TLC7226 [TI]

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS;
TLC7226
型号: TLC7226
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

文件: 总19页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢉ ꢊꢋꢌꢍ ꢊꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋꢁ ꢔ ꢓ ꢂꢔ ꢕꢖ ꢏꢍ ꢀꢏ ꢍ ꢗ  
SLAS060E – JANUARY 1995 – REVISED JANUARY 2003  
features  
DW OR N PACKAGE  
(TOP VIEW)  
D
D
D
D
D
Four 8-Bit D/A Converters  
Microprocessor Compatible  
TTL/CMOS Compatible  
OUTB  
OUTA  
OUTC  
OUTD  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Single Supply Operation Possible  
CMOS Technology  
V
V
SS  
DD  
REF  
AGND  
DGND  
DB7  
DB6  
DB5  
A0  
A1  
applications  
WR  
DB0  
DB1  
DB2  
DB3  
D
D
D
Process Control  
Automatic Test Equipment  
Automatic Calibration of Large System  
Parameters, e.g. Gain/Offset  
DB4  
description  
FK PACKAGE  
(TOP VIEW)  
The TLC7226C, TLC7226I, and TLC7226M  
consist of four 8-bit voltage-output digital-to-  
analog converters (DACs) with output buffer  
amplifiers and interface logic on a single  
monolithic chip.  
3
4
2
1
20 19  
REF  
AGND  
DGND  
DB7  
V
DD  
18  
17  
16  
15  
14  
Separate on-chip latches are provided for each of  
the four DACs. Data is transferred into one of  
these data latches through a common 8-bit  
TTL/CMOS-compatible 5-V input port. Control  
inputs A0 and A1 determine which DAC is loaded  
when WR goes low. The control logic is speed  
compatible with most 8-bit microprocessors.  
A0  
5
6
7
A1  
WR  
DB0  
DB6  
8
9
10 11 12 13  
Each DAC includes an output buffer amplifier  
capable of sourcing up to 5 mA of output current.  
The TLC7226 performance is specified for input reference voltages from 2 V to V  
– 4 V with dual supplies.  
DD  
The voltage mode configuration of the DACs allows the TLC7226 to be operated from a single power supply  
rail at a reference of 10 V.  
The TLC7226 is fabricated in a LinBiCMOS process that has been specifically developed to allow high-speed  
digital logic circuits and precision analog circuits to be integrated on the same chip. The TLC7226 has a common  
8-bit data bus with individual DAC latches. This provides a versatile control architecture for simple interface to  
microprocessors. All latch-enable signals are level triggered.  
Combining four DACs, four operational amplifiers, and interface logic into either a 0.3-inch wide, 20-terminal  
dual-in-line IC (DIP) or a small 20-terminal small-outline IC (SOIC) allows a dramatic reduction in board space  
requirements and offers increased reliability in systems using multiple converters. The Leadless Ceramic Chip  
Carrier (LCCC) package provides for operation at military temperature range. The pinout is aimed at optimizing  
board layout with all of the analog inputs and outputs at one end of the package and all of the digital inputs at  
the other.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinBiCMOS is a trademark of Texas Instruments.  
Copyright 2003, Texas Instruments Incorporated  
ꢀꢤ  
ꢠ ꢤ ꢡ ꢠꢙ ꢚꢮ ꢜꢛ ꢟ ꢧꢧ ꢥꢟ ꢝ ꢟ ꢞ ꢤ ꢠ ꢤ ꢝ ꢡ ꢩ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢂꢆ ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢈ  
ꢉꢊ ꢋ ꢌꢍ ꢊ ꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓ ꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋ ꢁꢔ ꢓ ꢂꢔ ꢕꢖꢏ ꢍꢀ ꢏꢍꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
description (continued)  
The TLC7226C is characterized for operation from 0°C to 70°C. The TLC7226I is characterized for operation  
from 25°C to 85°C. The TLC7226M is characterized for operation from 55°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SMALL OUTLINE  
(DW)  
PLASTIC DIP  
(N)  
LCCC  
(FK)  
0°C to 70°C  
25°C to 85°C  
55°C to 125°C  
TLC7226CDW  
TLC7226IDW  
TLC7226CN  
TLC7226IN  
TLC7226MFKB  
functional block diagram  
4
REF  
_
+
2
1
OUTA  
OUTB  
8
8
8
8
Latch  
A
DAC A  
DAC B  
_
+
Latch  
B
8
7–14  
DB0–DB7  
_
+
20  
19  
OUTC  
OUTD  
8
8
8
8
Latch  
C
DAC C  
DAC D  
_
+
Latch  
D
15  
17  
16  
WR  
A0  
Control  
Logic  
A1  
schematic of outputs  
EQUIVALENT ANALOG OUTPUT  
V
DD  
Output  
450 µA  
V
SS  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢉ ꢊꢋꢌꢍ ꢊꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋꢁ ꢔ ꢓ ꢂꢔ ꢕꢖ ꢏꢍ ꢀꢏ ꢍ ꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
Terminal Functions  
TERMINAL  
NAME NO.  
AGND  
I/O  
DESCRIPTION  
5
Analog ground. AGND is the reference and return terminal for the analog signals and supply.  
DAC select inputs. The combination of high or low levels select either DACA, DACB, DACC, or DACD.  
Digital ground. DGND is the reference and return terminal for the digital signals and supply.  
Digital DAC data inputs. DB0DB7 are the input digital data used for conversion.  
DACA output. OUTA is the analog output of DACA.  
A0, A1  
DGND  
DB0DB7  
OUTA  
OUTB  
OUTC  
OUTD  
REF  
17, 16  
6
I
147  
2
I
O
O
O
O
I
1
DACB output. OUTB is the analog output of DACB.  
20  
19  
4
DACC output. OUTC is the analog output of DACC.  
DACD output. OUTD is the analog output of DACD.  
Voltage reference input. The voltage level on REF determines the full scale analog output.  
Positive supply voltage input terminal  
V
V
18  
3
DD  
Negative supply voltage input terminal  
SS  
WR  
15  
I
Write input. WR selects DAC transparency or latch mode. The selected input latch is transparent when WR  
is low.  
Terminal numbers shown are for the DW, N, and FK packages.  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V : AGND or DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 17 V  
DD  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 24 V  
SS  
Supply voltage range, V : AGND or DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V to 0.3 V  
SS  
Voltage range between AGND and DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V to 17 V  
Input voltage range, V (to DGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
+ 0.3 V  
I
DD  
Reference voltage range: V (to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
ref  
ref  
DD  
V
(to V  
)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 20 V  
SS  
Output voltage range, V (to AGND) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V to V  
O
SS  
DD  
Continuous total power dissipation at (or below) T = 25°C (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . 500 mW  
A
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
E suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N packages . . . . . . . . . . . . . . 260°C  
Case temperature for 10 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
The V  
SS  
terminal is connected to the substrate and must be tied to the most negative supply voltage applied to the device.  
NOTES: 1. Output voltages may be shorted to AGND provided that the power dissipation of the package is not exceeded. Typically short circuit  
current to AGND is 60 mA.  
2. For operation above T = 75°C, derate linearly at the rate of 2 mW/°C.  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢂꢆ ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢈ  
ꢌꢍ  
ꢀꢔ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
recommended operating conditions  
MIN MAX  
UNIT  
Supply voltage, V  
Supply voltage, V  
11.4  
5.5  
2
16.5  
0
V
V
DD  
SS  
High-level input voltage, V  
IH  
V
Low-level input voltage, V  
IL  
0.8  
V
Reference voltage, V  
ref  
0
2
V
DD  
4  
V
Load resistance, R  
