TLC393IPW [TI]

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATOR; 双通道,微路LinCMOS电压比较器
TLC393IPW
型号: TLC393IPW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATOR
双通道,微路LinCMOS电压比较器

比较器
文件: 总31页 (文件大小:1201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
SLCS115E − DECEMBER 1986 − REVISED JULY 2003  
D, JG, P, OR PW PACKAGE  
(TOP VIEW)  
D
D
D
Very Low Power . . . 110 µW Typ at 5 V  
Fast Response Time . . . t  
With 5-mV Overdrive  
= 2.5 µs Typ  
PLH  
1OUT  
V
DD  
1
2
3
4
8
7
6
5
Single Supply Operation:  
1IN−  
1IN+  
GND  
2OUT  
2IN−  
2IN+  
TLC393C . . . 3 V to 16 V  
TLC393I . . . 3 V to 16 V  
TLC393Q . . . 4 V to 16 V  
TLC393M . . . 4 V to 16 V  
TLC193M . . . 4 V to 16 V  
FK PACKAGE  
(TOP VIEW)  
D
On-Chip ESD Protection  
description  
The TLC193 and TLC393 consist of dual  
independent micropower voltage comparators  
designed to operate from a single supply. They  
are functionally similar to the LM393 but uses  
one-twentieth the power for similar response  
times. The open-drain MOS output stage  
interfaces to a variety of loads and supplies. For  
3
2 1 20 19  
NC  
18  
17  
16  
15  
14  
4
5
6
7
8
NC  
1IN−  
NC  
2OUT  
NC  
1IN+  
NC  
2IN−  
NC  
9 10 11 12 13  
a
similar device with a push-pull output  
configuration (see the TLC3702 data sheet).  
NC − No internal connection  
Texas Instruments LinCMOS process offers  
superior analog performance to standard CMOS  
processes. Along with the standard CMOS  
advantages of low power without sacrificing  
speed, high input impedance, and low bias  
symbol (each comparator)  
currents, the LinCMOS  
process offers ex-  
IN+  
IN−  
tremely stable input offset voltages, even with  
differential input stresses of several volts. This  
characteristic makes it possible to build reliable  
CMOS comparators.  
OUT  
The TLC393C is characterized for operation over the commercial temperature range of T = 0°C to 70°C. The  
A
TLC393I is characterized for operation over the extended industrial temperature range of T = −40°C to 85°C.  
A
The TLC393Q is characterized for operation over the full automotive temperature range of T = −40°C to 125°C.  
A
The TLC193M and TLC393M are characterized for operation over the full military temperature range of  
T = 55°C to 125°C.  
A
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated. All other trademarks are the property of their respective owners.  
ꢀꢠ  
Copyright 1986-2003, Texas Instruments Incorporated  
ꢜ ꢠ ꢝ ꢜꢑ ꢒꢪ ꢘꢗ ꢛ ꢣꢣ ꢡꢛ ꢙ ꢛ ꢚ ꢠ ꢜ ꢠ ꢙ ꢝ ꢥ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢅꢄ ꢅ  
ꢏꢐ  
ꢁꢑ  
ꢍꢓ  
ꢔ ꢍꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊ ꢎꢉꢌꢉꢀꢍ ꢌ  
SLCS115D DECEMBER 1986 REVISED JULY 2003  
AVAILABLE OPTIONS  
PACKAGES  
V
max  
IO  
T
A
SMALL OUTLINE  
(D)  
CHIP CARRIER  
(FK)  
CERAMIC DIP  
(JG)  
PLASTIC DIP  
(P)  
TSSOP  
(PW)  
at 25°C  
0°C to 70°C  
40°C to 85°C  
40°C to 125°C  
55°C to 125°C  
5 mV  
5 mV  
5 mV  
5 mV  
TLC393CD  
TLC393ID  
TLC393QD  
TLC393MD  
TLC393CP  
TLC393IP  
TLC393CPWLE  
TLC393IPWLE  
TLC193MFK  
TLC193MJG  
TLC393MP  
The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC393CDR).  
schematic  
OUT  
OPEN-DRAIN CMOS OUTPUT  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
ID  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
I
DD  
Output voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16 V  
O
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
O
Total supply current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range: TLC393C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
