TLC555C [TI]

TLC555 LinCMOS™ Timer;
TLC555C
型号: TLC555C
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLC555 LinCMOS™ Timer

文件: 总42页 (文件大小:1429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
TLC555 LinCMOS™ Timer  
Like the NE555, the TLC555 has a trigger level equal  
to approximately one-third of the supply voltage and a  
threshold level equal to approximately two-thirds of  
the supply voltage. These levels can be altered by  
use of the control voltage terminal (CONT). When the  
trigger input (TRIG) falls below the trigger level, the  
flip-flop is set and the output goes high. If TRIG is  
above the trigger level and the threshold input  
(THRES) is above the threshold level, the flip-flop is  
reset and the output is low. The reset input (RESET)  
can override all other inputs and can be used to  
initiate a new timing cycle. If RESET is low, the flip-  
flop is reset and the output is low. Whenever the  
output is low, a low-impedance path is provided  
between the discharge terminal (DISCH) and GND.  
All unused inputs must be tied to an appropriate logic  
level to prevent false triggering.  
1 Features  
1
Very low power consumption:  
1-mW typical at VDD = 5 V  
Capable of operation in astable mode  
CMOS output capable of swinging rail to rail  
High output current capability  
Sink: 100-mA typical  
Source: 10-mA typical  
Output fully compatible with CMOS, TTL, and  
MOS  
Low supply current reduces spikes during output  
transitions  
Single-supply operation from 2 V to 15 V  
Functionally interchangeable with the NE555; has  
same pinout  
Device Information(1)  
ESD protection exceeds 2000 V per MIL-STD-  
883C, method 3015.2  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
4.90 mm × 3.91 mm  
9.81 mm × 6.38 mm  
6.20 mm × 5.30 mm  
5.00 mm × 4.40 mm  
4.90 mm × 3.91 mm  
9.81 mm × 6.38 mm  
8.89 mm × 8.89 mm  
9.60 mm × 6.67 mm  
4.90 mm × 3.91 mm  
SOIC (8)  
Available in Q-temp automotive  
PDIP (8)  
SOP (8)  
TLC555C  
High-reliability automotive applications  
Configuration control and print support  
Qualification to automotive standards  
TSSOP (14)  
SOIC (8)  
PDIP (8)  
LCCC (20)  
CDIP (8)  
SOIC (8)  
TLC555I  
2 Applications  
TLC555M  
TLC555Q  
Precision timing  
Pulse generation  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Sequential timing  
Time delay generation  
Pulse width modulation  
Pulse position modulation  
Linear ramp generator  
Simplified Schematic  
RESET  
4
CONT  
5
V
DD  
8
R
3 Description  
R1  
6
THRES  
3
The TLC555 is a monolithic timing circuit fabricated  
using the TI LinCMOS™ process. The timer is fully  
compatible with CMOS, TTL, and MOS logic and  
operates at frequencies up to 2 MHz. Because of its  
high input impedance, this device supports smaller  
timing capacitors than those supported by the NE555  
or LM555. As a result, more accurate time delays and  
oscillations are possible. Power consumption is low  
across the full range of power-supply voltage.  
OUT  
R
S
1
R
2
TRIG  
R
1
7
DISCH  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
Table of Contents  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Applications ................................................ 20  
Power Supply Recommendations...................... 26  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 Recommended Operating Conditions....................... 6  
6.3 Thermal Information.................................................. 6  
8
9
10 Layout................................................................... 27  
10.1 Layout Guidelines ................................................. 27  
10.2 Layout Example .................................................... 27  
11 Device and Documentation Support ................. 28  
11.1 Receiving Notification of Documentation Updates 28  
11.2 Community Resources.......................................... 28  
11.3 Trademarks........................................................... 28  
11.4 Electrostatic Discharge Caution............................ 28  
11.5 Glossary................................................................ 28  
6.4 Electrical Characteristics: VDD = 2 V for TLC555C,  
VDD = 3 V for TLC555I............................................... 7  
6.5 Electrical Characteristics: VDD = 5 V......................... 8  
6.6 Electrical Characteristics: VDD = 15 V....................... 9  
6.7 Operating Characteristics........................................ 11  
6.8 Typical Characteristics............................................ 12  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 28  
4 Revision History  
Changes from Revision H (August 2016) to Revision I  
Page  
Added MIN value for input voltage in Absolute Maximum Ratings ........................................................................................ 6  
Added discharge pin in Absolute Maximum Ratings.............................................................................................................. 6  
Changed MIN supply voltage based on part number in Recommended Operating Conditions............................................. 6  
Added power dissipation capacitance TYP value in Electrical Characteristics: VDD = 2 V for TLC555C, VDD = 3 V for  
TLC555I.................................................................................................................................................................................. 7  
Added trigger, threshold capacitance TYP value in Electrical Characteristics: VDD = 5 V ..................................................... 8  
Changed VOH test condition current to –1 mA in Electrical Characteristics: VDD = 5 V.......................................................... 8  
Added power dissipation capacitance TYP value in Electrical Characteristics: VDD = 5 V .................................................... 9  
Added trigger, threshold capacitance TYP value in Electrical Characteristics: VDD = 15 V ................................................... 9  
Added power dissipation capacitance TYP value in Electrical Characteristics: VDD = 15 V ................................................ 10  
Added Operating Characteristics to the Specifications section............................................................................................ 11  
Added Supply Current vs Supply Voltage chart to the Typical Characteristics section ....................................................... 12  
Added Control Impedance vs Temperature chart to the Typical Characteristics section .................................................... 12  
Added Output Low Resistance vs Temperature chart to the Typical Characteristics section.............................................. 12  
Added Output High Resistance vs Temperature chart to the Typical Characteristics section............................................. 12  
Added Propagation Delay vs Control Voltage chart, VDD = 2 V to the Typical Characteristics section ............................... 12  
Added Propagation Delay vs Control Voltage chart, VDD = 5 V to the Typical Characteristics section ............................... 12  
Changed trigger high hold time to 1 µs in the Monostable Operation section ..................................................................... 15  
Changed minimum monostable pulse width to 1 µs in the Monostable Operation section.................................................. 15  
Changed Output Pulse Duration vs Capacitance chart scale down to 0.001 ms in the Monostable Operation section...... 15  
Added more astable frequency formulas to the Astable Operation section ......................................................................... 17  
Changed scale on Free-Running Frequency vs Timing Capacitance chart up to 2 MHz in the Astable Operation section 18  
Added CONT pin table note to the Function Table in the Device Functional Modes section .............................................. 19  
Changed the application curve chart in the Pulse-Width Modulation section ...................................................................... 22  
Changed the application curve charts in the Pulse-Position Modulation section................................................................. 23  
Added clamping diodes to Sequential Timer Circuit in the Sequential Timer section.......................................................... 24  
2
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
 
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
Revision History (continued)  
Added Designing for Improved ESD Performance section to the Application Information section...................................... 25  
Changes from Revision G (November 2008) to Revision H  
Page  
Added Feature Description section, Device Functional Modes, Application and Implementation section, Power  
Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,  
Packaging, and Orderable Information section ...................................................................................................................... 1  
Changed values in the Thermal Information table to align with JEDEC standards................................................................ 6  
Deleted Dissipation Ratings table .......................................................................................................................................... 6  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLC555  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
5 Pin Configuration and Functions  
D, P, PS, and JG Packages  
8-Pin SOIC, PDIP, SOP, CDIP  
Top View  
VDD  
GND  
TRIG  
1
2
3
4
8
7
6
5
DISCH  
THRES  
CONT  
OUT  
RESET  
Pin Functions: D, P, PS, and JG Packages  
PIN  
SOIC, PDIP,  
I/O  
DESCRIPTION  
NAME  
SOP, CDIP  
CONT  
DISCH  
GND  
5
7
I
O
O
I
Controls comparator thresholds. Outputs 2/3 VDD and allows bypass capacitor connection.  
Open collector output to discharge timing capacitor.  
Ground.  
1
NC  
3
No internal connection.  
OUT  
High current timer output signal.  
RESET  
THRES  
TRIG  
VDD  
4
Active low reset input forces output and discharge low.  
End of timing input. THRES > CONT sets output low and discharge low.  
Start of timing input. TRIG < 1/2 CONT sets output high and discharge open.  
Power-supply voltage.  
6
I
2
I
8
4
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
PW Package  
14-Pin TSSOP  
Top View  
FK Package  
20-Pin LCCC  
Top View  
VDD  
GND  
NC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
TRIG  
NC  
DISCH  
NC  
NC  
TRIG  
NC  
4
5
6
7
8
18 NC  
17  
DISCH  
16 NC  
15  
14 NC  
OUT  
THRES  
NC  
OUT  
NC  
THRES  
NC  
RESET  
CONT  
8
Pin Functions: PW and FK  
PIN  
I/O  
DESCRIPTION  
NAME  
CONT  
DISCH  
GND  
TSSOP  
LCCC  
12  
8
12  
1
I
Controls comparator thresholds. Outputs 2/3 VDD and allows bypass capacitor connection.  
17  
O
Open-collector output to discharge timing capacitor.  
Ground.  
2
1, 3, 4, 6, 8,  
9, 11, 13, 14,  
16, 18, 19  
2, 4, 6,  
9, 11, 13  
NC  
No internal connection.  
OUT  
5
7
7
O
I
High current timer output signal.  
RESET  
THRES  
TRIG  
VDD  
10  
15  
5
Active low reset input forces output and discharge low.  
End of timing input. THRES > CONT sets output low and discharge low.  
Start of timing input. TRIG < 1/2 CONT sets output high and discharge open.  
Power-supply voltage.  
10  
3
I
I
14  
20  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLC555  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)Continuous total power dissipation and lead temperature  
parameters from Absolute Maximum Ratings  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
18  
UNIT  
(2)  
Supply, VDD  
Voltage  
Current  
Input, any input  
VDD  
18  
V
Discharge  
Sink, discharge or output  
Source, output, IO  
150  
15  
mA  
°C  
C-suffix  
I-suffix  
0
70  
–40  
–40  
–55  
–65  
–65  
85  
Operating, TA  
Q-suffix  
M-suffix  
FK package  
125  
125  
150  
150  
Temperature  
Case, for 60 seconds  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network GND.  
6.2 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
MAX  
15  
UNIT  
TLC555C  
TLC555I  
TLC555M  
TLC555Q  
TLC555C  
TLC555I  
TLC555M  
TLC555Q  
3
15  
Supply voltage, VDD  
V
5
15  
5
15  
0
70  
–40  
–55  
–40  
85  
Operating free-air  
temperature, TA  
°C  
125  
125  
6.3 Thermal Information  
TLC555  
D
FK  
(LCCC)  
JG  
P
PS  
(SOP)  
PW  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
(CDIP)  
8 PINS  
120  
(PDIP)  
(TSSOP)  
14 PINS  
135  
8 PINS  
113  
58  
20 PINS  
n/a  
8 PINS  
58  
8 PINS  
120  
72  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
37  
81  
48  
61  
55  
36  
110  
35  
69  
77  
Junction-to-top characterization  
parameter  
ψJT  
11  
54  
n/a  
n/a  
4.3  
45  
103  
31  
26  
35  
32  
68  
12  
77  
°C/W  
°C/W  
°C/W  
Junction-to-board characterization  
parameter  
ψJB  
Junction-to-case (bottom) thermal  
resistance  
RθJC(bot)  
n/a  
n/a  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
 
