TLC5540 [TI]

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER; 8位高速模拟数字转换器
TLC5540
型号: TLC5540
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
8位高速模拟数字转换器

转换器
文件: 总17页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
PW OR NS PACKAGE  
(TOP VIEW)  
features  
8-Bit Resolution  
OE  
DGND  
D1(LSB)  
D2  
DGND  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Differential Linearity Error  
±0.3 LSB Typ, ±1 LSB Max (25°C)  
±1 LSB Max  
REFB  
2
REFBS  
AGND  
3
4
Integral Linearity Error  
±0.6 LSB, ±0.75 LSB Max (25°C)  
±1 LSB Max  
D3  
AGND  
5
D4  
ANALOG IN  
6
D5  
V
7
DDA  
Maximum Conversion Rate of  
40 Megasamples Per Second (MSPS) Max  
D6  
REFT  
8
D7  
REFTS  
9
Internal Sample and Hold Function  
5-V Single Supply Operation  
D8(MSB)  
V
10  
11  
DDA  
V
V
DDD  
DDA  
CLK 12  
V
Low Power Consumption . . . 85 mW Typ  
Analog Input Bandwidth . . . 75 MHz Typ  
Internal Reference Voltage Generators  
DDD  
AVAILABLE OPTIONS  
PACKAGE  
applications  
T
A
Quadrature Amplitude Modulation (QAM)  
and Quadrature Phase Shift Keying (QPSK)  
Demodulators  
TSSOP (PW)  
SOP (NS)  
TLC5540CPW  
TLC5540IPW  
0°C to 70°C  
40°C to 85°C  
TLC5540CNSLE  
TLC5540INSLE  
Digital Television  
Charge-Coupled Device (CCD) Scanners  
Video Conferencing  
Digital Set-Top Box  
Digital Down Converters  
High-Speed Digital Signal Processor  
Front End  
description  
The TLC5540 is a high-speed, 8-bit analog-to-digital converter (ADC) that converts at sampling rates up to  
40 megasamples per second (MSPS). Using a semiflash architecture and CMOS process, the TLC5540 is able  
to convert at high speeds while still maintaining low power consumption and cost. The analog input bandwidth  
of 75 MHz (typ) makes this device an excellent choice for undersampling applications. Internal resistors are  
provided to generate 2-V full-scale reference voltages from a 5-V supply, thereby reducing external  
components. The digital outputs can be placed in a high impedance mode. The TLC5540 requires only a single  
5-V supply for operation.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
functional block diagram  
Resistor  
Reference  
Divider  
OE  
REFB  
270 Ω  
NOM  
Lower Sampling  
Comparators  
(4 Bit)  
REFT  
Lower Encoder  
(4 Bit)  
D1(LSB)  
D2  
REFBS  
Lower Data  
Latch  
80 Ω  
NOM  
D3  
AGND  
AGND  
D4  
Lower Sampling  
Comparators  
(4 Bit)  
Lower Encoder  
(4 Bit)  
V
DDA  
D5  
D6  
320 Ω  
NOM  
Upper Data  
Latch  
D7  
REFTS  
ANALOG IN  
Upper Sampling  
Comparators  
(4 Bit)  
Upper Encoder  
(4 Bit)  
D8(MSB)  
Clock  
Generator  
CLK  
schematics of inputs and outputs  
EQUIVALENT OF ANALOG INPUT  
EQUIVALENT OF EACH DIGITAL INPUT  
EQUIVALENT OF EACH DIGITAL OUTPUT  
V
DDA  
V
DDD  
V
DDD  
D1D8  
OE, CLK  
ANALOG IN  
AGND  
DGND  
DGND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
Terminal Functions  
TERMINAL  
NAME NO.  
AGND  
I/O  
DESCRIPTION  
20, 21  
19  
Analog ground  
Analog input  
Clock input  
ANALOG IN  
CLK  
I
I
12  
DGND  
D1D8  
OE  
2, 24  
3–10  
1
Digital ground  
O
I
Digital data out. D1:LSB, D8:MSB  
Output enable. When OE = L, data is enabled. When OE = H, D1–D8 is high impedance.  