TLC393I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
TLC393Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
TLC393M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
TLC193M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
464 mW  
377 mW  
145 mW  
275 mW  
210 mW  
1375 mW  
1050 mW  
1000 mW  
525 mW  
880 mW  
715 mW  
672 mW  
546 mW  
640 mW  
520 mW  
PW  
336 mW  
273 mW  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
ꢍꢏ  
SLCS115E DECEMBER 1986 REVISED JULY 2003  
recommended operating conditions  
TLC393C  
UNIT  
MIN NOM  
MAX  
Supply voltage, V  
DD  
3
5
16  
V
V
Common-mode input voltage, V  
IC  
0.2  
V
1.5  
DD  
Low-level output current, I  
OL  
20  
70  
mA  
°C  
Operating free-air temperature, T  
0
A
electrical characteristics at specified operating free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC393C  
UNIT  
PARAMETER  
T
A
TEST CONDITIONS  
MIN  
TYP MAX  
V
V
= V  
min,  
= 5 V to 10 V,  
25°C  
1.4  
5
IC  
ICR  
V
IO  
Input offset voltage  
mV  
DD  
0°C to 70°C  
6.5  
See Note 3  
25°C  
70°C  
1
5
pA  
nA  
pA  
nA  
I
I
Input offset current  
V
= 2.5 V  
= 2.5 V  
IO  
IC  
IC  
0.3  
0.6  
25°C  
Input bias current  
V
IB  
70°C  
25°C  
0 to V  
1  
1.5  
DD  
V
Common-mode input voltage range  
V
ICR  
0°C to 70°C  
25°C  
0 to V  
DD  
84  
84  
70°C  
CMMR Common-mode rejection ratio  
V
V
= V  
ICR  
min  
dB  
IC  
0°C  
84  
25°C  
85  
70°C  
85  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
dB  
SVR  
DD  
0°C  
85  
25°C  
300  
400  
650  
40  
1
V
Low-level output voltage  
V
V
= 1 V,  
I
OL  
= 6 mA  
= 5 V  
mV  
OL  
OH  
DD  
ID  
70°C  
25°C  
0.8  
22  
nA  
I
I
High-level output current  
= 1 V,  
V
O
ID  
70°C  
µA  
25°C  
40  
50  
Supply current (both comparators)  
Outputs low, No load  
µA  
0°C to 70°C  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢅꢄ ꢅ  
ꢏꢐ  
ꢍꢓ  
ꢔ ꢍꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊ ꢎꢉꢌꢉꢀꢍ ꢌ  
SLCS115D DECEMBER 1986 REVISED JULY 2003  
recommended operating conditions  
TLC393I  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
DD  
3
5
16  
V
V
Common-mode input voltage, V  
IC  
0.2  
V
1.5  
DD  
Low-level output current, I  
OL  
20  
85  
mA  
°C  
Operating free-air temperature, T  
40  
A
electrical characteristics at specified operating free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC393I  
UNIT  
PARAMETER  
T
A
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
V
= V  
min,  
= 5 V to 10 V,  
25°C  
1.4  
5
IC  
ICR  
V
IO  
Input offset voltage  
mV  
DD  
40°C to 85°C  
7
See Note 3  
25°C  
85°C  
1
5
pA  
nA  
pA  
nA  
I
I
Input offset current  
V
= 2.5 V  
= 2.5 V  
IO  
IC  
IC  
1
2
25°C  
Input bias current  
V
IB  
85°C  
25°C  
0 to V  
1  
1.5  
DD  
V
Common-mode input voltage range  
V
ICR  
40°C to 85°C 0 to V  
25°C  
DD  
84  
84  
85°C  
CMMR Common-mode rejection ratio  
V
V
= V  
ICR  
min  
dB  
IC  
40°C  
25°C  
84  
85  
85°C  
85  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
dB  
SVR  
DD  
40°C  
25°C  
84  
300  
400  
700  
40  
1
V
Low-level output voltage  
V
V
= 1 V,  
I
OL  
= 6 mA  
= 5 V  
mV  
OL  
OH  
DD  
ID  
85°C  
25°C  
0.8  
22  
nA  
I
I
High-level output current  
= 1 V,  
V
O
ID  
85°C  
µA  
25°C  
40  
65  
Supply current (both comparators)  
Outputs low, No load  
µA  
40°C to 85°C  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
ꢍꢏ  
SLCS115E DECEMBER 1986 REVISED JULY 2003  
recommended operating conditions  
TLC393Q  
UNIT  
MIN NOM  
MAX  
Supply voltage, V  
DD  
4
0
5
16  
V
V
Common-mode input voltage, V  
IC  
V
1.5  
DD  
Low-level output current, I  
OL  
20  
mA  
°C  
Operating free-air temperature, T  
40  
125  
A
electrical characteristics at specified operating free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC393Q  
UNIT  
PARAMETER  
T
A
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
V
= V  
min,  
= 5 V to 10 V,  
25°C  
1.4  
5
IC  
ICR  
V
IO  
Input offset voltage  
mV  
DD  
40°C to 125°C  
10  
See Note 4  
25°C  
125°C  
1
5
pA  
nA  
pA  
nA  
I
I
Input offset current  
V
V
= 2.5 V  
= 2.5 V  
IO  
IC  
IC  
15  
30  
25°C  
Input bias current  
IB  
125°C  
25°C  
0 to V  
1  
1.5  
DD  
V
Common-mode input voltage range  
V
ICR  
40°C to 125°C 0 to V  
25°C  
DD  
84  
84  
125°C  
CMMR Common-mode rejection ratio  
V
V
= V  
ICR  
min  
dB  
IC  
40°C  
84  
25°C  
85  
125°C  
84  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
dB  
SVR  
DD  
40°C  
84  
25°C  
300  
400  
800  
40  
1
V
Low-level output voltage  
V
V
= 1 V,  
I
OL  
= 6 mA  
= 5 V  
mV  
OL  
OH  
DD  
ID  
125°C  
25°C  
0.8  
22  
nA  
I
I
High-level output current  
= 1 V,  
V
O
ID  
125°C  
µA  
25°C  
40  
90  
Supply current (both comparators)  
Outputs low, No load  
µA  
40°C to 125°C  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V (with a 2.5-kload to  
).  
V
DD  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢅꢄ ꢅ  
ꢏꢐ  
ꢁꢑ  
ꢍꢓ  
ꢔ ꢍꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊ ꢎꢉꢌꢉꢀꢍ ꢌ  
SLCS115D DECEMBER 1986 REVISED JULY 2003  
recommended operating conditions  
TLC193M, TLC393M  
UNIT  
MIN NOM  
MAX  
Supply voltage, V  
DD  
4
0
5
16  
V
V
Common-mode input voltage, V  
IC  
V
1.5  
DD  
Low-level output current, I  
OL  
20  
mA  
°C  
Operating free-air temperature, T  
55  
125  
A
electrical characteristics at specified operating free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLC193M, TLC393M  
PARAMETER  
T
A
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
V
= V  
min,  
= 5 V to 10 V,  
25°C  
1.4  
5
IC  
ICR  
V
IO  
Input offset voltage  
mV  
DD  
55°C to 125°C  
10  
See Note 4  
25°C  
125°C  
1
5
pA  
nA  
pA  
nA  
I
I
Input offset current  
V
V
= 2.5 V  
= 2.5 V  
IO  
IC  
IC  
15  
30  
25°C  
Input bias current  
IB  
125°C  
25°C  
0 to V  
1  
1.5  
DD  
V
Common-mode input voltage range  
V
ICR  
55°C to 125°C 0 to V  
25°C  
DD  
84  
84  
125°C  
CMMR Common-mode rejection ratio  
V
V
= V  
ICR  
min  
dB  
IC  
55°C  
84  
25°C  
85  
125°C  
84  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
dB  
SVR  
DD  
55°C  
84  
25°C  
300  
400  
800  
40  
1
V
Low-level output voltage  
V
V
= 1 V,  
I
OL  
= 6 mA  
= 5 V  
mV  
OL  
OH  
DD  
ID  
125°C  
25°C  
0.8  
22  
nA  
I
I
High-level output current  
= 1 V,  
V
O
ID  
125°C  
µA  
25°C  
40  
90  
Supply current (both comparators)  
Outputs low, No load  
µA  
55°C to 125°C  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V (with a 2.5-kload to  
).  
V
DD  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
ꢍꢏ  
SLCS115E DECEMBER 1986 REVISED JULY 2003  
switching characteristics, V  
= 5 V, T = 25°C (see Figure 3)  
A
DD  
TLC393C, TLC393I  
TLC393Q, TLC193M,  
PARAMETER  
TEST CONDITIONS  
UNIT  
TLC393M  
TYP  
4.5  
MIN  
MAX  
Overdrive = 2 mV  
Overdrive = 5 mV  
Overdrive = 10 mV  
Overdrive = 20 mV  
Overdrive = 40 mV  
2.5  
f = 10 kHz,  
= 15 pF  
1.7  
t
Propagation delay time, low-to-high-level output  
µs  
PLH  
C
L
1.2  
1.1  
V = 1.4-V step at IN+  
I
1.1  
Overdrive = 2 mV  
3.6  
Overdrive = 5 mV  
Overdrive = 10 mV  
Overdrive = 20 mV  
Overdrive = 40 mV  
2.1  
f = 10 kHz,  
= 15 pF  
1.3  
t
t
Propagation delay time, high-to-low-level output  
µs  
PHL  
C
L
0.85  
0.55  
0.10  
V = 1.4-V step at IN+  
I
f = 10 kHz,  
Fall time, output  
Overdrive = 50 mV  
22  
ns  
f
C
= 15 pF  
L
PARAMETER MEASUREMENT INFORMATION  
The TLC393 contains a digital output stage which, if held in the linear region of the transfer curve, can cause  
damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo  
loop that is designed to force the device output to a level within this linear region. Since the servo-loop method  
of testing cannot be used, the following alternatives for testing parameters such as input offset voltage,  
common-mode rejection ratio, etc., are suggested.  
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown  
in Figure 1(a). With the noninverting input positive with respect to the inverting input, the output should be high.  
With the input polarity reversed, the output should be low.  
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages  
can be slewed as shown in Figure 1(b) for the V  
greater accuracy.  
test, rather than changing the input voltages, to provide  
ICR  
5 V  
1 V  
5.1 kΩ  
5.1 kΩ  
+
+
Applied V  
Limit  
Applied V  
Limit  
IO  
IO  
V
O
V
O
4 V  
(a) V WITH V = 0 V  
IO IC  
(b) V WITH V = 4 V  
IO IC  
Figure 1. Method for Verifying That Input Offset Voltage Is Within Specified Limits  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢅꢄ ꢅ  
ꢏꢐ  
ꢍꢓ  
ꢔ ꢍꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊ ꢎꢉꢌꢉꢀꢍ ꢌ  
SLCS115D DECEMBER 1986 REVISED JULY 2003  
PARAMETER MEASUREMENT INFORMATION  
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the  
differential input voltage while monitoring the output state. When the applied input voltage differential is equal,  
but opposite in polarity, to the input offset voltage, the output changes states.  
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the  
comparator in the linear region. The circuit consists of a switching-mode servo loop in which U1A generates  
a triangular waveform of approximately 20-mV amplitude. U1B acts as a buffer, with C2 and R4 removing any  
residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the  
noninverting input is driven by the output of the integrator formed by U1C through the voltage divider formed  
by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has  
a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or  
when the voltage at the noninverting input exactly equals the input offset voltage.  
The voltage divider formed by R9 and R10 provides an increase in input offset voltage by a factor of 100 to  
make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the  
reading; therefore, it is suggested that their tolerance level be 1% or lower.  
Measuring the extremely low values of input current requires isolation from all other sources of leakage current  
and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board  
leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be  
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the  
device.  
V
DD  
C3  
0.68 µF  
U1B  
1/4 TLC274CN  
R5  
1.8 kΩ, 1%  
C2  
1 µF  
+
Buffer  
U1C  
1/4 TLC274CN  
R6  
5.1 kΩ  
DUT  
R4  
47 kΩ  
R7  
1 MΩ  
V
IO  
(X100)  
+
R1  
240 kΩ  
+
Integrator  
R8  
1.8 kΩ, 1%  
U1A  
1/4 TLC274CN  
C4  
0.1 µF  
C1  
0.1 µF  
Triangle  
Generator  
+
R9  
10 kΩ, 1%  
R10  
100 Ω, 1%  
R2  
10 kΩ  
R3  
100 kΩ  
Figure 2. Circuit for Input Offset Voltage Measurement  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
ꢍꢏ  
SLCS115E DECEMBER 1986 REVISED JULY 2003  
PARAMETER MEASUREMENT INFORMATION  
Propagation delay time is defined as the interval between the application of an input step function and the instant  
when the output reaches 50% of its maximum value. Propagation delay time, low-to-high-level output, is  
measured from the leading edge of the input pulse, while propagation delay time, high-to-low-level output, is  
measured from the trailing edge of the input pulse. Propagation delay time measurement at low input signal  
levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the  
adjustment at the inverting input (as shown in Figure 3) so that the circuit is just at the transition point. Then a  
low signal, for example, 105 mV or 5 mV overdrive, causes the output to change state.  
V
DD  
1 µF  
5.1 kΩ  
Pulse  
Generator  
50 Ω  
DUT  
1 V  
Input Offset Voltage  
Compensation  
Adjustment  
C
10 Ω  
10 Turn  
L
(see Note A)  
1 kΩ  
0.1 µF  
1 V  
TEST CIRCUIT  
Overdrive  
Overdrive  
Input  
100 mV  
Input  
100 mV  
90%  
90%  
Low-to-High-  
Level Output  
High-to-Low-  
Level Output  
50%  
10%  
50%  
10%  
t
t
r
f
t
t
PHL  
PLH  
VOLTAGE WAVEFORMS  
NOTE A: C includes probe and jig capacitance.  
L
Figure 3. Propagation Delay, Rise Time, and Fall Time Circuit and Voltage Waveforms  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢅꢄ ꢅ  
ꢏꢐ  
ꢁꢑ  
ꢍꢓ  
ꢔ ꢍꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊ ꢎꢉꢌꢉꢀꢍ ꢌ  
SLCS115D DECEMBER 1986 REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
Distribution  
4
5
6
7
IO  
I
IB  
vs Free-air temperature  
vs Free-air temperature  
vs Free-air temperature  
CMRR Common-mode rejection ratio  
k
Supply-voltage rejection ratio  
SVR  
vs Low-level output current  
vs Free-air temperature  
8
9
V
Low-level output voltage  
OL  
OH  
DD  
vs High-level output voltage  
vs Free-air temperature  
10  
11  
I
I
Low-level output current  
Supply current  
vs Supply voltage  
vs Free-air temperature  
12  
13  
t
t
Low-to-high level output propagation delay time  
High-to-low level output propagation delay time  
Low-to-high-level output response  
High-to-low level output response  
Fall time  
vs Supply voltage  
14  
15  
16  
17  
18  
PLH  
vs Supply voltage  
PHL  
Low-to-high level output propagation delay time  
High-to-low level output propagation delay time  
vs Supply voltage  
t
f
INPUT BIAS CURRENT  
vs  
DISTRIBUTION OF INPUT  
FREE-AIR TEMPERATURE  
OFFSET VOLTAGE  
10  
1
100  
90  
V
V
T
A
= 5 V  
DD  
= 2.5 V  
V
V
= 5 V  
= 2.5 V  
DD  
IC  
IC  
= 25°C  
80  
70  
60  
50  
0.1  
40  
30  
20  
10  
0.01  
0.001  
0
25  
50  
75  
100  
125  
5 4 3 2 1  
0
1
2
3
4
5
T
A
Free-Air Temperature °C  
V
IO  
Input Offset Voltage mV  
Figure 4  
Figure 5  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
ꢍꢏ  
SLCS115E DECEMBER 1986 REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
SUPPLY VOLTAGE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
90  
89  
88  
87  
86  
85  
84  
83  
90  
89  
88  
87  
86  
85  
84  
83  
V
DD  
= 5 V to 10 V  
V
DD  
= 5 V  
82  
81  
80  
82  
81  
80  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 6  
Figure 7  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
1.5  
600  
500  
400  
V
= 5 V  
= 6 mA  
T
A
= 25°C  
DD  
4 V  
I
OL  
1.25  
V
DD  
= 3 V  
1
5 V  
0.75  
300  
200  
10 V  
0.5  
0.25  
100  
0
V
= 16 V  
DD  
0
0
2
4
6
8
10 12 14 16 18  
20  
75 50 25  
0
25  
50  
75  
100 125  
I
Low-Level Output Current mA  
OL  
T
A
Free-Air Temperature °C  
Figure 8  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢅꢄ ꢅ  
ꢏꢐ  
ꢁꢑ  
ꢔ ꢍꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊ ꢎꢉꢌꢉꢀꢍ ꢌ  
SLCS115D DECEMBER 1986 REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT VOLTAGE  
1000  
100  
10  
1000  
100  
10  
V
DD  
= V = 5 V  
OH  
T
= 125°C  
A
T
= 85°C  
= 70°C  
A
T
A
T
A
= 25°C  
1
1
V
= V  
OH  
OH  
DD  
0.1  
0.1  
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
V
High-Level Output Voltage V  
T
A
Free-Air Temperature °C  
Figure 10  
Figure 11  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
40  
35  
30  
25  
20  
15  
50  
V
= 5 V  
Outputs Low  
No Loads  
DD  
No Load  
T
= 55°C  
A
45  
40  
35  
30  
T
= 40°C  
A
T
A
= 25°C  
Outputs Low  
25  
20  
T
A
= 85°C  
= 125°C  
T
A
15  
10  
5
10  
Outputs High  
5
0
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
Free-Air Temperature °C  
V
DD  
Supply Voltage V  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
SLCS115E DECEMBER 1986 REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
LOW-TO-HIGH-LEVEL  
OUTPUT RESPONSE TIME  
vs  
HIGH-TO-LOW-LEVEL  
OUTPUT RESPONSE TIME  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
5
6
5
C
R
T
= 15 pF  
= 5.1 k(pullup to V  
DD  
= 25°C  
C
R
T
= 15 pF  
= 5.1 k(pullup to V  
DD  
= 25°C  
L
L
A
L
L
A
)
4.5  
)
4
3.5  
3
Overdrive = 2 mV  
5 mV  
4
3
2
1
0
Overdrive = 2 mV  
2.5  
5 mV  
10 mV  
20 mV  
2
10 mV  
20 mV  
1.5  
1
40 mV  
0.5  
0
40 mV  
6
0
2
4
6
8
10  
12  
14  
16  
0
2
4
8
10  
12  
14  
16  
V
DD  
Supply Voltage V  
V
DD  
Supply Voltage V  
Figure 14  
Figure 15  
HIGH-TO-LOW-LEVEL OUTPUT  
PROPAGATION DELAY  
LOW-TO-HIGH-LEVEL OUTPUT  
PROPAGATION DELAY  
FOR VARIOUS INPUT OVERDRIVES  
FOR VARIOUS INPUT OVERDRIVES  
5
5
40 mV  
20 mV  
10 mV  
5 mV  
40 mV  
20 mV  
10 mV  
5 mV  
2 mV  
2 mV  
0
100  
0
0
100  
0
V
C
R
= 5 V  
= 15 pF  
= 5.1 k(pullup to V  
= 25°C  
DD  
L
L
)
DD  
T
A
V
C
R
= 5 V  
= 15 pF  
= 5.1 k(pullup to V  
= 25°C  
DD  
L
L
)
DD  
T
A
0
1
2
3
4
5
0
1
2
3
4
5
t
High-to-Low-Level Output  
Propagation Delay Time µs  
t
Low-to-High-Level Output  
Propagation Delay Time µs  
PHL  
PLH  
Figure 16  
Figure 17  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢅꢄ ꢅ  
ꢁꢑ  
ꢍꢓ  
ꢔ ꢍꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊ ꢎꢉꢌꢉꢀꢍ ꢌ  
SLCS115D DECEMBER 1986 REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
OUTPUT FALL TIME  
vs  
SUPPLY VOLTAGE  
60  
50  
40  
30  
20  
10  
C
= 100 pF  
L
50 pF  
15 pF  
50-mV Overdrive  
R
T
A
= 5.1 k(pullup to V  
= 25°C  
)
DD  
L
0
0
2
4
6
8
10  
12  
14  
16  
V
DD  
Supply Voltage V  
Figure 18  
APPLICATION INFORMATION  
The input should always remain within the supply rails in order to avoid forward biasing the diodes in the electrostatic  
discharge (ESD) protection structure. If either input exceeds this range, the device will not be damaged as long as  
the input current is limited to less than 5 mA. To maintain the expected output state, the inputs must remain within  
the common-mode range. For example, at 25°C with V  
to assure proper device operation.  
= 5 V, both inputs must remain between 0.2 V and 4 V  
DD  
To assure reliable operation, the supply should be decoupled with a capacitor (0.1-µF) positioned as close to the  
device as possible.  
The TLC393 has internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested  
under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices, as exposure  
to ESD may result in the degradation of the device parametric performance.  
Table of Applications  
FIGURE  
Pulse-width-modulated motor speed controller  
Enhanced supply supervisor  
19  
20  
21  
28  
Two-phase nonoverlapping clock generator  
Micropower switching regulator  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
ꢍꢏ  
SLCS115E DECEMBER 1986 REVISED JULY 2003  
APPLICATION INFORMATION  
12 V  
SN75603  
Half-H Driver  
DIR  
EN  
12 V  
5 V  
C2  
(see Note A)  
5.1 kΩ  
100 kΩ  
5.1 kΩ  
+
+
10 kΩ  
5 V  
Motor  
10 kΩ  
10 kΩ  
C1  
1/2 TLC393  
0.01 µF  
12 V  
1/2 TLC393  
(see Note B)  
SN75604  
Half-H Driver  
DIR  
EN  
5 V  
10 kΩ  
Motor Speed Control  
Potentiometer  
5 V  
Direction  
Control  
S1  
SPDT  
NOTES: A. The recommended minimum capacitance is 10 µF to eliminate common ground switching noise.  
B. Adjust C1 for change in oscillator frequency.  
Figure 19. Pulse-Width-Modulated Motor Speed Controller  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢅꢄ ꢅ  
ꢏꢐ  
ꢁꢑ  
ꢔ ꢍꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊ ꢎꢉꢌꢉꢀꢍ ꢌ  
SLCS115D DECEMBER 1986 REVISED JULY 2003  
APPLICATION INFORMATION  
5 V  
12 V  
5 V  
V
CC  
SENSE  
3.3 kΩ  
10 kΩ  
5.1 kΩ  
12-V  
Sense  
+
To µP  
Reset  
TL7705A  
RESIN  
REF  
RESET  
GND  
1 kΩ  
1/2 TLC393  
C
T
2.5 V  
12 V  
C
T
1 µF  
(see Note B)  
5.1 kΩ  
+
To µP Interrupt  
Early Power Fail  
R1  
V
UNREG  
1/2 TLC393  
(see Note A)  
R2  
Monitors 5-VDC Rail  
Monitors 12-VDC Rail  
Early Power Fail Warning  
(R1 +R2)  
R2  
NOTES: A. VUNREG + 2.5  
B. The value of C determines the time delay of reset.  
T
Figure 20. Enhanced Supply Supervisor  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢀꢁ ꢂꢅ ꢄꢅ  
ꢔꢍ ꢁꢀꢉꢕ ꢐ ꢂꢍ ꢊꢎꢉ ꢌꢉꢀꢍ ꢌ  
ꢍꢏ  
SLCS115E DECEMBER 1986 REVISED JULY 2003  
APPLICATION INFORMATION  
12 V  
12 V  
R1  
100 Ω  
(see Note B)  
5.1 kΩ  
12 V  
1OUT  
R2  
5 kΩ  
+
1/2 TLC393  
(see Note C)  
5.1 kΩ  
100 kΩ  
12 V  
+
1/2 TLC393  
22 kΩ  
5.1 kΩ  
C1  
0.01 µF  
(see Note A)  
2OUT  
100 kΩ  
100 kΩ  
+
1/2 TLC393  
R3  
100 kΩ  
(see Note B)  
12 V  
1OUT  
2OUT  
NOTES: A. Adjust C1 for a change in oscillator frequency where:  
1/f = 1.85(100 k)C1  
B. Adjust R1 and R3 to change duty cycle  
C. Adjust R2 to change deadtime  
Figure 21. Two-Phase Nonoverlapping Clock Generator  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
PACKAGING INFORMATION  
Orderable Device  
5962-9555101NXD  
5962-9555101NXDR  
5962-9555101QPA  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
CDIP  
D
8
8
8
2500  
2500  
1
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
Q193M  
Q193M  
ACTIVE  
ACTIVE  
D
Green (RoHS  
& no Sb/Br)  
JG  
TBD  
-55 to 125 9555101QPA  
TLC193M  
TLC193MFKB  
TLC193MJGB  
OBSOLETE  
ACTIVE  
LCCC  
CDIP  
FK  
JG  
20  
8
TBD  
TBD  
Call TI  
A42  
Call TI  
-55 to 125  
1
N / A for Pkg Type  
-55 to 125 9555101QPA  
TLC193M  
TLC393CD  
TLC393CDG4  
TLC393CDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
D
D
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
C393C  
C393C  
C393C  
C393C  
TLC393CP  
TLC393CP  
P393  
75  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
TLC393CDRG4  
TLC393CP  
D
Green (RoHS  
& no Sb/Br)  
P
Pb-Free  
(RoHS)  
TLC393CPE4  
TLC393CPSR  
TLC393CPSRG4  
TLC393CPW  
TLC393CPWG4  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
PS  
PS  
PW  
PW  
2000  
2000  
150  
150  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
SO  
Green (RoHS  
& no Sb/Br)  
P393  
TSSOP  
TSSOP  
Green (RoHS  
& no Sb/Br)  
P393  
Green (RoHS  
& no Sb/Br)  
P393  
TLC393CPWLE  
TLC393CPWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
0 to 70  
0 to 70  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
P393  
P393  
TLC393CPWRG4  
ACTIVE  
TSSOP  
PW  
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
0 to 70  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TLC393ID  
TLC393IDG4  
TLC393IDR  
TLC393IDRG4  
TLC393IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
8
8
8
8
8
8
8
8
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
C393I  
D
Green (RoHS  
& no Sb/Br)  
C393I  
SOIC  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
C393I  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
C393I  
PDIP  
P
Pb-Free  
(RoHS)  
TLC393IP  
TLC393IP  
Y393  
TLC393IPE4  
TLC393IPW  
TLC393IPWG4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TSSOP  
TSSOP  
PW  
PW  
150  
150  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
Y393  
TLC393IPWLE  
TLC393IPWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
Y393  
Y393  
TLC393IPWRG4  
ACTIVE  
TSSOP  
PW  
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
TLC393MD  
TLC393MP  
TLC393QDR  
OBSOLETE  
OBSOLETE  
ACTIVE  
SOIC  
PDIP  
SOIC  
D
P
D
8
8
8
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 125 C393Q  
TLC393QDRG4  
ACTIVE  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
C393Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) Only one of markings shown within the brackets will appear on the physical device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLC393 :  
Automotive: TLC393-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
5962-9555101NXDR  
TLC393CDR  
SOIC  
SOIC  
SO  
D
D
8
8
8
8
8
8
2500  
2500  
2000  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
16.4  
12.4  
12.4  
12.4  
6.4  
6.4  
8.2  
6.4  
6.4  
6.4  
5.2  
5.2  
6.6  
5.2  
5.2  
5.2  
2.1  
2.1  
2.5  
2.1  
2.1  
2.1  
8.0  
8.0  
12.0  
8.0  
8.0  
8.0  
12.0  
12.0  
16.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
TLC393CPSR  
TLC393IDR  
PS  
D
SOIC  
SOIC  
SOIC  
TLC393QDR  
D
TLC393QDRG4  
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
5962-9555101NXDR  
TLC393CDR  
SOIC  
SOIC  
SO  
D
D
8
8
8
8
8
8
2500  
2500  
2000  
2500  
2500  
2500  
367.0  
340.5  
367.0  
340.5  
367.0  
367.0  
367.0  
338.1  
367.0  
338.1  
367.0  
367.0  
35.0  
20.6  
38.0  
20.6  
35.0  
35.0  
TLC393CPSR  
TLC393IDR  
PS  
D
SOIC  
SOIC  
SOIC  
TLC393QDR  
D
TLC393QDRG4  
D
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLC393IPWG4

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATOR
TI

TLC393IPWLE

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATOR
TI

TLC393IPWR

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATOR
TI

TLC393IPWRG4

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATOR
TI

TLC393JG

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATOR
TI

TLC393M

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATOR
TI

TLC393MD

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATOR
TI

TLC393MDR

DUAL COMPARATOR, 10000uV OFFSET-MAX, 2500ns RESPONSE TIME, PDSO8, PLASTIC, MS-012AA, SOIC-8
TI

TLC393MJG

暂无描述
TI

TLC393MP

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATOR
TI

TLC393P

DUAL MICROPOWER LinCMOSE VOLTAGE COMPARATOR
TI

TLC393P-M

DUAL COMPARATOR, 5000uV OFFSET-MAX, 2500ns RESPONSE TIME, PDIP8, PLASTIC, DIP-8
TI