samples different channels alternately.  
8
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TLC3574I N package device AC/DC performance  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
DC Accuracy—Normal Long Sampling  
E
E
E
E
E
Integral linearity error  
Differential linearity error  
Bipolar zero error  
See Note 3  
−1.5  
−1  
1
1.5  
1.5  
LSB  
LSB  
L
0.8  
0.08  
0.04  
0.13  
D
See Note 4  
See Note 4  
See Note 4  
−0.30  
−0.55  
−0.30  
0.36  
0.61  
0.79  
%FS  
%FS  
%FS  
O
Positive full scale error  
Negative full scale error  
FS(+)  
FS(−)  
DC Accuracy—Normal Short Sampling  
E
E
E
E
E
Integral linearity error  
Differential linearity error  
Bipolar zero error  
See Note 3  
1.8  
0.8  
LSB  
LSB  
L
D
See Note 4  
See Note 4  
See Note 4  
0.08  
0.04  
0.13  
%FS  
%FS  
%FS  
O
Positive full-scale error  
Negative full-scale error  
FS(+)  
FS(−)  
AC Accuracy (see Note 3)—Normal Long Sampling  
f = 20 kHz  
75  
78  
75  
i
SINAD  
THD  
Signal-to-noise ratio + distortion  
Total harmonic distortion  
Signal-to-noise ratio  
dB  
dB  
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
f = 20 kHz  
i
−82  
−75  
80  
−77  
78  
12.2  
78  
SNR  
dB  
76  
12.7  
12.2  
83  
ENOB  
SFDR  
Effective number of bits  
Bits  
Spurious free dynamic range  
Channel-to-channel isolation  
dB  
dB  
f = 100 kHz  
i
75  
Fixed channel in conversion mode 00, f = 35 kHz,  
i
See Notes 2 and 5  
81  
Full power bandwidth, −3 dB  
Full power bandwidth, −1 dB  
1
MHz  
kHz  
Analog input bandwidth  
700  
All typical values are at T = 25°C.  
A
NOTES: 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required  
to overcome the memory effect of the charge redistribution DAC.  
3. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics.  
4. Bipolar zero error is the difference between 10000000000000 and the converted output for zero input voltage; positive full-scale error  
is the difference between 11111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale  
error is the difference between 00000000000000 and the converted output for negative full-scale input voltage (−10 V).  
5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the  
channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the  
converter samples different channels alternately.  
9
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TLC3574I N package device AC/DC performance (continued)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
AC Accuracy—Normal Short Sampling  
f = 20 kHz  
76  
70  
i
SINAD  
THD  
Signal-to-noise ratio + distortion  
Total harmonic distortion  
Signal-to-noise ratio  
dB  
dB  
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
f = 20 kHz  
i
−81  
−74  
78  
SNR  
dB  
f = 100 kHz  
i
75  
f = 20 kHz  
12.3  
11.3  
83  
i
ENOB  
SFDR  
Effective number of bits  
Bits  
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
Spurious free dynamic range  
Channel-to-channel isolation  
dB  
dB  
75  
Fixed channel in conversion mode 00, f = 35 kHz,  
i
See Notes 2 and 5  
81  
Full power bandwidth, −3 dB  
Full power bandwidth, −1 dB  
1
MHz  
kHz  
Analog input bandwidth  
700  
All typical values are at T = 25°C.  
A
NOTES: 2. This is for a fixed channel in conversion mode 00 or 01. When switching the channels, additional multiplexer setting time is required  
to overcome the memory effect of the charge redistribution DAC.  
5. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the  
channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the  
converter samples different channels alternately.  
10  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TLC2574/78 DW and PW package devices AC/DC performance  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
DC Accuracy  
E
E
E
E
E
Integral linearity error  
Differential linearity error  
Bipolar zero error  
See Note 6  
−1  
−1  
0.5  
0.5  
1
1
LSB  
LSB  
L
D
See Note 7  
See Note 7  
See Note 7  
−0.30  
−0.55  
−0.30  
0.08  
0.04  
0.13  
0.36  
0.61  
0.79  
%FS  
%FS  
%FS  
O
Positive full scale error  
Negative full scale error  
FS(+)  
FS(−)  
AC Accuracy  
f = 20 kHz  
70  
72  
70  
i
SINAD  
THD  
Signal-to-noise ratio + distortion  
dB  
dB  
f = 100 kHz  
i
f = 20 kHz  
i
−82  
−80  
72  
−76  
Total harmonic distortion  
Signal-to-noise ratio  
f = 100 kHz  
i
f = 20 kHz  
i
71  
11.3  
78  
SNR  
dB  
f = 100 kHz  
i
71  
f = 20 kHz  
i
11.7  
11.3  
83  
ENOB  
SFDR  
Effective number of bits  
Spurious free dynamic range  
Bits  
dB  
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
80  
Full power bandwidth, −3 dB  
Full power bandwidth, −1 dB  
1
MHz  
kHz  
Analog input bandwidth  
700  
Fixed channel in conversion mode 00, f = 35 kHz,  
i
See Note 8  
Channel-to-channel Isolation  
81  
dB  
All typical values are at T = 25°C.  
A
NOTES: 6. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics.  
7. Bipolar zero error is the difference between 100000000000 and the converted output for zero input voltage; positive full-scale error  
is the difference between 111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error  
is the difference between 000000000000 and the converted output for negative full-scale input voltage (−10 V).  
8. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the  
channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the  
converter samples different channels alternately.  
11  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TLC2574I N package device AC/DC performance  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
DC Accuracy  
E
E
E
E
E
Integral linearity error  
Differential linearity error  
Bipolar zero error  
see Note 6  
−1  
−1  
0.7  
0.7  
1
1
LSB  
LSB  
L
D
see Note 7  
see Note 7  
see Note 7  
−0.30  
−0.55  
−0.30  
0.08  
0.04  
0.13  
0.36  
0.61  
0.79  
%FS  
%FS  
%FS  
O
Positive full-scale error  
Negative full-scale error  
FS(+)  
FS(−)  
AC Accuracy  
f = 20 kHz  
70  
72  
70  
i
SINAD  
THD  
Signal-to-noise + distortion  
dB  
dB  
f = 100 kHz  
i
f = 20 kHz  
i
−82  
−75  
72  
−76  
Total harmonic distortion  
Signal-to-noise ratio  
f = 100 kHz  
i
f = 20 kHz  
i
70  
11.3  
77  
SNR  
dB  
f = 100 kHz  
i
71  
f = 20 kHz  
i
11.7  
11.3  
83  
ENOB  
SFDR  
Effective number of bits  
Spurious free dynamic range  
Bits  
dB  
f = 100 kHz  
i
f = 20 kHz  
i
f = 100 kHz  
i
75  
Full power bandwidth, −3 dB  
Full power bandwidth, −1 dB  
1
MHz  
kHz  
Analog input bandwidth  
700  
Fixed channel in conversion mode 00, f = 35 kHz,  
i
See Note 8  
Channel-to-channel Isolation  
81  
dB  
All typical values are at T = 25°C.  
A
NOTES: 6. Linear error is the maximum deviation from the best fit straight line through the A/D transfer characteristics.  
7. Bipolar zero error is the difference between 100000000000 and the converted output for zero input voltage; positive full-scale error  
is the difference between 111111111111 and the converted output for positive full-scale input voltage (10 V); negative full-scale error  
is the difference between 000000000000 and the converted output for negative full-scale input voltage (−10 V).  
8. It is measured by applying a full-scale of 35 kHz signal to other channels and determining how much the signal is attenuated in the  
channel of interest. The converter samples this examined channel continuously. The channel-to-channel isolation is degraded if the  
converter samples different channels alternately.  
12  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
timing requirements over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, V  
= 4 V, V  
= 0 V, SCLK frequency = 25 MHz (unless otherwise noted)  
DD  
REFP  
REFM  
SCLK, SDI, SDO, EOC and INT  
PARAMETERS  
Cycle time of SCLK, 25 pF load (see Note 10)  
MIN  
100  
40  
TYP  
MAX  
UNIT  
DV  
DV  
= 2.7 V  
= 5 V  
DD  
t
t
ns  
c(1)  
DD  
Pulse width of SCLK High, at 25-pF load  
Rise time for INT and EOC, at 10-pF load  
40%  
60%  
6
t
w(1)  
c(1)  
DV  
DV  
DV  
DV  
= 5 V  
DD  
DD  
DD  
DD  
t
ns  
r(1)  
f(1)  
= 2.7 V  
= 5 V  
10  
6
t
Fall time for INT and EOC, at 10-pF load  
ns  
= 2.7 V  
10  
t
t
Setup time, new SDI valid (reaches 90% final level) before the falling edge of SCLK, at 25-pF load  
Hold time, old SDI hold (reaches 10% of old data level) after falling edge of SCLK, at 25-pF load  
6
0
0
0
0
0
ns  
ns  
su(1)  
h(1)  
DV  
DV  
= 5 V  
10  
23  
Delay time, new SDO valid (reaches 90% of final level) after SCLK rising edge, at 10-pF  
load (see Note 11)  
DD  
t
t
ns  
d(1)  
= 2.7 V  
DD  
Hold time, old SDO hold (reaches 10% of old data level) after SCLK rising edge, at 10-pF load  