V
V
14, 15, 18  
11, 13  
23  
Analog V  
DDA  
DD  
Digital V  
DDD  
DD  
REFB  
I
I
ADC reference voltage in (bottom)  
REFBS  
22  
Reference voltage (bottom). When using the internal voltage divider to generate a nominal 2-V reference,  
theREFBSterminalisshortedtotheREFBterminalandtheREFTSterminalisshortedtotheREFTterminal  
(see Figure 13 and Figure 14).  
REFT  
17  
16  
Reference voltage in (top)  
REFTS  
Reference voltage (top). When using the internal voltage divider to generate a nominal 2-V reference, the  
REFTS terminal is shorted to the REFT terminal and the REFBS terminal is shorted to the REFB terminal  
(see Figure 13 and Figure 14).  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Reference voltage input range, V  
Analog input voltage range, V  
Digital input voltage range, V  
Digital output voltage range, V  
Operating free-air temperature range, T : TLC5540C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DDA DDD  
, V  
, V  
, V  
. . . . . . . . . . . . . . . AGND to V  
I(REFT) I(REFB) I(REFBS) I(REFTS)  
I(ANLG)  
I(DGTL)  
DDA  
DDA  
DDD  
DDD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGND to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to V  
O(DGTL)  
A
TLC5540I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
recommended operating conditions  
MIN  
4.75  
NOM  
MAX  
5.25  
5.25  
100  
UNIT  
V
V
AGND  
AGND  
5
5
0
DDA  
V
Supply voltage  
4.75  
DDD  
AGNDDGND  
100  
mV  
V
Reference input voltage (top), V  
V
+1.8  
I(REFB)  
0
V
+2  
V
DDA  
I(REFT)  
I(REFB)  
0.6  
Reference input voltage (bottom), V  
V
–1.8  
V
I(REFB)  
(see Note 1)  
I(REFT)  
Analog input voltage range, V  
I(ANLG)  
V
V
V
I(REFB)  
I(REFT)  
Full scale voltage, V  
– V  
1.8  
4
5
1
V
I(REFT)  
High-level input voltage, V  
I(REFB)  
V
IH  
Low-level input voltage, V  
V
IL  
Pulse duration, clock high, t  
12.5  
12.5  
0
ns  
ns  
°C  
°C  
w(H)  
w(L)  
Pulse duration, clock low, t  
TLC5540C  
TLC5540I  
70  
85  
Operating free-air temperature, T  
A
40  
NOTE 1: 1.8 V V  
– V  
< V  
I(REFB) DD  
I(REFT)  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
electrical characteristics at V  
(unless otherwise noted)  
= 5 V, V  
= 2.6 V, V  
= 0.6 V, f = 40 MSPS, T = 25°C  
DD  
I(REFT)  
I(REFB)  
s
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±1  
UNIT  
T
A
= 25°C  
±0.6  
E
E
Linearity error, integral  
L
T
A
= MIN to MAX  
= 25°C  
±1  
f = 40 MSPS,  
s
I
LSB  
V = 0.6 V to 2.6 V  
T
A
±0.3 ±0.75  
±1  
Linearity error, differential  
D
T
A
= MIN to MAX  
Self bias (1), V  
Self bias (1), V  
Self bias (2), V  
Self bias (2), V  
Short REFB to REFBS  
Short REFT to REFTS  
Short REFB to AGND  
Short REFT to REFTS  
0.57  
2.47  
0.61  
2.63  
AGND  
2.29  
7.5  
0.65  
2.80  
RB  
RT  
RB  
RT  
See Figure 13  
See Figure 14  
V
2.18  
5.2  
2.4  
12  
I
Reference-voltage current  
V
– V  
= 2 V  
I(REFB)  
mA  
ref  
I(REFT)  
R
C
Reference-voltage resistor Between REFT and REFB terminals  
165  
270  
4
350  
ref  
i
Analog input capacitance  
Zero-scale error  
V
V
= 1.5 V + 0.07 V  
rms  
pF  
I(ANLG)  
E
E
18  
25  
43  
0
68  
25  
5
ZS  
– V  
= 2 V  
mV  
µA  