kΩ  
ns  
ns  
ns  
ns  
ns  
L
Setup time, address valid before WR, t  
(see Figure 6)  
V
V
V
V
V
= 11.4 V to 16.5 V  
= 11.4 V to 16.5 V  
= 11.4 V to 16.5 V  
= 11.4 V to 16.5 V  
= 11.4 V to 16.5 V  
*0  
su(AW)  
DD  
DD  
DD  
DD  
DD  
*45  
*0  
Setup time, data valid before WR, t  
(see Figure 6)  
(see Figure 6)  
su(DW)  
Hold time, address valid before WR, t  
h(AW)  
*10  
*50  
0
Hold time, data valid before WR, t  
(see Figure 6)  
h(DW)  
Pulse duration, WR low, t (see Figure 6)  
w
C suffix  
I suffix  
70  
25  
55  
85  
Operating free-air temperature, T  
°C  
A
M suffix  
125  
* This parameter is not tested for M suffix devices.  
electrical characteristics over recommended operating free-air temperature range  
dual power supply over recommended power supply and reference voltage ranges, AGND = DGND = 0 V  
(unless otherwise noted)  
PARAMETER  
Input current, digital  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
V = 0 V or V  
±1  
µA  
I
I
DD  
V = 0.8 V or 2.4 V,  
V
= 16.5 V,  
I
V
DD  
No load  
Supply current  
6
16  
10  
mA  
(DD)  
(SS)  
= 5 V,  
SS  
V = 0.8 V or 2.4 V, No load  
Supply current  
4
4
mA  
kΩ  
I
r
Reference input resistance  
Power supply sensitivity  
2
i(ref)  
V  
DD  
= ±5%  
0.01  
%/%  
C and I suffix  
M suffix  
65  
All 0s loaded  
All 1s loaded  
*30  
REF input  
*300  
8
C
Input capacitance  
pF  
i
C and I suffix  
M suffix  
Digital inputs  
*12  
* This parameter is not tested for M suffix devices.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢉ ꢊꢋꢌꢍ ꢊꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋꢁ ꢔ ꢓ ꢂꢔ ꢕꢖ ꢏꢍ ꢀꢏ ꢍ ꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
operating characteristics over recommended operating free-air temperature range  
dual power supply over recommended power supply and reference voltage ranges, AGND = DGND = 0 V  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Slew rate  
*2.5  
Vµs  
Positive full scale  
*5  
*7  
Settling time to 1/2 LSB  
V
ref  
= 10 V  
µs  
Negative full scale  
Resolution  
8
bits  
LSB  
Total unadjusted error  
Linearity error  
Full-scale error  
Gain error  
±2  
±1  
±2  
Differential/integral  
LSB  
V
V
= 15 V ±5%,  
V
= 10 V  
= 10 V  
DD  
ref  
LSB  
±0.25  
±20  
±50  
±20  
50  
LSB  
Full scale  
= 14 V to 16.5 V,  
V
ref  
ppm/°C  
µV/°C  
mV  
DD  
Temperature coefficient of gain  
Zero-code error  
Zero-code error  
±80  
Digital crosstalk glitch impulse area  
V
ref  
= 0  
nVs  
* This parameter is not tested for M suffix devices.  
single power supply, V  
= 14.25 V to 15.75 V, V = AGND = DGND = 0 V, V = 10 V (unless otherwise noted)  
SS ref  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply current, I  
Slew rate  
V = 0.8 V or 2.4 V, No load  
I
5
13  
mA  
DD  
*2  
Vµs  
Positive full scale  
*5  
Settling time to 1/2 LSB  
µs  
Negative full scale  
*20  
Resolution  
8
bits  
LSB  
Total unadjusted error  
Full-scale error  
±2  
±2  
LSB  
Full scale  
V
DD  
= 14 V to 16.5 V,  
V
ref  
= 10 V  
±20  
±50  
ppm/°C  
µV/°C  
LSB  
Temperature coefficient of gain  
Zero-code error  
Differential  
Linearity error  
±1  
Digital crosstalk-glitch impulse area  
50  
nVs  
* This parameter is not tested for M suffix devices.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢂꢆ ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢈ  
ꢉꢊ ꢋ ꢌꢍ ꢊ ꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓ ꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋ ꢁꢔ ꢓ ꢂꢔ ꢕꢖꢏ ꢍꢀ ꢏꢍꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
PARAMETER MEASUREMENT INFORMATION  
t
su(DW)  
V
DD  
Data  
0 V  
t
h(DW)  
V
DD  
Address  
0 V  
t
h(AW)  
t
su(AW)  
t
w
V
DD  
WR  
0 V  
NOTES: A. t = t = 20 ns over V  
DD  
range.  
r
f
B. The timing measurement reference level is equal to V + V  
IH  
IL  
divided by 2.  
C. The selected input latch is transparent while WR is low. Invalid  
data during this time can cause erroneous outputs.  
Figure 1. Write-Cycle Voltage Waveforms  
TYPICAL CHARACTERISTICS  
OUTPUT CURRENT (SINK)  
OUTPUT CURRENT  
vs  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
700  
600  
500  
400  
300  
200  
200  
150  
T
V
= 25°C  
A
= 15 V  
DD  
V
= 15 V  
DD  
Source Current  
Short-Circuit  
Limiting  
100  
50  
V
= 5 V  
SS  
V
= 0  
SS  
0
0.1  
0.2  
T
V
= 25°C  
A
= 5 V  
SS  
Digital In = 0 V  
100  
0
0.3  
0.4  
Sinking  
Current Source  
0
1
2
3
4
5
6
7
8
9
10  
2  
1  
0
1
2
V
O
Output Voltage V  
V
O
Output Voltage V  
Figure 2  
Figure 3  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢉ ꢊꢋꢌꢍ ꢊꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋꢁ ꢔ ꢓ ꢂꢔ ꢕꢖ ꢏꢍ ꢀꢏ ꢍ ꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
PRINCIPLES OF OPERATION  
AGND bias for direct bipolar output operation  
The TLC7226 can be used in bipolar operation without adding more external operational amplifiers as shown  
in Figure 4 by biasing AGND to V . This configuration provides an excellent method for providing a direct  
SS  
bipolar output with no additional components. The transfer values are shown in Table 1.  
REF (V = 5 V)  
ref  
V
DD  
4
18  
TLC7226  
_
OUT  
2
Output range  
(5 V to 5 V)  
AGND  
+
DAC A  
5
3
6
V
DGND  
SS  
5 V  
Digital inputs omitted for clarity.  
Figure 4. AGND Bias for Direct Bipolar Operation  
Table 1. Bipolar (Offset Binary) Code  
DAC LATCH CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
127  
128  
ref ǒ Ǔ  
1111  
1111  
) V  
) V  
1
ref ǒ Ǔ  
1000  
1000  
0111  
0001  
0000  
1111  
128  
0 V  
1
ref ǒ Ǔ  
* V  
128  
127  
128  
ref ǒ Ǔ  
0000  
0000  
0001  
0000  
* V  
128  
ref ǒ Ǔ+ * V  
V  
ref  
128  
AGND bias for positive output offset  
The TLC7226 AGND terminal can be biased above or below the system ground terminal, DGND, to provide an  
offset analog output voltage level. Figure 5 shows a circuit configuration to achieve this for channel A of the  
TLC7226. The output voltage, V , at OUTA can be expressed as:  
O
A ǒVIǓ  
V
+ V  
) D  
(1)  
O
BIAS  
where D is a fractional representation of the digital input word (0 D 255/256).  
A
Increasing AGND above system GND reduces the output range. V  
specified operation. Since the AGND terminal is common to all four DACs, this method biases up the output  
V must be at least 4 V to ensure  
ref  
DD  
voltages of all the DACs in the TLC7226. Supply voltages V  
to DGND.  
and V for the TLC7226 should be referenced  
DD  
SS  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢂꢆ ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢈ  
ꢉꢊ ꢋ ꢌꢍ ꢊ ꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓ ꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋ ꢁꢔ ꢓ ꢂꢔ ꢕꢖꢏ ꢍꢀ ꢏꢍꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
PRINCIPLES OF OPERATION  
AGND bias for positive output offset (continued)  
V
V
DD  
ref  
4
18  
TLC7226  
V
I
_
2
OUTA  
AGND  
+
DAC A  
3
5
6
V
bias  
V
SS  
DGND  
Digital inputs omitted for clarity.  
Figure 5. AGND Bias Circuit  
interface logic information  
Address lines A0 and A1 select which DAC accepts data from the input port. Table 2 shows the operations of  
the four DACs. Figure 6 shows the input control logic. When the WR signal is low, the input latches of the  
selected DAC are transparent and the output responds to activity on the data bus. The data is latched into the  
addressed DAC latch on the rising edge of WR. While WR is high, the analog outputs remain at the value  
corresponding to the data held in their respective latches.  
Table 2. Function Table  
CONTROL INPUTS  
OPERATION  
WR  
A1  
A2  
H
X
X
No operation  
Device not selected  
DAC A transparent  
DAC A latched  
DAC B transparent  
DAC B latched  
DAC C transparent  
DAC C latched  
DAC D transparent  
DAC D latched  
L
L
L
L
L
L
L
L
L
H
H
L
L
H
H
L
H
H
H
H
L = low, H = high, X = irrelevant  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢉ ꢊꢋꢌꢍ ꢊꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋꢁ ꢔ ꢓ ꢂꢔ ꢕꢖ ꢏꢍ ꢀꢏ ꢍ ꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
PRINCIPLES OF OPERATION  
interface logic information (continued)  
17  
A0  
To Latch A  
To Latch B  
16  
A1  
To Latch C  
To Latch D  
15  
WR  
Figure 6. Input Control Logic  
unipolar output operation  
The unipolar output operation is the basic mode of operation for each channel of the TLC7226, with the output  
voltages having the same positive polarity as V . The TLC7226 can be operated with a single power supply  
ref  
(V = AGND) or with positive/negative power supplies. The voltage at V must never be negative with respect  
SS  
ref  
to AGND to prevent parasitic transistor turnon. Connections for the unipolar output operation are shown in  
Figure 7. Transfer values are shown in Table 3.  
Table 3. Unipolar Code  
_
2
DAC LATCH CONTENTS  
OUTA  
OUTB  
4
ANALOG OUTPUT  
+
REF  
DAC A  
DAC B  
DAC C  
DAC D  
MSB  
LSB  
255  
256  
ref ǒ Ǔ  
1111  
1111  
) V  
_
+
1
20  
19  
129  
256  
ref ǒ Ǔ  
1000  
0001  
) V  
) V  
) V  
) V  
V
128  
ref  
2
ref ǒ Ǔ+ )  
1000  
0111  
0000  
1111  
256  
_
+
OUTC  
OUTD  
127  
ref ǒ Ǔ  
256  
1
ref ǒ Ǔ  
0000  
0000  
0001  
0000  
_
+
256  
0 V  
1
256  
8  
NOTE A. 1 LSB + ǒVref Ǔ + V  
ref ǒ Ǔ  
2
Figure 7. Unipolar Output Circuit  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢂꢆ ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢈ  
ꢉꢊ ꢋ ꢌꢍ ꢊ ꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓ ꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋ ꢁꢔ ꢓ ꢂꢔ ꢕꢖꢏ ꢍꢀ ꢏꢍꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
PRINCIPLES OF OPERATION  
linearity, offset, and gain error using single-ended power supplies  
When an amplifier is operated from a single power supply, the voltage offset can still be either positive or  
negative. With a positive offset, the output voltage changes on the first code change. With a negative offset the  
output voltage may not change with the first code depending on the magnitude of the offset voltage.  
The output amplifier, with a negative voltage offset, attempts to drive the output to a negative voltage. However,  
because the most negative supply rail is ground, the output cannot be driven to a negative voltage.  
So when the output offset voltage is negative, the output voltage remains at zero volts until the input code value  
produces a sufficient output voltage to overcome the inherent negative offset voltage, resulting in a transfer  
function shown in Figure 8.  
Output  
Voltage  
0 V  
DAC Code  
Negative  
Offset  
Figure 8. Effect of Negative Offset (Single Power Supply)  
This negative offset error, not the linearity error, produces the breakpoint. The transfer function would have  
followed the dotted line if the output buffer could be driven to a negative voltage.  
For a DAC, linearity is measured between zero input code (all inputs 0) and full scale code (all inputs 1) after  
offset and full scale are adjusted out or accounted for in some way. However, single power supply operation does  
not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity  
in the unipolar mode is measured between full scale code and the lowest code which produces a positive output  
voltage.  
The code is calculated from the maximum specification for the negative offset.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢉ ꢊꢋꢌꢍ ꢊꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋꢁ ꢔ ꢓ ꢂꢔ ꢕꢖ ꢏꢍ ꢀꢏ ꢍ ꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
APPLICATION INFORMATION  
bipolar output operation using external amplifier  
Each of the DACs of the TLC7226 can also be individually configured to provide bipolar output operation, using  
an external amplifier and two resistors per channel. Figure 9 shows a circuit used to implement offset binary  
coding (bipolar operation) with DAC A of the TLC7226. In this case:  
R2  
R1  
R2  
R1  
(2)  
  ǒDA  
refǓ*   ǒVrefǓ  
V
+ 1 )  
  V  
O
with R1 + R2  
+ ǒ2D * 1Ǔ  V  
V
O
A
ref  
where D is a fractional representation of the digital word in latch A.  
A
Mismatch between R1 and R2 causes gain and offset errors. Therefore, these resistors must match and track  
over temperature. The TLC7226 can be operated with a single power supply or from positive and negative  
power supplies.  
REF  
R1  
R2  
4
15 V  
TLC7226  
_
+
_
+
V
O
2
DAC A  
15 V  
R1 = R2 = 10 kΩ ±0.1%  
Figure 9. Bipolar Output Circuit  
staircase window comparator  
In many test systems, it is important to be able to determine whether some parameter lies within defined limits.  
The staircase window comparator shown in Figure 10 is a circuit that can be used to measure the V and V  
OH  
OL  
thresholds of a TTL device under test. Upper and lower limits on both V  
and V can be programmed using  
OH  
OL  
the TLC7226. Each adjacent pair of comparators forms a window of programmable size (see Figure 11). When  
the test voltage (V ) is within a window, then the output for that window is higher. With a reference of 2.56 V  
test  
applied to the REF input, the minimum window size is 10 mV.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢂꢆ ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢈ  
ꢉꢊ ꢋ ꢌꢍ ꢊ ꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓ ꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋ ꢁꢔ ꢓ ꢂꢔ ꢕꢖꢏ ꢍꢀ ꢏꢍꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
APPLICATION INFORMATION  
staircase window comparator (continued)  
5 V  
Reference Voltage  
V
test  
From DUT  
10 kΩ  
+
_
4
Window 1  
REF  
+
_
5 V  
10 kΩ  
V
V
2
OH  
+
_
OUTA  
Window 2  
+
_
5 V  
TLC7226  
10 kΩ  
OH  
1
+
_
OUTB  
Window 3  
+
_
5 V  
10 kΩ  
V
V
OL  
20  
19  
+
_
OUTC  
OUTD  
Window 4  
+
_
5 V  
10 kΩ  
OL  
+
_
Window 5  
AGND  
+
_
5
Figure 10. Logic Level Measurement  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢉ ꢊꢋꢌꢍ ꢊꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋꢁ ꢔ ꢓ ꢂꢔ ꢕꢖ ꢏꢍ ꢀꢏ ꢍ ꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
APPLICATION INFORMATION  
staircase window comparator (continued)  
REF  
Window 1  
Window 2  
OUTA  
OUTB  
Window 3  
OUTC  
OUTD  
Window 4  
Window 5  
AGND  
Figure 11. Adjacent Window Structure  
The circuit can easily be adapted as shown in Figure 12 to allow for overlapping of windows. When the three  
outputs from this circuit are decoded, five different nonoverlapping programmable window possibilities can  
again be defined (see Figure 13).  
5 V  
Reference Voltage  
V
10 kΩ  
test  
From DUT  
+
_
4
Window 1  
REF  
OUTA  
+
_
2
1
5 V  
10 kΩ  
+
_
OUTB  
Window 2  
TLC7226  
OUTC  
+
_
20  
19  
5 V  
10 kΩ  
+
_
OUTD  
Window 3  
AGND  
+
_
5
Figure 12. Overlapping Window Circuit  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢂꢆ ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢈ  
ꢉꢊ ꢋ ꢌꢍ ꢊ ꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓ ꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋ ꢁꢔ ꢓ ꢂꢔ ꢕꢖꢏ ꢍꢀ ꢏꢍꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
APPLICATION INFORMATION  
staircase window comparator (continued)  
REF  
Window 1  
OUTB  
Windows 1 and 2  
OUTA  
Window 2  
OUTD  
OUTC  
Windows 2 and 3  
Window 3  
AGND  
Figure 13. Overlapping Window Structure  
output buffer amplifier  
The unity-gain output amplifier is capable of sourcing 5 mA into a 2-kload and can drive a 3300-pF capacitor.  
The output can be shorted to AGND indefinitely or it can be shorted to any voltage between V  
consistent with the maximum device power dissipation.  
and V  
SS  
DD  
multiplying DAC  
The TLC7226 can be used as a multiplying DAC when the reference signal is maintained between 2 V and  
4 V. When this configuration is used, V should be 14.25 V to 15.75 V. A low output-impedance buffer  
V
DD  
DD  
should be used so that the input signal is not loaded by the resistor ladder. Figure 14 shows the general  
schematic.  
15 V  
1/4 TLC7226  
R1  
15 V  
_
+
V
ref  
_
V
O
4
DAC  
+
OP07  
AC Reference  
Input Signal  
AGND  
5
DGND  
6
R2  
Figure 14. AC Signal Input Scheme  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢓꢇ  
ꢀꢋ  
ꢀꢔ  
ꢏꢍ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PIN SHOWN  
PINS **  
0.050 (1,27)  
16  
20  
24  
28  
DIM  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
0.410  
0.510  
0.610  
0.710  
A MAX  
A MIN  
(10,41) (12,95) (15,49) (18,03)  
16  
9
0.400  
0.500  
0.600  
0.700  
(10,16) (12,70) (15,24) (17,78)  
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°ā8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
4040000/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢂꢆ ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢈ  
ꢉꢊ ꢋ ꢌꢍ ꢊ ꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓ ꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋ ꢁꢔ ꢓ ꢂꢔ ꢕꢖꢏ ꢍꢀ ꢏꢍꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
MECHANICAL INFORMATION  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢂ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢄꢅ ꢇ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢈ  
ꢉ ꢊꢋꢌꢍ ꢊꢎꢁ ꢏ ꢐ ꢑꢒꢇ ꢀ ꢌꢇ ꢓꢇ ꢀꢋꢁ ꢑꢀꢔ ꢑꢋꢕꢋꢁ ꢔ ꢓ ꢂꢔ ꢕꢖ ꢏꢍ ꢀꢏ ꢍ ꢗ  
SLAS060E JANUARY 1995 REVISED JANUARY 2003  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23.37)  
0.975  
(24,77)  
A MAX  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21.59)  
0.940  
(23,88)  
A MIN  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.020 (0,51) MIN  
0.310 (7,87)  
0.290 (7,37)  
0.035 (0,89) MAX  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°ā15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
14/18 PIN ONLY  
4040049/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001)  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

TLC7226C

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7226CDW

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7226CDWG4

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7226CDWR

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7226CDWRG4

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7226CN

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7226CNE4

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7226C_07

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7226EDW

QUAD, PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, PDSO20, PLASTIC, SOIC-20
TI

TLC7226EDWR

QUAD, PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, PDSO20, PLASTIC, SOIC-20
TI

TLC7226EN

QUAD, PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, PDIP20, PLASTIC, DIP-20
TI

TLC7226I

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI