TLC6946 [TI]

支持 32 路多路复用的 16 通道 16 位 ES-PWM 恒流 LED 驱动器;
TLC6946
型号: TLC6946
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 32 路多路复用的 16 通道 16 位 ES-PWM 恒流 LED 驱动器

驱动 驱动器
文件: 总35页 (文件大小:2788K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
TLC694x 16 通道 32/48 路复用 16 ES-PWM 恒定电流 LED 驱动器  
1 特性  
智能省电模式  
1
电源电压范围  
2 应用  
V
CC 电压范围:3V 5.5V  
单色、多色、全色 LED 显示  
VLED 电压范围:高达 VCC + 0.3V  
高刷新率 LED 视频显示  
16 个恒定电流阱通道  
高密度、小间距 LED 矩阵显示  
0.3mA 25mA (3V VCC 5.5V)  
通道电流偏差:±1%(典型值)  
器件电流偏差:±1%(典型值)  
膝点电压低:10mA 时为 0.3V(典型值)  
3 说明  
在高密度、小间距 LED 面板 应用中,人们对多通道  
LED 驱动器的性能要求在不断提高,以期实现高多路  
复用、高 PWM 分辨率和高刷新率。为了满足严格的  
显示质量要求,LED 驱动器必须能够解决不同 LED 矩  
阵应用场景中的各种问题。  
7 位(128 级)全局亮度控制功能 (BC)  
16 位(65,536 级)增强频谱 PWM 灰度控制  
内置存储器支持 TLC6946 32 路复用,支持  
TLC6948 48 路复用  
TLC694x 器件是一款 16 通道、恒定电流阱 LED 驱动  
器。每个通道都有独立可调的 65,536 PWM 灰度控  
制。所有 16 个通道的最大恒定电流值由一个具有 128  
级全局亮度控制的外部电阻设置,电流范围为 0.3mA  
25mA。  
增强的 LED 显示性能  
改善了低灰度均匀性  
低灰度耦合问题消除  
去除了重影和毛虫问题  
高速串行数据接口  
数据移位时钟:33MHz(最大值)  
灰度控制时钟:33MHz(最大值)  
支持双边灰度控制  
器件信息(1)  
器件型号  
TLC6946  
封装  
SSOP (24)  
封装尺寸(标称值)  
8.65mm × 3.90mm  
4.00mm x 4.00mm  
8.65mm × 3.90mm  
4.00mm × 4.00mm  
诊断和保护  
VQFN (24)  
SSOP (24)  
VQFN (24)  
LED 开路检测 (LOD)  
TLC6948  
IREF 电阻器短路保护 (ISP)  
热关断 (TSD)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
T48 路多路复用 LC6948典型应用原理图  
VLED  
Line 0  
VLED  
Line n  
VLED  
Line 47  
OUT0  
SIN  
OUT15  
SOUT  
OUT0  
SIN  
OUT15  
SOUT  
OUT0  
SIN  
OUT15  
SOUT  
DATA  
SCLK  
VCC  
VCC  
VCC  
SCLK TLC6948  
SCLK TLC6948  
SCLK TLC6948  
LAT  
VCC  
GND  
VCC  
GND  
VCC  
GND  
Controller  
LAT  
LAT  
LAT  
IC1  
IC2  
IC3  
GSCLK  
DATA BACK  
GCLK  
IREF  
GCLK  
IREF  
GCLK  
IREF  
RIREF  
RIREF  
RIREF  
3
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEB3  
 
 
 
 
 