I(REFT)  
I(REFB)  
Full-scale error  
FS  
I
I
I
I
High-level input current  
Low-level input current  
High-level output current  
Low-level output current  
V
V
= 5.25 V,  
= 5.25 V,  
V
V
V
V
= V  
= 0  
IH  
DD  
IH  
DD  
5
IL  
DD  
IL  
OE = GND,  
OE = GND,  
= 4.75 V,  
= 4.75 V,  
V
V
= V  
DD  
= 0.4 V  
0.5 V  
1.5  
2.5  
OH  
OL  
DD  
DD  
OH  
mA  
OL  
High-level  
I
high-impedance-state  
output leakage current  
OE = V  
OE = V  
,
,
V
= 5.25,  
= 4.75,  
V
= V  
= 0  
16  
OZH(lkg)  
DD  
DD  
DD  
DD  
OH  
OL  
DD  
µA  
Low-level  
high-impedance-state  
output leakage current  
I
I
V
V
16  
27  
OZL(lkg)  
f = 40 MSPS,  
NTSC ramp wave input,  
See Note 2  
s
L
Supply current  
17  
mA  
DD  
C
25 pF,  
Conditions marked MIN or MAX are as stated in recommended operating conditions.  
National Television System Committee  
NOTE 2: Supply current specification does not include I  
.
ref  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
operating characteristics at V  
otherwise noted)  
= 5 V, V  
= 2.6 V, V  
= 0.6 V, f = 40 MSPS, T = 25°C (unless  
DD  
RT  
RB  
s
A
PARAMETER  
TEST CONDITIONS  
= MIN to MAX  
A
MIN  
TYP  
MAX  
UNIT  
MSPS  
MSPS  
MHz  
ns  
f
f
Maximum conversion rate  
Minimum conversion rate  
T
40  
s
T
A
= MIN to MAX  
5
75  
9
s
BW  
Analog input full-power bandwidth  
Delay time, digital output  
Disable time, output high to Hi-Z  
Disable time, output low to Hi-Z  
Enable time, Hi-Z to output high  
Enable time, Hi-Z to output low  
Differential gain  
At – 3 dB,  
V
= 2 V  
I(ANLG)  
10 pF (see Note 3)  
pp  
t
t
t
t
t
C
C
C
C
C
15  
20  
20  
15  
15  
pd  
L
L
L
L
L
15 pF,  
15 pF,  
15 pF,  
15 pF,  
I
I
I
I
= 4.5 mA  
= 5 mA  
ns  
PHZ  
PLZ  
PZH  
PZL  
OH  
OL  
OH  
OL  
ns  
= 4.5 mA  
= 5 mA  
ns  
ns  
1%  
0.7  
30  
4
NTSC 40 IRE modulation wave,  
f = 14.3 MSPS  
s
Differential phase  
degrees  
ps  
t
t
Aperture jitter time  
AJ  
Sampling delay time  
ns  
d(s)  
f = 1 MHz  
47  
47  
I
f = 3 MHz  
I
44  
42  
f = 20 MSPS  
s
f = 6 MHz  
I
46  
SNR  
Signal-to-noise ratio  
f = 10 MHz  
I
45  
dB  
f = 3 MHz  
I
45.2  
44  
f = 40 MSPS f = 6 MHz  
s
I
f = 10 MHz  
I
42  
f = 1 MHz  
7.64  
7.61  
7.47  
7.16  
7
I
f = 3 MHz  
I
f = 20 MSPS  
s
f = 6 MHz  
I
ENOB  
Effective number of bits  
Bits  
f = 10 MHz  
I
f = 3 MHz  
I
f = 40 MSPS  
s
f = 6 MHz  
6.8  
43  
I
f = 1 MHz  
I
f = 3 MHz  
35  
41  
42  
I
f = 20 MSPS  
s
f = 6 MHz  
I
41  
THD  
Total harmonic distortion  
dBc  
dBc  
f = 10 MHz  
I
38  
f = 3 MHz  
I
40  
f = 40 MSPS  
s
f = 6 MHz  
I
38  
f = 20 MSPS  
s
46  
Spurious free dynamic range  
f = 3 MHz  
I
f = 40 MSPS  
s
42  
Conditions marked MIN or MAX are as stated in recommended operating conditions.  
Institute of Radio Engineers  
NOTE 3:  
C includes probe and jig capacitance.  
L
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
PARAMETER MEASUREMENT INFORMATION  
t
t
w(L)  
w(H)  
CLK (Clock)  
ANALOG IN  
(Input Signal)  
N+2  
N+1  
N–2  
N+4  
N
N+3  
D1D8  
(Output Data)  
N–3  
N–1  
N
N+1  
t
pd  
Figure 1. I/O Timing Diagram  
Reference Level  
(2.5 V)  
OE  
2.4 V  
0.4 V  
Hi-Z  
Active  
Active  
Data Output  
t
t
t
t
PZH  
PZL  
PHZ  
PLZ  
Figure 2. I/O Timing Diagram  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
POWER DISSIPATION  
vs  
ANALOG INPUT BANDWIDTH  
SAMPLING FREQUENCY  
0.5  
200  
150  
V
T
A
= 5 V  
DD  
= 25°C  
0
0.5  
–1  
1.5  
–2  
100  
50  
0
2.5  
–3  
3.5  
–4  
V
= 5 V, V  
= 2.6 V, V = 0.6 V  
RB  
CC  
CLK = 40 MHz  
ANALOG IN = 100 k – 100 MHz Sine Wave  
V = 2 V  
RT  
4.5  
–5  
I
(PP)  
0.1  
1
10  
100  
0
5
10  
20  
25  
30  
35  
40  
15  
f – Input Frequency – MHz  
I
f
s
– Sampling Frequency – MHz  
Figure 3  
Figure 4  
SIGNAL-TO-NOISE RATIO  
vs  
EFFECTIVE NUMBER OF BITS  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
50  
45  
8
f
= 20 MHz  
= 40 MHz  
s
f
= 20 MHz  
= 40 MHz  
s
s
7
6
f
40  
35  
30  
s
f
5
4
3
2
1
0
25  
20  
15  
10  
5
V
DD  
V
RB  
= 5 V, V = 1 V  
I
= 2.6 V, V  
V
DD  
V
RB  
= 5 V, V = 1 V  
I
= 2.6 V, V  
(PP)  
= 0.6 V  
(PP)  
= 0.6 V  
RT  
RT  
0
0
5
10  
15  
0
5
10  
15  
f – Input Frequency – MHz  
I
f – Input Frequency – MHz  
I
Figure 5  
Figure 6  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
vs  
AMBIENT TEMPERATURE  
DIFFERENTIAL NONLINEARITY  
8
1
V = V  
= 0.6 V – 2.6 V, 500 Hz  
V
DD  
V
RT  
= 5 V, V = 1 V  
, 3 MHz Sine Wave  
I
ramp  
= 2.6 V, V  
I
(PP)  
= 0.6 V, f = 20 MHz  
0.8  
V
= 0.6 V, V  
= 5 V  
DD  
= 2.6 V, V  
RT  
RB  
RB  
s
f
s
= 40 MHz  
0.6  
0.4  
T
= 25°C  
A
7.5  
0.2  
7
6.5  
6
0
0.2  
0.4  
0.6  
0.8  
–1  
40 20  
0
20  
40  
60  
80  
100  
0
40  
80  
120  
160  
200  
240  
T
A
– Ambient Temperature – °C  
Digital Output Code  
Figure 7  
Figure 8  
INTEGRAL NONLINEARITY  
FFT SPECTRUM  
1
0
10  
V = V  
ramp  
= 0.6 V – 2.6 V, 500 Hz  
I
V = 2 V  
, 1 MHz Sine Wave  
I
(PP)  
= 2.6 V, V  
0.8  
V
= 2.6 V, V  
= 0.6 V, V  
= 5 V  
DD  
RT  
RB  
V
= 0.6 V  
RT  
= 20 MHz, T = 25°C  
RB  
f
= 40 MHz, T = 25°C  
s
A
f
s
A
20  
30  
40  
50  
60  
0.6  
0.4  
0.2  
0
0.2  
70  
80  
0.4  
0.6  
0.8  
–1  
90  
100  
0
1
2
3
4
5
6
7
8
9
10  
0
40  
80  
120  
160  
200  
240  
Digital Output Code  
f – Frequency – MHz  
Figure 9  
Figure 10  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
APPLICATION INFORMATION  
grounding and power supply considerations  
A signal ground is a low-impedance path for current to return to the source. Inside the TLC5540 A/D converter,  
the analog ground and digital ground are connected to each other through the substrate, which has a very small  
resistance (~30 ) to prevent internal latch-up. For this reason, it is strongly recommended that a printed circuit  
board (PCB) of at least 4 layers be used with the TLC5540 and the converter DGND and AGND pins be  
connected directly to the analog ground plane to avoid a ground loop. Figure 11 shows the recommended  
decoupling and grounding scheme for laying out a multilayer PC board with the TLC5540. This scheme ensures  
that the impedance connection between AGND and DGND is minimized so that their potential difference is  
negligible and noise source caused by digital switching current is eliminated.  
TLC5540  
V
GND  
13 24  
V
AGND  
DDD  
DDA  
11  
0.1 µF  
2
14  
0.1 µF  
15  
18 20 21  
0.1 µF  
0.1 µF 0.1 µF  
Signal Plane  
Analog Ground Plane  