ns  
ns  
ns  
h(2)  
td(2)  
Delay time, delay from the falling edge of 16th SCLK to EOC falling edge, normal sampling, at 10-pF load  
Delay time, delay from the falling edge of 16th SCLK to INT falling edge, at 10-pF load (see Notes 11 and 12)  
6
t
t
t
+6  
d(3)  
(conv)  
(conv)  
NOTES: 9. The minimum pulse width of SCLK high and low is 12.5 ns.  
10. Specified by design  
11. For normal short sampling, t  
is the delay from the falling edge of 16th SCLK to the falling edge of INT.  
is the delay from the falling edge of 48th SCLK to the falling edge of INT. Conversion time, t  
d(3)  
For normal long sampling, t  
d(3)  
,
(conv)  
is equal to 18 × OSC +15 ns (for TLC3574 and TLC3578) or 13 × OSC + 15 ns (for TLC2574 and TLC2578) when using internal  
OSC as conversion clock, or 72 × t  
external SCLK is conversion clock source.  
+ 15 ns (for TLC3574 and TLC3578) or 52 × t  
+ 15 ns (for TLC2574 and TLC2578) when  
c(1)  
c(1)  
V
90%  
50%  
IH  
CS  
10%  
V
IL  
t
c(1)  
16  
t
w(1)  
1
SCLK  
SDI  
t
h(1)  
ID0  
t
su(1)  
Don’t Care  
ID15 ID1  
Don’t Care  
t
d(1)  
t
h(2)  
Hi-Z  
Hi-Z  
OD15 OD1  
OD0  
SDO  
EOC  
t
t
d(2)  
r(1)  
t
OR  
f(1)  
t
d(3)  
INT  
t
f(1)  
t
r(1)  
For normal long sampling, t  
For normal long sampling, t  
is the delay time of EOC low after the falling edge of 48th SCLK.  
is the delay time of INT low after the falling edge of 48th SCLK.  
d(2)  
d(3)  
− − − − The dotted line means signal may or may not exist, depending on application. It must be ignored.  
Normal sampling mode, CS initiatesthe conversion, FS must be tied to high. When CS is high, SDO is in Hi-Z, all inputs (FS, SCLK,  
SDI) are inactive and are ignored.  
Figure 1. Critical Timing for SCLK, SDI, SDO, EOC and INT  
13  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
timing requirements over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, V  
= 4 V, V  
=0V, SCLK frequency = 25 MHz (unless otherwise noted) (continued)  
DD  
REFP  
REFM  
CS trigger  
PARAMETERS  
MIN  
TYP  
MAX  
UNIT  
t
t
t
(2) Setup time, CS falling edge before SCLK rising edge, at 25-pF load  
12  
ns  
su  
Delay time, delay time from the falling edge of 16th SCLK to CS rising edge, at 25 pF load  
(see Note 12)  
5
ns  
d(4)  
w(2)  
Pulse width of CS high, at 25-pF load  
1
0
0
0
0
0
t
c(1)  
DV  
DV  
= 5 V  
12  
DD  
DD  
Delay time, delay from CS falling edge to MSB of SDO valid (reaches 90%  
final level), at 10 pF load  
t
ns  
d(5)  
d(6)  
30  
= 2.7 V  
t
Delay time, delay from CS rising edge to SDO 3-state, at 10-pF load  
6
6
ns  
DV  
DV  
= 5 V  
DD  
DD  
t
Delay time, delay from CS falling edge to INT rising edge, at 10-pF load  
ns  
d(7)  
16  
= 2.7 V  
Specified by design  
NOTE 12: For normal short sampling, t  
is the delay time from the falling edge of 16th SCLK to CS rising edge.  
d(4)  
is the delay time from the falling edge of 48th SCLK to CS rising edge.  
d(4)  
For normal long sampling, t  
V
V
IH  
CS  
IL  
t
su(2)  
t
t
w(2)  
d(4)  
1
16  
SCLK  
SDI  
Don’t Care  
ID15 ID1  
ID0  
Don’t Care  
Hi-Z  
Don’t Care  
t
d(6)  
t
d(5)  
Hi-Z  
Hi-Z  
OD15 OD1  
OD0  
OD15  
OD7  
SDO  
EOC  
OR  
t
d(7)  
INT  
− − − − The dotted line means signal may or may not exist, depending on application. It must be ignored.  
Normal sampling mode, CS initiates the conversion, FS must be tied to high. When CS is high, SDO is in Hi-Z, all inputs (FS, SCLK,  
SDI) are inactive and are ignored.  
Figure 2. Critical Timing for CS Trigger  
14  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
timing requirements over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, V  
= 4 V, V  
=0V, SCLK frequency = 25 MHz (unless otherwise noted) (continued)  
DD  
REFP  
REFM  
FS trigger  
PARAMETERS  
MIN  
TYP  
MAX  
UNIT  
t
t
t
Delay time, delay from CS falling edge to FS rising edge at 25-pF load  
Setup time, FS rising edge before SCLK falling edge at 25-pF load  
Pulse width of FS high, at 25-pF load  
0.5  
t
d(8)  
c(1)  
ns  
0.25×t  
0.75×t  
0.5×t  
+ 5  
su(3)  
w(3)  
c(1)  
c(1)  
t
1.25×t  
ns  
c(1)  
c(1)  
c(1)  
26  
DV  
= 5 V  
DD  
DD  
Delay time, delay from FS rising edge to MSB of SDO valid  
(reaches 90% final level), at 10-pF load  
t
ns  
d(9)  
DV  
= 2.7 V  
30†  
Required  
t
Delay time, delay from FS rising edge to next FS rising edge, at 25-pF load  
sampling time +  
conversion time  
ns  
ns  
d(10)  
DV  
DV  
= 5 V  
0
0
6
DD  
DD  
Delay time, delay from FS rising edge to INT rising edge, at  
10-pF load  
t
d(11)  
= 2.7 V  
16†  
Specified by design  
V
IH  
t
d(10)  
CS  
FS  
V
IL  
t
t
w(3)  
d(8)  
t
su(3)  
16  
1
SCLK  
SDI  
Don’t Care  
ID15 ID1  
OD1  
ID0  
Don’t Care  
ID15  
Don’t Care  
Don’t Care  
t
d(9)  
Hi-Z  
Hi-Z  
OD15  
OD0  
OD15  
SDO  
V
OH  
EOC  
OR  
t
V
OH  
d(11)  
INT  
− − − − The dotted line means signal may or may not exist, depending on application. It must be ignored.  
Normal sampling mode, FS initiates the conversion, CS can be tied to low. When CS is high, SDO is in Hi-Z, all inputs (FS, SCLK,  
SDI) are inactive and are ignored.  
Figure 3. Critical Timing for FS Trigger  
15  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
timing requirements over recommended operating free-air temperature range, AV  
= 5 V,  
DD  
DV  
= 5 V, V  
= 4 V, V  
=0V, SCLK frequency = 25 MHz (unless otherwise noted) (continued)  
DD  
REFP  
REFM  
CSTART trigger  
PARAMETERS  
MIN  
TYP  
MAX  
UNIT  
ns  
Delay time, delay from CSTART rising edge to EOC falling edge, at 10-pF  
load  
t
t
t
0
15  
21  
d(12)  
t
+0.4  
µs  
Pulse width of CSTART low, at 25-pF load (see Note 13)  
w(4)  
(sample_reg)  
Delay time, delay from CSTART rising edge to CSTART falling edge, at 25-pF  
load (see Note 13 and 14)  
t
+15  
ns  
ns  
ns  
d(13)  
(conv)  
Delay time, delay from CSTART rising edge to INT falling edge, at 10-pF  
load (see Note 13 and 14)  
t
t
+15  
t
+21  
6
d(14)  
d(15)  
(conv)  
(conv)  
Delay time, delay from CSTART falling edge to INT rising edge, at 10-pF  
load  
t
0
NOTES: 13. The pulse width of the CSTART must be not less than the required sampling time.  
The delay from CSTART rising edge to following CSTART falling edge must be not less than the required conversion time.  
The delay from CSTART rising edge to the INT falling edge is equal to the conversion time.  
14. The maximum rate of SCLK is 25 MHz for normal long sampling and 10 MHz for normal short sampling.  
t
t
d(13)  
w(4)  
CSTART  
EOC  
t
(conv)  
t
d(12)  
t
d(15)  
OR  
t
d(14)  
INT  
Figure 4. Critical Timing for Extended Sampling (CSTART Trigger)  
16  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
circuit description  
converter  
The converters include a successive-approximation ADC utilizing a charge redistribution DAC. Figure 5 shows  
a simplified block diagram of the ADC. The sampling capacitor acquires the signal on Ain during the sampling  
period. When the conversion process starts, the control logic directs the charge redistribution DAC to add and  
subtract fixed amounts of charge from the sampling capacitor to bring the comparator into a balanced condition.  
When balanced, the conversion is complete and the ADC output code is generated.  
Charge  
Redistribution  
DAC  
_
Ain  
Control  
Logic  
ADC Code  
C
(sample)  
+
REFM  
Figure 5. Simplified Block Diagram of the Successive-Approximation System  
analog input range and internal test voltages  
TLC3578 and TLC2578 have 8 analog inputs (TLC3574 and TLC2574 have 4) and three test voltages. The  
inputs are selected by the analog multiplexer according to the command entered (see Table 1). The input  
multiplexer is a break-before-make type to reduce input-to-input noise injection resulting from channel  
switching.  
All converters are specified for bipolar input range of 10 V. The input signal is scaled to 0–4 V at the SAR ADC  
input via the bipolar scaling circuit (see the functional block diagram and the equivalent analog input circuit):  
–10 V to 0 V, 10 V to 4 V, and 0 V to 2 V.  
analog input mode  
Two input signal modes can be selected: single-ended input and pseudodifferential input.  
Charge  
Redistribution  
DAC  
S1  
_
Ain(+)  
Ain(−)  
Control  
Logic  
ADC Code  
+
REFM  
When sampling, S1 is closed and S2 connects to Ain(−).  
During conversion, S1 is open and S2 connects to REFM.  
Figure 6. Simplified Pseudodifferential Input Circuit  
Pseudodifferential input refers to the negative input, Ain(−). Its voltage is limited in magnitude to 1 V. The input  