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 15  
9.3 Feature Description................................................. 16  
9.4 Device Functional Modes........................................ 18  
10 Application and Implementation........................ 19  
10.1 Application Information.......................................... 19  
10.2 Typical Application ............................................... 19  
11 Power Supply Recommendations ..................... 22  
12 Layout................................................................... 22  
12.1 Layout Guidelines ................................................. 22  
12.2 Layout Examples................................................... 23  
13 器件和文档支持 ..................................................... 25  
13.1 文档支持................................................................ 25  
13.2 相关链接................................................................ 25  
13.3 接收文档更新通知 ................................................. 25  
13.4 社区资源................................................................ 25  
13.5 ....................................................................... 25  
13.6 静电放电警告......................................................... 25  
13.7 术语表 ................................................................... 25  
14 机械、封装和可订购信息....................................... 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Switching Characteristics.......................................... 9  
7.7 Typical Characteristics............................................ 11  
Parameter Measurement Information ................ 13  
8
9
8.1 Pin Equivalent Input and Output Schematic  
Diagrams.................................................................. 13  
Detailed Description ............................................ 14  
9.1 Overview ................................................................. 14  
4 修订历史记录  
Changes from Original (June 2018) to Revision A  
Page  
首次发布生产数据数据表 ....................................................................................................................................................... 1  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
5 说明 (续)  
TLC694x 器件集成了增强型电路来解决小间距 LED 显示应用中的 各种显示问题:低灰度均匀性问题、耦合问题、  
重影问题和卡特彼勒问题。  
TLC694x 器件 具有 LED 开路检测功能,错误检测结果可以通过串行数据接口读取。热关断和 IREF 电阻短路保护  
可确保实现更高的系统可靠性。TLC694x 器件还具有智能省电模式,可以在所有输出关断的情况下将总电流消耗设  
置为 1mA(典型值)。  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
DBQ Package  
24-Pin SSOP  
Top View  
RGE Package  
24-Pin VQFN With Exposed Thermal Pad  
Top View  
GND  
SIN  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCC  
2
IREF  
SCLK  
LAT  
3
SOUT  
GCLK  
OUT15  
OUT14  
OUT13  
OUT12  
OUT11  
OUT10  
OUT9  
OUT8  
4
LAT  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
OUT15  
OUT14  
OUT13  
OUT12  
OUT11  
OUT10  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
5
6
Thermal  
Pad  
7
8
9
10  
11  
12  
Not to scale  
Not to scale  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DBQ  
21  
RGE  
20  
Grayscale (GS) pulse-width modulation (PWM) reference-clock-signal input pin. In the  
default operating mode, each GCLK rising edge increments the GS counter for PWM  
control. GCLK supports dual-edge operation.  
GCLK  
GND  
I
1
10  
Power-ground reference  
Pin for setting the maximum constant-current value. Connecting an external resistor  
between IREF and GND sets the maximum current for each constant-current output  
channel. When this pin is connected directly to GND, all outputs are forced off. The  
external resistor should be placed close to the device.  
IREF  
LAT  
23  
4
21  
1
I
I
Data latch pin. The falling edge of LAT latches the data from the common shift register  
into the GS data memory or the function control register.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
Pin Functions (continued)  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DBQ  
5
RGE  
2
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
6
3
7
4
8
5
9
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
7
8
9
Constant-current output. Each output can be tied together with others to increase the  
constant current. A different voltage can be applied to each output.  
11  
12  
13  
14  
15  
16  
17  
18  
Clock-signal input pin. Serial data present on SIN are shifted to the LSB of the internal  
16-bit common shift register on the SCLK rising edge. All data in the shift register are  
shifted toward the MSB of the internal 16-bit common shift register on each SCLK rising  
edge.  
SCLK  
SIN  
3
2
24  
23  
I
I
Serial-data input pin of the internal 16-bit common shift register. When SIN is high, the  
LSB of the internal 16-bit common shift register is set to 1 on the SCLK input rising  
edge. When SIN is low, the LSB of the internal 16-bit common shift register is set to 0  
on the SCLK input rising edge.  
Serial data output pin of the internal 16-bit common shift register. The MSB of the  
internal 16-bit common shift register appears on SOUT.  
SOUT  
VCC  
22  
24  
19  
22  
O
I
Power supply pin  
Thermal  
pad  