Analog Supply Plane  
Digital Supply Plane  
Signal Plane  
Figure 11. AV , DV , AGND, and DGND Connections  
DD  
DD  
printed circuit board (PCB) layout considerations  
When designing a circuit that includes high-speed digital and precision analog signals such as a high speed  
ADC, PCB layout is a key component to achieving the desired performance. The following recommendations  
should be considered during the prototyping and PCB design phase:  
Separate analog and digital circuitry physically to help eliminate capacitive coupling and crosstalk. When  
separate analog and digital ground planes are used, the digital ground and power planes should be several  
layers from the analog signals and power plane to avoid capacitive coupling.  
Full ground planes should be used. Do not use individual etches to return analog and digital currents or  
partial ground planes. For prototyping, breadboards should be constructed with copper clad boards to  
maximize ground plane.  
The conversion clock, CLK, should be terminated properly to reduce overshoot and ringing. Any jitter on  
the conversion clock degrades ADC performance. A high-speed CMOS buffer such as a 74ACT04 or  
74AC04 positioned close to the CLK terminal can improve performance.  
Minimize all etch runs as much as possible by placing components very close together. It also proves  
beneficial to place the ADC in a corner of the PCB nearest to the I/O connector analog terminals.  
It is recommended to place the digital output data latch (if used) as close to the TLC5540 as possible to  
minimize capacitive loading. If D0 through D7 must drive large capacitive loads, internal ADC noise may  
be experienced.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
PRINCIPLES OF OPERATION  
functional description  
The TLC5540 uses a modified semiflash architecture as shown in the functional block diagram. The four most  
significant bits (MSBs) of every output conversion result are produced by the upper comparator block CB1. The  
four least significant bits (LSBs) of each alternate output conversion result are produced by the lower  
comparator blocks CB-A and CB-B in turn (see Figure 12).  
The reference voltage that is applied to the lower comparator resistor string is one sixteenth of the amplitude  
of the refence applied to the upper comparator resistor string. The sampling comparators of the lower  
comparator block require more time to sample the lower voltages of the reference and residual input voltage.  
By applying the residual input voltage to alternate lower comparator blocks, each comparator block has twice  
as much time to sample and convert as would be the case if only one lower comparator block were used.  
V (1)  
I
V (2)  
I
V (3)  
I
V (4)  
I
ANALOG IN  
(Sampling Points)  
CLK1  
CLK2  
S(2)  
CLK3  
S(3)  
CLK4  
S(4)  
CLK (Clock)  
S(1)  
C(1)  
C(2)  
C(3)  
C(4)  
Upper Comparators Block (CB1)  
Upper Data  
UD(0)  
UD(1)  
RV(1)  
UD(2)  
RV(2)  
UD(3)  
RV(3)  
RV(0)  
Lower Reference Voltage  
S(1)  
H(1)  
C(1)  
S(3)  
H(3)  
C(3)  
Lower Comparators Block (CB-A)  
Lower Data (A)  
LD(1)  
LD(1)  
H(0)  
C(0)  
S(2)  
H(2)  
C(2)  
S(4)  
H(4)  
Lower Comparators Block (CB-B)  
LD(2)  
LD(0)  
LD(2)  
Lower Data (B)  
t
pd  
OUT(2)  
OUT(–1)  
OUT(0)  
OUT(1)  
D1D8 (Data Output)  
Figure 12. Internal Functional Timing Diagram  
This conversion scheme, which reduces the required sampling comparators by 30 percent compared to  
standard semiflash architectures, achieves significantly higher sample rates than the conventional semiflash  
conversion method.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
PRINCIPLES OF OPERATION  
functional description (continued)  
TheMSBcomparatorblockconvertsonthefallingedgeofeachappliedclockcycle. TheLSBcomparatorblocks  
CB-A and CB-B convert on the falling edges of the first and second following clock cycles, respectively. The  
timing diagram of the conversion algorithm is shown in Figure 12.  
analog input operation  
The analog input stage to the TLC5540 is a chopper-stabilized comparator and is equivalently shown below:  
φ2  
S2  
φ1  
To Encoder Logic  
To Encoder Logic  
V
DDA  
C
C
s
s
φ2  
φ2  
S3  
φ1  
φ1  
φ1  
φ2  
ANALOG IN  
S1  
ref(N)  
V
S(N)  
To Encoder Logic  
C
s
Figure 13. External Connections for Using the Internal Reference Resistor Divider  
Figure 13 depicts the analog input for the TLC5540. The switches shown are controlled by two internal clocks,  
φ1 and φ2. These are nonoverlapping clocks that are generated from the CLK input. During the sampling period,  
φ1, S1isclosedandtheinputsignalisappliedtoonesideofthesamplingcapacitor, C . Alsoduringthesampling  
s
period, S2 through S(N) are closed. This sets the comparator input to approximately 2.5 V. The delta voltage  
is developed across C . During the comparison phase, φ2, S1 is switched to the appropriate reference voltage  
s
for the bit value N. S2 is opened and V  
– VC toggles the comparator output to the appropriate digital 1 or  
ref(N)  
s
0. The small resistance values for the switch, S1, and small value of the sampling capacitor combine to produce  
the wide analog input bandwidth of the TLC5540. The source impedance driving the analog input of the  
TLC5540 should be less than 100 across the range of input frequency spectrum.  
reference inputs REFB, REFT, REFBS, REFTS  
The range of analog inputs that can be converted are determined by REFB and REFT, REFT being the  
maximum reference voltage and REFB being the minimum reference voltage. The TLC5540 is tested with  
REFT = 2.6 V and REFB = 0.6 V producing a 2-V full-scale range. The TLC5540 can operate with  
REFT – REFB = 5 V, but the power dissipation in the reference resistor increases significantly (93 mW  
nominally). It is recommended that a 0.1 µF capacitor be attached to REFB and REFT whether using externally  
or internally generated voltages.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
PRINCIPLES OF OPERATION  
internal reference voltage conversion  
Three internal resistors allow the device to generate an internal reference voltage. These resistors are brought  
out on terminals V , REFTS, REFT, REFB, REFBS, and AGND. Two different bias voltages are possible  
DDA  
without the use of external resistors.  
Internal resistors are provided to develop REFT = 2.6 V and REFB = 0.6 V (bias option one) with only two  
external connections. This is developed with a 3-resistor network connected to V  
. When using this feature,  
DDA  
connect REFT to REFTS and connect REFB to REFBS. For applications where the variance associated with  
is acceptable, this internal voltage reference saves space and cost (see Figure 14).  
V
DDA  
A second internal bias option (bias two option) is shown in Figure 15. Using this scheme REFB = AGND and  
REFT = 2.28 V nominal. These bias voltage options can be used to provide the values listed in the following  
table.  
Table 1. Bias Voltage Options  
BIAS VOLTAGE  
BIAS OPTION  
V
V
V – V  
RT RB  
RB  
RT  
1
2
0.61  
2.63  
2.28  
2.02  
2.28  
AGND  
To use the internally-generated reference voltage, terminal connections should be made as shown in  
Figure 14 or Figure 15. The connections in Figure 14 provide the standard video 2-V reference.  
TLC5540  
18  
V
DDA  
5 V (Analog)  
R1  
320 NOM  
REFTS  
16  
17  
2.63 V dc  
0.1 µF  
0.1 µF  
REFT  
REFB  
R
ref  
270 NOM  
23  
22  
0.61 V dc  
REFBS  
AGND  
R2  
80 NOM  
21  
Figure 14. External Connections Using the Internal Bias One Option  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
PRINCIPLES OF OPERATION  
TLC5540  
18  
V
DDA  
5 V (Analog)  
R1  
320 NOM  
REFTS  
16  
17  
2.28 V dc  
0.1 µF  
REFT  
REFB  
R
ref  
270 NOM  
23  
22  
0 V dc  
REFBS  
AGND  
R2  
80 NOM  
21  
Figure 15. External Connections Using the Internal Bias Two Option  
functional operation  
Table 2 shows the TLC5540 functions.  
Table 2. Functional Operation  
DIGITAL OUTPUT CODE  
INPUT SIGNAL  
VOLTAGE  
STEP  
MSB  
LSB  
V
255  
1
1
1
1
1
1
1
1
ref(T)  
128  
127  
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
V
ref(B)  
0
0
0
0
0
0
0
0
0
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC5540  
8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER  
SLAS105C – JANUARY 1995 – REVISED MAY 1999  
MECHANICAL DATA  
NS (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
PINS **  
14  
16  
20  
24  
DIM  
10,50  
10,50  
12,90  
15,30  
A MAX  
0,51  
0,35  
1,27  
14  
M
0,25  
8
9,90  
9,90  
12,30  
14,70  
A MIN  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
7
0,25  
0°10°  
A
1,05  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
4040062/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLC5540CNSLE

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLC5540CNSR

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLC5540CNSRG4

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO24, GREEN, PLASTIC, SOP-24
TI

TLC5540CPW

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLC5540CPWLE

IC,A/D CONVERTER,SINGLE,8-BIT,CMOS,TSSOP,24PIN
TI

TLC5540CPWR

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLC5540INS

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO24, PLASTIC, SOP-24
TI

TLC5540INSLE

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLC5540INSR

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLC5540IPW

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI

TLC5540IPWLE

IC,A/D CONVERTER,SINGLE,8-BIT,CMOS,TSSOP,24PIN
TI

TLC5540IPWR

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER
TI