frequency limit of Ain(−) is the same as the positive input Ain(+). This mode is normally used for ground noise  
rejection or dc offset.  
17  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
analog input mode (continued)  
When pseudodifferential mode is selected, only two analog input channel pairs are available for the TLC3574  
and TLC2574 and four channel pairs for the TLC3578 and TLC2578, because half the inputs are used as the  
negative input.  
Single Ended  
Pseudodifferential  
X8  
X4  
X8  
X4  
A0 A0  
A1 A1  
A2 A2  
A3 A3  
A0(+) Pair A  
A1(−)  
A2(+) Pair B  
A3(−)  
A4(+) Pair C  
A5(−)  
A6(+) Pair D  
A7(−)  
A0(+) Pair A  
A1(−)  
A2(+) Pair B  
A3(−)  
SAR  
ADC  
SAR  
ADC  
Analog  
MUX  
Analog  
MUX  
A4  
A5  
A6  
A7  
X
X
X
X
TLC3578 and TLC2578  
TLC3574 and TLC2574  
Figure 7. Pin Assignment of Single-Ended Input vs Pseudodifferential Input  
reference voltage  
The external reference is applied to the reference-input pins (REFP and REFM). REFM should connect to  
analog ground. REFP is 4 V. Install decoupling capacitors (10 µF in parallel with 0.1 µF) between REFP and  
REFM, and compensation capacitors (0.1 µF) between COMP and AGND.  
ideal conversion characteristics  
Bipolar Analog Input Voltage  
−9.99756 V  
1LSB = 1.22 mV  
9.99756 V  
VBZS = 0.0 V  
−0.61 mV 0.61 mV  
−9.99878 V  
−9.99939 V  
VFS+ = 10 V  
VFS− = −10 V  
2s Complement  
BTC  
Binary  
BOB  
01111111111111  
01111111111110  
01111111111101  
11111111111111  
11111111111110  
11111111111101  
16383  
16382  
16381  
8193  
8192  
8191  
00000000000001  
00000000000000  
11111111111111  
10000000000001  
10000000000000  
01111111111111  
2
1
0
10000000000010  
10000000000001  
10000000000000  
00000000000010  
00000000000001  
00000000000000  
18  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
circuit description (continued)  
data format  
INPUT DATA FORMAT (BINARY)  
MSB  
LSB  
ID[15:12]  
ID[11:0]  
Command  
Configuration data field or filled with zeros  
OUTPUT DATA FORMAT (READ CONVERSION/FIFO)  
TLC3574 and TLC3578 TLC2574 and TLC2578  
MSB  
LSB  
MSB  
LSB  
OD[15:2]  
OD[1:0]  
OD[15:4]  
OD[3:0]  
Conversion result  
Don’t Care  
Conversion result  
Don’t Care  
14-BIT (TLC3574/78)  
Bipolar Input, Offset Binary: (BOB)  
12-BIT (TLC2574/78)  
Bipolar Offset Binary Output: (BOB)  
Negative full scale code = VFS− = 0000h, Vcode = −10 V  
Midscale code = VBZS = 2000h, Vcode = 0 V  
Negative full scale code = 000h, Vcode = −10 V  
Midscale code = 800h, Vcode = 0 V  
Positive full scale code = VFS+ = 3FFFh, Vcode = 10 V − 1 LSB  
Bipolar Input, Binary 2s Complement: (BTC)  
Positive full scale code = FFFh, Vcode = 10 V − 1 LSB  
Bipolar Input, Binary 2s Complement: (BTC)  
Negative full scale code = 800 h, Vcode = −10 V  
Midscale code = 000h, Vcode = 0 V  
Negative full scale code = VFS− = 2000 h, Vcode = −10 V  
Midscale code = VBZS = 0000h, Vcode = 0 V  
Positive full scale code = VFS+ = 1FFFh, Vocde = 10 V − 1 LSB  
Positive full scale code = 7FFh, Vocde = 10 V − 1 LSB  
operation description  
The converter samples the selected analog input signal, then converts the sample into digital output according  
to the selected output format. The converter has four digital input pins (SDI, SCLK, CS, and FS) and one digital  
output pin (SDO) to communicate with the host device. SDI is a serial data input pin, SDO is a serial data output  
pin, and SCLK is a serial clock from host device. This clock is used to clock the serial data transfer. It can also  
be used as conversion clock source (see Table 2). CS and FS are used to start the operation. The converter  
has a CSTART pin for external hardware sampling and conversion trigger, and INT/EOC for interrupt purpose.  
device initialization  
After power on, the status of EOC/INT is initially high, and the input data register is set to all zeros. The device  
must be initialized before starting conversion. The initialization procedure depends on the working mode. The  
first conversion result must be ignored after power on.  
Hardware Default Mode: Nonprogrammed mode, default. After power on, two consecutive active cycles  
initiated by CS or FS put the device into hardware default mode if SDI is tied to DV . Each of these cycles must  
DD  
last 16 SCLK at least. These cycles initialize the converter and load CFR register with 800h (bipolar offset binary  
output code, normal long sampling, internal OSC, single-ended input, one-shot conversion mode, and EOC/INT  
pin as INT). No additional software configuration is required.  
Software Programmed Mode: Programmed. If the converter needs to be configured, The host must write  
A000H into converters first after power on, then performs the WRITE CFR operation to configure the device.  
start of operation cycle  
Each operation consists of several actions that the converter takes according to the command from the host.  
The operation cycle includes three periods: command period, sampling period, and conversion period. In the  
command period, the device decodes the command from host. In the sampling period, the device samples the  
selected analog signal according to the command. In the conversion period, the sample of the analog signal  
is converted to digital format. The operation cycle starts from the command period, which is followed by one  
or several sampling and conversion periods (depending on the setting), and finishes at the end of last  
conversion period. The operation is initiated by the falling edge of CS or the rising edge of FS.  
19  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
start of operation cycle (continued)  
CS initiates the operation: If FS is high at the falling edge of CS, the falling edge of CS initiates the operation.  
When CS is high, SDO is in high-impedance state, the signals on SDI are ignored, and SCLK is disabled to clock  
the serial data. The falling edge of CS resets the internal 4-bit counter and enables SDO, SDI, and SCLK. The  
MSB of the input data via SDI, ID(15), is latched at the first falling edge of SCLK following the falling edge of  
CS. The MSB of output data from SDO, OD(15), is valid before this SCLK falling edge. This mode works as an  
SPI interface when CS is used as SLAVE SELECT (SS). It also can be used as normal DSP interface if CS  
connects to the frame sync output of the host DSP. FS must be tied to high in this mode.  
FS initiates the operation: If FS is low at the falling edge of CS, the rising edge of FS initiates the operation.  
It resets the internal 4-bit counter, and enables SDI, SDO, and SCLK. The ID(15) is latched at the first falling  
edge of SCLK following the falling edge of FS. OD(15) is valid before this falling edge of SCLK. This mode is  
used to interface the converter with a serial port of the host DSP. The FS of the device is connected to the frame  
sync of the host DSP. When several devices are connected to one DSP serial port, CS is used as chip select  
to allow the host DSP to access each device individually. If only one converter is used, CS can be tied to low.  
After the initiation, the remaining SDI data bits (if any) are shifted in and the remaining bits of SDO (if any) are  
shifted out at the rising edge of SCLK. The input data are latched at the falling edge of SCLK, and the output  
data are valid before the falling edge of SCLK. After the 4-bit counter reaches 16, the SDO goes to  
high-impedance state. The output data from SDO is the previous conversion result in one shot conversion  
mode, or the contents in the top of FIFO when FIFO is used (refer to Figure 20).  
command period  
After the rising edge of FS (FS triggers the operation) or the falling edge of CS (CS triggers the operation), SDI,  
SDO, and SCLK are enabled. The first four SCLK clocks form the command period. The four MSBs of input data,  
ID[15:12], are shifted in and decoded. These bits represent one of the 4-bit commands from the host, which  
defines the required operation (see Table 1). The four MSB of output, OD[15:12], are also shifted out via SDO  
during this period.  
The commands are SELECT/CONVERSION, WRITE CFR, FIFO READ, and HARDWARE DEFAULT. The  
SELECT/CONVERSION command includes SELECT ANALOG INPUT and SELECT TEST commands. All  
cause a select/conversion operation. They select the analog signal being converted, and start the  
sampling/conversion process after the selection. WRITE CFR causes the configuration operation, which writes  
the device configuration information into CFR register. FIFO READ reads the contents in FIFO. Hardware  
default mode sets the device into the hardware default mode.  
After the command period, the remaining 12 bits of SDI are written into the CFR register to configure the device  
if the command is WRITE CFR. Otherwise, these bits are ignored. The configuration is retained in the  
autopower-down state. If the SCLK stops (while CS remains low) after the first eight bits are entered, the next  
eight bits can be entered after the SCLK resumes. The data on SDI are ignored after the 4-bit counter counts  
to 16 (falling edge of SCLK) or the low-to-high transition of CS, whichever happens first.  
The remaining 12 bits of output data are shifted out from SDO if the command is SELECT/CONVERSION or  
FIFO READ. Otherwise, the data on SDO must be ignored. In any case, the SDO goes into high-impedance  
state after the 4-bit counter counts to 16 (falling edge of SCLK) or the low-to-high transition of CS, whichever  
happens first.  
20  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
command period (continued)  
Table 1. Command Set (CMR)  
SDI Bit D[15:12]  
TLC3578 / 2578 COMMAND  
TLC3574 / 2574 COMMAND  
BINARY  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
HEX  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
SELECT analog input channel 0  
SELECT analog input channel 1  
SELECT analog input channel 2  
SELECT analog input channel 3  
SELECT analog input channel 4  
SELECT analog input channel 5  
SELECT analog input channel 6  
SELECT analog input channel 7  
Reserved  
SELECT analog input channel 0  
SELECT analog input channel 1  
SELECT analog input channel 2  
SELECT analog input channel 3  
SELECT analog input channel 0  
SELECT analog input channel 1  
SELECT analog input channel 2  
SELECT analog input channel 3  
Reserved  
WRITE CFR, the last 12 bits of SDI are written into CFR. This command resets FIFO.  
SELECT TEST, voltage = (REFP+REFM)/2 (see Note 15)  
SELECT TEST, voltage = REFM (see Note 16)  
SELECT TEST, voltage = REFP (see Note 17)  
FIFO READ, FIFO contents is shown on SDO; (see Note 18)  
HARDWARE DEFAULT mode, CFR is loaded with 800h  
NOTES: 15. The output code = mid-scale code + bipolar zero error  
16. The output code = negative full-scale code + negative full-scale error  
17. The output code = positive full-scale code + positive full-scale error  
18. The TLC3574 and TLC3578, OD [15:2] is conversion result, OD [1:0] don’t care  
The TLC2574 and TLC2578, OD [15:4] is conversion result, OD [3:0] don’t care  
21  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
detailed description (continued)  
Table 2. Configuration Register (CFR) Bit Definition  
SDI BIT  
D11  
DEFINITION  
Always 1. Otherwise the performance is degraded.  
D10  
Conversion output code format select:  
0: BOB (bipolar offset binary);  
1: BTC (binary 2s complement)  
D9  
Sample period select for normal sampling. Don’t care in extended sampling.  
0: Long sampling (4x) 44 SCLKs;  
1: Short sampling 12 SCLKs  
D8  
D7  
Conversion clock source select:  
0: Conversion clock = Internal OSC;  
1: Conversion clock = SCLK/4  
Input mode select:  
0: Single-ended;  
1: Pseudodifferential. Pin configuration shown below.  
Pin Configuration of TLC3578 and TLC2578  
Pin No. Single-ended Pseudodifferential polarity  
Pin Configuration of TLC3574 and TLC2574  
Pin No.  
Single-ended Pseudodifferential polarity  
9
10  
A0  
A1  
Plus  
Minus  
Pair A  
Pair B  
Pair C  
Pair D  
9
10  
A0  
A1  
PLUS  
MINUS  
Pair A  
11  
12  
A2  
A3  
Plus  
Minus  
11  
12  
A2  
A3  
PLUS  
MINUS  
Pair B  
13  
14  
A4  
A5  
Plus  
Minus  
15  
16  
A6  
A7  
Plus  
Minus  
D[6:5]  
D[4:3]  
Conversion mode select  
00: One shot mode  
01: Repeat mode  
10: Sweep mode  
11: Repeat sweep mode.  
Sweep auto sequence select (Note: These bits only take effect in conversion mode 10 and 11.)  
TLC3578 and TLC2578 TLC3574 and TLC2574  
Single-ended (by ch) Pseudodifferential (by pair) Pseudodifferential (by pair)  
00: N/A 00: N/A  
01: A−B−A−B−A−B−A−B  
10: N/A  
11: A−A−A−A−B−B−B−B  
Single-ended (by ch)  
00: 0−1−2−3−4−5−6−7  
01: 0−2−4−6−0−2−4−6  
10: 0−0−2−2−4−4−6−6  
11: 0−2−0−2−0−2−0−2  
00: 0−1−2−3−0−1−2−3  
01: 0−2−0−2−0−2−0−2  
10: 0−0−1−1−2−2−3−3  
11: 0−0−0−0−2−2−2−2  
01: A−B−C−D−A−B−C−D  
10: A−A−B−B−C−C−D−D  
11: A−B−A−B−A−B−A−B  
D2  
EOC/INT pin function select  
0: Pin used as INT  
1: Pin used as EOC ( for mode 00 only)  
D[1:0]  
FIFO trigger level (sweep sequence length). Don’t care in one shot mode.  
00: Full (INT generated after FIFO Level 7 filled)  
01: 3/4 (INT generated after FIFO Level 5 filled)  
10: 1/2 (INT generated after FIFO Level 3 filled)  
11: 1/4 (INT generated after FIFO Level 1 filled)  
sampling period  
The sampling period follows the command period. The selected signal is sampled during this time. The device  
has three different sampling modes: normal short mode, normal long mode, and extended mode.  
Normal Short Sampling Mode: Sampling time is controlled by the SCLK and lasts 12 SCLK periods. At the  
end of sampling, the converter automatically starts the conversion period. After the configuration, the normal  
sampling starts automatically after the falling edge of fourth SCLK that follows the falling edge of CS if CS  
triggers the operation, or follows the rising edge of FS if FS initiates the operation, except the FIFO READ and  
WRITE CFR commands.  
22  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
sampling period (continued)  
Normal Long Sampling Mode: It is the same as normal short sampling, except that it lasts 44 SCLKs periods  
to complete the sampling.  
Extended Sampling Mode: The external signal, CSTART, triggers sampling and conversion. SCLK is not used  
for sampling. SCLK is also not needed for conversion if the internal conversion clock is selected. The falling edge  
of CSTART begins the sampling of the selected analog input. The sampling continues while CSTART is low.  
The rising edge of CSTART ends the sampling, and starts the conversion (with about 15 ns internal delay). The  
occurrence of CSTART is independent of SCLK clock, CS, and FS. However, the first CSTART cannot occur  
before the rising edge of the 11th SCLK. In other words, the falling edge of first CSTART can happen at or after  
the rising edge of 11th SCLK , but not before. The device enters the extended sampling mode at the falling edge  
of CSTART and exits this mode once CSTART goes to high followed by two consecutive falling edges of CS  
or two consecutive rising edges of FS (such as one read data operations followed by WRITE CFR). The first  
CS or FS does not cause conversion. Extended mode is used when a fast SCLK is not suitable for sampling,  
or when extended sampling period is needed to accommodate different input signal source impedance.  
conversion period  
The conversion period is the third portion of the operation cycle. It begins after the falling edge of 16th SCLK  
for the normal short sampling mode, or after the falling edge of 48th SCLK for the normal long sampling, or on  
the rising edge of CSTART (with 15 ns internal delay) for the extended sampling mode.  
The conversion takes 18 conversion clocks plus 15 ns for TLC3574/78, 13 conversion clocks plus 15 ns for the  
TLC2574/78. The conversion clock source can be an internal oscillator, OSC, or an external clock, SCLK. The  
conversion clock is equal to the internal OSC if the internal clock is used, or equal to four SCLKs when the  
external clock is programmed. To avoid the premature termination of conversion, enough time for the conversion  
must be allowed between consecutive triggers. EOC goes to low at the beginning of the conversion period and  
goes to high at the end of the conversion period. INT goes to low at the end of this period, too.  
conversion mode  
Four different conversion modes (mode 00, 01, 10, 11) are available. The operation of each mode is slightly  
different, depending on how the converter samples and what host interface is used. Do not mix different types  
of triggers throughout the repeat or sweep operations.  
ONE SHOT Mode (Mode 00): Each operation cycle performs one sampling and one conversion for the selected  
channel. FIFO is not used. When EOC is selected, it is generated while the conversion period is in progress.  
Otherwise, INT is generated after the conversion is done. The result is output through the SDO pin during the  
next select/conversion operation.  
REPEAT Mode (Mode 01): Each operation cycle performs multiple samplings and conversions for a fixed  
channel selected according to the 4-bit command. The results are stored in the FIFO. The number of samples  