Internally connected to GND in the RGE package only. The thermal pad and the GND  
pin must be connected together on the board.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
–0.3  
–0.3  
–0.3  
0
MAX  
6
UNIT  
V
VCC  
Voltage  
GCLK, IREF, LAT, SCLK, SIN, SOUT  
OUT0 to OUT15  
VCC + 0.3  
VCC + 0.3  
27  
V
V
Current  
OUT0 to OUT15  
mA  
°C  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–55  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
(2) All voltage values are with respect to GND.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±7000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VCC  
Supply voltage  
Supply voltage  
3
5.5  
V
V
VOUTn Voltage applied to OUT0 to OUT15  
Voltage applied to OUT0 to OUT15  
0
VCC  
0.7 ×  
VCC  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
GCLK, LAT, SCLK, SIN  
GCLK, LAT, SCLK, SIN  
VCC  
V
V
0.3 ×  
VCC  
0
IOH  
IOL  
High-level output current  
Low-level output current  
SOUT  
SOUT  
–2  
2
mA  
mA  
IOLC,  
max  
Maximum constant-output sink current  
Data-shift clock frequency  
OUT0 to OUT15  
0.3  
25  
mA  
fSCLK  
SCLK  
GCLK  
33 MHz  
33 MHz  
fGCLK Grayscale control clock frequency  
Grayscale control clock frequency for dual-edge  
operation  
fGCLK,B  
GCLK  
25 MHz  
tw(H0)  
tw(L0)  
tw(H1)  
tw(L1)  
tw(H2)  
tw(L2)  
tsu(0)  
tsu(1)  
tsu(2)  
tsu(3)  
tsu(4)  
Pulse width duration  
Pulse width duration  
Pulse width duration  
Pulse width duration  
Pulse width duration  
Pulse width duration  
Setup time  
SCLK  
10  
10  
10  
10  
18  
18  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
SCLK  
GCLK  
GCLK  
GCLK (for dual-edge operation)  
GCLK (for dual-edge operation)  
SIN to SCLK  
Setup time  
LAT to SCLK ↑  
5
Setup time  
LAT to SCLK ↑  
5
Setup time  
LAT to SCLK ,read data from SOUT  
LAT (WRTGS) to LAT (WRTGS)  
50  
1.5  
Setup time  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
tsu(5)  
tsu(6)  
tsu(7)  
Setup time  
Setup time  
Setup time  
LAT (WRTGS) to LAT (VSYNC)  
LAT (VSYNC) to GCLK ↑  
1.5  
2.5  
2.5  
µs  
µs  
µs  
LAT (VSYNC) to LAT (WRTGS)  
Last LAT (non-0 GS data latched) to the first  
GCLK of next frame (wake up from power-  
save mode)  
tsu(8)  
Setup time  
50  
µs  
tLSW  
th(0)  
th(1)  
th(2)  
TA  
Line switching time  
Hold time  
Last GCLK to the first GCLK of next line  
SCLK to SIN  
1
2
µs  
ns  
ns  
ns  
Hold time  
SCLK to LAT ↑  
2
Hold time  
SCLK to LAT ↓  
10  
–40  
–40  
Operating ambient temperature  
Operating junction temperature  
Operating ambient temperature  
Operating junction temperature  
85  
°C  
°C  
TJ  
125  
7.4 Thermal Information  
TLC6946  
THERMAL METRIC(1)  
DBQ (SSOP)  
24 PINS  
87.2  
RGE (VQFN)  
24 PINS  
35.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
42.3  
34.7  
41.4  
15.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
9.2  
0.7  
ψJB  
41  
15.2  
RθJC(bot)  
N/A  
5
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VCC = 3 V to 5.5 V and TA = –40°C to 85°C; typical values are at VCC = VLED = 3.5 V, TA = 25°C, over recommended operating  
conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = –2 mA at SOUT  
MIN  
TYP  
MAX  
VCC  
0.4  
UNIT  
V
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VCC – 0.4  
IOL = 2 mA at SOUT  
V
BC = 00h, RIREF = 10.7 kΩ (IOUTn  
0.3-mA target)  
=
VIREF  
Reference voltage  
0.8  
V
All OUTn = on, LODVTH = 00b  
All OUTn = on, LODVTH = 01b  
All OUTn = on, LODVTH = 10b  
All OUTn = on, LODVTH = 11b  
0.12  
0.42  
0.82  
1.12  
0.2  
0.5  
0.9  
1.2  
0.28  
0.58  
0.98  
1.28  
V
V
V
V
V(LOD)  
LED open-detection threshold  
Knee voltage (OUT0 to OUT15)  
All OUTn = on, BC = 36h, RIREF  
1.27 kΩ (IOUTn = 10-mA target)  
=
V(KNEE)  
0.3  
V
All OUTn = on, BC = 00h,VOUTn = 1  
V, RIREF = 10.7 kΩ (IOUTn = 0.3-mA  
target), TA = 25°C, includes the  
VIREF tolerance  
Constant-current error (channel-to-  
channel)(1)  
ΔIOLC0  
±1%  
±3.5%  
(1) The deviation of each output from average of all channels constant current. The deviation is calculated by the formula.  
»
ÿ
Ÿ
IOUTn  
D % =  
-1 ì100  
(
)
Ÿ
IOUT0 +IOUT1+...+IOUT14 +IOUT15  
Ÿ
16  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VCC = 3 V to 5.5 V and TA = –40°C to 85°C; typical values are at VCC = VLED = 3.5 V, TA = 25°C, over recommended operating  
conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All OUTn = on, BC = 00h,VOUTn = 1  
V, RIREF = 10.7 kΩ (IOUTn = 0.3-mA  
target), TA = 25°C, includes the  
VIREF tolerance  
Constant-current error (device-to-  
device)(2)  
ΔIOLC1  
ΔIOLC2  
ΔIOLC3  
ΔIOLC4  
ΔIOLC5  
ΔIOLC6  
ΔIOLC7  
±1%  
±2%  
All OUTn = on, BC = 2Ah,VOUTn = 1  
V, RIREF = 10.7 kΩ (IOUTn = 1-mA  
target), TA = 25°C, includes the  
VIREF tolerance  
Constant-current error (channel-to-  
channel)(1)  
±1%  
±1%  
±1%  
±1%  
±1%  
±1%  
±3%  
±2.5%  
±2.5%  
±2.5%  
±2%  
All OUTn = on, BC = 2Ah,VOUTn = 1  
V, RIREF = 10.7 kΩ (IOUTn = 1-mA  
target), TA = 25°C, includes the  
VIREF tolerance  
Constant-current error (device-to-  
device)(2)  
All OUTn = on, BC = 36h,VOUTn = 1  
V, RIREF = 1.27 kΩ (IOUTn = 10-mA  
target), TA = 25°C, includes the  
VIREF tolerance  
Constant-current error (channel-to-  
channel)(1)  
All OUTn = on, BC = 36h,VOUTn = 1  
V, RIREF = 1.27 kΩ (IOUTn = 10-mA  
target), TA = 25°C, includes the  
VIREF tolerance  
Constant-current error (device-to-  
device)(2)  
All OUTn = on, BC = 7Eh,VOUTn = 1  
V, RIREF = 1.02 kΩ (IOUTn = 25-mA  
target), TA = 25°C, includes the  
VIREF tolerance  
Constant-current error (channel-to-  
channel)(1)  
All OUTn = on, BC = 7Eh,VOUTn = 1  
V, RIREF = 1.02 kΩ (IOUTn = 25-mA  
target), TA = 25°C, includes the  
VIREF tolerance  
Constant-current error (device-to-  
device)(2)  
±2%  
All OUTn = on, VCC = 3 V to 5.5 V,  
VOUTn = 1 V  
ΔIOLC8  
ΔIOLC9  
VIL(ISP)  
Line regulation(3)  
Load regulation(4)  
±1  
±1  
±2  
±2  
%/V  
%/V  
V
All OUTn = on, VOUTn = 1 V to 3 V  
IREF resistor short-protection enter  
threshold  
0.15  
0.195  
IREF resistor short-protection  
release threshold  
Thermal shutdown threshold(5)  
Thermal shutdown hysteresis(5)  
SCLK or SIN Input current  
VIH(ISP)  
0.325  
0.4  
1
V
T(TSD)  
T(HYS)  
II  
170  
15  
°C  
°C  
µA  
VI = VCC or GND at SCLK or SIN  
–1  
(2) The deviation of the average of constant current from the ideal constant current value.  
IOUT0 +IOUT1+...+ IOUT14 + IOUT15  
»
ÿ
Ÿ
Ÿ
Ÿ
-Ideal Output Current  
16  
D % =  
ì100  
(
)
Ideal Output Current  
,Ideal current is calculated by the  
÷
V
1
8
BC  
IREF  
Ideal Output mA = Gainì  
ì
+
(
)
«
÷
÷
RIREF W  
144  
(
)
«
following equation  
(3) Line regulation is calculated by the following equation  
»
ÿ
Ÿ
IOUTn at VCC = 5.5V - IOUTn at VCC = 3V  
(
)
(
)
100  
D %V =  
ì
(
)
IOUTn at VCC = 3V  
5.5V - 3V  
(
)
Ÿ
(4) Load regulation is calculated by the following equation  
»
ÿ
IOUTn at VOUTn = 3V - IOUTn at VOUTn = 1V  
(
)
(
)
100  
D %V =  
ì
Ÿ
(
)
IOUTn at VOUTn = 1V  
3V -1V  
(
)
Ÿ
(5) Specified by design  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
Electrical Characteristics (continued)  
VCC = 3 V to 5.5 V and TA = –40°C to 85°C; typical values are at VCC = VLED = 3.5 V, TA = 25°C, over recommended operating  
conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GCLK = LAT = SCLK = SIN = GND,  
GSn = 0000h, BC = 00h, PCHG_EN  
= 0, VOUTn = VCC, RIREF = open  
ICC(0)  
3
4.5  
6
mA  
GCLK = LAT = SCLK = SIN = GND,  
GSn = 0000h, BC = 36h, PCHG_EN  
= 0, VOUTn is floating, RIREF = 1.27  
kΩ (IOUTn = 10-mA target)  
ICC(1)  
4
4
6.5  
7.5  
7
8
9
mA  
mA  
mA  
mA  
GCLK = LAT = SCLK = SIN = GND,  
GSn = 0000h, BC = 7Eh, PCHG_EN  
= 0, VOUTn is floating, RIREF = 1.27  
kΩ (IOUTn = 20-mA target)  
ICC(2)  
ICC(3)  
ICC(4)  
Supply current(5)  
LAT = SCLK = SIN = GND, GCLK =  
33 MHz, GSn = FFFFh, BC = 36h,  
4.7  
4.7  
10  
PCHG_EN = 0, VOUTn = 1 V, RIREF  
=
1.27 kΩ (IOUTn = 10-mA target)  
LAT = SCLK = SIN = GND, GCLK =  
33 MHz, GSn = FFFFh, BC = 7Eh,  
7.7  
1
10  
PCHG_EN = 0, VOUTn = 1 V, RIREF  
=
1.27 kΩ (IOUTn = 20-mA target)  
In power-save mode, PCHG_EN =  
0, RIREF = 1.60 kΩ  
ICC(6)  
RDW  
1.5  
mA  
LAT  
250  
250  
480  
480  
750  
750  
Pulldown resistor  
kΩ  
GCLK  
7.6 Switching Characteristics  
VCC = 3 V to 5.5 V and TA = –40°C to85°C; Typical values are at VCC = 3.3 V, TA = 25°C,VLED = 5 V, over recommended  
operating conditions (unless otherwisenoted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tr(0)  
tr(1)  
tf(0)  
tf(1)  
SOUT  
2
ns  
Rise time(1)  
OUTn, BC = 7Eh, VOUTn = 1 V,  
RIREF = 1.02 kΩ (IOUTn = 25-mA  
target), TA = 25°C, RL = 160 Ω  
20  
2
ns  
ns  
ns  
SOUT  
Fall time(1)  
OUTn, BC = 7Eh, VOUTn = 1 V,  
RIREF = 1.02 kΩ (IOUTn = 25-mA  
target), TA = 25°C, RL = 160 Ω  
15  
SCLKto SOUT↑↓, SEL_TD0 = 00b  
SCLKto SOUT↑↓, SEL_TD0 = 01b  
SCLKto SOUT↑↓, SEL_TD0 = 10b  
SCLKto SOUT↑↓, SEL_TD0 = 11b  
5
10  
20  
5
ns  
ns  
ns  
ns  
tpd(0)  
Propagation delay(1)  
LATto SOUT, read LOD  
information  
tpd(1)  
25  
50  
ns  
(1) Specified by design  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
tw(L)  
SCLK(1)  
50%  
50%  
50%  
tw(H)  
tsu  
th  
SIN(1)  
tsu  
tsu  
tsu  
th  
LAT(1)  
th  
tpd  
90%  
SOUT  
GCLK(1)  
OUTn  
50%  
10%  
tf  
tr  
tw(H)  
50%  
n-1  
n(2)  
1
n(2)  
1
2
tw(L)  
tLSW  
tsu  
90%  
10%  
tf  
tr  
(1) Pulse rise and fall times are 1 ns–3 ns  
(2) The last GCLK of each display segment in the sub period  
1. Timing Diagram  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
7.7 Typical Characteristics  
35  
35  
30  
25  
20  
15  
10  
5
0.3 mA  
1 mA  
5 mA  
10 mA  
20 mA  
25 mA  
0.3 mA  
1 mA  
5 mA  
10 mA  
20 mA  
25 mA  
30  
25  
20  
15  
10  
5
0
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Output Voltage (V)  
Output Voltage (V)  
D002  
D001  
VCC = 5 V  
VCC = 3.3 V  
2. Channel Sink Current vs OUTn Voltage  
3. Channel Sink Current vs OUTn Voltage  
12  
10  
8
12  
10  
8
6
6
4
4
TA = -40 o  
C
TA = -40 o  
C
2
2
TA = 25 o  
TA = 85 o  
C
C
TA = 25 o  
TA = 85 o  
C
C
0
0
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
Output Voltage (V)  
Output Voltage (V)  
D004  
D003  
VCC = 5 V  
Temperature  
changing  
VCC = 3.3 V  
Temperature  
changing  
4. Channel Sink Current vs OUTn Voltage  
5. Channel Sink Current vs OUTn Current  
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
Vcc = 3.3 V Min  
Vcc = 3.3 V Max  
Vcc = 5 V Min  
Vcc = 5 V Max  
1 mA Min  
1 mA Max  
25 mA Min  
25 mA Max  
0
5
10  
15  
20  
25  
30  
-40  
-20  
0
20  
40  
60  
80  
100  
Output Current (mA)  
Ambient Temperature (oC)  
D005  
D006  
VOUTn = 1 V  
VOUTn = 1 V  
6. Channel to Channel Accuracy vs OUTn Current  
7. Channel to Channel Accuracy vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
30  
30  
25  
20  
15  
10  
5
0.3 mA  
1 mA  
5 mA  
10 mA  
20 mA  
25 mA  
0.3 mA  
1 mA  
5 mA  
10 mA  
20 mA  
25 mA  
25  
20  
15  
10  
5
0
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Brightness Control Data (Decimal)  
Brightness Control Data (Decimal)  
D008  
D007  
VCC = 5 V  
VOUTn = 1 V  
VCC = 3.3 V  
VOUTn = 1 V  
8. Channel Sink Current vs Brightness Control (BC)  
9. Channel Sink Current vs Brightness Control (BC)  
2
10  
8
6
4
2
0
1.5  
1
0.5  
0
Vcc = 3.3 V  
Vcc = 5 V  
Vcc = 3.3 V  
Vcc = 5 V  
0
5
10  
15  
20  
25  
-40  
-20  
0
20  
40  
60  
80  
100  
Output current (mA)  
Ambient Temperature (oC)  
D009  
D011  
VOUTn = 1 V  
GCLK = 33 MHz  
GSn = FFFFh  
VOUTn = 1 V  
BC = 36h  
GCLK = 33 MHz  
GSn = 0000h  
RIREF = 1.27 kΩ (10-mA target)  
10. Supply Current (ICC) vs Channel Sink Current  
11. Supply Current (ICC) in Power-Save Mode vs  
Temperature  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
8 Parameter Measurement Information  
8.1 Pin Equivalent Input and Output Schematic Diagrams  
VCC  
INPUT  
GND  
VCC  
INPUT  
GND  
12. SIN, SCLK  
13. LAT, GCLK  
VCC  
OUTn  
INPUT  
GND  
GND  
15. OUT0 Through OUT15  
14. SOUT  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TLC694x device is a 16-channel constant-current-sink LED driver supporting 1- to 32-, 48-multiplexing. Each  
channel has an individually adjustable 65,536-step pulse-width modulation (PWM) grayscale (GS) control. The  
TLC6946 device implements 16-Kbit display memory and the TLC6948 device implements 24-Kbit display  
memory to increase the visual refresh rate and to decrease the grayscale data-writing frequency.  
The TLC694x device supports current from 0.3 mA to 25 mA for each channel, with typical 1% channel-to-  
channel current deviation and typical 1% device-to-device current deviation. The maximum current value of all 16  
channels is set by an external IREF resistor and can be adjusted by the 128-step global brightness control (BC).  
The device also implements low-grayscale enhancement technology to solve the coupling issue and improve the  
display quality in low-grayscale conditions. These features make the TLC694x device a candidate for high-  
density-multiplexing LED-matrix-display and LED-panel applications.  
The TLC694x device integrates enhanced circuits to solve the various display issues in fine-pitch LED display  
applications: the low-grayscale uniformity issue, coupling issue, ghosting issue, and caterpillar issue. The  
TLC694x device features an LED-open detection function, and the error detection results can be read via a serial  
data-interface port. Thermal shutdown and IREF-resistor short protection ensure a higher system reliability. The  
TLC694x device also has a smart power-save mode that sets the total current consumption to 1 mA (typical)  
when all outputs are off.  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
9.2 Functional Block Diagram  
OUT1  
OUT0 OUT2  
OUT14  
OUT13 OUT15  
VCC  
LED Open Detection (LOD)  
Caterpillar Elimination and Ghosting Removal  
VCC  
16  
Reference Current  
16-CH Constant Current Sink Control  
7-bit Global BC and Pre-Charge  
LOD  
Threshold  
IREF  
Control  
16  
GCLK  
Internal  
Counter  
ES-PWM Decoder  
Timing Control  
VSYNC  
VSYNC  
16  
Line Counter  
BANK A  
BANK B  
BANK_SEL  
16-bit × 16-CH  
× 32-,48-line  
16-bit × 16-CH  
× 32-,48-line  
Address Decoder  
Writing Control  
16  
WRTGS  
VSYNC  
WRTFC  
LAT  
Command  
Decoder  
Function Control (FC) Registers  
SCLK  
READFCx  
or  
READLOD  
16  
16  
LSB  
MSB  
16-bit Common Shift Register  
SOUT  
SIN  
16  
To Analog  
GND  
Power Save  
Control  
16-bit LOD Data  
GND  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Built-In 16Kb Display Memory (SRAM)  
The TLC6946 device integrates 16K bits of SRAM to support 1- to 32-multiplexing and the TLC6948 device  
integrates 24K bits of SRAM to support 1- to 48-multiplexing. SRAM is divided into two BANKs: BANK A and  
BANK B. While BANK A is displaying, BANK B is ready to receive the data of the next frame. While BANK B is  
displaying, BANK A is ready to receive the data of next frame.  
9.3.2 GCLK Dual-Edge Operation  
The TLC694x device uses the rising edge or both edges of GCLK. The selection is made by setting the  
GCLK_EDGE bit in the function control register. By default, the TLC6946 device uses the GCLK rising edge, and  
the maximum input GCLK frequency is 33 MHz. By setting GCLK_EDGE = 1, the TLC694x device operates at  
both GCLK edges (rising and falling), and the maximum internal GCLK frequency is 50 MHz with external 25MHz  
input.  
9.3.3 Programmable Constant-Sink Channel Current  
9.3.3.1 Global Brightness Control (BC)  
The TLC694x device is able to adjust the output current of all constant-current outputs simultaneously. This  
function is called global brightness control (BC). The global BC for all outputs is programmed with a 7-bit word,  
thus all output currents can be adjusted in 128 steps from 12.5% to 100.69% for a given current-programming  
resistor, RIREF (See 1). BC data can be set through the serial interface. When the BC data changes, the output  
current also changes immediately. When the device is powered on, the BC data in the function control register is  
set to 36h as the default value.  
1. Global BC Data vs Constant-Current Ratio and Set Current Value  
BC DATA  
DECIMAL  
RATIO OF GAIN /  
GAIN_MAX (AT  
MAX BC)  
IOUT (mA) (IOLCmax= 25  
mA, TYP)  
IOUT (mA) (IOLCmax  
=
GAIN  
2.4 mA, TYP)  
BINARY  
HEX  
000 0000  
000 0001  
000 0010  
...  
0
1
00  
01  
02  
...  
4
12.5%  
13.19%  
13.88%  
...  
3.13  
3.3  
0.3  
0.32  
0.33  
...  
4.22  
4.44  
...  
2
3.47  
...  
...  
53  
011 0101  
35  
15.78  
49.31%  
12.33  
1.18  
011 0110  
(Default)  
54 (Default)  
36 (Default)  
16  
50%  
12.5  
1.2  
011 0111  
...  
55  
...  
37  
...  
16.22  
...  
50.69%  
...  
12.67  
...  
1.22  
...  
111 1101  
111 1110  
111 1111  
125  
126  
127  
7D  
7E  
7F  
31.78  
32  
99.31%  
100%  
24.83  
25  
2.38  
2.4  
32.22  
100.69%  
25.17  
2.42  
9.3.3.2 Select RIREF for a Given BC  
The maximum current per channel, IOLCmax, is determined by resistor RIREF, placed between the IREF and GND  
pins. The voltage on IREF is typically 0.8 V. RIREF can be calculated by 公式 1.  
VIREF (V)  
VIREF (V)  
1
8
BC  
RIREF (kW) =  
ìGain =  
ì32ì  
+
«
÷
IOLCmax (mA)  
IOLCmax (mA)  
144  
where  
VIREF is the internal reference voltage on IREF (0.8 V)  
IOLCmax is the maximum current for each channel  
Gain is the current gain at BC = 7E (See 1)  
(1)  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
RIREF must be between 1.02 kΩ and 10.7 kΩ in order to hold the channel sink current IOLC between 25 mA  
(typical) and 0.3 mA (typical). Otherwise, the output may be unstable.  
2. Maximum Constant Current vs External Resistor RIREF  
IOLCmax (mA)  
RIREF (kΩ, typical)  
25  
20  
15  
10  
5
1.02  
1.28  
1.71  
2.56  
5.12  
10.7  
2.4  
9.3.4 Grayscale (GS) Function (PWM Control)  
The TLC694x device can adjust the brightness of each output channel using a pulse-width-modulation (PWM)  
control scheme. The architecture of 16 bits per channel results in 65536 brightness steps, from 0% up to 100%  
brightness. The on-time (tOUT_ON) of each output (OUTn) can be calculated by 公式 2.  
tOUT _ ON = tGCLK ìGSn  
where GSn is the grayscale of channel OUTn  
(2)  
The TLC694x device implements an enhanced spectrum (ES) PWM control. The ES-PWM control can be  
selected with two different modes: 8-bit MSB + 8-bit LSB (8+8) mode, and 9-bit MSB + 7-bit LSB (9+7) mode.  
See TLC6946 Technical Reference Manual for more details.  
9.3.5 Serial Data Interface  
The TLC6948 has a flexible serial interface that can be connected to microcontrollers or digital signal processors  
in various ways. Only three pins are needed to input data into the device. More than two TLC6948s can be  
connected in series by connecting an SOUT pin from one device to the SIN pin of the next device. The SOUT pin  
can also be connected to the controller to read back data from the TLC6948 device.  
9.3.6 LED-Open Detection (LOD)  
The LED-open detection (LOD) function detects faults caused by an open circuit in any LED string or a short  
from OUTn to ground with low impedance. It does this by comparing the OUTn voltage to the LOD-detection  
threshold-voltage level set by LODVTH in the function control register. If the OUTn voltage is lower than the  
programmed voltage, the corresponding output LOD bit is set to 1 to indicate an open LED. Otherwise, the  
output of that LOD bit is 0. LOD data output by the detection circuit are valid only during the on period of that  
OUTn output channel.  
9.3.7 Caterpillar Removal  
The TLC694x device implements an internal circuit that can eliminate the caterpillar issue caused by an open  
LED. The caterpillar effect is a common issue for LED panels. The caterpillar removal function is enabled by  
setting LODRM_EN to 1 (default value after device powered on) in the function control register. When this  
function is enabled, the device automatically detects the open LED, and the corresponding channel does not turn  
on until device reset.  
9.3.8 Precharge FET  
The TLC694x internal precharge FET can prevent ghosting of multiplexed LED modules. One cause of this  
phenomenon is the charging current from parasitic capacitance on OUTn through the LED when the supply  
voltage switches from one common line to the next common line. To prevent this unwanted charging current, the  
TLC694x device uses an internal FET to pull up OUTn during the common-line switching period. As a result, no  
charging current flows through LED and ghosting is eliminated.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.3.9 Thermal Shutdown  
The thermal shutdown (TSD) function turns off all device constant-current outputs when the junction temperature  
(TJ) exceeds 170°C (typical). It resumes normal operation when TJ falls below 155°C (typical).  
9.3.10 IREF Resistor Short Protection (ISP)  
The IREF resistor short protection (ISP) function prevents unwanted large currents from flowing though the  
constant-current output when the IREF resistor is shorted accidently. The TLC694x device turns off all output  
channels when the IREF pin voltage is lower than 0.19 V (typical). When the IREF pin voltage goes higher than  
0.325 V (typical), the TLC694x device resumes normal operation.  
9.4 Device Functional Modes  
9.4.1 Normal Operating Mode  
The TLC694x device is fully functional when VCC reaches 3 V and is below 5.5 V. After power on, all OUTn of the  
TLC694x device are turned off. All the internal counters and function control registers are initialized. Write the  
proper grayscale data and function control data to enable normal device operation.  
9.4.2 Power-Save Mode (PSM)  
The power-save mode (PSM) is enabled by setting PSM_EN to 1 in the function control register.  
When powered on, the default value of this bit is 0. When this function is enabled, if all the GS data received for  
the next frame are 0, then device enters power-save mode during the display of the next frame. When the device  
is in power-save mode, it resumes normal mode when it detects non-zero GS data input. In power-save mode,  
part of analog circuits are not operational; the device total current consumption, ICC, is 1 mA(typical).  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TLC6948 device is a 16-channel constant-current sink LED driver supporting 1- to 48-multiplexing. Each  
channel has an individually adjustable 65,536-step pulse-width-modulation (PWM) grayscale (GS) control. The  
TLC6948 device implements 24 Kbits of display memory to increase the visual refresh rate and to decrease the  
grayscale data writing frequency. This integrated memory makes TLC6948 a potential for high-density, fine-pitch  
LED matrix applications.  
10.2 Typical Application  
The TLC6948 is typically connected in series to drive the LED matrix with only a few controller ports. 16  
shows a typical application diagram with TLC6948 devices connected in cascade for an LED matrix.  
VLED  
Line 0  
VLED  
Line n  
VLED  
Line 47  
OUT0  
SIN  
OUT15  
SOUT  
OUT0  
SIN  
OUT15  
SOUT  
OUT0  
SIN  
OUT15  
SOUT  
DATA  
SCLK  
VCC  
VCC  
VCC  
SCLK TLC6948  
SCLK TLC6948  
SCLK TLC6948  
LAT  
VCC  
GND  
VCC  
GND  
VCC  
GND  
Controller  
LAT  
LAT  
LAT  
IC1  
IC2  
IC3  
GSCLK  
DATA BACK  
GCLK  
IREF  
GCLK  
IREF  
GCLK  
IREF  
RIREF  
RIREF  
RIREF  
3
16. Cascading Three TLC6948 Devices  
10.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
3. Design Parameters  
DESIGN PARAMETER  
VCC and VLED voltage  
EXAMPLE VALUE  
3 V to 5.5 V  
SIN, SCLK, LAT, and GCLK voltage range  
The maximum LED forward voltage, V(F)  
Low level = GND, high level = VCC  
Red LED 2V, green and blue LED 3V  
The maximum current for each color LED,  
IOLCmax  
Red LED 10mA, green LED 6mA, blue LED 4mA.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
10.2.2 Detailed Design Procedures  
10.2.2.1 Power Supply Voltage  
The LED power supply voltage VLED must be higher than V(F) + V(KNEE). The device power supply voltage, VCC  
should be equal or higher than VLED. One example value is VLED = VCC= 3.8 V. See TLC6946 Technical  
Reference Manual for more details.  
10.2.2.2 Channel Current and Brightness Control  
See Global Brightness Control (BC) and Select RIREF for a Given BC. Select the reference-current-setting resistor  
RIREF to set the maximum channel current for each color LED. Select the BC data for the best white balance of  
the red, green, and blue LED lamp. See TLC6946 Technical Reference Manual for more details.  
10.2.2.3 SCLK and GCLK Frequency  
SCLK is the serial data shift-in clock signal; and GCLK is the PWM-control reference-clock signal. 公式 3 shows  
the minimum frequency requirement for GCLK and SCLK. See TLC6946 Technical Reference Manual for more  
details.  
fGCLK = mìnì fVR  
fSCLK = Nìnì 256ì fFPS  
where  
fGCLK is the minimum GCLK frequency for single-edge operating mode  
fSCLK is the minimum SCLK frequency  
m is the GCLK number of each sub-period, determined by the PWM mode selected  
fVR is the visual refresh rate of the entire cascading series  
N is the number of cascaded TLC6948 devices  
n is the number of scan lines  
fFPS is the frame rate  
(3)  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
10.2.3 Application Curves  
17. OUTn Waveform for ES-PWM Mode (GSn = 0001h)  
18. OUTn Waveform for ES-PWM Mode Zooming in One  
Sub-period (GSn = 0001h)  
19. OUTn Waveform for ES-PWM Mode (GSn = FFFFh)  
20. OUTn Waveform for ES-PWM Mode Zooming in One  
Sub-period (GSn = FFFFh)  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
11 Power Supply Recommendations  
Decouple the VCC power supply voltage by placing a 0.1-μF ceramic capacitor close to the VCC pin and GND  
plane. Depending on panel size, several equally distributed electrolytic capacitors must be placed on the board  
for a well-regulated LED supply voltage VLED. VLED voltage ripple must be less than 5% of its nominal value.  
12 Layout  
12.1 Layout Guidelines  
Place the decoupling capacitor near the VCC pin and GND plane.  
Place the current-programming resistor, RIREF, close to the IREF pin and the GND pin.  
Make the GND trace as wide as possible for large GND currents.  
Routing between the LED cathode and the device OUTn pin must be as short and straight as possible to reduce  
wire inductance.  
The thermal pad (QFN package) must be connected to the GND plane. Because the thermal pad is used as a  
power ground pin internally, there is a large current flow through this pad when all channels turn on.  
Furthermore, connect the thermal pad to a heat sink layer by thermal vias to reduce device temperature. One  
suggested thermal via pattern is shown in Layout Examples. For more information about suggested thermal via  
pattern and via size, see PowerPAD Thermally Enhanced Package.  
MOSFETs must be placed in the in the middle of the board, which should be laid out as symmetrically as  
possible.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
12.2 Layout Examples  
GND  
GND  
VCC  
RIREF  
1
2
3
4
5
6
7
8
9
GND  
SIN  
VCC 24  
To controller: SIN  
To controller: SCLK  
To controller: LAT  
IREF 23  
SOUT 22  
GCLK 21  
OUT15 20  
OUT14 19  
OUT13 18  
OUT12 17  
OUT11 16  
OUT10 15  
OUT9 14  
OUT8 13  
SCLK  
LAT  
To controller: SOUT  
To controller: GCLK  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
10 OUT5  
11 OUT6  
12 OUT7  
VLED  
VLED  
Copyright © 2017, Texas Instruments Incorporated  
21. SSOP-24 Package Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TLC6946, TLC6948  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
www.ti.com.cn  
Layout Examples (接下页)  
VCC  
To controller: SIN  
GND  
To controller: SCLK  
To controller: LAT  
To controller: GCLK  
To controller: SOUT  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
OUT15  
OUT14  
OUT13  
OUT12  
OUT11  
OUT10  
GND  
OUT0  
OUT1  
OUT2  
OUT3  
VLED  
VLED  
OUT4  
OUT5  
OUT6  
OUT7  
OUT9  
OUT8  
GND  
Copyright © 2018, Texas Instruments Incorporated  
22. VQFN-24 Package Layout Example  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
TLC6946, TLC6948  
www.ti.com.cn  
ZHCSIC6A JUNE 2018REVISED JANUARY 2019  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
TLC694x 16 通道 LED 驱动器技术参考手册》  
《半导体和 IC 封装热指标》  
13.2 相关链接  
4 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具与软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TLC6946  
TLC6948  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更,恕不另行通知,  
且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC6946DBQR  
TLC6946RGER  
ACTIVE  
ACTIVE  
SSOP  
VQFN  
DBQ  
RGE  
24  
24  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TLC6946  
NIPDAU  
TLC  
6946  
TLC6948DBQR  
TLC6948RGER  
ACTIVE  
ACTIVE  
SSOP  
VQFN  
DBQ  
RGE  
24  
24  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TLC6948  
TLC  
6948  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC6946DBQR  
TLC6946RGER  
TLC6948DBQR  
TLC6948RGER  
SSOP  
VQFN  
SSOP  
VQFN  
DBQ  
RGE  
DBQ  
RGE  
24  
24  
24  
24  
2500  
3000  
2500  
3000  
330.0  
330.0  
330.0  
330.0  
16.4  
12.4  
16.4  
12.4  
6.5  
4.25  
6.5  
9.0  
4.25  
9.0  
2.1  
1.15  
2.1  
8.0  
8.0  
8.0  
8.0  
16.0  
12.0  
16.0  
12.0  
Q1  
Q2  
Q1  
Q2  
4.25  
4.25  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC6946DBQR  
TLC6946RGER  
TLC6948DBQR  
TLC6948RGER  
SSOP  
VQFN  
SSOP  
VQFN  
DBQ  
RGE  
DBQ  
RGE  
24  
24  
24  
24  
2500  
3000  
2500  
3000  
356.0  
367.0  
356.0  
367.0  
356.0  
367.0  
356.0  
367.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLC6946DBQR

支持 32 路多路复用的 16 通道 16 位 ES-PWM 恒流 LED 驱动器 | DBQ | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC6946RGER

支持 32 路多路复用的 16 通道 16 位 ES-PWM 恒流 LED 驱动器 | RGE | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC6948

支持 48 路多路复用的 16 通道 16 位 ES-PWM 恒流 LED 驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC6948DBQR

支持 48 路多路复用的 16 通道 16 位 ES-PWM 恒流 LED 驱动器 | DBQ | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC6948RGER

支持 48 路多路复用的 16 通道 16 位 ES-PWM 恒流 LED 驱动器 | RGE | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC69600

8 线路扫描 MOSFET 控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC69600RTWR

8 线路扫描 MOSFET 控制器 | RTW | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC69600YBHR

8 线路扫描 MOSFET 控制器 | YBH | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC69601

具有 16 通道集成电流阱的局部调光 Mini-LED 背光驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC69601RTWR

具有 16 通道集成电流阱的局部调光 Mini-LED 背光驱动器 | RTW | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC69601YBHR

具有 16 通道集成电流阱的局部调光 Mini-LED 背光驱动器 | YBH | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC69602

具有 16 通道集成电流阱的 32 Mini-LED 矩阵局部调光背光驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI