TLC374 [TI]

LinCMOSE QUADRUPLE DIFFERENTIAL COMPARATORS; LinCMOSE四路差动比较仪
TLC374
型号: TLC374
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LinCMOSE QUADRUPLE DIFFERENTIAL COMPARATORS
LinCMOSE四路差动比较仪

文件: 总18页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
Single- or Dual-Supply Operation  
D, J, N, OR PW PACKAGE  
(TOP VIEW)  
Wide Range of Supply Voltages  
2 V to 18 V  
1OUT  
2OUT  
3OUT  
4OUT  
GND  
4IN+  
4IN–  
3IN+  
3IN–  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Very Low Supply Current Drain 0.3 mA Typ  
at 5 V  
V
DD  
Fast Response Time . . . 200 ns Typ for  
TTL-Level Input Step  
2IN–  
2IN+  
1IN–  
1IN+  
Built-In ESD Protection  
12  
High Input Impedance . . . 10 Typ  
8
Extremely Low Input Bias Current 5 pA Typ  
Ultrastable Low Input Offset Voltage  
FK PACKAGE  
(TOP VIEW)  
Input Offset Voltage Change at Worst-Case  
Input Conditions Typically 0.23 µV/Month,  
Including the First 30 Days  
Common-Mode Input Voltage Range  
Includes Ground  
3
4
2
1
20 19  
18  
GND  
V
DD  
NC  
NC  
2IN–  
NC  
17  
16  
15  
14  
5
6
7
8
Outputs Compatible With TTL, MOS, and  
CMOS  
4IN+  
NC  
Pin-Compatible With LM339  
4IN–  
2IN+  
9 10 11 12 13  
description  
These quadruple differential comparators are  
fabricated using LinCMOS technology and  
NC – No internal connection  
consist of four independent voltage comparators  
designed to operate from a single power supply.  
Operation from dual supplies is also possible if the  
difference between the two supplies is 2 V to 18 V.  
symbol (each comparator)  
IN+  
IN–  
Each device features extremely high input  
OUT  
12  
impedance (typically greater than 10  
),  
allowing direct interfacing with high-impedance  
sources. The outputs are n-channel open-drain  
configurations and can be connected to achieve  
positive-logic wired-AND relationships.  
The TLC374 has internal electrostatic discharge (ESD) protection circuits and has been classified with a 1000-V  
ESD rating using human body model testing. However, care should be exercised in handling this device as  
exposure to ESD may result in degradation of the device parametric performance.  
The TLC374C is characterized for operation from 0°C to 70°C. The TLC374I is characterized for operation from  
40° to 85°C. The TLC374M is characterized for operation over full military temperature range of  
55°C to 125°C. The TLC374Q is characterized for operation from 40°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
IO  
T
A
SMALL OUTLINE CHIP CARRIER CERAMIC DIP  
PLASTIC DIP  
(N)  
TSSOP  
(PW)  
AT 25°C  
(D)  
(FK)  
(J)  
0°C to 70°C  
40°C to 85°C  
55°C to 125°C  
40°C to 125°C  
5 mV  
5 mV  
5 mV  
5 mV  
TLC374CD  
TLC374ID  
TLC374MD  
TLC374QD  
TLC374CN  
TLC374IN  
TLC374MN  
TLC374QN  
TLC374CPW TLC374Y  
TLC374MFK  
TLC374MJ  
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC374CDR).  
equivalent schematic (each comparator)  
Common to All Channels  
V
DD  
OUT  
GND  
IN+  
IN–  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
TLC374Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLC374C. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive  
epoxy or a gold-silicon preform.  
V
DD  
(3)  
BONDING PAD ASSIGNMENTS  
(7)  
(6)  
(13)  
1IN+  
1IN–  
(12)  
(11)  
+
(10)  
(9)  
(1)  
1OUT  
(5)  
(4)  
+
2IN+  
2IN–  
(2)  
2OUT  
3IN+  
(14)  
(1)  
(9)  
(8)  
+
(8)  
(7)  
(14)  
3OUT  
65  
3IN–  
(11)  
(10)  
+
4IN+  
4IN–  
(13)  
4OUT  
(12)  
GND  
(6)  
(4)  
(3)  
(5)  
(2)  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
90  
T
= 150°C  
JMAX  
TOLERANCES ARE ±10%  
ALL DIMENSIONS ARE IN MILS.  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
ID  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
I
DD  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 18 V  
I
Output voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
O
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
O
Duration of output short circuit to ground (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : TLC374C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLC374I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
TLC374M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
TLC374Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Case temperature range for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: D, N, or PW package . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: J package . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values except differential voltages are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN –.  
3. Short circuits from outputs to V  
can cause excessive heating and eventual device destruction.  
DD  
DISSIPATION RATING TABLE  
T
25°C  
DERATING  
FACTOR  
DERATE  
ABOVE T  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
POWER RATING POWER RATING POWER RATING  
A
D
FK  
J
500 mW  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
9.2 mW/°C  
5.6 mW/°C  
84°C  
104°C  
104°C  
95°C  
500 mW  
500 mW  
500 mW  
500 mW  
448 mW  
494 mW  
500 mW  
500 mW  
500 mW  
190 mW  
269 mW  
269 mW  
224 mW  
500 mW  
500 mW  
N
500 mW  
PW  
700 mW  
recommended operating conditions  
TLC374C  
MIN MAX  
TLC374I  
TLC374M  
MIN MAX  
TLC374Q  
UNIT  
V
MIN MAX  
MIN MAX  
Supply voltage, V  
DD  
3
0
0
0
16  
3.5  
8.5  
70  
3
0
16  
3.5  
8.5  
85  
4
0
16  
3.5  
8.5  
125  
3
0
16  
3.5  
8.5  
125  
V
V
= 5 V  
DD  
Common-mode input voltage, V  
V
IC  
= 10 V  
0
0
0
DD  
Operating free-air temperature, T  
40  
55  
40  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
electrical characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC374C  
TLC374I  
TYP MAX  
TLC374M  
TYP MAX  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX  
MIN  
MIN  
25°C  
Full range  
25°C  
1
1
5
5
1
5
7
1
1
5
5
V
IO  
V
IC  
= V  
min, See Note 4  
ICR  
mV  
6.5  
10  
1
5
pA  
nA  
pA  
nA  
I
IO  
MAX  
0.3  
0.6  
1
2
10  
20  
25°C  
I
IB  
MAX  
0 to  
0 to  
0 to  
25°C  
V
–1  
V
–1  
V
–1  
DD  
DD  
DD  
Common-mode input  
voltage range  
V
ICR  
V
0 to  
0 to  
0 to  
Full range  
V
1.5  
V
1.5  
V
1.5  
DD  
DD  
DD  
V
V
= 5 V  
25°C  
0.1  
0.1  
0.1  
nA  
OH  
I
High-level output current  
V
ID  
= 1 V  
OH  
= 15 V Full range  
1
400  
700  
1
400  
700  
1
400  
700  
µA  
OH  
25°C  
150  
150  
150  
V
Low-level output voltage  
Low-level output current  
V
ID  
V
ID  
V
ID  
= 1 V,  
= –1 V,  
= 1 V,  
I
= 4 mA  
mV  
mA  
µA  
OL  
OL  
Full range  
25°C  
I
I
V
OL  
= 1.5 V  
6
16  
6
16  
6
16  
OL  
25°C  
300  
600  
800  
300  
600  
800  
300  
600  
800  
Supply current  
(four comparators)  
No load  
DD  
Full range  
All characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is 0°C to 70°C for TLC374C, 40°C to 85°C for TLC374I, and 55°C to  
125°C for the TLC374M, and 40°C to 125°C for TLC374Q. MAX is 70°C for TLC374C, 85°C TLC374I, and 125°C for the TLC374M, and 125°C for TLC374Q. IMPORTANT: See  
Parameter Measurement Information.  
NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kresistor between the output and V . They can  
DD  
be verified by applying the limit value to the input and checking for the appropriate output state.  
switching characteristics, V  
= 5 V, T = 25°C  
A
DD  
TLC374C, TLC374I  
TLC374M, TLC374Q  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
650  
200  
MAX  
100-mV input step with 5-mV overdrive  
TTL-level input step  
R
C
connected to 5 V through 5.1 k,  
L
L
Response time  
ns  
= 15 pF ,  
See Note 5  
C
includes probe and jig capacitance.  
L
NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V, T = 25°C (unless otherwise  
DD  
A
TLC374Y  
UNIT  
PARAMETER  
TEST CONDITIONS  
= V min, See Note 4  
MIN  
TYP  
MAX  
V
IO  
Input offset voltage  
V
1
1
5
5
mV  
pA  
pA  
V
IC  
ICR  
I
I
Input offset current  
IO  
Input bias current  
IB  
V
ICR  
Common-mode input voltage range  
High-level output current  
Low-level output voltage  
Low-level output current  
Supply current (four comparators)  
0 to V  
–1  
DD  
I
V
ID  
V
ID  
V
ID  
V
ID  
= 1 V,  
V
= 5 V  
0.1  
150  
16  
nA  
mV  
mA  
µA  
OH  
OH  
= 4 mA  
V
OL  
= 1 V,  
= 1 V,  
=1 V,  
I
400  
600  
OL  
I
I
V
= 1.5 mV  
6
OL  
OL  
No load  
300  
DD  
NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kresistor  
between the output and V . They can be verified by applying the limit value to the input and checking for the appropriate output state.  
DD  
switching characteristics, V  
= 5 V, T = 25°C  
A
DD  
TLC374Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
100-mV input step with 5-mV overdrive  
TTL-level input step  
650  
R
C
connected to 5 V through 5.1 k,  
L
L
Response time  
ns  
= 15 pF ,  
See Note 5  
200  
C
includes probe and jig capacitance.  
L
NOTE 4: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
The digital output stage of the TLC374 can be damaged if it is held in the linear region of the transfer curve.  
Conventional operational amplifier/comparator testing incorporates the use of a servo loop that is designed to force  
the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, the  
following alternative for measuring parameters such as input offset voltage, common-mode rejection, etc., are  
offered.  
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown  
in Figure 1(a). With the noninverting input positive with respect to the inverting input, the output should be high. With  
the input polarity reversed, the output should be low.  
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can  
be slewed as shown in Figure 1(b) for the V  
accuracy.  
test, rather than changing the input voltages, to provide greater  
ICR  
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the  
differential input voltage while monitoring the output state. When the applied input voltage differential is equal, but  
opposite in polarity to the input offset voltage, the output changes state.  
5 V  
1 V  
5.1 kΩ  
5.1 kΩ  
Applied V  
Limit  
Applied V  
Limit  
IO  
IO  
V
O
V
O
–4 V  
(a) V WITH V = 0  
IO IC  
(b) V WITH V = 4 V  
IO  
IC  
Figure 1. Method for Verifying That Input Offset Voltage is Within Specified Limits  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the  
comparator into the linear region. The circuit consists of a switching-mode servo loop in which U1a generates a  
triangular waveform of approximately 20-mV amplitude. U1b acts as a buffer with C2 and R4 removing any residual  
dc offset. The signal is then applied to the inverting input of the comparator under test, while the noninverting input  
is driven by the output of the integrator formed by U1c through the voltage divider formed by R9 and R10. The loop  
reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which  
can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input  
exactly equals the input offset voltage.  
Voltage divider R9 and R10 provide a step up of the input offset voltage by a factor of 100 to make measurement  
easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is  
suggested that their tolerance level be 1% or lower.  
Measuring the extremely low values of input current requires isolation from all other sources of leakage current and  
compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage  
can be measured with no device in the socket. Subsequently, this open-socket leakage value can be subtracted from  
the measurement obtained with a device in the socket to obtain the actual input current of the device.  
C3  
0.68 µF  
R5  
1.8 k, 1%  
V
DD  
U1b  
1/4 TLC274CN  
C2  
1 µF  
U1c  
1/4 TLC274CN  
R6  
5.1 kΩ  
Buffer  
+
DUT  
V
R4  
47 kΩ  
IO  
(X100)  
R7  
1 MΩ  
+
R1  
Integrator  
240 kΩ  
C4  
R8  
0.1 µF  
1.8 k, 1%  
U1a  
+
1/4 TLC274CN  
C1  
0.1 µF  
Triangle  
Generator  
R9  
10 k, 1%  
R10  
100 , 1%  
R2  
10 kΩ  
R3  
100 kΩ  
Figure 2. Test Circuit for Input Offset Voltage Measurement  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
Response time is defined as the interval between the application of an input step function and the instant when the  
output reaches 50% of its maximum value. Response time, low-to-high-level output, is measured from the trailing  
edge of the input pulse. Response-time measurement at low input signal levels can be greatly affected by the input  
offset voltage. The offset voltage should be balanced by the adjustment at the inverting input (as shown in Figure 3)  
so that the circuit is just at the transition point. Then a low signal, for example, 105-mV or 5-mV overdrive, causes  
the output to change state.  
V
DD  
1 µF  
5.1 kΩ  
Pulse Generator  
OUT  
C
L
50 Ω  
(see Note A)  
1 V  
Input  
Offset Voltage  
Compensation  
Adjustment  
10 Ω  
10 Turn  
1 kΩ  
0.1 µF  
–1 V  
TEST CIRCUIT  
Overdrive  
Input  
100 mV  
Overdrive  
Input  
100 mV  
90%  
10%  
90%  
50%  
10%  
50%  
Low-to-High-  
Level Output  
High-to-Low-  
Level Output  
t
t
t
f
r
t
PLH  
PLH  
VOLTAGE WAVEFORMS  
NOTE A: C includes probe and jig capacitance.  
L
Figure 3. Response, Rise, and Fall Times Test Circuit and Voltage Waveforms  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
PRINCIPLES OF OPERATION  
LinCMOS process  
LinCMOS process is a linear polysilicon-gate complimentary-MOS process. Primarily designed for single-  
supply applications, LinCMOS products facilitate the design of a wide range of high-performance analog  
functions from operational amplifiers to complex mixed-mode converters.  
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog designers.  
This short guide is intended to answer the most frequently asked questions related to the quality and reliability  
of LinCMOS products. Further questions should be directed to the nearest TI field sales office.  
electrostatic discharge  
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only  
for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to  
CMOS devices. It can occur when a device is handled without proper consideration for environmental  
electrostatic charges, e.g. during board assembly. If a circuit in which one amplifier from a dual operational  
amplifier is being used and the unused pins are left open, high voltages tends to develop. If there is no provision  
for ESD protection, these voltages may eventually punch through the gate oxide and cause the device to fail.  
To prevent voltage buildup, each pin is protected by internal circuitry.  
Standard ESD-protection circuits safely shunt the ESD current by providing a mechanism whereby one or more  
transistors break down at voltages higher than normal operating voltages but lower than the breakdown voltage  
of the input gate. This type of protection scheme is limited by leakage currents which flow through the shunting  
transistors during normal operation after an ESD voltage has occurred. Although these currents are small, on  
the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as tens of  
picoamps.  
To overcome this limitation, TI design engineers developed the patented ESD-protection circuit shown in  
Figure 4. This circuit can withstand several successive 1-kV ESD pulses, while reducing or eliminating leakage  
currents that may be drawn through the input pins. A more detailed discussion of the operation of TI’s  
ESD-protection circuit is presented on the next page.  
All input an output pins of LinCMOS and Advanced LinCMOS products have associated ESD-protection  
circuitry that undergoes qualification testing to withstand 1000 V discharged from a 100-pF capacitor through  
a 1500-resistor (human body model) and 200 V from a 100-pF capacitor with no current-limiting resistor  
(charged device model). These tests simulate both operator and machine handling of devices during normal  
test and assembly operations.  
V
DD  
R1  
Input  
To Protected Circuit  
R2  
Q1  
Q2  
D1  
D2  
D3  
V
SS  
Figure 4. LinCMOS ESD-Protection Schematic  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
PRINCIPLES OF OPERATION  
Input protection circuit operation  
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESD transients.  
These transients are characterized by extremely fast rise times and usually low energies, and can occur both  
when the device has all pins open and when it is installed in a circuit.  
positive ESD transients  
Initial positive charged energy is shunted through Q1 to V . Q1 turns on when the voltage at the input rises  
SS  
above the voltage on V  
by a value equal to the V of Q1. The base current increases through R2 with input  
DD  
EB  
current as Q1 saturates. The base current through R2 as Q1 saturates forces the voltage at the drain and gate  
of Q2 to exceed its threshold level (V 22 to 26 V) and turn on Q2. The shunted input current through Q1 to  
is now shunted through the n-channel enhancement-type MOSFET Q2 to V . If the voltage on the input  
T
V
SS  
SS  
pin continues to rise, the breakdown voltage of d3 is exceeded and all remaining energy is dissipated in R1 and  
D3. The breakdown voltage of D3 is designed to be 24 V to 27 V, which is well below the gate oxide voltage of  
the circuit to be protected.  
negative ESD transients  
The negative charged ESD transients are shunted directly through D1. Additional energy is dissipated in R1  
and D2 as D2 becomes forward-biased. The voltage seen by the protected circuit is 0.3 V to 1 V (the forward  
voltage of D1 and D2).  
circuit-design considerations  
LinCMOS products are being used in actual circuits environments that have input voltages that exceed the  
recommended common-mode input voltage range and activate the input protection circuit. Even under normal  
operation, these conditions occur during circuit power up or power down, and in many cases, when the device  
is being used for a signal conditioning function. The input voltages can exceed V  
only if the inputs are current limited. The recommended current limit shown on most product data sheets is  
and not damage the device  
ICR  
±5 mA. Figures 5 and 6 show typical characteristics for input voltage vs input current.  
Normal operation and correct output state can be expected even when the input voltage exceeds the positive  
supply voltage. The input current should be externally limited even through internal positive current limiting is  
achieved in the input protection circuit by the action of Q1. When Q1 is on, it saturates and limits the current  
to approximately 5-mA collector current by design. When saturated, Q1 base current increases with input  
current. This current is forced into the V  
the current limiting effects shown in Figure 5. This internal limiting lasts only as long as the input voltage is below  
pin and into the device I  
or the V  
supply through R2 producing  
DD  
DD  
DD  
the V of Q2.  
T
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage  
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be  
severely affected. External current limiting must be used since this current is directly shunted by D1 and D2,  
and no internal limiting is achieved. If normal output voltage states are required, an external input voltage clamp  
is required (see Figure 7).  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
PRINCIPLES OF OPERATION  
INPUT CURRENT  
vs  
INPUT VOLTAGE  
INPUT CURRENT  
vs  
INPUT VOLTAGE  
8
7
10  
9
T
A
= 25°C  
T
A
= 25°C  
8
6
5
7
6
4
5
4
3
2
3
2
1
0
1
0
V
DD  
V
DD  
+4  
V
DD  
+8  
V
DD  
+12  
V
– 0.3  
V
DD  
– 0.5  
V
DD  
– 0.7  
V
DD  
– 0.9  
DD  
V – Input Voltage – V  
I
V – Input Voltage – V  
I
The dashed line identifies an area of operation where some  
degradation of parametric performance may be experienced.  
The dashed line identifies an area of operation where some  
degradation of parametric performance may be experienced.  
Figure 5  
Figure 6  
V
DD  
Positive Voltage Input Current Limit:  
R
L
R
+V – V  
– 0.3 V  
1/4  
L
I
DD  
5 mA  
Negative Voltage Input Current Limit:  
–V – V – (0.3 V)  
R =  
I
TLC374  
V
I
+
V
REF  
I
DD  
5 mA  
R =  
I
See Note A  
NOTE A: If the correct output state is required when the negative input exceeds V , a Schotty clamp is required.  
SS  
Figure 7. Typical Input Current-Limiting Configuration for a LinCMOS Comparator  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
MECHANICAL INFORMATION  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
MECHANICAL INFORMATION  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
18 17 16 15 14 13 12  
TERMINALS  
MIN  
MAX  
MIN  
MAX  
**  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
21  
22  
23  
24  
25  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
B SQ  
A SQ  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
MECHANICAL INFORMATION  
CERAMIC DUAL-IN-LINE PACKAGE  
J (R-GDIP-T**)  
14 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
A MAX  
B
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
A MIN  
B MAX  
B MIN  
C MAX  
C MIN  
14  
8
0.785  
(19,94)  
0.785  
(19,94)  
0.910  
(23,10)  
0.975  
(24,77)  
C
0.755  
(19,18)  
0.755  
(19,18)  
0.930  
(23,62)  
0.280  
(7,11)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
1
7
0.065 (1,65)  
0.045 (1,14)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.100 (2,54)  
0.070 (1,78)  
0.020 (0,51) MIN  
A
0.200 (5,08) MAX  
Seating Plane  
0.130 (3,30) MIN  
0.100 (2,54)  
0°15°  
0.023 (0,58)  
0.015 (0,38)  
0.014 (0,36)  
0.008 (0,20)  
4040083/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, and GDIP1-T20  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
MECHANICAL INFORMATION  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PIN SHOWN  
PINS **  
DIM  
14  
16  
18  
20  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23.37)  
0.975  
(24,77)  
A MAX  
A MIN  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21.59)  
0.940  
(23,88)  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.020 (0,51) MIN  
0.310 (7,87)  
0.290 (7,37)  
0.035 (0,89) MAX  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
14/18 PIN ONLY  
4040049/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC374, TLC374Q, TLC374Y  
LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS  
SLCS118C – NOVEMBER 1983 – REVISED MARCH 1999  
MECHANICAL INFORMATION  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,30  
0,65  
M
0,10  
0,19  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
0,50  
A
Seating Plane  
0,10  
1,20 MAX  
0,05 MIN  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/E 08/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLC374CD

LinCMOSE QUADRUPLE DIFFERENTIAL COMPARATORS
TI

TLC374CD3

IC IC,VOLT COMPARATOR,QUAD,CMOS,SOP,14PIN,PLASTIC, Comparator
TI

TLC374CDB

QUAD COMPARATOR, 6500uV OFFSET-MAX, 650ns RESPONSE TIME, PDSO14
TI

TLC374CDG4

LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS
TI

TLC374CDP3

IC IC,VOLT COMPARATOR,QUAD,CMOS,SOP,14PIN,PLASTIC, Comparator
TI

TLC374CDR

LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS
TI

TLC374CDRG4

LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS
TI

TLC374CJ

QUAD COMPARATOR, 6500uV OFFSET-MAX, 650ns RESPONSE TIME, CDIP14
TI

TLC374CJP4

IC,VOLT COMPARATOR,QUAD,CMOS,DIP,14PIN,CERAMIC
TI

TLC374CN

LinCMOSE QUADRUPLE DIFFERENTIAL COMPARATORS
TI

TLC374CN-A

LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS
TI

TLC374CN-AE4

LinCMOS QUADRUPLE DIFFERENTIAL COMPARATORS
TI