to be taken equals the FIFO threshold programmed via D[1:0] in CFR register. Once the threshold is reached,  
INT is generated, and the operation ends. If the FIFO is not read after the conversions, the data is replaced in  
the next operation. The operation of this mode starts with the WRITE CFR commands to set conversion mode  
01, then the SELECT/CONVERSION commands, followed by a number of samplings and conversions of the  
fixed channel (triggered by CS, FS, or CSTART) until the FIFO threshold is hit. If CS or FS triggers the sampling,  
the data on SDI must be any one of the SELECT CHANNEL commands. However, this data is a dummy code  
for setting the converter in conversion state. It does not change the existing channel selection set at the start  
of the operation until the FIFO is full. After the operation finishes, the host can read the FIFO, then reselect the  
channel and start the next REPEAT operation again; or immediately reselect the channel and start next REPEAT  
operation (by issuing CS or FS or CSTART); or reconfigure the converter then start new operation according  
to the new setting. If CSTART triggers the sampling, host can also immediately start the next REPEAT operation  
(on the current channel) after the FIFO is full. Besides, if FS initiates the operation and CSTART triggers the  
samplings and conversions, CS must not toggle during the conversion. This mode allows the host to set up the  
converter, continue monitoring a fixed input, and to get a set of samples as needed.  
23  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
conversion mode (continued)  
SWEEP Mode (Mode 10): During each operation, all of the channels listed in the SWEEP SEQUENCE (D[4:3]  
of CFR register) are sampled and converted one time according to the programmed sequence. The results are  
stored in the FIFO. When the FIFO threshold is reached, an interrupt (INT) is generated, and the operation ends.  
If the FIFO threshold is reached before all of the listed channels are visited, the remaining channels are ignored.  
This allows the host to change the sweep sequence length. The mode 10 operation starts with the WRITE CFR  
command to set the sweep sequence. The following triggers (CS, FS, or CSTART, depending on the interface)  
start the samplings and conversions of the listed channels in sequence until the FIFO threshold is hit. If CS or  
FS starts the sampling, the SDI data must be any one of the SELECT commands to set the converter in  
conversion state. However, this command is a dummy code. It does not change the existing conversion  
sequence. After the FIFO is full, the converter waits for FIFO READ. It does nothing before the FIFO READ or  
WRITE CFR command is issued. The host must read the FIFO completely or WRITE CFR. If CSTART triggers  
the samplings, the host must issue an extra SELECT/CONVERSION command (select any channel) via CS or  
FS after the FIFO READ or WRITE CFR. This extra period is named the arm period and is used to set the  
converter into conversion state, but does not affect the existing conversion sequence. If FS initiates the  
operation and CSTART triggers the samplings and conversions, CS must not toggle during the conversion.  
REPEAT SWEEP Mode (Mode 11): This mode works in the same way as mode 10, except that it is not  
necessary to read the FIFO before the next operation after the FIFO threshold is hit. The next sweep can repeat  
immediately, but the contents in the FIFO are replaced by the new results. The host can read the FIFO  
completely, then issue next SWEEP; or repeat the SWEEP immediately (with the existing sweep sequence) by  
issuing sampling/conversion triggers (CS, FS or CSTART); or change the device setting with the WRITE CFR  
command.  
The memory effect of charge redistribution DAC exists when the mux switches from one channel to another.  
This degrades the channel-to-channel isolation if the channel changes after each conversion. For example, in  
mode 10 and 11, the isolation is about 70 dB for the sweep sequence 0-1-2-3-4. The memory effect can be  
reduced by increasing the sampling time or using sweep sequence 0-0-2-2-4-4-6-6 and ignoring the first sample  
of each channel.  
24  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
operation cycle timing  
12 SCLKs for Short  
44 SCLKs for Long  
18 OSC for Internal OSC  
CS Initiates  
Operation  
4 SCLKs  
15 ns  
72 SCLK for External Clock  
t
t
t
t
(overhead)  
(setup)  
(sample)  
(convert)  
SDI  
§
4-bit Command  
12-bit CFR Data (Optional)  
SDO  
14-bit Data (Previous Conversion) 2-bit Don’t Care  
Active CS (FS Is Tied to High)  
CSTAR (For Extended Sampling) occurs at  
or after the rising edge of eleventh SCLK  
FS Initiates  
Operation  
Delay From  
Low to FS High  
CS  
12 SCLKs for Short  
44 SCLKs for Long  
18 OSC for Internal OSC  
4 SCLKs  
15 nS  
72 SCLK for External Clock  
t
t
t
t
t
(overhead)  
(delay)  
(setup)  
(sample)  
(convert)  
4-bit Command  
12-bit CFR Data (Optional)  
SDI  
§
SDO  
14-bit Data (Previous Conversion)  
2-bit Don’t Care  
Active CS (CS Can Be Tied to Low)  
CSTAR (For Extended Sampling) occurs at  
or after the rising edge of eleventh SCLK  
Active FS  
Non JEDEC terms used.  
18 internal OSC or 72 SCLK for TLC3574 and TLC3578,  
13 internal OSC or 52 SCLK for TLC2574 and TLC2578.  
For TLC3574 and TLC3578, 14-bits are result of previous conversion, last two bits are don’t care. For TLC2574 and TLC2578, 12-bits are result  
of previous conversion, last four bits are don’t care.  
§
25  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
operation cycle timing (continued)  
After the operation finished, the host has several choices. Table 3 summarizes of operation options.  
Table 3. Operation Options  
CONVERSION IS INITIATED BY  
MODE  
CS  
FS  
CSTART  
00  
1. Issue new Select/Read operation to  
read data and start new conversion.  
2. Reconfigure the device.  
1. Issue new Select/Read operation to  
read data and start new conversion.  
2. Reconfigure the device.  
1. Issue new CSTART to start next  
conversion; old data lost.  
2. Issue new Select/Read operation to  
read data—Issue new CSTART to  
start new conversion.  
3. Reconfigure the device.  
01  
1. Read FIFO—Select Channel—Start  
new conversion. Channel must be  
selected after FIFO READ.  
1. Read FIFO—Select Channel—Start  
new conversion. Channel must be  
selected after FIFO READ.  
1. Read FIFO—Select channel—Start  
new conversion. Channel must be  
selected after FIFO READ.  
2. Select Channel—Start new  
conversion (old data lost)  
2. Select Channel—Start new  
conversion (old data lost)  
2. Start new conversion (old data lost)  
with existing setting.  
3. Configure device again.  
3. Configure device again.  
3. Configure device again.  
10  
11  
1. Read FIFO—Start new conversion  
with existing setting.  
2. Configure device—New conversion  
(old data lost)  
1. Read FIFO—Start new conversion  
with existing setting.  
2. Configure device—New conversion  
(old data lost)  
1. Read FIFO—Arm Period—Start new  
conversion with existing setting  
2. Configure device—Arm Period—New  
conversion (old data lost)  
1. Read FIFO—Start new conversion  
with existing setting.  
1. Read FIFO—Start new conversion  
with existing setting  
1. Read FIFO—Arm Period—Start new  
Conversion with existing setting  
2. Start new conversion with the existing 2. Start new conversion with the existing 2. Start new conversion with existing  
setting.  
setting.  
setting. (old data lost)  
3. Configure device—Start new  
conversion with new setting.  
3. Configure Device—Start new  
conversion with new setting.  
3. Configure device—Arm Period—New  
conversion with new setting.  
operation timing diagrams  
The nonconversion operation includes FIFO READ and WRITE CFR. Both do not perform a conversion. The  
conversion operation performs one of four types of conversion: mode 00, 01, 10 and 11  
write cycle (WRITE CFR Command): Write cycle does not generate EOC or INT, nor does it carry out any  
conversion.  
1
1
7
3
4
12  
13  
14  
15  
16  
2
5
6
CS  
FS  
ID15 1D14 ID13 1D12 ID11 ID10 ID9  
ID4  
ID3  
ID2  
ID1  
ID0  
ID15  
SDI  
INT  
OR  
EOC  
SDO  
Hi-Z  
The dotted lines means signal may or may not exist.  
Don’t care  
Figure 8. Write Cycle, FS Initiates Operation  
26  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢚꢛ  
ꢁꢎ  
ꢀꢎ  
ꢀꢌ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
operation timing diagrams (continued)  
1
2
3
4
5
6
12  
13  
15  
16  
7
14  
1
CS  
FS = High  
SDI  
ID15 1D14 ID13 1D12 ID11 ID10 ID9  
ID4  
ID3  
ID2  
ID1  
ID0  
ID15 ID14  
INT  
OR  
EOC  
SDO  
Hi-Z  
The dotted lines means signal may or may not exist.  
Don’t Care  
Figure 9. Write Cycle, CS Initiates Operation, FS = 1  
FIFO READ Operation: When the FIFO is used, the first command after INT is generated is assumed to be  
the FIFO READ. The first FIFO content is output immediately before the command is decoded. If this command  
is not FIFO READ, the output is terminated. Using more layers of FIFO reduces the time taken to read multiple  
conversion results, because the read cycle does not generate an EOC or INT, nor does it make a data  
conversion. Once the FIFO is read, the entire contents in FIFO must be read out. Otherwise, the remaining data  
is lost.  
1
2
3
4
6
7
12  
13  
16  
5
14  
15  
1
SCLK  
CS  
FS = High  
SDI  
ID15 1D14 ID13 1D12  
ID15 ID14  
INT  
OR  
EOC  
SDO  
Hi-Z  
OD15 OD14 OD13 OD12 OD11 OD10 OD9  
OD4 OD3 OD2  
OD15 OD14  
The dotted lines means signal may or may not exist.  
OD[15:2] (for TLC3574/78) or OD[15:4](for TLC2574/78) is the FIFO content.  
Don’t Care  
Figure 10. FIFO Read Cycle, CS Initiates Operation, FS = 1  
27  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢌꢁ  
ꢀꢌ  
ꢉꢊ  
ꢀꢇ  
ꢛꢀ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
conversion operation  
48 SCLKs for Long Sampling  
16 SCLKs for Short Sampling  
1
12  
13  
16  
1
2
3
4
5
6
7
14  
15  
CS  
FS in High  
SDI  
Select Channel  
ID15  
ID14 ID13 1D12  
ID15  
INT  
t
(SAMPLE)  
t(conv)  
EOC  
SDO  
Previous Conversion Result  
OR  
Hi−Z  
OD2  
OD15  
OD15 OD14 OD13 OD12 OD11 OD10 OD9  
OD4  
OD3  
SDO goes to Hi−Z after 16th SCLK  
The dotted line means signal may or may not exist.  
OD[15:2] (for TLC3574/78) or OD [15:4] (for TLC2574/78) is the result of previous conversion.  
Don’t Care  
Figure 11. Mode 00, CS Initiates Operation  
48 SCLKs for Long Sampling  
16 SCLKs for Short Sampling  
1
1
2
3
4
5
6
7
12  
13 14 15  
16  
SCLK  
CS  
FS  
Select Channel  
SDI  
INT  
ID15 1D14 ID13 1D12  
ID15  
t
t
(conv)  
(SAMPLE)  
OR  
EOC  
SDO  
Previous Conversion Result  
SDO Goes Through Hi-Z After 16 SCLK  
Hi-Z  
OD15  
OD14 OD13 OD12 OD11 OD10 OD9  
OD4 OD3 OD2  
OD15  
The dotted line means signal may or may not exist.  
OD[15:2] (for TLC3574/78) or OD[15:4](for TLC2574/78) is the result of previous conversion.  
Don’t Care  
Figure 12. Mode 00, FS Initiates Operation  
28  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
conversion operation (continued)  
Select Channel  
16 SCLK  
Select Channel  
16 SCLK  
t
(sample)  
CS Tied to Low  
CSTART  
Possible  
Signal  
t
(convert)  
FS  
**  
**  
SDI  
INT  
EOC  
SDO  
**  
Data Lost  
Previous Conversion Result  
Hi-Z  
Conversion Result  
Hi-Z  
OR  
Hi-Z  
Possible Signal  
Select Channel  
Don’t Care  
Figure 13. Mode 00, CSTART Triggers Sampling/Conversion, FS Initiates Select  
CS  
FS  
Select Any  
Channel  
Select Any  
Channel  
Select CH1  
Select CH2  
SDI  
***  
**  
**  
*
*
**  
**  
*
*
DATA1 of CH1 DATA2 of CH1  
DATA1 of CH2 DATA2 of CH2  
Hi-Z  
SDO  
INT  
1/4 FIFO FULL  
1/4 FIFO FULL  
Don’t Care  
Possible Signal  
*** −− WRITE CFR  
MODE 01, FS Activates Conversion, FIFO Threshold = 1/4 Full  
Read FIFO After Threshold Is Hit  
**  
*
−− Select Channel  
−− FIFO Read  
Figure 14. Mode 01, FS Initiates Operations  
CS  
FS  
CSTART  
SDI  
Select CH1  
**  
Select CH2  
**  
***  
*
*
*
*
DATA1 of CH1 DATA2 of CH1  
DATA1 of CH2 DATA2 of CH2  
Hi-Z  
SDO  
INT  
1/4 FIFO FULL  
1/4 FIFO FULL  
Don’t Care  
MODE 01, FS Initiates Select Period, CSTART Activates Conversion, FIFO Threshold = 1/4 Full,  
Read FIFO After Threshold Is Hit  
Possible Signal  
*** −− WRITE CFR  
**  
*
−− Select Channel  
−− FIFO Read  
Figure 15. Mode 01, CSTART Triggers Samplings/Conversions  
29  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢛꢀ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
conversion operation (continued)  
Conversion  
From CH0  
Conversion  
From CH3  
Conversion  
From CH0  
Conversion  
From CH3  
Configure  
CS  
FS  
**  
**  
**  
**  
**  
**  
**  
**  
***  
*
*
*
*
*
SDI  
INT  
Hi-Z  
1st Sweep  
CH0  
CH0  
CH1  
CH2  
CH3  
SDO  
2nd Sweep  
Using Existing  
Configuration  
Don’t Care  
1st FIFO Read  
Read FIFO After FIFO Threshold Is Hit  
2nd FIFO Read  
*** Command = Configure Write for Mode 10, FIFO  
Threshold = 1/2 Full, Sweep Sequence: 0−1−2−3  
** COMMAND = Select Any Channel  
*
COMMAND = Read FIFO  
Figure 16. Mode 10, FS Initiates Operations  
Conversion  
From CH0  
Conversion  
From CH2  
Conversion  
From CH0  
Conversion  
From CH2  
Configure  
CS Tied  
to Low  
FS  
CSTART  
*** **  
*
*
*
*
**  
*
SDI  
INT  
Hi-Z  
CH0  
CH0  
CH2  
CH2  
CH0  
SDO  
2nd Sweep  
Using Existing  
Configuration  
1st Sweep  
Don’t Care  
2nd FIFO Read  
1st FIFO Read  
Read FIFO After FIFO Threshold Is Hit, FS Initiates Select Period  
*** Command = Configure Write for Mode 10, FIFO  
Threshold = 1/2 Full, Sweep Sequence: 0−0−2−2  
** COMMAND = Select Any Channel  
*
COMMAND = Read FIFO  
Figure 17. Mode 10, CSTART Initiates Operations  
Conversion  
From CH0  
Conversion Conversion  
From CH3 From CH0  
Conversion  
From CH3  
Conversion  
From CH0  
Configure  
CS  
START 2nd Round SWEEP CONVERSION,  
the DATA of the 1st Round Are Lost  
FS=High  
***  
**  
**  
**  
**  
**  
**  
**  
**  
*
*
*
*
**  
SDI  
INT  
CH0  
CH1  
CH2  
CH3  
SDO  
READ the DATA of 2nd  
Sweep From FIFO  
Don’t Care  
*** Command = Configure Write for Mode 11, FIFO  
Threshold = 1/2 Full, Sweep Sequence: 0−1−2−3  
** COMMAND = Select Any Channel  
START 2nd Sweep conversion immediately (NO FIFO READ) after the 1st SWEEP completed.  
*
COMMAND = Read FIFO  
Figure 18. Mode 11, CS Initiates Operations  
30  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢚꢛ  
ꢁꢎ  
ꢀꢎ  
ꢀꢌ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
conversion operation (continued)  
Conversion  
From CH0  
Conversion  
From CH2  
Conversion  
From CH0  
Conversion  
From CH2  
Configure  
CS  
FS  
CSTART  
*** **  
*
*
*
*
**  
*
SDI  
INT  
1st SWEEP  
REPEAT  
CH0  
CH0  
1st FIFO Read  
READ FIFO after 1st SWEEP Completed  
CH2  
CH2  
CH0  
SDO  
2nd FIFO Read  
Don’t Care  
*** Command = Configure Write for Mode 11, FIFO  
Threshold = 1/2 Full, Sweep Sequence: 0−0−2−2  
** COMMAND = Select Any Channel  
*
COMMAND = Read FIFO  
Possible Signal  
Figure 19. Mode 11, CSTART Triggers Samplings/Conversions, FS Initiates SELECT Operation  
conversion clock and conversion speed  
The conversion clock source can be the internal OSC, or the external clock, SCLK. The conversion clock is equal  
to the internal OSC if the internal clock is used, or equal to SCLK/4 when the external clock is selected. It takes  
18 conversion clocks plus 15 ns to finish the conversion for TLC3574 and TLC3578, and 13 conversion clocks  
plus 15 ns for the TLC2574 and TLC2578. If the external clock is selected, the conversion time (not including  
sampling time) is 18X(4/f  
)+15 ns for TLC3574 and TLC3578 and 13X(4/f  
)+15 ns for TLC2574 and  
SCLK  
SCLK  
TLC2578. Table 4 shows the maximum conversion rate (including sampling time) when the analog input source  
resistor is 25 .  
Table 4. Maximum Conversion Rate  
MAX SCLK  
(MHz)  
CONVERSION  
TIME (µs)  
RATE  
(KSPS)  
DEVICE  
SAMPLING MODE  
CONVERSION CLK  
SHORT (16 SCLK)  
LONG (48 SCLK)  
SHORT (16 SCLK)  
LONG (48 SCLK)  
SHORT (16 SCLK)  
LONG (48 SCLK)  
SHORT (16 SCLK)  
LONG (48 SCLK)  
External SCLK/4  
External SCLK/4  
Internal 6.5 MHz  
Internal 6.5 MHz  
Exernal SCLK/4  
External SCLK/4  
Internal 6.5 MHz  
Internal 6.5 MHz  
10  
25  
10  
25  
10  
25  
10  
25  
8.815  
4.815  
4.384  
4.705  
6.815  
4.015  
3.615  
3.935  
113.4  
207.7  
228.0  
212.5  
146.7  
249.1  
276.6  
254.1  
TLC3574/78  
(Rs = 25 )  
TLC2574/78  
(Rs = 25 )  
31  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢛꢀ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
FIFO operation  
Serial  
0
SOD  
×8  
FIFO  
ADC  
7
6
5
4
3
2
1
FIFO Full  
FIFO 1/2 Full  
FIFO 3/4 Full  
FIFO 1/4 Full  
FIFO Threshold Pointer  
Figure 20. FIFO Structure  
FIFO operation (continued)  
The device has an 8-level FIFO that can be programmed for different thresholds. An interrupt is sent to the host  
after the preprogrammed threshold is reached. The FIFO is used to store conversion results in mode 01, 10,  
and 11, from either a fixed channel or a series of channels according to the preprogrammed sweep sequence.  
For example, an application may require eight measurements from channel 3. In this case, if the threshold is  
set to full, the FIFO is filled with 8 data conversions sequentially taken from channel 3. Another application may  
require data from channel 0, 2, 4, and 6 in that order. The threshold is set to 1/2 full and sweep sequence is  
selected as 0−2−4−6−0−2−4−6. An interrupt is sent to the host as soon as all four data conversions are in the  
FIFO. FIFO is reset after power on and WRITE CFR operation. The contents of the FIFO are retained during  
autopower down.  
Autopower-Down Mode: The device enters the autopower-down state at the end of conversion. The power  
current is about 20 µA if SCLK stops, and 120 µA maximum if SCLK is running. Active CS , FS, or CSTART  
resumes the device from power-down state. The bipolar input current is not turned off when device is in  
power-down mode.  
The configuration register is not affected by the power-down mode but the SWEEP operation sequence must  
be started over again. All FIFO contents are retained in power-down mode.  
32  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
2
1.5  
1
Reference = 4 V  
AV = 5 V, T = 25°C  
DD  
A
0.5  
0
−0.5  
0
2000  
4000  
6000  
8000  
10000  
12000  
14000  
16000  
Digital Output Code  
Figure 21  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.6  
0.4  
0.2  
−0.0  
−0.2  
−0.4  
−0.6  
Reference = 4 V  
AV = 5 V, T = 25°C  
DD  
A
0
2000  
4000  
6000  
8000  
10000  
12000  
14000  
16000  
Digital Output Code  
Figure 22  
33  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TYPICAL CHARACTERISTICS  
BIPOLAR ZERO ERROR, POSITIVE FULL SCALE ERROR  
AND NEGATIVE FULL SCALE ERROR (% FS)  
vs  
INL (LSB) AND DNL (LSB)  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
0.500  
1.3  
Reference = 4 V  
Reference = 4 V  
AV  
DD  
= 5 V  
AV  
DD  
= 5 V  
0.400  
0.300  
INL  
1
Negative Full Scale Error  
Positive Full Scale Error  
0.7  
0.200  
0.100  
DNL  
Bipolar Zero Error  
25  
0.4  
−40.00  
−40.00  
85  
25  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 23  
Figure 24  
FFT OF SNR (dB)  
0
Reference = 4 V  
AV = 5 V  
−20  
DD  
= 25°C  
−40  
T
A
−60  
200 KSPS  
Input Signal = 20 kHz, 0dB  
−80  
−100  
−120  
−140  
−160  
−180  
0
24.4  
48.8  
73.2  
97.7  
f − Frequency − kHz  
Figure 25  
34  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TYPICAL CHARACTERISTICS  
SINAD  
vs  
ENOB  
vs  
INPUT SIGNAL FREQUENCY  
INPUT SIGNAL FREQUENCY  
82  
80  
13.2  
12.8  
12.4  
12  
Reference = 4 V  
Reference = 4 V  
AV  
DD  
A
= 5 V  
= 25°C  
AV  
DD  
A
= 5 V  
= 25°C  
T
T
78  
76  
74  
72  
11.6  
100 k  
1 k  
20 k  
40 k  
60 k  
80 k  
1 k  
20 k  
40 k  
60 k  
80 k  
100 k  
f − Input Signal Frequency − Hz  
I
f − Input Signal Frequency − Hz  
I
Figure 26  
Figure 27  
TOTAL HARMONIC DISTORTION  
vs  
SFDR  
vs  
INPUT SIGNAL FREQUENCY  
INPUT SIGNAL FREQUENCY  
−78  
−80  
85  
83  
81  
Reference = 4 V  
AV = 5 V  
Reference = 4 V  
AV = 5 V  
DD  
DD  
T
= 25°C  
A
T
= 25°C  
A
−82  
−84  
79  
77  
1 k  
20 k  
40 k  
60 k  
80 k  
100 k  
1 k  
20 k  
40 k  
60 k  
80 k  
100 k  
f − Input Signal Frequency − Hz  
I
f − Input Signal Frequency − Hz  
I
Figure 28  
Figure 29  
35  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT AT AUTOPOWER DOWN  
vs  
FREE-AIR TEMPERATURE  
5.6  
4
3
2
Reference = 4 V  
Reference = 4 V  
AV  
= 5 V  
SCLK Stops  
DD  
AV  
DD  
= 5 V  
5.4  
Autopower Down  
5.2  
5
−40.00  
25  
85  
−40  
25  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 30  
Figure 31  
36  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢈ ꢇ ꢀ ꢁꢂ ꢉ ꢄ ꢅꢆ ꢇ ꢀꢁ ꢂꢉ ꢄꢅ ꢈ  
ꢄ ꢊꢋ ꢌꢍ ꢌꢁ ꢎ ꢏꢇ ꢃ ꢊꢐꢄ ꢊꢋ ꢑꢒ ꢏꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐꢓ ꢉ ꢊꢔꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊ ꢂꢙ ꢌꢍ ꢍ ꢚꢁ  
ꢗ ꢚꢛ ꢒ ꢌꢁ ꢌꢍꢌ ꢁꢎ ꢏ ꢊꢀꢎ ꢊꢑꢒꢏ ꢒ ꢀꢌꢁ ꢂꢎ ꢍꢋꢚ ꢛꢀ ꢚꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒ ꢍꢘ ꢝ ꢀꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
APPLICATION INFORMATION  
interface with host  
Figure 32 shows the examples of the interface between a single converter and host DSP (TMS320C54xDSP)  
or microprocessor. The C54x is set as FWID=1 (active pulse width=1CLK); (R/X) DATDLY=1 (1 bit data delay);  
CLK(X/R)P=0 (transmit data are clocked out at rising edge of CLK, receive data are sampled on falling edge  
of CLK); and FS(X/R)P=1 (FS is active high). If multiple converters connect to the same C54x, use CS as chip  
select.  
The host microprocessor is set as the SPI master, CPOL=0 (active high clock), and CPHA=1 (transmit data is  
clock out at rising edge of CLK, receive data are sampled at falling edge of CLK). 16 bits (or more) per transfer  
is required.  
V
DD  
V
DD  
10 kΩ  
10 kΩ  
10 kΩ  
TMS320C54X  
FSR  
Converter  
CS  
Host  
Microprocessor  
Converter  
SS  
CS  
FSX  
DX  
FS  
FS  
Ain  
Ain  
SDI  
SDO  
MOSI  
MISO  
SDI  
SDO  
DR  
CLKR  
SCLK  
SCLK  
CLKX  
IRQ  
SCK  
IRQ  
INT/EOC  
INT/EOC  
Single Converter Connects to DSP  
Converter Connects to Microprocessor  
Figure 32. Typical Interface to Host DSP and Microprocessor  
sampling time analysis  
Figure 33 shows the equivalent circuit to evaluate the required sampling time. Req is the Thevenin equivalent  
resistor (Req = 3.5 K). The C is sampling capacitor (30 pF maximum).  
(sampling)  
To get 1/4 LSB accuracy, the sampling capacitor, C  
, has to be charged to  
sampling  
V = V  
voltage of 1/4 LSB = V  
(V /65532) for 14 bit converter (TLC3574 and TLC3578)  
S
C
S
S
S
= V  
(V /16384) for 12 bit converter (TLC2574 and TLC2578)  
S
During the sampling time t  
, C  
is charge to  
(sampling) (sampling)  
–t  
ȱ
ȳ
ȴ
(sampling)  
V
+ V 1–exp  
ǒ Ǔȧ  
Sȧ  
C
Req   C  
(sampling)  
Ȳ
Therefore, the required sampling time is  
t
t
= Req × C  
= Req × C  
× In (65532) for 14-bit (TLC3574 and TLC3578)  
× In (16384) for 12-bit (TLC2574 and TLC2578).  
(sampling)  
(sampling)  
(sampling)  
(sampling)  
TMS320C54x is a trademark of Texas Instruments.  
37  
WWW.TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢈ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂꢉ ꢄ ꢅ ꢈ  
ꢄꢊ ꢋ ꢌ ꢍ ꢌꢁ ꢎꢏꢇ ꢃ ꢊꢐ ꢄ ꢊꢋ ꢑꢒ ꢏ ꢒ ꢀꢌꢁ ꢇ ꢓ ꢆ ꢊꢐ ꢓ ꢉꢊꢔ ꢒ ꢀꢇ ꢉ ꢕ ꢕ ꢊꢖꢗꢘ ꢗꢇ ꢆ ꢊꢐꢈ ꢊꢂꢙ ꢌꢍꢍꢚ ꢁ  
ꢗ ꢚꢛꢒ ꢌ ꢁ ꢌ ꢍ ꢌꢁ ꢎꢏ ꢊꢀꢎ ꢊꢑꢒ ꢏ ꢒꢀꢌꢁ ꢂꢎ ꢍꢋ ꢚ ꢛꢀ ꢚ ꢛꢗ ꢜ ꢒꢀ ꢙ ꢓ ꢕ ꢊꢋ ꢒꢍ ꢘꢝꢀ ꢗ  
SLAS262C − OCTOBER 2000 − REVISED MAY 2003  
APPLICATION INFORMATION  
REFP  
Bipolar Signal  
Scaling  
MUX  
Req  
3.94 kΩ  
1.5 kMax  
Ain  
9.9 kΩ  
Converter  
Vs  
R
on  
C
(sample)  
= 30 pF Max  
6.6 kΩ  
C
(sample)  
= 30 pF  
Req = Thevenin Equivalent Resistance  
Vs = Thevenin Equivalent Voltage  
REFM  
Figure 33. Equivalent Input Circuit Including the Driving Source  
38  
WWW.TI.COM  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Oct-2008  
PACKAGING INFORMATION  
Orderable Device  
TLC2574IDW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
20  
20  
20  
20  
24  
24  
24  
24  
24  
24  
20  
20  
20  
20  
20  
20  
24  
24  
24  
24  
24  
24  
24  
24  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC2574IDWG4  
TLC2574IPW  
SOIC  
TSSOP  
TSSOP  
SOIC  
DW  
PW  
PW  
DW  
DW  
PW  
PW  
PW  
PW  
DW  
DW  
DW  
DW  
PW  
PW  
DW  
DW  
DW  
DW  
PW  
PW  
PW  
PW  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC2574IPWG4  
TLC2578IDW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC2578IDWG4  
TLC2578IPW  
SOIC  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TLC2578IPWG4  
TLC2578IPWR  
TLC2578IPWRG4  
TLC3574IDW  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC3574IDWG4  
TLC3574IDWR  
TLC3574IDWRG4  
TLC3574IPW  
SOIC  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
SOIC  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC3574IPWG4  
TLC3578IDW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC3578IDWG4  
TLC3578IDWR  
TLC3578IDWRG4  
TLC3578IPW  
SOIC  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TLC3578IPWG4  
TLC3578IPWR  
TLC3578IPWRG4  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Oct-2008  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jan-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC2578IPWR  
TLC3574IDWR  
TLC3578IPWR  
TSSOP  
SOIC  
PW  
DW  
PW  
24  
20  
24  
2000  
2000  
2000  
330.0  
330.0  
330.0  
16.4  
24.4  
16.4  
6.95  
10.8  
6.95  
8.3  
13.3  
8.3  
1.6  
2.7  
1.6  
8.0  
12.0  
8.0  
16.0  
24.0  
16.0  
Q1  
Q1  
Q1  
TSSOP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jan-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC2578IPWR  
TLC3574IDWR  
TLC3578IPWR  
TSSOP  
SOIC  
PW  
DW  
PW  
24  
20  
24  
2000  
2000  
2000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
38.0  
45.0  
38.0  
TSSOP  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLC363C

TRIPLE LOW CAPACITANCE MOUNT ZENER DIODE ARRAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C20V8

TRIPLE LOW CAPACITANCE MOUNT ZENER DIODE ARRAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C20V8-13

Zener Diode, 20.8V V(Z), 5%, 0.2W, Silicon, Unidirectional, ULTRA SMALL, PLASTIC PACKAGE-6

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C20V8-7

Zener Diode, 20.8V V(Z), 5%, 0.2W, Silicon, Unidirectional, ULTRA SMALL, PLASTIC PACKAGE-6

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C20V8-7-F

Zener Diode, 20.8V V(Z), 5%, 0.2W, Silicon, Unidirectional, LEAD FREE, PLASTIC PACKAGE-3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C5V5

TRIPLE LOW CAPACITANCE MOUNT ZENER DIODE ARRAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C5V5-13

Zener Diode, 5.5V V(Z), 5%, 0.2W, Silicon, Unidirectional, ULTRA SMALL, PLASTIC PACKAGE-6

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C5V5-7

Zener Diode, 5.5V V(Z), 5%, 0.2W, Silicon, Unidirectional, ULTRA SMALL, PLASTIC PACKAGE-6

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C5V5-7-F

Zener Diode, 5.5V V(Z), 5%, 0.2W, Silicon, Unidirectional, LEAD FREE, PLASTIC PACKAGE-3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C6V4

TRIPLE LOW CAPACITANCE MOUNT ZENER DIODE ARRAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C6V4-13

Zener Diode, 6.4V V(Z), 5%, 0.2W, Silicon, Unidirectional, ULTRA SMALL, PLASTIC PACKAGE-6

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

TLC363C6V4-7

Zener Diode, 6.4V V(Z), 5%, 0.2W, Silicon, Unidirectional, ULTRA SMALL, PLASTIC PACKAGE-6

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES