TLC3704MDRG4 [TI]

QUAD COMPARATOR, 10000uV OFFSET-MAX, 2700ns RESPONSE TIME, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14;
TLC3704MDRG4
型号: TLC3704MDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUAD COMPARATOR, 10000uV OFFSET-MAX, 2700ns RESPONSE TIME, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14

放大器 光电二极管
文件: 总36页 (文件大小:1242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
D, J, OR N PACKAGE  
D
Push-Pull CMOS Output Drives Capacitive  
Loads Without Pullup Resistor,  
I = 8 mA  
O
(TOP VIEW)  
1OUT  
2OUT  
VDD  
2IN−  
2IN+  
1IN−  
1IN+  
3OUT  
4OUT  
GND  
4IN+  
4IN−  
3IN+  
3IN−  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
D
D
D
D
Very Low Power . . . 200 µW Typ at 5 V  
Fast Response Time . . . t  
With 5-mV Overdrive  
= 2.7 µs Typ  
PLH  
Single Supply Operation . . . 3 V to 16 V  
TLC3704M . . . 4 V to 16 V  
8
On-Chip ESD Protection  
description  
PW PACKAGE  
(TOP VIEW)  
The TLC3704 consists of four independent  
micropower voltage comparators designed to  
operate from a single supply and be compatible  
with modern HCMOS logic systems. They are  
functionally similar to the LM339 but use 1/20th  
the power for similar response times. The  
push-pull CMOS output stage drives capacitive  
loads directly without a power-consuming pullup  
resistor to achieve the stated response time.  
Eliminating the pullup resistor not only reduces  
power dissipation, but also saves board space  
and component cost. The output stage is also fully  
compatible with TTL requirements.  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
2OUT  
VDD  
2IN−  
2IN+  
1IN−  
1IN+  
3OUT  
4OUT  
GND  
4IN+  
4IN−  
3IN+  
3IN−  
8
FK PACKAGE  
(TOP VIEW)  
Texas Instruments LinCMOSprocess offers  
superior analog performance to standard CMOS  
processes. Along with the standard CMOS  
advantages of low power without sacrificing  
speed, high input impedance, and low bias  
currents, the LinCMOS process offers extremely  
stable input offset voltages with large differential  
input voltages. This characteristic makes it  
possible to build reliable CMOS comparators.  
3
2 1 20 19  
GND  
NC  
4IN+  
NC  
VDD  
NC  
2IN−  
NC  
18  
17  
16  
15  
14  
4
5
6
7
8
4IN−  
2IN+  
9 10 11 12 13  
The TLC3704C is characterized for operation  
over the commercial temperature range of 0°C to  
70°C. The TLC3704I is characterized for  
operation over the extended industrial tempera-  
ture range of − 40°C to 85°C. The TLC3704M is  
characterized for operation over the full military  
temperature range of − 55°C to 125°C. The  
TLC3704Q is characterized for operation from −  
40°C to 125°C.  
NC − No internal connection  
symbol (each comparator)  
IN+  
IN−  
OUT  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 2009, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
AVAILABLE OPTIONS  
PACKAGE  
V
max  
IO  
T
A
SMALL OUTLINE  
(D)  
CERAMIC  
(FK)  
CERAMIC DIP  
(J)  
PLASTIC DIP  
(N)  
TSSOP  
(PW)  
at 25°C  
0°C to 70°C  
−40°C to 85°C  
−55°C to 125°C  
−40°C to 125°C  
5 mV  
5 mV  
5 mV  
5 mV  
TLC3704CD  
TLC3704ID  
TLC3704MD  
TLC3704CN  
TLC3704CPW  
TLC3704MFK  
TLC3704IN  
TLC3704IPW  
TLC3704MJ  
TLC3704QJ  
The D and PW packages are available taped and reeled. Add R suffix to the device type (e.g., TLC3704CDR).  
functional block diagram (each comparator)  
V
DD  
IN+  
IN−  
Differential  
Input  
Circuits  
OUT  
GND  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†  
Supply voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
ID  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 to V  
I
DD  
Output voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 to V  
O
DD  
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
O
Total supply current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : TLC3704C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 70°C  
A
TLC3704I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
TLC3704M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
TLC3704Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
FK  
J
N
PW  
950 mW  
1375 mW  
1375 mW  
1150 mW  
675 mW  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
9.2 mW/°C  
5.4 mW/°C  
608 mW  
880 mW  
880 mW  
736 mW  
432 mW  
494 mW  
715 mW  
715 mW  
598 mW  
351 mW  
N/A  
275 mW  
275 mW  
N/A  
N/A  
recommended operating conditions  
TLC3704C  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
3
5
16  
V
V
DD  
Common-mode input voltage, V  
− 0.2  
V
DD  
− 1.5  
IC  
High-level output current, I  
− 20  
20  
mA  
mA  
°C  
OH  
OL  
Low-level output current, I  
Operating free-air temperature, T  
0
70  
A
electrical characteristics at specified operating free-air temperature, VDD = 5 V  
(unless otherwise noted)  
TLC3704C  
TYP  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
T
UNIT  
TEST CONDITIONS  
A
MIN  
MAX  
5
V
V
= 5 V to 10 V,  
25°C  
0°C to 70°C  
25°C  
1.2  
DD  
V
IO  
mV  
= V min,  
See Note 3  
6.5  
IC  
ICR  
1
5
pA  
nA  
pA  
nA  
I
IO  
V
IC  
= 2.5 V  
70°C  
0.3  
0.6  
25°C  
I
IB  
V
= 2.5 V  
IC  
70°C  
0 to  
25°C  
V
− 1  
DD  
V
ICR  
Common-mode input voltage range  
V
0 to  
0°C to 70°C  
V
− 1.5  
DD  
25°C  
70°C  
84  
84  
84  
85  
85  
85  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V min  
dB  
dB  
IC  
ICR  
0°C  
25°C  
70°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
DD  
SVR  
0°C  
25°C  
4.5  
4.3  
V
V
I
High-level output voltage  
V
V
= 1 V,  
I
I
= 4 mA  
= 4 mA  
V
OH  
ID  
OH  
70°C  
25°C  
210  
35  
300  
375  
80  
Low-level output voltage  
= −1 V,  
mV  
µA  
OL  
ID  
OH  
70°C  
25°C  
Supply current (all four comparators)  
Outputs low,  
No load  
DD  
0°C to 70°C  
100  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
recommended operating conditions  
TLC3704I  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
3
5
16  
V
V
DD  
Common-mode input voltage, V  
− 0.2  
V
DD  
− 1.5  
IC  
High-level output current, I  
− 20  
20  
mA  
mA  
°C  
OH  
OL  
Low-level output current, I  
Operating free-air temperature, T  
− 40  
85  
A
electrical characteristics at specified operating free-air temperature, VDD = 5 V, VIC = 0 (unless  
otherwise noted)  
TLC3704I  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
T
UNIT  
TEST CONDITIONS  
A
MIN  
TYP  
MAX  
V
V
= 5 V to 10 V,  
25°C  
40°C to 85°C  
25°C  
1.2  
5
7
DD  
V
IO  
mV  
= V min,  
See Note 3  
IC  
ICR  
1
5
pA  
nA  
pA  
nA  
I
IO  
V
IC  
= 2.5 V  
= 2.5 V  
85°C  
1
2
25°C  
I
IB  
V
IC  
85°C  
0 to  
25°C  
V
− 1  
DD  
V
ICR  
Common-mode input voltage range  
V
0 to  
40°C to 85°C  
V
− 1.5  
DD  
25°C  
85°C  
84  
84  
83  
85  
85  
83  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V min  
dB  
dB  
IC  
ICR  
40°C  
25°C  
85°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
DD  
SVR  
40°C  
25°C  
4.5  
4.3  
V
V
I
High-level output voltage  
Low-level output voltage  
V
V
= 1 V,  
I
I
= 4 mA  
= 4 mA  
V
OH  
ID  
OH  
85°C  
25°C  
210  
35  
300  
400  
80  
= −1 V,  
mV  
µA  
OL  
ID  
OH  
85°C  
25°C  
Supply current (all four comparators) Outputs low,  
No load  
DD  
40°C to 85°C  
125  
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
recommended operating conditions  
TLC3704M  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
4
0
5
16  
V
V
DD  
Common-mode input voltage, V  
V
DD  
− 1.5  
IC  
High-level output current, I  
− 20  
20  
mA  
mA  
°C  
OH  
OL  
Low-level output current, I  
Operating free-air temperature, T  
− 55  
125  
A
electrical characteristics at specified operating free-air temperature, VDD = 5 V, VIC = 0 (unless  
otherwise noted)  
TLC3704M  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
T
UNIT  
TEST CONDITIONS  
A
MIN  
TYP  
MAX  
5
V
V
= 5 V to 10 V,  
25°C  
55°C to 125°C  
25°C  
1.2  
DD  
V
IO  
mV  
= V min,  
See Note 3  
10  
IC  
ICR  
1
5
pA  
nA  
pA  
nA  
I
IO  
V
IC  
= 2.5 V  
= 2.5 V  
125°C  
15  
30  
25°C  
I
IB  
V
IC  
125°C  
0 to  
25°C  
V
− 1  
DD  
V
ICR  
Common-mode input voltage range  
V
0 to  
55°C to 125°C  
V
− 1.5  
DD  
25°C  
125°C  
84  
83  
82  
85  
85  
82  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V min  
dB  
dB  
IC  
ICR  
55°C  
25°C  
125°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
DD  
SVR  
55°C  
25°C  
4.5  
4.2  
V
V
I
High-level output voltage  
Low-level output voltage  
V
V
= 1 V,  
I
I
= 4 mA  
= 4 mA  
V
OH  
ID  
OH  
125°C  
25°C  
210  
35  
300  
500  
80  
= −1 V,  
mV  
µA  
OL  
ID  
OH  
125°C  
25°C  
Supply current (all four comparators) Outputs low,  
No load  
DD  
55°C to 125°C  
175  
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
recommended operating conditions  
TLC3704Q  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
3
5
16  
V
V
DD  
Common-mode input voltage, V  
0.2  
V
DD  
− 1.5  
IC  
High-level output current, I  
− 20  
20  
mA  
mA  
°C  
OH  
OL  
Low-level output current, I  
Operating free-air temperature, T  
− 40  
125  
A
electrical characteristics at specified operating free-air temperature, VDD = 5 V, VIC = 0 (unless  
otherwise noted)  
TLC3704Q  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
T
UNIT  
TEST CONDITIONS  
A
MIN  
TYP  
MAX  
V
V
= 5 V to 10 V,  
25°C  
40°C to 125°C  
25°C  
1.2  
5
7
DD  
V
IO  
mV  
= V min,  
See Note 3  
IC  
ICR  
1
5
pA  
nA  
pA  
nA  
I
I
V
IC  
= 2.5 V  
= 2.5 V  
IO  
125°C  
15  
30  
25°C  
V
IC  
IB  
125°C  
25°C  
0 to V − 1  
DD  
Common-mode input voltage  
range  
V
ICR  
V
40°C to 125°C 0 to V − 1.5  
DD  
25°C  
125°C  
40°C  
25°C  
84  
83  
83  
85  
85  
83  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V min  
dB  
IC  
ICR  
125°C  
40°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
dB  
SVR  
DD  
25°C  
125°C  
4.5  
4.2  
V
V
I
High-level output voltage  
Low-level output voltage  
V
V
= 1 V,  
I
I
= 4 mA  
= 4 mA  
V
OH  
ID  
OH  
25°C  
210  
35  
300  
500  
80  
= −1 V,  
mV  
µA  
OL  
ID  
OH  
125°C  
25°C  
Supply current (all four  
comparators)  
Outputs low,  
No load  
DD  
40°C to 125°C  
175  
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
switching characteristics, VDD = 5 V, TA = 25°C  
TLC3704C, TLC3704I  
TLC3704M, TLC3704Q  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
4.5  
2.7  
1.9  
1.4  
1.1  
1.1  
4
MAX  
Overdrive = 2 mV  
Overdrive = 5 mV  
f = 10 kHz,  
C = 50 pF  
Overdrive = 10 mV  
Overdrive = 20 mV  
Overdrive = 40 mV  
L
t
Propagation delay time, low-to-high-level output  
µs  
PLH  
V = 1.4-V step at IN+  
I
Overdrive = 2 mV  
Overdrive = 5 mV  
Overdrive = 10 mV  
Overdrive = 20 mV  
Overdrive = 40 mV  
2.3  
1.5  
0.95  
0.65  
0.15  
f = 10 kHz,  
C = 50 pF  
L
t
Propagation delay time, high-to-low-level output  
µs  
PHL  
V = 1.4-V step at IN+  
I
f = 10 kHz,  
C = 50 pF  
L
t
t
Fall time  
Overdrive = 50 mV  
Overdrive = 50 mV  
50  
ns  
ns  
f
f = 10 kHz,  
C = 50 pF  
L
Rise time  
125  
r
Simultaneous switching of inputs causes degradation in output response.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
PRINCIPLES OF OPERATION  
LinCMOS process  
The LinCMOS process is a linear polysilicon-gate CMOS process. Primarily designed for single-supply  
applications, LinCMOS products facilitate the design of a wide range of high-performance analog functions from  
operational amplifiers to complex mixed-mode converters.  
This short guide is intended to answer the most frequently asked questions related to the quality and reliability  
of LinCMOS products. Direct further questions to the nearest TI field sales office.  
electrostatic discharge  
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only  
for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to  
CMOS devices. It can occur when a device is handled without proper consideration for environmental  
electrostatic charges, e.g., during board assembly. If a circuit in which one amplifier from a dual op amp is being  
used and the unused pins are left open, high voltages tends to develop. If there is no provision for ESD  
protection, these voltages may eventually punch through the gate oxide and cause the device to fail. To prevent  
voltage buildup, each pin is protected by internal circuitry.  
Standard ESD-protection circuits safely shunt the ESD current by providing a mechanism whereby one or more  
transistors break down at voltages higher than the normal operating voltages but lower than the breakdown  
voltage of the input gate. This type of protection scheme is limited by leakage currents which flow through the  
shunting transistors during normal operation after an ESD voltage has occurred. Although these currents are  
small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as  
tens of picoamps.  
To overcome this limitation, TI design engineers developed the patented ESD-protection circuit shown in  
Figure 1. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating leakage  
currents that may be drawn through the input pins. A more detailed discussion of the operation of the TI  
ESD-protection circuit is presented on the next page.  
All input and output pins on LinCMOS and Advanced LinCMOS products have associated ESD-protection  
circuitry that undergoes qualification testing to withstand 2000 V discharged from a 100-pF capacitor through  
a 1500-resistor (human body model) and 200 V from a 100-pF capacitor with no current-limiting resistor  
(charged device model). These tests simulate both operator and machine handling of devices during normal  
test and assembly operations.  
V
DD  
R1  
Input  
To Protected Circuit  
R2  
Q1  
Q2  
D1  
D2  
D3  
GND  
Figure 1. LinCMOS ESD-Protection Schematic  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
PRINCIPLES OF OPERATION  
input protection circuit operation  
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESD transients.  
These transients are characterized by extremely fast rise times and usually low energies, and can occur both  
when the device has all pins open and when it is installed in a circuit.  
positive ESD transients  
Initial positive charged energy is shunted through Q1 to V . Q1 turns on when the voltage at the input rises  
SS  
above the voltage on the V pin by a value equal to the V of Q1. The base current increases through R2  
DD  
BE  
with input current as Q1 saturates. The base current through R2 forces the voltage at the drain and gate of Q2  
to exceed its threshold level (V 22 to 26 V) and turn Q2 on. The shunted input current through Q1 to V is  
T
SS  
now shunted through the n-channel enhancement-type MOSFET Q2 to V . If the voltage on the input pin  
SS  
continues to rise, the breakdown voltage of the zener diode D3 is exceeded, and all remaining energy is  
dissipated in R1 and D3. The breakdown voltage of D3 is designed to be 24 to 27 V, which is well below the gate-  
oxide voltage of the circuit to be protected.  
negative ESD transients  
The negative charged ESD transients are shunted directly through D1. Additional energy is dissipated in R1  
and D2 as D2 becomes forward biased. The voltage seen by the protected circuit is − 0.3 V to −1 V (the forward  
voltage of D1 and D2).  
circuit-design considerations  
LinCMOS products are being used in actual circuit environments that have input voltages that exceed the  
recommended common-mode input voltage range and activate the input protection circuit. Even under normal  
operation, these conditions occur during circuit power up or power down, and in many cases, when the device  
is being used for a signal conditioning function. The input voltages can exceed V  
and not damage the device  
ICR  
only if the inputs are current limited. The recommended current limit shown on most product data sheets is  
5 mA. Figures 2 and 3 show typical characteristics for input voltage versus input current.  
Normal operation and correct output state can be expected even when the input voltage exceeds the positive  
supply voltage. Again, the input current should be externally limited even though internal positive current limiting  
is achieved in the input protection circuit by the action of Q1. When Q1 is on, it saturates and limits the current  
to approximately 5-mA collector current by design. When saturated, Q1 base current increases with input  
current. This base current is forced into the V  
pin and into the device I  
or the V  
supply through R2  
DD  
DD  
DD  
producing the current limiting effects shown in Figure 2. This internal limiting lasts only as long as the input  
voltage is below the V of Q2.  
T
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage  
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be  
severely affected. External current limiting must be used since this current is directly shunted by D1 and D2 and  
no internal limiting is achieved. If normal output voltage states are required, an external input voltage clamp is  
required (see Figure 4).  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
PRINCIPLES OF OPERATION  
circuit-design considerations (continued)  
INPUT CURRENT  
vs  
INPUT VOLTAGE  
INPUT CURRENT  
vs  
INPUT VOLTAGE  
8
7
10  
9
T
A
= 25° C  
T
A
= 25° C  
8
7
6
5
6
5
4
3
2
1
0
4
3
2
1
0
V
V
DD  
+ 4  
V
DD  
+ 8  
V
DD  
+ 12  
V
− 0.3  
V
DD  
− 0.5  
V
DD  
− 0.7  
V
DD  
− 0.9  
DD  
DD  
V − Input Voltage − V  
I
V − Input Voltage − V  
I
Figure 2  
Figure 3  
V
DD  
R
I
Positive Voltage Input Current Limit :  
V
I
+
1/2  
TLC3704  
VI * VDD * 0.3 V  
RI  
+
5 mA  
V
ref  
Negative Voltage Input Current Limit :  
* VI * VDD * (* 0.3 V)  
RI  
+
5 mA  
See Note A  
NOTE A: If the correct input state is required when the negative input exceeds GND, a Schottky clamp is required.  
Figure 4. Typical Input Current-Limiting Configuration for a LinCMOS Comparator  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
PARAMETER MEASUREMENT INFORMATION  
The TLC3704 contains a digital output stage which, if held in the linear region of the transfer curve, can cause  
damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo  
loop which is designed to force the device output to a level within this linear region. Since the servo-loop method  
of testing cannot be used, we offer the following alternatives for measuring parameters such as input offset  
voltage, common-mode rejection, etc.  
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown  
in Figure 5(a). With the noninverting input positive with respect to the inverting input, the output should be high.  
With the input polarity reversed, the output should be low.  
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages  
can be slewed as shown in Figure 5(b) for the V  
greater accuracy.  
test, rather than changing the input voltages, to provide  
ICR  
5 V  
1 V  
+
+
Applied V  
Applied V  
IO  
IO  
Limit  
Limit  
V
O
V
O
− 4 V  
(b) V WITH V = 4 V  
(a) V WITH V = 0 V  
IO  
IC  
IO  
IC  
Figure 5. Method for Verifying That Input Offset Voltage Is Within Specified Limits  
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the  
differential input voltage while monitoring the output state. When the applied input voltage differential is equal,  
but opposite in polarity, to the input offset voltage, the output changes states.  
Figure 6 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the  
comparator in the linear region. The circuit consists of a switching mode servo loop in which IC1a generates  
a triangular waveform of approximately 20-mV amplitude. IC1b acts as a buffer, with C2 and R4 removing any  
residual d.c. offset. The signal is then applied to the inverting input of the comparator under test, while the  
noninverting input is driven by the output of the integrator formed by IC1c through the voltage divider formed  
by R8 and R9. The loop reaches a stable operating point when the output of the comparator under test has a  
duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when  
the voltage at the noninverting input exactly equals the input offset voltage.  
Voltage divider R8 and R9 provides an increase in the input offset voltage by a factor of 100 to make  
measurement easier. The values of R5, R7, R8, and R9 can significantly influence the accuracy of the reading;  
therefore, it is suggested that their tolerance level be one percent or lower.  
Measuring the extremely low values of input current requires isolation from all other sources of leakage current  
and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board  
leakage can be measured with no device in the socket. Subsequently, this open socket leakage value can be  
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the  
device.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
C3  
0.68 µF  
R5  
1.8 k1%  
IC1a  
1/4 TLC274CN  
C2  
Buffer  
IC1c  
1 µF  
+
1/4 TLC274CN  
R6  
+
1 MΩ  
DUT  
+
V
IO  
R4  
47 kΩ  
(X100)  
R7  
1.8 k1%  
Integrator  
R1  
240 kΩ  
C4  
0.1 µF  
IC1b  
1/4 TLC274CN  
+
C1  
0.1 µF  
Triangle  
Generator  
R8  
10 k1%  
R9  
100 1%  
R2  
10 kΩ  
R3  
100 Ω  
Figure 6. Circuit for Input Offset Voltage Measurement  
Response time is defined as the interval between the application of an input step function and the instant when  
the output reaches 50% of its maximum value. Response time for the low-to-high-level output is measured from  
the leading edge of the input pulse, while response time for the high-to-low-level output is measured from the  
trailing edge of the input pulse. Response time measurement at low input signal levels can be greatly affected  
by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input as  
shown in Figure 7, so that the circuit is just at the transition point. A low signal, for example 105-mV or 5-mV  
overdrive, causes the output to change state.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
Pulse  
Generator  
µ
F
1
50  
+
1 V  
DUT  
10 Ω  
10-Turn  
C
L
(see Note A)  
Potentiometer  
1 k  
µ
F
0.1  
− 1 V  
TEST CIRCUIT  
Overdrive  
Overdrive  
Input  
100 mV  
Input  
100 mV  
90%  
50%  
10%  
90%  
50%  
10%  
Low-to-High  
Level Output  
High-to-Low  
Level Output  
t
t
f
r
t
t
PHL  
PLH  
VOLTAGE WAVEFORMS  
NOTE A: C includes probe and jig capacitance.  
L
Figure 7. Response, Rise, and Fall Times Circuit and Voltage Waveforms  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
Distribution  
8
9
IO  
I
IB  
vs Free-air temperature  
vs Free-air temperature  
vs Free-air temperature  
CMRR Common-mode rejection ratio  
10  
11  
k
Supply-voltage rejection ratio  
SVR  
vs Free-air temperature  
vs High-level output current  
12  
13  
V
High-level output current  
OH  
OL  
vs Low-level output current  
vs Free-air temperature  
14  
15  
V
Low-level output voltage  
t
Output transition time  
vs Load capacitance  
16  
17  
18  
19  
20  
21  
t
Supply current response to an output voltage transition  
Low-to-high-level output response for various input overdrives  
High-to-low-level output response for various input overdrives  
Low-to-high-level output response time  
t
t
vs Supply voltage  
vs Supply voltage  
PLH  
High-to-low-level output response time  
PHL  
vs Frequency  
vs Supply voltage  
vs Free-air temperature  
22  
23  
24  
I
Supply current  
DD  
INPUT BIAS CURRENT  
vs  
DISTRIBUTION OF INPUT  
OFFSET VOLTAGE†  
FREE-AIR TEMPERATURE†  
10  
200  
180  
160  
140  
V
V
T
= 5 V  
= 2.5 V  
= 25° C  
V
V
= 5 V  
= 2.5 V  
DD  
IC  
A
DD  
IC  
698 Units Tested  
From 4 Wafer Lots  
1
0.1  
120  
100  
80  
60  
40  
20  
0.01  
0.001  
0
25  
50  
75  
100  
125  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
T
A
− Free-Air Temperature − °C  
V
IO  
− Input Offset Voltage − mV  
Figure 8  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS†  
COMMON-MODE REJECTION RATIO  
SUPPLY VOLTAGE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
90  
88  
86  
84  
82  
80  
78  
76  
90  
88  
86  
84  
82  
V
DD  
= 5 V  
V
DD  
= 5 V to 10 V  
80  
78  
76  
74  
72  
70  
74  
72  
70  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
V
5
4.95  
4.9  
DD  
V
OH  
= 5 V  
DD  
I
= − 4 mA  
0.25  
V
DD  
= 16 V  
10 V  
0.5  
4.85  
4.8  
0.75  
4.75  
−1  
5 V  
4.7  
1.25  
4.65  
4 V  
1.5  
4.6  
4.55  
4.5  
3 V  
1.75  
−2  
T
A
= 25°C  
0
2.5 5 −7.5 10 12.5 15 17.5 20  
75 50 25  
0
25  
50  
75  
100  
125  
I
− High-Level Output Current − mA  
T
A
− Free-Air Temperature − °C  
OH  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS†  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
1.5  
400  
350  
300  
250  
200  
150  
100  
T
A
= 25°C  
3 V  
V
I
= 5 V  
= 4 mA  
DD  
4 V  
1.25  
OL  
1
5 V  
0.75  
10 V  
0.5  
0.25  
V
DD  
= 16 V  
50  
0
0
0
2
4
6
8
10 12 14 16 18  
20  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
I
− Low-Level Output Current − mA  
OL  
Figure 14  
Figure 15  
OUTPUT TRANSITION TIME  
vs  
SUPPLY CURRENT RESPONSE  
TO AN OUTPUT VOLTAGE TRANSITION  
LOAD CAPACITANCE  
250  
225  
200  
V
= 5 V  
DD  
L
V
T
= 5 V  
= 25°C  
DD  
A
C = 50 pF  
f = 10 kHz  
10  
Rise Time  
175  
150  
125  
100  
75  
5
0
5
0
Fall Time  
50  
25  
0
0
200  
400  
600  
800  
1000  
t − Time  
C − Load Capacitance − pF  
L
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS  
HIGH-TO-LOW-LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
LOW-TO-HIGH-LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
5
5
40 mV  
20 mV  
10 mV  
5 mV  
40 mV  
20 mV  
10 mV  
5 mV  
2 mV  
2 mV  
0
100  
0
0
100  
0
V
T
= 5 V  
= 25° C  
DD  
A
L
C = 50 pF  
V
T
= 5 V  
= 25° C  
DD  
A
L
C = 50 pF  
0
1
2
3
4
5
0
1
2
3
4
5
t
− High-to-Low-Level Output  
Response Time − µs  
t
− Low-to-High-Level Output  
Response Time − µs  
PHL  
PLH  
Figure 18  
Figure 19  
LOW-TO-HIGH-LEVEL  
HIGH-TO-LOW-LEVEL  
OUTPUT RESPONSE TIME  
vs  
OUTPUT RESPONSE TIME  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
6
5
6
5
C = 50 pF  
L
C = 50 pF  
T
A
= 25°C  
L
T
A
= 25°C  
Overdrive = 2 mV  
Overdrive = 2 mV  
4
3
2
1
0
4
3
5 mV  
5 mV  
10 mV  
2
10 mV  
20 mV  
20 mV  
1
0
40 mV  
6
40 mV  
6
0
2
4
8
10  
12  
14  
16  
0
2
4
8
10  
12  
14  
16  
V
DD  
− Supply Voltage − V  
V
DD  
− Supply Voltage − V  
Figure 20  
Figure 21  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS†  
AVERAGE SUPPLY CURRENT  
(PER COMPARATOR)  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
10000  
1000  
80  
70  
T
= − 55°C  
Outputs Low  
No Loads  
A
T
= 25°C  
A
L
C = 50 pF  
T
A
= − 40°C  
V
DD  
= 16 V  
60  
50  
40  
30  
20  
10  
0
T
A
= 25°C  
10 V  
5 V  
T
A
= 125°C  
100  
10  
4 V  
T
= 85°C  
A
3 V  
0
2
4
6
8
10  
12  
14  
16  
0.01  
0.1  
1
10  
100  
V
DD  
− Supply Voltage − V  
f − Frequency − kHz  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
30  
25  
20  
15  
V
= 5 V  
DD  
No Load  
Outputs Low  
10  
Outputs High  
5
0
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
APPLICATION INFORMATION  
The inputs should always remain within the supply rails in order to avoid forward biasing the diodes in the electrostatic  
discharge (ESD) protection structure. If either input exceeds this range, the device is not damaged as long as the  
input is limited to less than 5 mA. To maintain the expected output state, the inputs must remain within the  
common-mode range. For example, at 25°C with V = 5 V, both inputs must remain between − 0.2 V and 4 V to  
DD  
ensure proper device operation. To ensure reliable operation, the supply should be decoupled with a capacitor  
(0.1 µF) that is positioned as close to the device as possible.  
Output and supply current limitations should be watched carefully since the TLC3704 does not provide current  
protection. For example, each output can source or sink a maximum of 20 mA; however, the total current to ground  
can only be an absolute maximum of 60 mA. This prohibits sinking 20 mA from each of the four outputs simultaneously  
since the total current to ground would be 80 mA.  
The TLC3704 has internal ESD-protection circuits that prevents functional failures at voltages up to 2000 V as tested  
under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure  
to ESD may result in the degradation of the device parametric performance.  
Table of Applications  
FIGURE  
Pulse-width-modulated motor speed controller  
Enhanced supply supervisor  
25  
26  
27  
28  
Two-phase nonoverlapping clock generator  
Micropower switching regulator  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
APPLICATION INFORMATION  
12 V  
SN75603  
Half-H Driver  
DIR  
EN  
5 V  
1/2 TLC3704  
See  
Note A  
+
100 kΩ  
+
10 kΩ  
5 V  
Motor  
10 kΩ  
10 kΩ  
C1  
1/2 TLC3704  
0.01 µF  
(see Note B)  
12 V  
SN75604  
Half-H Driver  
DIR  
EN  
5 V  
10 kΩ  
Motor Speed Control  
Potentiometer  
5 V  
Direction  
Control  
S1  
SPDT  
NOTES: A. The recommended minimum capacitance is 10 µF to eliminate common ground switching noise.  
B. Adjust C1 for change in oscillator frequency  
Figure 25. Pulse-Width-Modulated Motor Speed Controller  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
APPLICATION INFORMATION  
5 V  
5 V  
12 V  
V
SENSE  
RESET  
GND  
CC  
3.3 kΩ  
10 kΩ  
To µP  
1/2 TLC3704  
12-V  
Sense  
+
TL7705A  
Reset  
RESIN  
REF  
1 kΩ  
C
T
2.5 V  
1 µF  
C
T
(see Note B)  
1/2 TLC3704  
+
To µP Interrupt  
Early Power Fail  
R1  
V
(UNREG)  
(see Note A)  
Monitors 5 VDC Rail  
Monitors 12 VDC Rail  
Early Power Fail Warning  
R2  
(R1 +R2)  
NOTES: A.  
V(UNREG) + 2.5  
B. The value of C determines the time delay of reset.  
R2  
T
Figure 26. Enhanced Supply Supervisor  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
APPLICATION INFORMATION  
12 V  
R1  
12 V  
100 kΩ  
(see Note B)  
12 V  
1/2 TLC3704  
+
OUT1  
OUT2  
R2  
5 kΩ  
1/2 TLC3704  
(see Note C)  
+
100 kΩ  
1/2 TLC3704  
+
22 kΩ  
C1  
0.01 µF  
(see Note A)  
100 kΩ  
100 kΩ  
R3  
100 kΩ  
(see Note B)  
12 V  
OUT1  
OUT2  
NOTES: A. Adjust C1 for a change in oscillator frequency where:  
1/f = 1.85(100 k)C1  
B. Adjust R1 and R3 to change duty cycle  
C. Adjust R2 to change deadtime  
Figure 27. Two-Phase Nonoverlapping Clock Generator  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3704, TLC3704M  
QUAD MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS117C − NOVEMBER 1986 − REVISED NOVEMBER 2009  
APPLICATION INFORMATION  
V
I
+ 6 V to 16 V  
I
+ 0.01 mA to 0.25 mA  
L
(R1 ) R2)  
V
+ 2.5  
O
R2  
1/2 TLC3704  
SK9504  
(see Note C)  
V
I
1/2 TLC3704  
+
100 kΩ  
G
S
V
I
100 kΩ  
+
V
I
47 µF  
D
100 kΩ  
Tantalum  
+
C1  
IN5818  
180 µF  
(see Note A)  
100 kΩ  
R = 6 Ω  
L = 1 mH  
(see Note D)  
R1  
V
O
100 kΩ  
TLC271  
(see Note B)  
V
I
R
L
470 µF  
+
R2  
100 kΩ  
C2  
100 pF  
100 kΩ  
270 kΩ  
V
I
LM385  
2.5 V  
NOTES: A. Adjust C1 for a change in oscillator frequency  
B. TLC271 − Tie pin 8 to pin 7 for low bias operation  
C. SK9504 − VDS = 40 V  
IDS = 1 Awill  
D. To achieve microampere current drive, the inductance of the circuit must be increased.  
Figure 28. Micropower Switching Regulator  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
5962-9096901M2A  
ACTIVE  
LCCC  
FK  
20  
1
TBD  
POST-PLATE  
N / A for Pkg Type  
-55 to 125  
5962-  
9096901M2A  
TLC3704  
MFKB  
5962-9096901MCA  
ACTIVE  
CDIP  
J
14  
1
TBD  
A42  
N / A for Pkg Type  
-55 to 125  
5962-9096901MC  
A
TLC3704MJB  
TLC3704CD  
TLC3704CDR  
TLC3704CDRG4  
TLC3704CN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
D
D
14  
14  
14  
14  
14  
14  
14  
50  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
TLC3704C  
TLC3704C  
TLC3704C  
TLC3704CN  
TLC3704  
P3704  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
N
Pb-Free  
(RoHS)  
TLC3704CNSR  
TLC3704CPW  
TLC3704CPWG4  
SO  
NS  
PW  
PW  
2000  
90  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TSSOP  
TSSOP  
Green (RoHS  
& no Sb/Br)  
90  
Green (RoHS  
& no Sb/Br)  
P3704  
TLC3704CPWLE  
TLC3704CPWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
TBD  
Call TI  
Call TI  
0 to 70  
0 to 70  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
P3704  
TLC3704CPWRG4  
TLC3704ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PW  
D
14  
14  
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
P3704  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLC3704I  
TLC3704I  
TLC3704I  
TLC3704I  
TLC3704IDG4  
TLC3704IDR  
D
50  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLC3704IDRG4  
D
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
TLC3704IN  
TLC3704IPW  
ACTIVE  
PDIP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
N
14  
14  
14  
14  
14  
14  
14  
14  
14  
20  
25  
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
POST-PLATE  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC3704IN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PW  
PW  
PW  
PW  
D
90  
90  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
P3704I  
TLC3704IPWG4  
TLC3704IPWR  
TLC3704IPWRG4  
TLC3704MD  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
P3704I  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
P3704I  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
P3704I  
Green (RoHS  
& no Sb/Br)  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
TLC3704MD  
PJ3704M  
TLC3704MD  
PJ3704M  
TLC3704MDG4  
TLC3704MDR  
TLC3704MDRG4  
TLC3704MFKB  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
1
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
LCCC  
FK  
TBD  
5962-  
9096901M2A  
TLC3704  
MFKB  
TLC3704MJ  
ACTIVE  
ACTIVE  
CDIP  
CDIP  
J
J
14  
14  
1
1
TBD  
TBD  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
TLC3704MJ  
TLC3704MJB  
5962-9096901MC  
A
TLC3704MJB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLC3704, TLC3704M :  
Catalog: TLC3704  
Automotive: TLC3704-Q1, TLC3704-Q1  
Military: TLC3704M  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
Military - QML certified for Military and Defense Applications  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC3704CDR  
TLC3704CNSR  
TLC3704CPWR  
TLC3704IDR  
SOIC  
SO  
D
NS  
PW  
D
14  
14  
14  
14  
14  
14  
14  
2500  
2000  
2000  
2500  
2000  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
12.4  
16.4  
12.4  
16.4  
16.4  
6.5  
8.2  
6.9  
6.5  
6.9  
6.5  
6.5  
9.0  
10.5  
5.6  
9.0  
5.6  
9.0  
9.0  
2.1  
2.5  
1.6  
2.1  
1.6  
2.1  
2.1  
8.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
12.0  
16.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
TSSOP  
SOIC  
TSSOP  
SOIC  
SOIC  
TLC3704IPWR  
TLC3704MDR  
TLC3704MDRG4  
PW  
D
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC3704CDR  
TLC3704CNSR  
TLC3704CPWR  
TLC3704IDR  
SOIC  
SO  
D
NS  
PW  
D
14  
14  
14  
14  
14  
14  
14  
2500  
2000  
2000  
2500  
2000  
2500  
2500  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
35.0  
38.0  
35.0  
38.0  
38.0  
TSSOP  
SOIC  
TSSOP  
SOIC  
SOIC  
TLC3704IPWR  
TLC3704MDR  
TLC3704MDRG4  
PW  
D
D
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

TLC3704MFK

QUAD MICROPOWER LinCMOSE VOLTAGE COMPARATORS
TI

TLC3704MFKB

QUAD MICROPOWER LinCMOSE VOLTAGE COMPARATORS
TI

TLC3704MJ

QUAD MICROPOWER LinCMOSE VOLTAGE COMPARATORS
TI

TLC3704MJB

QUAD MICROPOWER LinCMOSE VOLTAGE COMPARATORS
TI

TLC3704Q

QUAD MICROPOWER LinCMOSE VOLTAGE COMPARATORS
TI

TLC3704QDRG4Q1

汽车类四路微功耗 LinCMOS™ 电压比较器 | D | 14 | -40 to 125
TI

TLC3704QDRQ1

QUAD MICROPOWER LINCMOS VOLTAGE COMPARATORS
TI

TLC3704QJ

QUAD MICROPOWER LinCMOSE VOLTAGE COMPARATORS
TI

TLC3704QPWRQ1

QUAD MICROPOWER LINCMOS VOLTAGE COMPARATORS
TI

TLC371CD

COMPARATOR, 6500uV OFFSET-MAX, 650ns RESPONSE TIME, PDSO8
TI

TLC371CDR

COMPARATOR, 6500uV OFFSET-MAX, 650ns RESPONSE TIME, PDSO8
TI

TLC371CP

COMPARATOR, 6500uV OFFSET-MAX, 650ns RESPONSE TIME, PDIP8
TI