 
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
6.4 Electrical Characteristics: VDD = 2 V for TLC555C, VDD = 3 V for TLC555I  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
TLC555C  
TLC555I  
MIN  
0.95  
1.6  
TYP  
MAX  
1.65  
2.4  
UNIT  
1.33  
25°C  
VIT  
Threshold voltage  
V
TLC555C  
TLC555I  
0.85  
1.5  
1.75  
2.5  
Full range  
25°C  
TLC555C  
TLC555I  
10  
10  
IIT  
Threshold current  
Trigger voltage  
Trigger current  
pA  
V
TLC555C  
TLC555I  
75  
Max  
150  
0.67  
1
TLC555C  
TLC555I  
0.4  
0.71  
0.3  
0.95  
1.29  
1.05  
1.39  
25°C  
VI(TRIG)  
TLC555C  
TLC555I  
Full range  
25°C  
0.61  
TLC555C  
TLC555I  
10  
10  
II(TRIG)  
pA  
V
TLC555C  
TLC555I  
75  
Max  
150  
1.1  
1.1  
TLC555C  
TLC555I  
0.4  
0.4  
0.3  
0.3  
1.5  
1.5  
2
25°C  
VI(RESET) Reset voltage  
TLC555C  
TLC555I  
Full range  
Max  
1.8  
TLC555C  
TLC555I  
66.7%  
66.7%  
0.03  
Control voltage (open-circuit) as a  
percentage of supply voltage  
TLC555C  
0.2  
0.2  
IOL = 1 mA, 25°C  
IOL = 1 mA, Full range  
25°C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
TLC555C  
TLC555I  
0.03  
Discharge switch on-stage  
voltage  
V
nA  
V
0.25  
0.375  
0.1  
0.1  
Discharge switch off-stage  
current  
0.5  
Max  
120  
1.9  
1.5  
2.5  
1.5  
2.5  
IOH = –300 µA, 25°C  
2.85  
VOH  
High-level output voltage  
Low-level output voltage  
Supply current(2)  
IOH = –300 µA,  
Full range  
0.07  
0.07  
0.3  
0.3  
IOL = 1 mA, 25°C  
IOL = 1 mA, Full range  
25°C  
VOL  
V
0.35  
0.4  
250  
250  
400  
500  
IDD  
µA  
pF  
Full range  
80  
90  
Power dissipation  
capacitance(3)(4)  
CPD  
25°C  
(1) Full range is 0°C to 70°C the for TLC555C, and –40°C to 85°C for the TLC555I. For conditions shown as Max, use the appropriate  
value specified in the Recommended Operating Conditions table.  
(2) These values apply for the expected operating configurations in which THRES is connected directly to DISCH or to TRIG.  
(3) CPD is used to determine the dynamic power consumption.  
(4) PD = VDD2 fo (CPD + CL) where fo = output frequency, CL = output load capacitance, VDD = supply voltage  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLC555  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
6.5 Electrical Characteristics: VDD = 5 V  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
2.8  
3.3  
3.8  
3.9  
VIT  
Threshold voltage  
V
TLC555C, TLC555I,  
TLC555M, TLC555Q  
Full range  
25°C  
2.7  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
10  
TLC555C  
75  
150  
IIT  
Threshold current  
Trigger voltage  
Trigger current  
pA  
V
Max  
TLC555I  
TLC555M, TLC555Q  
5000  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
1.36  
1.26  
1.66  
1.96  
2.06  
VI(TRIG)  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
Full range  
25°C  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
10  
TLC555C  
75  
150  
II(TRIG)  
pA  
Max  
TLC555I  
TLC555M, TLC555Q  
5000  
Trigger, threshold capacitance  
(each pin)  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
CI  
25°C  
2.1  
1.1  
pF  
V
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
0.4  
0.3  
1.5  
1.8  
VI(RESET) Reset voltage  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
Full range  
25°C  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
10  
TLC555C  
75  
150  
II(RESET)  
Reset current  
pA  
Max  
TLC555I  
TLC555M, TLC555Q  
5000  
Control voltage (open circuit) as a  
percentage of supply voltage  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
Max  
66.7%  
0.14  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOL = 10 mA, 25°C  
0.5  
0.6  
Discharge switch on-stage  
voltage  
V
nA  
V
IOL = 10 mA,  
Full range  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
0.1  
Discharge switch off-stage  
current  
TLC555C  
0.5  
120  
120  
Max  
TLC555I  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOH = –1 mA, 25°C  
4.1  
4.1  
4.8  
VOH  
High-level output voltage  
Low-level output voltage  
IOH = –1 mA,  
Full range  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOL = 8 mA, 25°C  
0.21  
0.4  
TLC555C  
0.5  
0.5  
0.6  
VOL  
V
IOL = 8 mA,  
Full range  
TLC555I  
TLC555M, TLC555Q  
(1) Full range is 0°C to 70°C the for TLC555C, –40°C to 85°C for the TLC555I, –40°C to 125°C for the TLC555Q, and –55°C to 125°C for  
the TLC555M. For conditions shown as Max, use the appropriate value specified in the Recommended Operating Conditions table.  
8
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
 
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
Electrical Characteristics: VDD = 5 V (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOL = 5 mA, 25°C  
0.13  
0.3  
TLC555C  
0.4  
0.4  
IOL = 5 mA,  
Full range  
TLC555I  
TLC555M, TLC555Q  
0.45  
VOL  
Low-level output voltage  
V
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOL = 3.2 mA, 25°C  
0.08  
170  
115  
0.3  
TLC555C  
0.35  
0.35  
0.4  
IOL = 3.2 mA,  
Full range  
TLC555I  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
350  
IDD  
Supply current(2)  
µA  
pF  
TLC555C  
500  
600  
700  
Full range  
25°C  
TLC555I  
TLC555M, TLC555Q  
Power dissipation  
capacitance(3)(4)  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
CPD  
(2) These values apply for the expected operating configurations in which THRES is connected directly to DISCH or to TRIG.  
(3) CPD is used to determine the dynamic power consumption.  
(4) PD = VDD2 fo (CPD + CL) where fo = output frequency, CL = output load capacitance, VDD = supply voltage  
6.6 Electrical Characteristics: VDD = 15 V  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
9.45  
10  
10.55  
VIT  
Threshold voltage  
V
TLC555C, TLC555I,  
TLC555M, TLC555Q  
Full range  
25°C  
9.35  
10.65  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
10  
TLC555C  
75  
150  
IIT  
Threshold current  
Trigger voltage  
Trigger current  
pA  
V
Max  
TLC555I  
TLC555M, TLC555Q  
5000  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
4.65  
4.55  
5
5.35  
5.45  
VI(TRIG)  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
Full range  
25°C  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
10  
TLC555C  
75  
150  
II(TRIG)  
pA  
Max  
TLC555I  
TLC555M, TLC555Q  
5000  
Trigger, threshold capacitance  
(each pin)  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
CI  
25°C  
1.8  
1.1  
pF  
V
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
0.4  
0.3  
1.5  
1.8  
VI(RESET) Reset voltage  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
Full range  
25°C  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
10  
TLC555C  
75  
150  
II(RESET)  
Reset current  
pA  
Max  
TLC555I  
TLC555M, TLC555Q  
5000  
(1) Full range is 0°C to 70°C for TLC555C, –40°C to 85°C for TLC555I, –40°C to 125°C for the TLC555Q, and –55°C to 125°C for  
TLC555M. For conditions shown as Max, use the appropriate value specified in the Recommended Operating Conditions table.  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLC555  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
Electrical Characteristics: VDD = 15 V (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
Control voltage (open circuit) as a  
percentage of supply voltage  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
Max  
66.7%  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOL = 100 mA, 25°C  
0.77  
1.7  
1.8  
Discharge switch on-stage  
voltage  
V
IOL = 100 mA,  
Full range  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
0.1  
Discharge switch off-stage  
current  
TLC555C  
0.5  
120  
120  
nA  
Max  
TLC555I  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOH = –10 mA, 25°C  
12.5  
12.5  
13.5  
13.5  
14.2  
14.2  
14.2  
14.6  
14.9  
1.28  
IOH = –10 mA,  
Full range  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOH = –5 mA, 25°C  
VOH  
High-level output voltage  
V
IOH = –5 mA,  
Full range  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOH = –1 mA, 25°C  
IOH = –1 mA,  
Full range  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOL = 100 mA, 25°C  
3.2  
TLC555C  
3.6  
3.7  
3.8  
IOL = 100 mA,  
Full range  
TLC555I  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOL = 50 mA, 25°C  
0.63  
0.12  
360  
140  
1
TLC555C  
1.3  
1.4  
1.5  
VOL  
Low-level output voltage  
V
IOL = 50 mA,  
Full range  
TLC555I  
TLC555M, TLC555Q  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
IOL = 10 mA, 25°C  
0.3  
TLC555C  
0.4  
0.4  
IOL = 10 mA,  
Full range  
TLC555I  
TLC555M, TLC555Q  
0.45  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
25°C  
600  
IDD  
Supply current(2)  
µA  
pF  
TLC555C  
800  
900  
Full range  
25°C  
TLC555I  
TLC555M, TLC555Q  
1000  
Power dissipation  
capacitance(3)(4)  
TLC555C, TLC555I,  
TLC555M, TLC555Q  
CPD  
(2) These values apply for the expected operating configurations in which THRES is connected directly to DISCH or TRIG.  
(3) CPD is used to determine the dynamic power consumption.  
(4) PD = VDD2 fo (CPD + CL) where fo = output frequency, CL = output load capacitance, VDD = supply voltage  
10  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
6.7 Operating Characteristics  
VDD = 5 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VDD = 5 V to 15 V, CT = 0.1 μF  
MIN  
TYP  
MAX  
UNIT  
Initial error of timing interval(1)  
1%  
3%  
(2)  
RA = RB = 1 kΩ to 100 kΩ  
VDD = 5 V to 15 V, CT = 0.1 μF  
RA = RB = 1 kΩ to 100 kΩ  
Supply voltage sensitivity of timing interval  
0.1  
0.5  
%/V  
(2)  
tr  
Output pulse rise time  
RL = 10 MΩ, CL = 10 pF  
20  
15  
75  
60  
ns  
ns  
tf  
Output pulse fall time  
RL = 10 MΩ, CL = 10 pF  
(2)  
fmax  
Maximum frequency in a-stable mode  
RA = 470 Ω, CT = 200 pF RB = 200 Ω  
1.2  
2.1  
MHz  
(1) Timing interval error is defined as the difference between the measured value and the average value of a random sample from each  
process run.  
(2) RA, RB, and CT are as defined in Figure 12.  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLC555  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
6.8 Typical Characteristics  
600  
500  
400  
300  
200  
100  
0
100  
70  
IO(on) ³ 1 mA  
L » 0  
VDD = 2 V, IO = 1 mA  
C
40  
20  
TA = 25°C  
VDD = 5 V, IO = 10 mA  
10  
7
tPHL  
VDD = 15 V, IO = 100 mA  
4
2
1
(1)  
tPLH  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Temperature (°C)  
Supply Voltage (V)  
(1) The effects of the load resistance on these values must be  
taken into account separately.  
Figure 1. Discharge Switch On-State Resistance vs  
Free-Air Temperature  
Figure 2. Propagation Delay Times to Discharge Output  
From Trigger and Threshold Shorted Together  
vs Supply Voltage  
300  
250  
200  
150  
100  
50  
90  
-55èC  
-40èC  
0èC  
25èC  
70èC  
85èC  
125èC  
VDD = 2V  
VDD = 3V  
VDD = 5V  
VDD = 15V  
80  
70  
60  
50  
40  
30  
20  
0
0
2
4
6
8
10  
12  
14  
16  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (èC)  
D001  
D002  
Figure 3. Supply Current vs Supply Voltage  
Figure 4. Control Impedance vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
450  
VDD = 2V, IO = 1mA  
VDD = 3V, IO = 1mA  
VDD = 5V, IO = 10mA  
VDD = 15V, IO = 100mA  
VDD = 2V, IO = 300mA  
VDD = 3V, IO = 300mA  
VDD = 5V, IO = 1mA  
VDD = 15V, IO = 10mA  
400  
350  
300  
250  
200  
150  
100  
50  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D003  
D004  
Figure 5. Output Low Resistance vs Temperature  
Figure 6. Output High Resistance vs Temperature  
12  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
Typical Characteristics (continued)  
100  
100  
50  
TPLH VDD = 2V  
TPHL VDD = 2V  
TPLH VDD = 5V  
TPHL VDD = 5V  
50  
30  
20  
30  
20  
10  
10  
5
5
3
2
3
2
1
1
0.5  
0.5  
0.3  
0.2  
0.3  
0.2  
0.1  
0.1  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Control Voltage (V)  
Control Voltage (V)  
D007  
D009  
Figure 7. Propagation Delay vs Control Voltage  
VDD = 2 V  
Figure 8. Propagation Delay vs Control Voltage  
VDD = 5 V  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLC555  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TLC555 is a precision timing device used for general-purpose timing applications up to 2.1 MHz. All inputs  
are level sensitive not edge triggered inputs.  
7.2 Functional Block Diagram  
RESET  
4
CONT  
5
V
DD  
8
R
R1  
6
THRES  
3
OUT  
R
S
1
R
2
TRIG  
R
1
7
DISCH  
GND  
Pin numbers are for all packages except the PW and FK package. RESET can override TRIG, which can override  
THRES (when CONT pin is 2/3 VDD).  
The resistance of “R" resistors vary with VDD and temperature. The resistors match each other very well across VDD  
and temperature for a temperature stable control voltage ratio.  
7.3 Feature Description  
7.3.1 Monostable Operation  
For monostable operation, any of these timers can be connected as shown in Figure 9. If the output is low,  
application of a negative-going pulse to the trigger (TRIG) sets the internal latch; the output goes high, and  
discharge pin (DISCH) becomes open drain. Capacitor C then is charged through RA until the voltage across the  
capacitor reaches the threshold voltage of the threshold (THRES) input. If TRIG has returned to a high level, the  
output of the threshold comparator resets the internal latch, the output goes low, the discharge pin goes low  
which quickly discharges capacitor C.  
14  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
Feature Description (continued)  
V
DD  
(5 V to 15 V)  
5
8
R
A
CONT  
V
DD  
4
7
RESET  
DISCH  
3
OUT  
Output  
6
2
THRES  
TRIG  
Input  
GND  
C
1
Figure 9. Circuit for Monostable Operation  
Monostable operation is initiated when TRIG voltage falls below the trigger threshold. Once initiated, the  
sequence ends only if TRIG is high for at least 1 µs before the end of the timing interval. When the trigger is  
grounded, the comparator storage time can be as long as 1 µs, which limits the minimum monostable pulse width  
to 1 µs. The output pulse duration is approximately tw = 1.1 × RAC. Figure 11 is a plot of the time constant for  
various values of RA and C. The threshold levels and charge rates both are directly proportional to the supply  
voltage, VDD. The timing interval is, therefore, independent of the supply voltage, so long as the supply voltage is  
constant during the time interval.  
Applying a negative-going trigger pulse simultaneously to RESET and TRIG during the timing interval discharges  
capacitor C and reinitiates the cycle, commencing on the positive edge of the reset pulse. The output is held low  
as long as the reset pulse is low. To prevent false triggering, when RESET is not used it must be connected to  
VDD  
.
10000  
5000  
1kW  
10kW  
100kW  
1MW  
2000  
1000  
500  
10MW  
200  
100  
50  
20  
10  
5
Input Voltage  
2
1
0.5  
0.2  
0.1  
0.05  
Output Voltage  
0.02  
0.01  
0.005  
0.002  
0.001  
0.01  
0.1 0.2 0.5  
1
2 3 5 710 20 50 100  
1000  
Capacitor Voltage  
Capacitance (nF)  
D006  
Figure 11. Output Pulse Duration vs Capacitance  
Time − 0.1 ms/div  
CL = 0.01 µF  
RA = 9.1 kΩ  
See Figure 9  
Figure 10. Typical Monostable Waveforms  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLC555  
 
 
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
Feature Description (continued)  
7.3.2 Astable Operation  
As shown in Figure 12, adding a second resistor, RB, to the circuit of Figure 9 and connecting the trigger input to  
the threshold input causes the timer to self-trigger and run as a multi-vibrator. The capacitor C charges through  
RA and RB and then discharges through RB only. Therefore, the duty cycle is controlled by the values of RA and  
RB.  
This astable connection results in capacitor C charging and discharging between the threshold-voltage level  
(0.67 × VCC) and the trigger-voltage level (0.33 × VCC). As in the monostable circuit, charge and discharge  
times (and, therefore, the frequency and duty cycle) are independent of the supply voltage.  
V
DD  
(5 V to 15 V)  
0.01 mF  
Open  
(see Note A)  
5
8
R
R
A
CONT  
V
DD  
4
7
RESET  
DISCH  
3
OUT  
Output  
6
2
B
t
THRES  
TRIG  
H
Output Voltage  
t
L
GND  
C
1
Decoupling CONT voltage to ground with a capacitor can improve  
operation. This should be evaluated for individual applications.  
Figure 12. Circuit for Astable Operation  
Capacitor Voltage  
Time − 0.5 ms/div  
RB = 3 kΩ  
RA = 5 kΩ  
See Figure 12  
C = 0.15 µF  
Figure 13. Typical Astable Waveforms  
Figure 13 shows typical waveforms generated during astable operation. The output high-level duration tH and  
low-level duration tL for frequencies below 100 kHz can be calculated as follows:  
tH = 0.693 R + R  
(
C
)
A
B
(1)  
(2)  
t = 0.693 R  
C
( )  
B
L
Other useful relationships are shown below:  
period = t + t = 0.693 R + 2RB  
(
C
)
H
L
A
(3)  
(4)  
(5)  
(6)  
(7)  
1.44  
R +2R  
frequency »  
C
)
B
(
A
tL  
RB  
Output driver duty cycle =  
=
tH + tL RA + 2RB  
tH  
RB  
Output waveform duty cycle =  
= 1-  
tH + tL  
RA + 2RB  
tL  
RB  
Low-to-high ratio =  
=
tH RA + RB  
16  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
 
 
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
Feature Description (continued)  
The formulas (1-7) do not account for any propagation delay times from the TRIG and THRES inputs to DISCH  
output. These delay times add directly to the period and overcharge the capacitor which creates differences  
between calculated and actual values that increase with frequency. In addition, the internal on-state resistance  
ron during discharge adds to RB to provide another source of timing error in the calculation when RB is very low.  
The equations below provide better agreement with measured values. The formulas Equation 8 represent the  
actual low and high times when used at higher frequencies because propagation delay and discharge on  
resistance is added to the formulas. Because the formulas are complex, a calculation tool, TLC555 Design  
Calculator can be used to calculate the component values.  
é
ù
ú
ú
û
æ
ç
è
ö
÷
ø
-tPLH  
tc(H) = CT (RA + R ) In 3 - exp  
+ t  
ê
B
PHL  
CT (RB + ron  
)
ê
ë
é
ù
ú
ú
û
æ
ö
÷
ø
-tPHL  
tc(L) = CT (RB + ron ) In 3 - exp  
+ t  
ê
ç
PLH  
CT (RA + RB )  
ê
ë
è
(8)  
t
c(L)  
t
c(H)  
V
DD  
t
PHL  
2/3 V  
DD  
1/3 V  
DD  
GND  
t
PLH  
Figure 14. Trigger and Threshold Voltage Waveform  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLC555  
 
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
Feature Description (continued)  
2000  
1000  
500  
1kW  
10kW  
100kW  
1MW  
200  
100  
50  
10MW  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.1 0.2 0.5 1 2 3 5 710 20 50 100  
Capacitance (nF)  
1000  
10000  
D012  
Figure 15. Free-Running Frequency vs Timing Capacitance  
Resistance = RA + 2 × RB  
7.3.3 Frequency Divider  
By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency  
divider. Figure 16 shows a divide-by-three circuit that makes use of the fact that re-triggering cannot occur during  
the timing cycle.  
Input Voltage  
Output Voltage  
Capacitor Voltage  
Time − 0.1 ms/div  
VCC = 5 V  
RA = 1250 Ω  
C = 0.02 µF  
See Figure 9  
Figure 16. Divide-by-Three Circuit Waveforms  
18  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
 
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
7.4 Device Functional Modes  
Table 1 shows the device truth table.  
Table 1. Function Table  
RESET  
THRESHOLD  
TRIGGER VOLTAGE(1)  
OUTPUT  
DISCHARGE SWITCH  
VOLTAGE(1)  
VOLTAGE(1)  
Irrelevant  
Irrelevant(2)  
>MAX  
<MIN  
>MAX  
>MAX  
>MAX  
Irrelevant  
<MIN  
L
H
L
On  
Off  
On  
>MAX  
>MAX  
<MIN  
As previously established  
(1) For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics: VDD = 5 V.  
(2) CONT pin open or 2/3 VDD  
.
COMPONENT COUNT  
Transistors  
Resistors  
39  
5
THRES  
VDD  
CONT  
OUT  
DISCH  
GND  
TRIG  
RESET  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. Equivalent Schematic  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLC555  
 
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLC555 timer device uses resistor and capacitor charging delay to provide a programmable time delay or  
operating frequency. The Typical Applications section presents a simplified discussion of the design process.  
Reset mode forces output and discharge low and provides a small reduction in supply current.  
8.2 Typical Applications  
8.2.1 Missing-Pulse Detector  
The circuit shown in Figure 18 can be used to detect a missing pulse or abnormally long spacing between  
consecutive pulses in a train of pulses. The timing interval of the monostable circuit is re-triggered continuously  
by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing,  
missing pulse, or terminated pulse train permits the timing interval to be completed, thereby generating an output  
pulse as shown in Figure 19.  
V
DD  
(5 V to 15 V)  
R
A
4
8
RESET  
V
DD  
Input  
3
Output  
OUT  
2
5
TRIG  
7
6
DISCH  
CONT  
THRES  
0.01mF  
GND  
1
C
2N3906  
Figure 18. Circuit for Missing-Pulse Detector  
8.2.1.1 Design Requirements  
Input fault (missing pulses) must be input high. An input stuck low cannot be detected because the timing  
capacitor (C) remains discharged.  
8.2.1.2 Detailed Design Procedure  
Choose RA and C so that RA × C > [maximum normal input high time].  
20  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
 
 
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
Typical Applications (continued)  
8.2.1.3 Application Curve  
Input Voltage  
Output Voltage  
Capacitor Voltage  
Time − 0.1 ms/div  
VDD = 5 V  
RA = 1 kΩ  
C = 0.1 µF  
See Figure 18  
Figure 19. Timing Waveforms for Missing-Pulse Detector  
8.2.2 Pulse-Width Modulation  
The operation of the timer can be modified by modulating the internal threshold and trigger voltages, which is  
accomplished by applying an external voltage (or current) to CONT. Figure 20 shows a circuit for pulse-width  
modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the  
threshold voltage. Figure 21 shows the resulting duty cycle versus control voltage transfer function. Attempting to  
run under 10% duty cycle could result in inconsistent output pulses. Attempting to run close to 100% duty cycle  
will result in frequency division by 2, then 3, then 4.  
V
DD  
(5 V to 15 V)  
R
A
4
8
RESET  
V
DD  
3
7
6
2
5
OUT  
Clock  
Input  
Output  
TRIG  
DISCH  
THRES  
Modulation  
Input  
CONT  
(see Note A)  
GND  
1
C
A. The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, consider the effects of  
modulation source voltage and impedance on the bias of the timer.  
Figure 20. Circuit for Pulse-Width Modulation  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLC555  
 
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
Typical Applications (continued)  
8.2.2.1 Design Requirements  
The clock input must have VOL and VOH levels that are less than and greater than 1/3 VDD, respectively. Clock  
input VOL time must be less than minimum output high time, therefore a high (positive) duty cycle clock is  
recommended. Minimum recommended modulation voltage is 1 V. Lower CONT voltage can greatly increase  
threshold comparator’s propagation delay and storage time. The application must be tolerant of a nonlinear  
transfer function; the relationship between modulation input and pulse width is not linear because the capacitor  
charge is RC based with an negative exponential curve.  
8.2.2.2 Detailed Design Procedure  
Choose RA and C so that RA × C is same or less than clock input period. Figure 21 shows the non linear  
relationship between control voltage and output duty cycle. Duty cycle is function of control voltage and clock  
period relative to RC time constant.  
8.2.2.3 Application Curve  
100  
Clock period = 1 RC  
Clock period = 2.5 RC  
80  
60  
40  
20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Control Voltage (V)  
D015  
Figure 21. Pulse-Width-Modulation vs Control Voltage  
Clock Duty Cycle 98%, VDD = 5 V  
8.2.3 Pulse-Position Modulation  
As shown in Figure 22, any of these timers can be used as a pulse-position modulator. This application  
modulates the threshold voltage and thereby the time delay of a free-running oscillator. Figure 23 and Figure 24  
shows the output frequency and duty cycle versus control voltage.  
22  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
 
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
Typical Applications (continued)  
V
DD  
(5 V to 15 V)  
R
R
4
8
A
RESET  
TRIG  
V
DD  
3
OUT  
Output  
2
5
7
6
DISCH  
THRES  
Modulation  
Input  
(see Note A)  
B
CONT  
GND  
C
A. The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, consider the effects of  
modulation source voltage and impedance on the bias of the timer.  
RA = 3 kΩ  
Figure 22. Circuit for Pulse-Position Modulation  
8.2.3.1 Design Requirements  
RB = 309 kΩ  
C = 1 nF  
Both DC- and AC-coupled modulation input changes the upper and lower voltage thresholds for the timing  
capacitor. Both frequency and duty cycle vary with the modulation voltage. Control voltage below 1 V could result  
in output glitches instead of a steady output pulse stream  
8.2.3.2 Detailed Design Procedure  
The nominal output frequency and duty cycle for control voltage set to 2/3 of VDD can be determined using  
formulas in Astable Operation section.  
8.2.3.3 Application Curves  
4
3.5  
3
100  
80  
60  
40  
20  
0
2.5  
2
1.5  
1
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Control Voltage (V)  
Control Voltage (V)  
D013  
D014  
Figure 23. Pulse-Position-Modulation Frequency  
vs Control Voltage, VDD = 5 V  
Figure 24. Pulse-Position-Modulation Duty Cycle  
vs Control Voltage, VDD = 5 V  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLC555  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
Typical Applications (continued)  
8.2.4 Sequential Timer  
Many applications, such as computers, require signals for initializing conditions during start-up. Other  
applications, such as test equipment, require activation of test signals in sequence. These timing circuits can be  
connected to provide such sequential control. The timers can be used in various combinations of astable or  
monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 25  
shows a sequencer circuit with possible applications in many systems, and Figure 26 shows the output  
waveforms.  
V
DD  
33 kW  
R
33 kW  
R
A
B
4
8
4
8
V
DD  
OUT  
4
8
V
DD  
1N4148  
1N4148  
R
C
33 kW  
RESET  
V
RESET  
RESET  
DD  
OUT  
3
3
7
6
3
7
2
2
2
OUT  
TRIG  
TRIG  
TRIG  
0.001 mF  
0.001 mF  
7
6
S
DISCH  
DISCH  
DISCH  
THRES  
5
5
5
CONT  
CONT  
CONT  
6
THRES  
THRES  
GND  
GND  
GND  
1
1
1
0.01  
mF  
0.01  
mF  
0.01  
mF  
C
C
C
B
C
A
C
C
R
C
= 14.7 mF  
= 100 kW  
C
= 10 mF  
= 100 kW  
A
Output A  
Output B  
Output C  
R
A
C
B
= 4.7 mF  
R
B
= 100 kW  
NOTE: S closes momentarily at t = 0.  
Figure 25. Sequential Timer Circuit  
8.2.4.1 Design Requirements  
The sequential timer application chains together multiple monostable timers. The joining components are the  
33-kΩ resistors and 0.001-µF capacitors. The output high to low edge passes a 10-µs start pulse to the next  
monostable. A diode is needed to prevent over voltage on the trigger input when on the previous output's low to  
high edge.  
8.2.4.2 Detailed Design Procedure  
The timing resistors and capacitors can be chosen using this formula: tw = 1.1 × R × C.  
24  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
 
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
Typical Applications (continued)  
8.2.4.3 Application Curve  
t A  
w
t A = 1.1 R C  
A A  
w
Output A  
Output B  
Output C  
t B  
w
t B = 1.1 R C  
w B B  
t C = 1.1 R C  
C C  
w
t C  
w
t = 0  
t − Time − 1 s/div  
See Figure 25  
Figure 26. Sequential Timer Waveforms  
8.2.5 Designing for Improved ESD Performance  
The TLC555 internal HBM and CDM protection allows for safe assembly in ESD controlled environments. In  
applications that may expose pins of the TLC555 to ESD, additional protection is highly recommended. The test  
board schematic below has bypass capacitors, current-limiting resistors, and voltage clamping TVS diodes to  
provide additional protection for commonly exposed pins [Reset, Trig, and Output] against ESD.  
C5  
50V  
1000pF  
D1  
BAT54WSTR  
R1  
100k  
TP1  
R2  
C9  
Reset  
2.20k  
C1  
50V  
1000pF  
R3  
10.0k  
50V  
1000pF  
D6  
BAT54WSTR  
D2  
BAT54WSTR  
TP3  
U1  
VDD  
R9  
R4  
10.0  
3
Output  
10.0  
R5  
10.0k  
RESET  
DISCH  
THRES  
TRIG  
C10  
50V  
1000pF  
D7  
BAT54WSTR  
5
1
C8  
100V  
0.01uF  
C6  
50V  
C7  
1000pF  
TLC555CP  
50V  
1000pF  
D4  
BAT54WSTR  
R6  
100k  
TP2  
Trig  
J1  
C4  
R7  
10.0k  
50V  
0.1uF  
D3  
SMBJ15A-13-F  
Vcc  
J2  
C11  
50V  
10uF  
C12  
50V  
0.1uF  
C3  
50V  
R8  
10.0k  
D5  
BAT54WSTR  
1000pF  
GND  
Figure 27. ESD Test Schematic  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLC555  
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
Typical Applications (continued)  
The table below gives the ESD protection levels recorded for different supply voltages and external components  
populated. Using only passive components to protect the TLC555 with a single 15-V supply is not recommended  
because the higher voltage allows for an unacceptable amount of current to flow through the device.  
Table 2. ESD test result table  
(1)  
Supply Voltage  
Just passive components populated. D1..D7 not populated(1)  
All components populated  
5 V  
8 kV  
12 kV  
12 kV  
15 V  
Not recommended  
(1) Sample results. Results may vary with populated components, board layout, and samples used.  
9 Power Supply Recommendations  
The TLC555 requires a voltage supply greater than or equal to 2 V, 3 V, or 5 V based the coldest ambient  
temperature supported and a supply voltage less than or equal to 15 V. Adequate power supply bypassing is  
necessary to protect associated circuitry and provide stable output pulses. Minimum recommended is 0.1-μF  
ceramic in parallel with 1-μF electrolytic. Place the bypass capacitors as close as possible to the TLC555 and  
minimize the trace length.  
26  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
TLC555  
www.ti.com  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
10 Layout  
10.1 Layout Guidelines  
Standard PCB rules apply to routing the TLC555. The 0.1-μF ceramic capacitor in parallel with a 1-μF electrolytic  
capacitor must be as close as possible to the TLC555. The capacitor used for the time delay must also be placed  
as close to the discharge pin. A ground plane on the bottom layer can be used to provide better noise immunity  
and signal integrity.  
Figure 28 is the basic layout for various applications.  
C1—based on time delay calculations  
C2—0.01-μF bypass capacitor for control voltage pin  
C3—0.1-μF bypass ceramic capacitor  
C4—1-μF electrolytic bypass capacitor  
R1—based on time-delay calculations  
10.2 Layout Example  
C4  
C3  
GND  
TRIG  
OUT  
VDD  
DISCH  
THRES  
CONT  
R1  
C1  
RESET  
C2  
Figure 28. Layout Example  
Copyright © 1983–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TLC555  
 
TLC555  
SLFS043I SEPTEMBER 1983REVISED JULY 2019  
www.ti.com  
11 Device and Documentation Support  
11.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.2 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 Trademarks  
LinCMOS, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
28  
Submit Documentation Feedback  
Copyright © 1983–2019, Texas Instruments Incorporated  
Product Folder Links: TLC555  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC555CD  
TLC555CDG4  
TLC555CDR  
TLC555CDRG4  
TLC555CP  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
D
D
8
8
75  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TL555C  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
75  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TL555C  
TL555C  
TL555C  
TLC555CP  
TLC555CP  
P555  
D
8
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
D
8
Green (RoHS  
& no Sb/Br)  
P
8
Green (RoHS  
& no Sb/Br)  
TLC555CPE4  
TLC555CPS  
TLC555CPSR  
TLC555CPW  
TLC555CPWR  
TLC555CPWRG4  
TLC555ID  
P
8
50  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
PS  
PS  
PW  
PW  
PW  
D
8
80  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
SO  
8
2000  
90  
Green (RoHS  
& no Sb/Br)  
P555  
TSSOP  
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
14  
14  
14  
8
Green (RoHS  
& no Sb/Br)  
P555  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
P555  
Green (RoHS  
& no Sb/Br)  
P555  
Green (RoHS  
& no Sb/Br)  
TL555I  
TL555I  
TL555I  
TL555I  
TLC555IP  
TLC555IDG4  
TLC555IDR  
D
8
75  
Green (RoHS  
& no Sb/Br)  
D
8
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
TLC555IDRG4  
TLC555IP  
D
8
Green (RoHS  
& no Sb/Br)  
P
8
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC555IPE4  
TLC555QDR  
ACTIVE  
PDIP  
SOIC  
SOIC  
P
D
D
8
8
8
50  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
TLC555IP  
ACTIVE  
ACTIVE  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
-40 to 125  
TL555Q  
TL555Q  
TLC555QDRG4  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
OTHER QUALIFIED VERSIONS OF TLC555 :  
Automotive: TLC555-Q1  
Military: TLC555M  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Military - QML certified for Military and Defense Applications  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC555CDR  
TLC555CPWR  
TLC555IDR  
SOIC  
TSSOP  
SOIC  
D
PW  
D
8
14  
8
2500  
2000  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
6.4  
6.9  
6.4  
6.4  
6.4  
5.2  
5.6  
5.2  
5.2  
5.2  
2.1  
1.6  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
TLC555QDR  
TLC555QDRG4  
SOIC  
D
8
SOIC  
D
8
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC555CDR  
TLC555CPWR  
TLC555IDR  
SOIC  
TSSOP  
SOIC  
D
PW  
D
8
14  
8
2500  
2000  
2500  
2500  
2500  
340.5  
367.0  
340.5  
350.0  
350.0  
338.1  
367.0  
338.1  
350.0  
350.0  
20.6  
35.0  
20.6  
43.0  
43.0  
TLC555QDR  
TLC555QDRG4  
SOIC  
D
8
SOIC  
D
8
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLC555CD

LinCMOSE TIMERS
TI

TLC555CD3

IC IC,TIMER,CMOS,SOP,8PIN,PLASTIC, Timer or RTC
TI

TLC555CD3

Programmable Timer, CMOS
ROCHESTER

TLC555CDB

LinCMOSE TIMERS
TI

TLC555CDBLE

LinCMOSE TIMERS
TI

TLC555CDBLE

1 Func, 2.1MHz, CMOS, PDSO8, PLASTIC, SSOP-8
ROCHESTER

TLC555CDBR

LinCMOSE TIMERS
TI

TLC555CDG4

LinCMOSE TIMERS
TI

TLC555CDR

LinCMOSE TIMERS
TI

TLC555CDRG4

LinCMOSE TIMERS
TI

TLC555CJG

IC IC,TIMER,CMOS,DIP,8PIN,CERAMIC, Timer or RTC
TI

TLC555CJG4

IC IC,TIMER,CMOS,DIP,8PIN,CERAMIC, Timer or RTC
TI