TLC3702 [TI]

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATORS; 双通道,微LinCMOSE电压比较器
TLC3702
型号: TLC3702
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATORS
双通道,微LinCMOSE电压比较器

比较器
文件: 总26页 (文件大小:383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
D, JG, OR P PACKAGE  
Push-Pull CMOS Output Drives Capacitive  
Loads Without Pullup Resistor,  
= ± 8 mA  
(TOP VIEW)  
I
O
1OUT  
1IN–  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
Very Low Power . . . 100 µW Typ at 5 V  
2OUT  
2IN–  
2IN+  
Fast Response Time . . . t  
With 5-mV Overdrive  
= 2.7 µs Typ  
PLH  
Single-Supply Operation . . . 3 V to 16 V  
TLC3702M . . . 4 V to 16 V  
FK PACKAGE  
(TOP VIEW)  
On-Chip ESD Protection  
description  
The TLC3702 consists of two independent  
micropower voltage comparators designed to  
operate from a single supply and be compatible  
with modern HCMOS logic systems. They are  
functionally similar to the LM339 but use one-  
twentieth of the power for similar response times.  
The push-pull CMOS output stage drives  
capacitive loads directly without a power-  
consuming pullup resistor to achieve the stated  
response time. Eliminating the pullup resistor not  
only reduces power dissipation, but also saves  
board space and component cost. The output  
stage is also fully compatible with TTL  
requirements.  
3
2
1
20 19  
18  
NC  
NC  
4
5
6
7
8
2OUT  
NC  
1IN–  
NC  
17  
16  
15  
14  
2IN–  
NC  
1IN+  
NC  
9 10 11 12 13  
NC – No internal connection  
symbol (each comparator)  
Texas Instruments LinCMOS process offers  
superior analog performance to standard CMOS  
processes. Along with the standard CMOS  
advantages of low power without sacrificing  
speed, high input impedance, and low bias  
IN+  
IN–  
OUT  
currents, the LinCMOS  
process offers  
extremely stable input offset voltages with large  
differential input voltages. This characteristic  
makes it possible to build reliable CMOS  
comparators.  
The TLC3702C is characterized for operation over the commercial temperature range of 0°C to 70°C. The  
TLC3702I is characterized for operation over the extended industrial temperature range of –40°C to 85°C. The  
TLC3702M is characterized for operation over the full military temperature range of –55°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
AVAILABLE OPTIONS  
PACKAGES  
V
max  
IO  
T
A
SMALL OUTLINE  
(D)  
CERAMIC  
(FK)  
CERAMIC DIP  
(JG)  
PLASTIC DIP  
(P)  
at 25°C  
0°C to 70°C  
–40°C to 85°C  
–55°C to 125°C  
5 mV  
5 mV  
5 mV  
TLC3702CD  
TLC3702ID  
TLC3702MD  
TLC3702CP  
TLC3702IP  
TLC3702MFK  
TLC3702MJG  
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC3702CDR).  
functional block diagram (each comparator)  
V
DD  
IN+  
IN–  
Differential  
Input  
Circuits  
OUT  
GND  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
ID  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
I
DD  
DD  
Output voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to V  
O
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O
Total supply current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : TLC3702C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLC3702I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
TLC3702M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
464 mW  
377 mW  
145 mW  
1375 mW  
880 mW  
715 mW  
275 mW  
1050 mW  
672 mW  
546 mW  
210 mW  
1000 mW  
640 mW  
520 mW  
N/A  
recommended operating conditions  
TLC3702C  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
3
5
16  
V
V
DD  
Common-mode input voltage, V  
– 0.2  
V
– 1.5  
DD  
–20  
IC  
High-level output current, I  
mA  
mA  
°C  
OH  
Low-level output current, I  
20  
70  
OL  
Operating free-air temperature, T  
0
A
electrical characteristics at specified operating free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC3702C  
UNIT  
PARAMETER  
T
A
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
V
= 5 V to 10 V,  
25°C  
1.2  
5
DD  
IC  
V
IO  
Input offset voltage  
mV  
= V  
min,  
ICR  
0°C to 70°C  
6.5  
See Note 3  
25°C  
70°C  
1
5
pA  
nA  
pA  
nA  
I
I
Input offset current  
V
= 2.5 V  
= 2.5 V  
IO  
IC  
IC  
0.3  
0.6  
25°C  
Input bias current  
V
IB  
70°C  
25°C  
0 to V  
– 1  
DD  
V
Common-mode input voltage range  
V
ICR  
0°C to 70°C  
25°C  
0 to V  
– 1.5  
DD  
84  
84  
84  
85  
85  
85  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V  
min  
ICR  
70°C  
dB  
IC  
0°C  
25°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
70°C  
dB  
SVR  
DD  
0°C  
25°C  
4.5  
4.3  
V
I
= 1 V,  
= 4 mA  
ID  
OH  
V
V
High-level output voltage  
V
OH  
70°C  
25°C  
210  
18  
300  
375  
40  
V
= –1 V,  
= 4 mA  
ID  
Low-level output voltage  
mV  
µA  
OL  
I
70°C  
OH  
25°C  
I
Supply current (both comparators)  
Outputs low, No load  
DD  
0°C to 70°C  
50  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
recommended operating conditions  
TLC3702I  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
3
5
16  
V
V
DD  
Common-mode input voltage, V  
–0.2  
V
– 1.5  
DD  
–20  
IC  
High-level output current, I  
mA  
mA  
°C  
OH  
Low-level output current, I  
20  
85  
OL  
Operating free-air temperature, T  
–40  
A
electrical characteristics at specified operating free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC3702I  
UNIT  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
T
A
TEST CONDITIONS  
MIN  
TYP  
MAX  
25°C  
–40°C to 85°C  
25°C  
1.2  
5
7
V
V
= 5 V to 10 V,  
DD  
IC  
V
IO  
mV  
= V  
min, See Note 3  
ICR  
1
5
pA  
nA  
pA  
nA  
I
IO  
V
= 2.5 V  
IC  
85°C  
1
2
25°C  
I
IB  
V
= 2.5 V  
IC  
85°C  
0 to  
– 1  
25°C  
V
DD  
0 to  
– 1.5  
V
ICR  
Common-mode input voltage range  
V
–40°C to 85°C  
V
DD  
25°C  
85°C  
84  
84  
83  
85  
85  
83  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V  
min  
ICR  
dB  
dB  
IC  
–40°C  
25°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
85°C  
SVR  
DD  
–40°C  
25°C  
4.5  
4.3  
V
V
High-level output voltage  
V
V
= 1 V,  
I
I
= 4 mA  
= 4 mA  
V
OH  
ID  
OH  
85°C  
25°C  
210  
18  
300  
400  
40  
Low-level output voltage  
= –1 V,  
mV  
µA  
OL  
ID  
OH  
85°C  
25°C  
I
Supply current (both comparators)  
Outputs low, No load  
DD  
–40°C to 85°C  
65  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3. The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
recommended operating conditions  
TLC3702M  
MIN NOM MAX  
16  
– 1.5  
UNIT  
Supply voltage, V  
DD  
Common-mode input voltage, V  
4
0
5
V
V
V
DD  
IC  
High-level output current, I  
– 20  
20  
mA  
mA  
°C  
OH  
Low-level output current, I  
OL  
Operating free-air temperature, T  
– 55  
125  
A
electrical characteristics at specified operating free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC3702M  
UNIT  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
T
A
TEST CONDITIONS  
MIN  
TYP  
MAX  
25°C  
–55°C to 125°C  
25°C  
1.2  
5
V
V
= 5 V to 10 V,  
DD  
IC  
V
IO  
mV  
= V  
min, See Note 3  
10  
ICR  
1
5
pA  
nA  
pA  
nA  
I
IO  
V
= 2.5 V  
IC  
125°C  
15  
30  
25°C  
I
IB  
V
= 2.5 V  
IC  
125°C  
0 to  
25°C  
V
– 1  
DD  
V
ICR  
Common-mode input voltage range  
V
0 to  
–55°C to 125°C  
V
– 1.5  
DD  
25°C  
125°C  
84  
83  
82  
85  
85  
82  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V  
min  
ICR  
dB  
dB  
IC  
–55°C  
25°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
125°C  
SVR  
DD  
– 55°C  
25°C  
4.5  
4.2  
V
V
High-level output voltage  
V
V
= 1 V,  
I
I
= 4 mA  
= 4 mA  
V
OH  
ID  
OH  
125°C  
25°C  
210  
18  
300  
500  
40  
Low-level output voltage  
= –1 V,  
mV  
µA  
OL  
ID  
OH  
125°C  
25°C  
I
Supply current (both comparators)  
Outputs low, No load  
DD  
–55°C to 125°C  
90  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3. The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
switching characteristics, V  
= 5 V, T = 25°C  
A
DD  
TLC3702C, TLC3702I  
TLC3702M  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
4.5  
2.7  
1.9  
1.4  
1.1  
1.1  
4
MAX  
Overdrive = 2 mV  
Overdrive = 5 mV  
Overdrive = 10 mV  
f = 10 kHz,  
= 50 pF  
Propagation delay time, low-to-high-level output  
t
PLH  
µs  
C
L
Overdrive = 20 mV  
Overdrive = 40 mV  
V = 1.4 V step at IN+  
I
Overdrive = 2 mV  
Overdrive = 5 mV  
Overdrive = 10 mV  
Overdrive = 20 mV  
Overdrive = 40 mV  
2.3  
1.5  
0.95  
0.65  
0.15  
f = 10 kHz,  
= 50 pF  
t
PHL  
Propagation delay time, high-to-low-level output  
µs  
C
L
V = 1.4 V step at IN+  
I
f = 10 kHz,  
t
t
Fall time  
Overdrive = 50 mV  
Overdrive = 50 mV  
50  
ns  
ns  
f
C
= 50 pF  
L
f = 10 kHz,  
= 50 pF  
Rise time  
125  
r
C
L
Simultaneous switching of inputs causes degradation in output response.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
PRINCIPLES OF OPERATION  
LinCMOS process  
The LinCMOS process is a linear polysilicon-gate CMOS process. Primarily designed for single-supply  
applications, LinCMOS products facilitate the design of a wide range of high-performance analog functions  
from operational amplifiers to complex mixed-mode converters.  
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog designers.  
This short guide is intended to answer the most frequently asked questions related to the quality and reliability  
of LinCMOS products. Further questions should be directed to the nearest TI field sales office.  
electrostatic discharge  
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only  
for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to  
CMOS devices. It can occur when a device is handled without proper consideration for environmental  
electrostatic charges, e.g., during board assembly. If a circuit in which one amplifier from a dual op amp is being  
used and the unused pins are left open, high voltages tend to develop. If there is no provision for ESD protection,  
these voltages may eventually punch through the gate oxide and cause the device to fail. To prevent voltage  
buildup, each pin is protected by internal circuitry.  
Standard ESD-protection circuits safely shunt the ESD current by providing a mechanism whereby one or more  
transistors break down at voltages higher than the normal operating voltages but lower than the breakdown  
voltage of the input gate. This type of protection scheme is limited by leakage currents which flow through the  
shunting transistors during normal operation after an ESD voltage has occurred. Although these currents are  
small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as  
tens of picoamps.  
To overcome this limitation, TI design engineers developed the patented ESD-protection circuit shown in  
Figure 1. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating leakage  
currents that may be drawn through the input pins. A more detailed discussion of the operation of the TI  
ESD-protection circuit is presented on the next page.  
All input and output pins on LinCMOS and Advanced LinCMOS products have associated ESD-protection  
circuitry that undergoes qualification testing to withstand 2000 V discharged from a 100-pF capacitor through  
a 1500-resistor (human body model) and 200 V from a 100-pF capacitor with no current-limiting resistor  
(charged device model). These tests simulate both operator and machine handling of devices during normal  
test and assembly operations.  
V
DD  
R1  
Input  
To Protect Circuit  
R2  
Q1  
Q2  
D1  
D2  
D3  
GND  
Figure 1. LinCMOS ESD-Protection Schematic  
LinCMOS and Advanced LinCMOS are trademarks of Texas Instruments Incorporated.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
PRINCIPLES OF OPERATION  
input protection circuit operation  
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESD transients.  
These transients are characterized by extremely fast rise times and usually low energies, and can occur both  
when the device has all pins open and when it is installed in a circuit.  
positive ESD transients  
Initial positive charged energy is shunted through Q1 to V . Q1 turns on when the voltage at the input rises  
SS  
BE  
above the voltage on the V  
pin by a value equal to the V of Q1. The base current increases through R2  
DD  
with input current as Q1 saturates. The base current through R2 forces the voltage at the drain and gate of Q2  
to exceed its threshold level (V 22 to 26 V) and turn Q2 on. The shunted input current through Q1 to V is  
T
SS  
now shunted through the n-channel enhancement-type MOSFET Q2 to V . If the voltage on the input pin  
SS  
continues to rise, the breakdown voltage of the zener diode D3 is exceeded and all remaining energy is  
dissipated in R1 and D3. The breakdown voltage of D3 is designed to be 24 V to 27 V, which is well below the  
gate-oxide voltage of the circuit to be protected.  
negative ESD transients  
The negative charged ESD transients are shunted directly through D1. Additional energy is dissipated in R1  
and D2 as D2 becomes forward biased. The voltage seen by the protected circuit is –0.3 V to –1 V (the forward  
voltage of D1 and D2).  
circuit-design considerations  
LinCMOS products are being used in actual circuit environments that have input voltages that exceed the  
recommended common-mode input voltage range and activate the input protection circuit. Even under normal  
operation, these conditions occur during circuit power up or power down, and in many cases, when the device  
is being used for a signal conditioning function. The input voltages can exceed V  
only if the inputs are current limited. The recommended current limit shown on most product data sheets is  
and not damage the device  
ICR  
±5 mA. Figure 2 and Figure 3 show typical characteristics for input voltage versus input current.  
Normal operation and correct output state can be expected even when the input voltage exceeds the positive  
supply voltage. Again, the input current should be externally limited even though internal positive current limiting  
is achieved in the input protection circuit by the action of Q1. When Q1 is on, it saturates and limits the current  
to approximately 5-mA collector current by design. When saturated, Q1 base current increases with input  
current. This base current is forced into the V  
producing the current limiting effects shown in Figure 2. This internal limiting lasts only as long as the input  
pin and into the device I  
or the V  
supply through R2  
DD  
DD  
DD  
voltage is below the V of Q2.  
T
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage  
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be  
severely affected. External current limiting must be used since this current is directly shunted by D1 and D2 and  
no internal limiting is achieved. If normal output voltage states are required, an external input voltage clamp is  
required (see Figure 4).  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
PRINCIPLES OF OPERATION  
circuit-design considerations (continued)  
INPUT CURRENT  
vs  
INPUT VOLTAGE  
INPUT CURRENT  
vs  
INPUT VOLTAGE  
8
7
10  
9
T
A
= 25° C  
T = 25° C  
A
8
7
6
5
6
5
4
3
2
1
0
4
3
2
1
0
V
DD  
V
DD  
+ 4  
V
+ 8  
V
+ 12  
V
DD  
– 0.3  
V
DD  
– 0.5  
V
DD  
– 0.7  
V
DD  
– 0.9  
DD  
DD  
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 2  
Figure 3  
V
DD  
R
I
Positive Voltage Input Current Limit :  
V
I
+
1/2  
TLC3702  
VI VDD 0.3 V  
RI  
5 mA  
V
ref  
Negative Voltage Input Current Limit :  
VI VDD  
(
0.3 V)  
RI  
5 mA  
See Note A  
NOTE A: If the correct input state is required when the negative input exceeds GND, a Schottky clamp is required.  
Figure 4. Typical Input Current-Limiting Configuration for a LinCMOS Comparator  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
PARAMETER MEASUREMENT INFORMATION  
The TLC3702 contains a digital output stage which, if held in the linear region of the transfer curve, can cause  
damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo  
loop which is designed to force the device output to a level within this linear region. Since the servo-loop method  
of testing cannot be used, we offer the following alternatives for measuring parameters such as input offset  
voltage, common-mode rejection, etc.  
Toverifythattheinputoffsetvoltagefallswithinthelimitsspecified, thelimitvalueisappliedtotheinputasshown  
in Figure 5(a). With the noninverting input positive with respect to the inverting input, the output should be high.  
With the input polarity reversed, the output should be low.  
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages  
canbeslewedtoprovidegreateraccuracy, asshowninFigure5(b)fortheV  
of changing the input voltages.  
test. Thisslewingisdoneinstead  
ICR  
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the  
differential input voltage while monitoring the output state. When the applied input voltage differential is equal,  
but opposite in polarity, to the input offset voltage, the output changes states.  
Figure 6 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the  
comparator in the linear region. The circuit consists of a switching mode servo loop in which IC1a generates  
a triangular waveform of approximately 20-mV amplitude. IC1b acts as a buffer, with C2 and R4 removing any  
residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the  
noninverting input is driven by the output of the integrator formed by IC1c through the voltage divider formed  
by R8 and R9. The loop reaches a stable operating point when the output of the comparator under test has a  
dutycycleofexactly50%, whichcanonlyoccurwhentheincomingtrianglewaveisslicedsymmetricallyorwhen  
the voltage at the noninverting input exactly equals the input offset voltage.  
Voltage dividers R8 and R9 provide an increase in input offset voltage by a factor of 100 to make measurement  
easier. The values of R5, R7, R8, and R9 can significantly influence the accuracy of the reading; therefore, it  
is suggested that their tolerance level be one percent or lower.  
Measuring the extremely low values of input current requires isolation from all other sources of leakage current  
and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board  
leakage can be measured with no device in the socket. Subsequently, this open socket leakage value can be  
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the  
device.  
5 V  
1 V  
+
+
Applied V  
Limit  
Applied V  
Limit  
IO  
IO  
V
O
V
O
– 4 V  
(a) V WITH V = 0 V  
IO IC  
(b) V WITH V = 4 V  
IO IC  
Figure 5. Method for Verifying That Input Offset Voltage Is Within Specified Limits  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
C3  
0.68 µF  
R5  
1.8 k1%  
IC1a  
1/4 TLC274CN  
C2  
IC1c  
Buffer  
1 µF  
+
1/4 TLC274CN  
R6  
+
1 MΩ  
DUT  
+
V
IO  
(X100)  
R4  
47 kΩ  
Integrator  
R7  
1.8 k1%  
R1  
240 kΩ  
IC1b  
1/4 TLC274CN  
C4  
0.1 µF  
+
C1  
0.1 µF  
Triangle  
Generator  
R8  
10 k1%  
R9  
100 1%  
R2  
10 kΩ  
R3  
100 Ω  
Figure 6. Circuit for Input Offset Voltage Measurement  
Response time is defined as the interval between the application of an input step function and the instant when  
the output reaches 50% of its maximum value. Response time for the low-to-high-level output is measured from  
the leading edge of the input pulse, while response time for the high-to-low-level output is measured from the  
trailing edge of the input pulse. Response time measurement at low input signal levels can be greatly affected  
by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input as  
shown in Figure 7, so that the circuit is just at the transition point. A low signal, for example 105-mV or 5-mV  
overdrive, causes the output to change state.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
Pulse  
Generator  
1 µF  
50 Ω  
+
1 V  
DUT  
10 Ω  
C
L
10-Turn  
(see Note A)  
Potentiometer  
1 kΩ  
0.1 µF  
– 1 V  
TEST CIRCUIT  
Overdrive  
Overdrive  
Input  
100 mV  
Input  
100 mV  
90%  
50%  
10%  
90%  
50%  
10%  
Low-to-High  
Level Output  
High-to-Low  
Level Output  
t
r
t
f
t
t
PHL  
PLH  
VOLTAGE WAVEFORMS  
NOTE A: C includes probe and jig capacitance.  
L
Figure 7. Response, Rise, and Fall Times Circuit and Voltage Waveforms  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
Distribution  
8
9
IO  
I
IB  
vs Free-air temperature  
vs Free-air temperature  
vs Free-air temperature  
CMRR Common-mode rejection ratio  
10  
11  
k
Supply-voltage rejection ratio  
SVR  
vs Free-air temperature  
vs High-level output current  
12  
13  
V
V
High-level output current  
OH  
vs Low-level output current  
vs Free-air temperature  
14  
15  
Low-level output voltage  
OL  
t
Transition time  
vs Load capacitance  
16  
17  
18  
19  
20  
21  
t
Supply current response  
vs Time  
Low-to-high-level output response  
High-to-low level output response  
Low-to-high level output propagation delay time  
High-to-low level output propagation delay time  
Low-to-high level output propagation delay time  
High-to-low level output propagation delay time  
vs Supply voltage  
t
t
PLH  
vs Supply voltage  
PHL  
vs Frequency  
vs Supply voltage  
vs Free-air temperature  
22  
23  
24  
I
Supply current  
DD  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
DISTRIBUTION OF INPUT  
OFFSET VOLTAGE  
200  
180  
160  
140  
10  
1
V
V
= 5 V  
DD  
= 2.5 V  
V
V
= 5 V  
DD  
= 2.5 V  
IC  
= 25° C  
IC  
T
A
698 Units Tested  
From 4 Wafer Lots  
120  
100  
0.1  
80  
60  
40  
20  
0.01  
0.001  
0
–5 –4 –3 –2 –1  
0
1
2
3
4
5
25  
50  
75  
100  
125  
V
IO  
– Input Offset Voltage – mV  
T
A
– Free-Air Temperature – °C  
Figure 8  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
SUPPLY VOLTAGE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
90  
88  
86  
84  
82  
90  
88  
86  
84  
82  
80  
78  
76  
V
DD  
= 5 V to 10 V  
V
DD  
= 5 V  
80  
78  
76  
74  
72  
70  
74  
72  
70  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
5
4.95  
4.9  
V
DD  
V
= 5 V  
= – 4 mA  
DD  
OH  
I
V
DD  
= 16 V  
10 V  
0.25  
0.5  
4.85  
4.8  
0.75  
4.75  
–1  
5 V  
4.7  
1.25  
4.65  
4 V  
1.5  
4.6  
4.55  
4.5  
3 V  
1.75  
–2  
T
A
= 25° C  
0
2.5 5 –7.5 10 12.5 15 17.5 20  
75 50 25  
0
25  
50  
75  
100  
125  
I
– High-Level Output Current – mA  
T
A
– Free-Air Temperature – °C  
OH  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
1.5  
400  
350  
300  
250  
200  
150  
100  
T
A
= 25°C  
V
I
= 5 V  
= 4 mA  
3 V  
DD  
OL  
4 V  
1.25  
5 V  
1
0.75  
10 V  
0.5  
0.25  
V
DD  
= 16 V  
50  
0
0
0
2
4
6
8
10 12 14 16 18  
20  
75 50 25  
0
25  
50  
75  
100 125  
I
– Low-Level Output Current – mA  
OL  
T
A
– Free-Air Temperature – °C  
Figure 14  
Figure 15  
OUTPUT TRANSITION TIME  
vs  
SUPPLY CURRENT RESPONSE  
TO AN OUTPUT VOLTAGE TRANSITION  
LOAD CAPACITANCE  
250  
225  
200  
V
C
= 5 V  
= 50 pF  
DD  
L
V
T
A
= 5 V  
= 25°C  
DD  
f = 10 kHz  
10  
Rise Time  
175  
150  
125  
100  
75  
5
0
5
0
Fall Time  
50  
25  
0
0
200  
400  
600  
800  
1000  
t – Time  
C
– Load Capacitance – pF  
L
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
LOW-TO-HIGH-LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
HIGH-TO-LOW-LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
5
5
40 mV  
20 mV  
10 mV  
5 mV  
40 mV  
20 mV  
10 mV  
5 mV  
2 mV  
2 mV  
0
100  
0
0
100  
0
V
T
C
= 5 V  
= 25° C  
= 50 pF  
DD  
A
L
V
= 5 V  
= 25°C  
= 50 pF  
DD  
T
A
C
L
0
1
2
3
4
5
0
1
2
3
4
5
t
– Low-to-High-Level Output  
Response Time – µs  
t
– High-to-Low-Level Output  
Response Time – µs  
PLH  
PHL  
Figure 18  
Figure 19  
LOW-TO-HIGH-LEVEL  
OUTPUT RESPONSE TIME  
vs  
HIGH-TO-LOW-LEVEL  
OUTPUT RESPONSE TIME  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
6
5
6
5
C
= 50 pF  
= 25°C  
L
C
= 50 pF  
= 25°C  
L
T
A
T
A
Overdrive = 2 mV  
Overdrive = 2 mV  
4
3
2
1
0
4
3
5 mV  
10 mV  
5 mV  
2
10 mV  
20 mV  
20 mV  
40 mV  
1
0
40 mV  
6
0
2
4
6
8
10  
12  
14  
16  
0
2
4
8
10  
12  
14  
16  
V
DD  
– Supply Voltage – V  
V
DD  
– Supply Voltage – V  
Figure 20  
Figure 21  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
AVERAGE SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
(PER COMPARATOR)  
vs  
FREQUENCY  
40  
35  
10000  
1000  
Outputs Low  
No Loads  
T
= – 55°C  
A
T
C
= 25°C  
= 50 pF  
A
L
T = – 40°C  
A
V
DD  
= 16 V  
30  
25  
20  
15  
10  
T
A
= – 25°C  
10 V  
5 V  
100  
10  
T
A
= – 125°C  
4 V  
T
A
= 85°C  
5
0
3 V  
0
1
2
3
4
5
6
7
8
0.01  
0.1  
1
10  
100  
f – Frequency – kHz  
V
DD  
– Supply Voltage – V  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
30  
25  
20  
15  
V
= 5 V  
DD  
No Load  
Outputs Low  
Outputs High  
10  
5
0
75 50 25  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
The inputs should always remain within the supply rails in order to avoid forward biasing the diodes in the  
electrostatic discharge (ESD) protection structure. If either input exceeds this range, the device is not damaged  
as long as the input is limited to less than 5 mA. To maintain the expected output state, the inputs must remain  
within the common-mode range. For example, at 25°C with V  
–0.2 V and 4 V to ensure proper device operation.  
= 5 V, both inputs must remain between  
DD  
To ensure reliable operation, the supply should be decoupled with a capacitor (0.1 µF) that is positioned as close  
to the device as possible.  
The TLC3702 has internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as  
tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as  
exposure to ESD may result in the degradation of the device parametric performance.  
Table of Applications  
FIGURE  
Pulse-width-modulated motor speed controller  
Enhanced supply supervisor  
25  
26  
27  
28  
Two-phase nonoverlapping clock generator  
Micropower switching regulator  
12 V  
SN75603  
Half-H Driver  
DIR  
EN  
5 V  
1/2 TLC3702  
+
See  
Note A  
100 kΩ  
+
10 kΩ  
5 V  
Motor  
10 kΩ  
C1  
1/2 TLC3704  
0.01 µF  
12 V  
(see Note B)  
SN75604  
Half-H Driver  
DIR  
EN  
10 kΩ  
5 V  
10 kΩ  
Motor Speed Control  
Potentiometer  
5 V  
Direction  
Control  
S1  
SPDT  
NOTES: A. The recommended minimum capacitance is 10 µF to eliminate common ground switching noise.  
B. Adjust C1 for change in oscillator frequency.  
Figure 25. Pulse-Width-Modulated Motor Speed Controller  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
5 V  
5 V  
V
CC  
SENSE  
12 V  
1/2 TLC3702  
3.3 kΩ  
10 kΩ  
12-V  
Sense  
+
To µP  
Reset  
TL7705A  
RESIN  
REF  
RESET  
GND  
1 kΩ  
C
T
2.5 V  
1 µF  
C
T
(see Note B)  
1/2 TLC3702  
+
To µP Interrupt  
Early Power Fail  
R1  
V
(UNREG)  
(see Note A)  
R2  
Monitors 5 VDC Rail  
Monitors 12 VDC Rail  
Early Power Fail Warning  
(R1 +R2)  
R2  
NOTES: A.  
V(UNREG)  
2.5  
B. The value of C determines the time delay of reset.  
T
Figure 26. Enhanced Supply Supervisor  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
12 V  
12 V  
R1  
100 kΩ  
12 V  
(see Note B)  
1/2 TLC3702  
+
1OUT  
2OUT  
R2  
5 kΩ  
1/2 TLC3702  
100 kΩ  
(see Note C)  
+
1/2 TLC3702  
+
22 kΩ  
C1  
0.01 µF  
(see Note A)  
100 kΩ  
100 kΩ  
R3  
100 kΩ  
(see Note B)  
12 V  
1OUT  
2OUT  
NOTES: A. Adjust C1 for a change in oscillator frequency where:  
1/f = 1.85(100 k)C1  
B. Adjust R1 and R3 to change duty cycle  
C. Adjust R2 to change deadtime  
Figure 27. Two-Phase Nonoverlapping Clock Generator  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
V
I
6 V to 16 V  
I
0.01 mA to 0.25 mA  
L
(R1  
R2)  
V
2.5  
O
R2  
1/2 TLC3702  
V
I
SK9504  
(see Note C)  
1/2 TLC3702  
+
100 kΩ  
G
S
V
+
I
100 kΩ  
+
47 µF  
Tantalum  
V
I
D
100 kΩ  
C1  
IN5818  
180 µF  
(see Note A)  
100 kΩ  
R = 6 Ω  
L = 1 mH  
(see Note D)  
R1  
V
O
100 kΩ  
TLC271  
(see Note B)  
V
I
R
L
470 µF  
+
R2  
100 kΩ  
C2  
100 pF  
100 kΩ  
270 kΩ  
V
I
LM385  
2.5 V  
NOTES: A. Adjust C1 for a change in oscillator frequency  
B. TLC271 – Tie pin 8 to pin 7 for low bias operation  
C. SK9504 – VDS = 40 V  
IDS = 1 A  
D. To achieve microampere current drive, the inductance of the circuit must be increased.  
Figure 28. Micropower Switching Regulator  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
MECHANICAL DATA  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
MECHANICAL DATA  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE PACKAGE  
0.400 (10,20)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.063 (1,60)  
0.015 (0,38)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL-STD-1835 GDIP1-T8  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS  
SLCS013D – NOVEMBER 1986 – REVISED NOVEMBER 1998  
MECHANICAL DATA  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLC3702-EP

DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATOR
TI

TLC3702-EP_14

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATOR
TI

TLC3702-Q1

DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TI

TLC3702/4

FAMILY OF NANNOPOWER PUSH=PULL OUTPUT COMPARATORS
TI

TLC3702CD

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATORS
TI

TLC3702CDG4

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS
TI

TLC3702CDR

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS
TI

TLC3702CDRG4

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS
TI

TLC3702CP

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATORS
TI

TLC3702CPE4

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS
TI

TLC3702CPS

DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TI

TLC3702CPSLE

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS
TI