TLC7528EDWR [TI]

DUAL 8-BI MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS; 双8 -BI倍增数字 - 模拟转换器
TLC7528EDWR
型号: TLC7528EDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL 8-BI MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
双8 -BI倍增数字 - 模拟转换器

转换器
文件: 总27页 (文件大小:1031K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢊꢋꢌ ꢁ ꢆ ꢍꢎꢉ ꢀ ꢏ ꢋꢁꢀꢉ ꢐ ꢁꢑ ꢉꢒ ꢓ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
DW, N OR PW PACKAGE  
(TOP VIEW)  
D
D
D
D
D
Easily Interfaced to Microprocessors  
On-Chip Data Latches  
Monotonic Over the Entire A/D Conversion  
Range  
AGND  
OUTA  
RFBA  
REFA  
DGND  
OUTB  
RFBB  
REFB  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Interchangeable With Analog Devices  
AD7528 and PMI PM-7528  
V
DD  
WR  
Fast Control Signaling for Digital Signal  
Processor (DSP) Applications Including  
Interface With TMS320  
DACA/DACB  
(MSB) DB7  
DB6  
CS  
DB0 (LSB)  
DB1  
D
D
Voltage-Mode Operation  
CMOS Technology  
DB5  
DB2  
DB4  
DB3  
KEY PERFORMANCE SPECIFICATIONS  
FN PACKAGE  
(TOP VIEW)  
Resolution  
Linearity Error  
Power Dissipation at V  
Settling Time at V  
8 bits  
1/2LSB  
20mW  
100ns  
80ns  
= 5V  
DD  
= 5V  
DD  
Propagation Delay Time at V  
DD  
= 5V  
3
2 1 20 19  
REFB  
description  
REFA  
4
DGND  
5
18  
17  
16  
15  
14  
V
DD  
The TLC7528C, TLC7528E, and TLC7528I are  
dual, 8-bit, digital-to-analog converters (DACs)  
designed with separate on-chip data latches and  
feature exceptionally close DAC-to-DAC match-  
ing. Data are transferred to either of the two DAC  
data latches through a common, 8-bit, input port.  
Control input DACA/DACB determines which  
DAC is to be loaded. The load cycle of these  
devices is similar to the write cycle of a  
random-access memory, allowing easy interface  
to most popular microprocessor buses and output  
ports. Segmenting the high-order bits minimizes  
glitches during changes in the most significant  
bits, where glitch impulse is typically the  
strongest.  
WR  
DACA/DACB  
6
7
8
CS  
(MSB) DB7  
DB6  
DB0 (LSB)  
9 10 11 12 13  
These devices operate from a 5V to 15V power supply and dissipates less than 15mW (typical). The 2- or  
4-quadrant multiplying makes these devices a sound choice for many microprocessor-controlled gain-setting  
and signal-control applications. It can be operated in voltage mode, which produces a voltage output rather than  
a current output. Refer to the typical application information in this data sheet.  
The TLC7528C is characterized for operation from 0°C to +70°C. The TLC7528I is characterized for operation  
from −25°C to +85°C. The TLC7528E is characterized for operation from 40°C to +85°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢐꢖ ꢔ ꢊꢋ ꢂ ꢀꢉ ꢔ ꢒ ꢊ ꢌꢀꢌ ꢘꢙ ꢚ ꢛꢜ ꢝ ꢞꢟ ꢘꢛꢙ ꢘꢠ ꢡꢢ ꢜ ꢜ ꢣꢙꢟ ꢞꢠ ꢛꢚ ꢤꢢꢥ ꢦꢘꢡ ꢞꢟ ꢘꢛꢙ ꢧꢞ ꢟꢣ ꢨ  
ꢐꢜ ꢛ ꢧꢢꢡ ꢟ ꢠ ꢡ ꢛꢙ ꢚꢛ ꢜ ꢝ ꢟ ꢛ ꢠ ꢤꢣ ꢡ ꢘꢚ ꢘꢡꢞ ꢟꢘ ꢛꢙꢠ ꢤꢣ ꢜ ꢟꢩ ꢣ ꢟꢣ ꢜ ꢝꢠ ꢛꢚ ꢀꢣꢪ ꢞꢠ ꢉꢙꢠ ꢟꢜ ꢢꢝ ꢣꢙꢟ ꢠ  
ꢠ ꢟ ꢞ ꢙꢧ ꢞ ꢜꢧ ꢫ ꢞ ꢜꢜ ꢞ ꢙ ꢟꢬꢨ ꢐꢜ ꢛ ꢧꢢꢡ ꢟꢘꢛꢙ ꢤꢜ ꢛꢡ ꢣꢠ ꢠꢘ ꢙꢭ ꢧꢛꢣ ꢠ ꢙꢛꢟ ꢙꢣ ꢡꢣ ꢠꢠ ꢞꢜ ꢘꢦ ꢬ ꢘꢙꢡ ꢦꢢꢧ ꢣ  
ꢟ ꢣ ꢠ ꢟꢘ ꢙꢭ ꢛꢚ ꢞ ꢦꢦ ꢤꢞ ꢜ ꢞ ꢝ ꢣ ꢟ ꢣ ꢜ ꢠ ꢨ  
Copyright 2000−2008, Texas Instruments Incorporated  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢉꢓ  
ꢀꢔ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
functional block diagram  
14  
DB0  
REFA  
4
3
2
13  
12  
11  
RFBA  
OUTA  
8
8
Input  
Data  
DACA  
Latch A  
10  
Buffer  
Inputs  
9
8
1
AGND  
7
DB7  
19  
20  
RFBB  
OUTB  
6
8
DACA/DACB  
8
16  
15  
DACB  
18  
Latch B  
Logic  
Control  
WR  
CS  
REFB  
operating sequence  
t
t
t
su(CS)  
h(CS)  
CS  
t
)
su(DAC  
h(DAC)  
DACA/DACB  
WR  
t
w(WR)  
t
t
h(D)  
su(D)  
Data In Stable  
DB0DB7  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢊꢋꢌ ꢁ ꢆ ꢍꢎꢉ ꢀ ꢏ ꢋꢁꢀꢉ ꢐ ꢁꢑ ꢉꢒ ꢓ  
ꢓꢉ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(to AGND or DGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to 16.5V  
DD  
Voltage between AGND and DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (to DGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to V  
V
DD  
+ 0.3  
DD  
I
Reference voltage, V  
Feedback voltage V  
or V  
or V  
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V  
refA  
RFBA  
refB  
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V  
RFBB  
Input voltage (voltage mode out A, out B to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to V  
+ 0.3  
DD  
Output voltage, V  
or V  
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V  
OA  
OB  
Peak input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10µA  
Operating free-air temperature range, T : TLC7528C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
A
TLC7528I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −25°C to +85°C  
TLC7528E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to +85°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to +150°C  
stg  
Case temperature for 10 seconds, T : FN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +260°C  
C
Lead temperature 1,6mm (1/16 inch) from case for 10 seconds: DW or N package . . . . . . . . . . . . . . +260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
package/ordering information  
For the most current package and ordering information, see the Package Option Addendum at the end of this  
document, or see the TI website at www.ti.com.  
recommended operating conditions  
V
= 4.75V to 5.25V  
V
DD  
MIN  
= 14.5V to 15.5V  
DD  
UNIT  
MIN  
NOM  
MAX  
NOM  
MAX  
Reference voltage, V  
refA  
or V  
refB  
10  
10  
V
High-level input voltage, V  
IH  
2.4  
13.5  
V
Low-level input voltage, V  
IL  
0.8  
1.5  
V
CS setup time, t  
50  
0
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(CS)  
CS hold time, t  
h(CS)  
DAC select setup time, t  
50  
10  
25  
10  
50  
0
50  
10  
25  
10  
50  
0
su(DAC)  
DAC select hold time, t  
h(DAC)  
Data bus input setup time t  
su(D)  
Data bus input hold time t  
h(D)  
Pulse duration, WR low, t  
w(WR)  
TLC7628C  
TLC7628I  
TLC7628E  
+70  
+85  
+85  
+70  
+85  
+85  
Operating free-air temperature, T  
25  
40  
25  
40  
°C  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢉꢓ  
ꢀꢔ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
electrical characteristics over recommended operating free-air temperature range,  
= V = 10V, V and V at 0V (unless otherwise noted)  
V
refA  
refB  
OA  
OB  
V
= 5V  
V
= 15V  
DD  
DD  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
10  
MAX  
10  
I
I
High-level input current  
Low-level input current  
V = V  
DD  
µA  
µA  
IH  
I
V = 0  
5
12  
10  
5
12  
10  
IL  
I
Reference input impedance  
REFA or REFB to AGND  
20  
400  
400  
20  
200  
200  
kΩ  
DAC data latch loaded with  
00000000, V 10V  
OUTA  
OUTB  
=
refA  
DAC data latch loaded with  
00000000, V 10V  
I
Output leakage current  
nA  
Ikg  
=
refB  
Input resistance match  
(REFA to REFB)  
1%  
0.04  
2
1%  
0.02  
2
DC supply sensitivity, gain/V  
Supply current (quiescent)  
Supply current (standby)  
V  
DD  
=
10%  
%/%  
mA  
DD  
All digital inputs at V min or  
IH  
I
I
DD  
V max  
IL  
All digital inputs at 0V or V  
DD  
0.5  
10  
0.5  
10  
mA  
pF  
DD  
DB0−DB7  
C
C
Input capacitance  
WR, CS,  
DACA/DACB  
i
15  
50  
15  
50  
pF  
DAC data latches loaded with  
00000000  
Output capacitance (OUTA, OUTB)  
pF  
o
DAC data latches loaded with  
11111111  
120  
120  
All typical values are at T = +25°C.  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢊꢋꢌ ꢁ ꢆ ꢍꢎꢉ ꢀ ꢏ ꢋꢁꢀꢉ ꢐ ꢁꢑ ꢉꢒ ꢓ  
ꢓꢉ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
operating characteristics over recommended operating free-air temperature range,  
= V = 10V, V and V at 0V (unless otherwise noted)  
V
refA  
refB  
OA  
OB  
V
= 5V  
DD  
TYP  
V
= 15V  
DD  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
1/2  
MIN  
MAX  
1/2  
Linearity error  
LSB  
ns  
Settling time (to 1/2LSB)  
Gain error  
See Note 1  
See Note 2  
100  
100  
2.5  
2.5  
LSB  
REFA to OUTA  
REFB to OUTB  
65  
65  
0.007  
65  
65  
AC feedthrough  
See Note 3  
See Note 4  
See Note 5  
dB  
Temperature coefficient of gain  
0.0035 %FSR/°C  
Propagation delay (from digital input to  
90% of final analog output current)  
80  
80  
ns  
REFA to OUTB See Note 6  
REFB to OUTA See Note 7  
77  
77  
77  
77  
Channel-to-channel  
isolation  
dB  
Measured for code transition from  
00000000 to 11111111,  
= +25°C  
Digital-to-analog glitch impulse area  
Digital crosstalk  
160  
440  
nV−s  
T
A
Measured for code transition from  
00000000 to 11111111,  
30  
60  
nV−s  
dB  
T
A
= +25°C  
Harmonic distortion  
V = 6V, f = 1kHz,  
i
T
A
= +25°C  
85  
85  
NOTES: 1. OUTA, OUTB load = 100, C  
= 13pF; WR and CS at 0V; DB0−DB7 at 0V to V  
DD  
or V to 0V.  
DD  
ext  
2. Gain error is measured using an internal feedback resistor. Nominal full scale range (FSR) = V − 1LSB.  
ref  
3.  
4. Temperature coefficient of gain measured from 0°C to +25°C or from +25°C to +70°C.  
5. = V = 10V; OUTA/OUTB load = 100, C = 13pF; WR and CS at 0V; DB0−DB7 at 0V to V  
V
ref  
= 20V peak-to-peak, 100kHz sine wave; DAC data latches loaded with 00000000.  
V
refA  
or V to 0V.  
DD  
refB ext DD  
6. Both DAC latches loaded with 11111111; V  
7. Both DAC latches loaded with 11111111; V  
= 20V peak-to-peak, 100kHz sine wave; V  
= 20V peak-to-peak, 100kHz sine wave; V  
= 0; T = +25°C.  
= 0; T = +25°C.  
refA  
refB  
refB  
refA  
A
A
PRINCIPLES OF OPERATION  
These devices contain two identical, 8-bit-multiplying DACs, DACA and DACB. Each DAC consists of an  
inverted R-2R ladder, analog switches, and input data latches. Binary-weighted currents are switched between  
DAC output and AGND, thus maintaining a constant current in each ladder leg independent of the switch state.  
Most applications require only the addition of an external operational amplifier and voltage reference. A  
simplified DAC circuit for DACA with all digital inputs low is shown in Figure 1.  
Figure 2 shows the DACA equivalent circuit. A similar equivalent circuit can be drawn for DACB. Both DACs  
share the analog ground terminal 1 (AGND). With all digital inputs high, the entire reference current flows to  
OUTA. A small leakage current (I ) flows across internal junctions, and as with most semiconductor devices,  
Ikg  
doubles every 10°C. C is due to the parallel combination of the NMOS switches and has a value that depends  
o
on the number of switches connected to the output. The range of C is 50pF to 120pF maximum. The equivalent  
o
output resistance (r ) varies with the input code from 0.8R to 3R where R is the nominal value of the ladder  
o
resistor in the R-2R network.  
These devices interface to a microprocessor through the data bus, CS, WR, and DACA/DACB control signals.  
When CS and WR are both low, the TLC7528 analog output, specified by the DACA/DACB control line,  
responds to the activity on the DB0−DB7 data bus inputs. In this mode, the input latches are transparent and  
input data directly affects the analog output. When either the CS signal or WR signal goes high, the data on the  
DB0−DB7 inputs are latched until the CS and WR signals go low again. When CS is high, the data inputs are  
disabled regardless of the state of the WR signal.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢔ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
PRINCIPLES OF OPERATION  
The digital inputs of these devices provide TTL compatibility when operated from a supply voltage of 5V. These  
devices can operate with any supply voltage in the range from 5V to 15V; however, input logic levels are not  
TTL-compatible above 5V.  
R
R
R
REFA  
2R  
2R  
2R  
2R  
2R  
R
FB  
RFBA  
S1  
S2  
S3  
S8  
OUTA  
AGND  
DACA Data Latches and Drivers  
Figure 1. Simplified Functional Circuit for DACA  
RFBA  
R
FB  
R
OUTA  
REFA  
I
C
I
OUT  
Ikg  
256  
AGND  
Figure 2. TLC7528 Equivalent Circuit, DACA Latch Loaded With 11111111  
MODE SELECTION TABLE  
DACA/DACB CS WR DACA  
DACB  
L
H
X
X
L
L
H
X
L
L
X
H
Write  
Hold  
Hold  
Hold  
Hold  
Write  
Hold  
Hold  
L = low level, H = high level, X = don’t care  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢊꢋꢌ ꢁ ꢆ ꢍꢎꢉ ꢀ ꢏ ꢋꢁꢀꢉ ꢐ ꢁꢑ ꢉꢒ ꢓ  
ꢓꢉ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
APPLICATION INFORMATION  
These devices are capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for  
2-quadrant and 4-quadrant multiplication are shown in Figure 3 and Figure 4. Table 1 and Table 2 summarize  
input coding for unipolar and bipolar operation, respectively.  
V
I(A)  
10 V  
R1 (see Note A)  
R2 (see Note A)  
C1  
RFBA  
OUTA  
AGND  
17  
14  
(see Note B)  
V
DD  
REFA  
DB0  
+
8
Input  
Buffer  
8
V
OA  
DACA  
Latch  
DB7  
7
R4 (see Note A)  
C2  
RFBB  
OUTB  
(see Note B)  
8
6
15  
16  
5
DACA/DACB  
8
Control  
Logic  
DACB  
Latch  
V
OB  
CS  
+
WR  
AGND  
REFB  
AGND  
DGND  
RECOMMENDED TRIM  
RESISTOR VALUES  
R3 (see Note A)  
V
I(B)  
10 V  
R1, R3 500 Ω  
R2, R4 150 Ω  
NOTES: A. R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Make gain adjustment with  
digital input of 255.  
B. C1 and C2 phase compensation capacitors (10pF to 15pF) are required when using high-speed amplifiers to prevent ringing or  
oscillation.  
Figure 3. Unipolar Operation (2-Quadrant Multiplication)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢉꢓ  
ꢀꢔ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
APPLICATION INFORMATION  
V
10 V  
R6  
20 kΩ  
I(A)  
(see Note B)  
R1  
R2 (see Note A)  
C1  
(see Note A)  
RFBA  
OUTA  
R5  
20 kΩ  
17  
14  
(see Note C)  
V
DD  
R7  
10 kΩ  
DB0  
Input  
Buffer  
8
8
DACA  
Latch  
A1  
+
A2  
+
AGND  
(see Note B)  
DB7  
V
OA  
7
6
R11  
5 kΩ  
R4 (see Note A)  
C2  
RFBB  
DACA/  
DACB  
R8  
20 kΩ  
Control  
Logic  
15  
CS  
(see Note C)  
16  
5
OUTB  
AGND  
WR  
8
8
DACB  
REFB  
Latch  
A3  
+
A4  
+
V
OB  
R9  
10 kΩ  
(see Note B)  
DGND  
AGND  
R11  
5 kΩ  
R3  
AGND  
(see Note A)  
R10  
V
I(B)  
10 V  
20 kΩ  
(see Note B)  
NOTES: A. R1, R2, R3, and R4 are used only if gain adjustment is required. See table in Figure 3 for recommended values. Adjust R1 for  
= 0V with code 10000000 in DACA latch. Adjust R3 for V = 0V with 10000000 in DACB latch.  
V
OA  
OB  
B. Matching and tracking are essential for resistor pairs R6, R7, R9, and R10.  
C. C1 and C2 phase compensation capacitors (10pF to 15pF) may be required if A1 and A3 are high-speed amplifiers.  
Figure 4. Bipolar Operation (4-Quadrant Operation)  
Table 1. Unipolar Binary Code  
Table 2. Bipolar (Offset Binary) Code  
DAC LATCH CONTENTS  
DAC LATCH CONTENTS  
ANALOG OUTPUT  
ANALOG OUTPUT  
LSB  
LSB  
MSB  
MSB  
1 1 1 1 1 1 1 1  
−V (255/256)  
1 1 1 1 1 1 1 1  
V (127/128)  
I
I
1 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
−V (129/256)  
1 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
V (1/128)  
I
I
−V (128/256) = V /2  
0V  
I
i
−V (127/256)  
−V (1/128)  
I
I
−V (1/256)  
−V (127/128)  
I
I
−V (0/256) = 0  
−V (128/128)  
I
I
−8  
1LSB = (2 )V  
−7  
1LSB = (2 )V  
I
I
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢊꢋꢌ ꢁ ꢆ ꢍꢎꢉ ꢀ ꢏ ꢋꢁꢀꢉ ꢐ ꢁꢑ ꢉꢒ ꢓ  
ꢓꢉ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
APPLICATION INFORMATION  
microprocessor interface information  
8
Address Bus  
A8A15  
DACA/DACB  
CS  
A
Address  
Decode  
Logic  
A + 1  
TLC7528  
WR  
CPU  
8051  
DB0  
WR  
DB7  
ALE  
Latch  
8
Data Bus  
AD0AD7  
NOTE A: A = decoded address for TLC7528 DACA  
A + 1 = decoded address for TLC7528 DACB  
Figure 5. TLC7528: Intel 8051 Interface  
8
Address Bus  
A8A15  
VMA  
DACA/DACB  
CS  
A
Address  
Decode  
Logic  
A + 1  
TLC7528  
WR  
CPU  
6800  
DB0  
DB7  
φ2  
8
Data Bus  
AD0AD7  
NOTE A: A = decoded address for TLC7528 DACA  
A + 1 = decoded address for TLC7528 DACB  
Figure 6. TLC7528: 6800 Interface  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢉꢓ  
ꢀꢔ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
APPLICATION INFORMATION  
8
Address Bus  
A8A15  
IORQ  
DACA/DACB  
A
Address  
Decode  
CS  
TLC7528  
WR  
Logic  
A + 1  
CPU  
Z80-A  
DB0  
DB7  
WR  
8
Data Bus  
D0D7  
NOTE A: A = decoded address for TLC7528 DACA  
A + 1 = decoded address for TLC7528 DACB  
Figure 7. TLC7528 To Z-80A Interface  
programmable window detector  
The programmable window comparator shown in Figure 8 determines if the voltage applied to the DAC  
feedback resistors is within the limits programmed into the data latches of these devices. Input signal range  
depends on the reference and polarity; that is, the test input range is 0 to −V . The DACA and DACB data  
ref  
latches are programmed with the upper and lower test limits. A signal within the programmed limits drives the  
output high.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢊꢋꢌ ꢁ ꢆ ꢍꢎꢉ ꢀ ꢏ ꢋꢁꢀꢉ ꢐ ꢁꢑ ꢉꢒ ꢓ  
ꢓꢉ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
APPLICATION INFORMATION  
V
DD  
V
CC  
Test Input  
0 to −V  
3
17  
ref  
RFBA  
1 kΩ  
OUTA  
2
+
4
14−7  
15  
DACA  
REFA  
8
Data Inputs  
DB0DB7  
TLC7528  
1
PASS/FAIL Output  
CS  
AGND  
16  
6
WR  
DACA/DACB  
OUTB  
20  
+
18  
5
REFB  
V
ref  
DACB  
DGND  
RFBB  
19  
Figure 8. Digitally-Programmable Window Comparator (Upper- and Lower-Limit Tester)  
digitally-controlled signal attenuator  
Figure 9 shows a TLC7528 configured as a two-channel programmable attenuator. Applications include stereo  
audio and telephone signal level control. Table 3 shows input codes vs attenuation for a 0dB to 15.5dB range.  
Attenuation dB = 20 log D/256, D = digital input code  
10  
RFBA  
OUTA  
3
2
17  
4
V
DD  
REFA  
V A  
I
DACA  
A1  
8
Output  
14−7  
DB0DB7  
Data Bus  
TLC7528  
15  
16  
6
CS  
WR  
DACA/DACB  
OUTB  
RFBB  
20  
19  
REFB 18  
DACB  
A2  
V
O
B
1
AGND  
5
DGND  
Figure 9. Digitally Controlled Dual Telephone Attenuator  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢉꢓ  
ꢀꢔ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
APPLICATION INFORMATION  
Table 3. Attenuation vs DACA, DACB Code  
CODE IN  
CODE IN  
DECIMAL  
ATTEN (dB)  
DAC INPUT CODE  
ATTN (dB)  
DAC INPUT CODE  
DECIMAL  
255  
242  
228  
215  
203  
192  
181  
171  
162  
152  
144  
136  
128  
121  
114  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
1 1 1 1 1 1 1 1  
1 1 1 1 0 0 1 0  
1 1 1 0 0 1 0 0  
1 1 0 1 0 1 1 1  
1 1 0 0 1 0 1 1  
1 1 0 0 0 0 0 0  
1 0 1 1 0 1 0 1  
1 0 1 0 1 0 1 1  
1 0 1 0 0 0 1 0  
1 0 0 1 1 0 0 0  
1 0 0 1 1 1 1 1  
1 0 0 0 1 0 0 0  
1 0 0 0 0 0 0 0  
0 1 1 1 1 0 0 1  
0 1 1 1 0 0 1 0  
0 1 1 0 1 1 0 0  
8.0  
8.5  
0 1 1 0 0 1 1 0  
0 1 1 0 0 0 0 0  
0 1 0 1 1 0 1 1  
0 1 0 1 0 1 1 0  
0 1 0 1 0 0 0 1  
0 1 0 0 1 1 0 0  
0 1 0 0 1 0 0 0  
0 1 0 0 0 1 0 0  
0 1 0 0 0 0 0 0  
0 0 1 1 1 1 0 1  
0 0 1 1 1 0 0 1  
0 0 1 1 0 1 1 0  
0 0 1 1 0 0 1 1  
0 0 1 1 0 0 0 0  
0 0 1 0 1 1 1 0  
0 0 1 0 1 0 1 1  
102  
96  
91  
86  
81  
76  
72  
68  
64  
61  
57  
54  
51  
48  
46  
43  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
108  
programmable state-variable filter  
This programmable state-variable or universal filter configuration provides low-pass, high-pass, and bandpass  
outputs, and is suitable for applications requiring microprocessor control of filter parameters.  
As shown in Figure 10, DACA1 and DACB1 control the gain and Q of the filter while DACA2 and DACB2 control  
the cutoff frequency. Both halves of the DACA2 and DACB2 must track accurately in order for the  
cutoff-frequency equation to be true. With the TLC7528, this validity is easy to achieve.  
1
f +  
c
2p R1C1  
The programmable range for the cutoff or center frequency is 0kHz to 15kHz with a Q ranging from 0.3 to 4.5.  
This parameter defines the limits of the component values.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢊꢋꢌ ꢁ ꢆ ꢍꢎꢉ ꢀ ꢏ ꢋꢁꢀꢉ ꢐ ꢁꢑ ꢉꢒ ꢓ  
ꢓꢉ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
APPLICATION INFORMATION  
C3  
47 pF  
R5  
4
2
REFA  
OUTA  
V
I
DACA  
(R )  
S
17  
30 k  
V
3
1
A1  
DD  
+
RFBA  
AGND  
R4  
8
Data In  
30 k  
TLC7528  
DACB  
R3  
15  
16  
5
CS  
20  
19  
High Pass  
Out  
OUTB  
A2  
10 k  
+
WR  
(R )  
F
RFBB  
REFB  
DGND  
18  
6
DACA/DACB  
Bandpass Out  
DACA1 AND DACB1  
C1  
1000 pF  
2
4
REFA  
OUTA  
DACA  
(R )  
1
17  
A3  
+
V
3
1
DD  
C2  
RFBA  
AGND  
8
Data In  
TLC7528  
DACB  
1000 pF  
15  
16  
5
CS  
20  
19  
OUTB  
WR  
(R )  
2
Low Pass Out  
A4  
+
RFBB  
REFB  
DGND  
18  
6
DACA/DACB  
DACA2 and DACB2  
Circuit Equations:  
C
= C , R = R , R = R  
1
2
1
2
4
5
R
R
R
3
4
F
Q =  
R
fb(DACB1)  
Where:  
R
is the internal resistor connected between OUTB and RFBB  
fb  
R
F
G
R
S
NOTES: A. Op-amps A1, A2, A3, and A4 are TL287.  
B. CS compensates for the op-amp gain-bandwidth limitations.  
256   (DAC ladder resistance)  
C. DAC equivalent resistance equals  
DAC digital code  
Figure 10. Digitally-Controlled State-Variable Filter  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢉꢓ  
ꢀꢔ  
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008  
APPLICATION INFORMATION  
voltage-mode operation  
It is possible to operate the current multiplying D/A converter of these devices in a voltage mode. In the voltage  
mode, a fixed voltage is placed on the current output terminal. The analog output voltage is then available at  
the reference voltage terminal. Figure 11 is an example of a current multiplying D/A that operates in the voltage  
mode.  
R
R
R
REF  
(Analog Output Voltage)  
2R  
2R  
2R  
2R  
R
“0”  
“1”  
Out (Fixed Input Voltage)  
AGND  
Figure 11. Voltage-Mode Operation  
The following equation shows the relationship between the fixed input voltage and the analog output voltage:  
V
= V (D/256)  
I
O
Where:  
V
= analog output voltage  
O
V = fixed input voltage (must not be forced below 0V.)  
I
D = digital input code converted to decimal  
In voltage-mode operation, these devices meet the following specification:  
PARAMETER  
Linearity error at REFA or REFB  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
DD  
= 5V, OUTA or OUTB at 2.5V,  
T
A
= +25°C  
1
LSB  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Revision History  
DATE  
REV  
PAGE  
SECTION  
DESCRIPTION  
11/08  
E
13  
Front Page  
3
ApplicationInformation  
Corrected Figure 10.  
Deleted Available Options table.  
6/07  
D
Inserted Package/Ordering information.  
:
NOTE Page numbers for previous revisions may differ from page numbers in the current version.  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
PACKAGING INFORMATION  
Orderable Device  
TLC7528CDW  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PLCC  
PLCC  
PLCC  
PLCC  
PDIP  
PDIP  
SO  
DW  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
25  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC7528C  
TLC7528C  
TLC7528C  
TLC7528C  
TLC7528C  
TLC7528C  
TLC7528C  
TLC7528C  
TLC7528CN  
TLC7528CN  
TLC7528  
TLC7528CDWG4  
TLC7528CDWR  
TLC7528CDWRG4  
TLC7528CFN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DW  
DW  
DW  
FN  
FN  
FN  
FN  
N
Green (RoHS  
& no Sb/Br)  
2000  
2000  
46  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLC7528CFNG3  
TLC7528CFNR  
TLC7528CFNRG3  
TLC7528CN  
46  
Green (RoHS  
& no Sb/Br)  
CU SN  
1000  
1000  
20  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
TLC7528CNE4  
TLC7528CNS  
N
20  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
NS  
NS  
NS  
NS  
PW  
PW  
PW  
40  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TLC7528CNSG4  
TLC7528CNSR  
TLC7528CNSRG4  
TLC7528CPW  
SO  
40  
Green (RoHS  
& no Sb/Br)  
TLC7528  
SO  
2000  
2000  
70  
Green (RoHS  
& no Sb/Br)  
TLC7528  
SO  
Green (RoHS  
& no Sb/Br)  
TLC7528  
TSSOP  
TSSOP  
TSSOP  
Green (RoHS  
& no Sb/Br)  
TLC7528C  
TLC7528C  
TLC7528C  
TLC7528CPWG4  
TLC7528CPWR  
70  
Green (RoHS  
& no Sb/Br)  
2000  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TLC7528CPWRG4  
TLC7528EDW  
TLC7528EDWG4  
TLC7528EDWR  
TLC7528EDWRG4  
TLC7528EN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PW  
DW  
DW  
DW  
DW  
N
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
2000  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC7528C  
TLC7528E  
TLC7528E  
TLC7528E  
TLC7528E  
TLC7528EN  
TLC7528EN  
TLC7528I  
TLC7528I  
TLC7528I  
TLC7528I  
TLC7528I  
TLC7528I  
TLC7528IN  
TLC7528IN  
TLC7528I  
TLC7528I  
TLC7528I  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
25  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
20  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Pb-Free  
(RoHS)  
TLC7528ENE4  
TLC7528IDW  
PDIP  
N
20  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
SOIC  
SOIC  
SOIC  
SOIC  
PLCC  
PLCC  
PDIP  
DW  
DW  
DW  
DW  
FN  
FN  
N
25  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC7528IDWG4  
TLC7528IDWR  
TLC7528IDWRG4  
TLC7528IFN  
25  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
46  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLC7528IFNG3  
TLC7528IN  
46  
Green (RoHS  
& no Sb/Br)  
CU SN  
20  
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
TLC7528INE4  
TLC7528IPW  
PDIP  
N
20  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
70  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TLC7528IPWG4  
TLC7528IPWR  
70  
Green (RoHS  
& no Sb/Br)  
2000  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
TLC7528IPWRG4  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
TSSOP  
PW  
20  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-25 to 85  
TLC7528I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) Only one of markings shown within the brackets will appear on the physical device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC7528CNSR  
TLC7528EDWR  
TLC7528IDWR  
TLC7528IPWR  
SO  
NS  
DW  
DW  
PW  
20  
20  
20  
20  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
16.4  
8.2  
13.0  
13.3  
13.3  
7.1  
2.5  
2.7  
2.7  
1.6  
12.0  
12.0  
12.0  
8.0  
24.0  
24.0  
24.0  
16.0  
Q1  
Q1  
Q1  
Q1  
SOIC  
SOIC  
TSSOP  
10.8  
10.8  
6.95  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC7528CNSR  
TLC7528EDWR  
TLC7528IDWR  
TLC7528IPWR  
SO  
NS  
DW  
DW  
PW  
20  
20  
20  
20  
2000  
2000  
2000  
2000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
45.0  
38.0  
SOIC  
SOIC  
TSSOP  
Pack Materials-Page 2  
MECHANICAL DATA  
MPLC004A – OCTOBER 1994  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLC7528EDWRG4

DUAL 8-BI MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7528EFN

DUAL 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7528EFNR

DUAL, PARALLEL, 8 BITS INPUT LOADING, 0.1us SETTLING TIME, 8-BIT DAC, PQCC20, PLASTIC, LCC-20
TI

TLC7528EN

DUAL 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7528ENE4

DUAL 8-BI MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7528EPW

暂无描述
TI

TLC7528EPWR

DUAL, PARALLEL, 8 BITS INPUT LOADING, 0.1us SETTLING TIME, 8-BIT DAC, PDSO20, TSSOP-20
TI

TLC7528I

DUAL 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7528IDW

DUAL 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7528IDWG4

DUAL 8-BI MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7528IDWR

DUAL 8-BI MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI

TLC7528IDWRG4

DUAL 8-BI MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS
TI