TLE2021AMFK [TI]

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS; 神剑高速低功耗精密运算放大器
TLE2021AMFK
型号: TLE2021AMFK
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
神剑高速低功耗精密运算放大器

运算放大器 放大器电路
文件: 总66页 (文件大小:1096K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
Supply Current . . . 230 µA Max  
High Open-Loop Gain . . . 6.5 V/µV  
(136 dB) Typ  
High Unity-Gain Bandwidth . . . 2 MHz Typ  
High Slew Rate . . . 0.45 V/µs Min  
Low Offset Voltage . . . 100 µV Max  
Offset Voltage Drift With Time  
0.005 µV/mo Typ  
Supply-Current Change Over Military Temp  
Range . . . 10 µA Typ at V = ± 15 V  
CC ±  
Low Input Bias Current . . . 50 nA Max  
Low Noise Voltage . . . 19 nV/Hz Typ  
Specified for Both 5-V Single-Supply and  
±15-V Operation  
Phase-Reversal Protection  
description  
The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers  
using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with  
highly improved slew rate and unity-gain bandwidth.  
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic  
improvement in unity-gain bandwidth and slew rate over similar devices.  
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both  
time and temperature. This means that a precision device remains a precision device even with changes in  
temperature and over years of use.  
This combination of excellent dc performance with a common-mode input voltage range that includes the  
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either  
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry  
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply  
rail.  
A variety of available options includes small-outline and chip-carrier versions for high-density systems  
applications.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of 55°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TLE2021 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
CHIP  
CARRIER  
(FK)  
IO  
SMALL  
OUTLINE  
(D)  
§
T
A
CERAMIC DIP PLASTIC DIP  
TSSOP  
(PW)  
SSOP  
(DB)  
AT 25°C  
(JG)  
(P)  
0°C to  
70°C  
200 µV  
500 µV  
TLE2021ACD  
TLE2021CD  
TLE2021ACP  
TLE2021CP  
TLE2021CDBLE  
TLE2021CPWLE TLE2021Y  
40°C  
to  
85°C  
200 µV  
500 µV  
TLE2021AID  
TLE2021ID  
TLE2021AIP  
TLE2021IP  
55°C  
to  
125°C  
100 µV  
200 µV  
500 µV  
TLE2021BMFK TLE2021BMJG  
TLE2021AMD  
TLE2021MD  
TLE2021AMFK TLE2021AMJG TLE2021AMP  
TLE2021MFK TLE2021MJG TLE2021MP  
§
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).  
The DB and PW packages are only available left-end taped and reeled.  
Chip forms are tested at 25°C only.  
TLE2022 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
IO  
AT 25°C  
SMALL  
OUTLINE  
(D)  
§
T
A
TSSOP  
(PW)  
SSOP  
(DB)  
(JG)  
(P)  
0°C  
to  
70°C  
150 µV TLE2022BCD  
300 µV TLE2022ACD  
500 µV TLE2022CD  
TLE2022ACP  
TLE2022CP  
TLE2022CPWLE TLE2022Y  
TLE2022CDBLE  
40°C  
to  
85°C  
150 µV TLE2022BID  
300 µV TLE2022AID  
500 µV TLE2022ID  
TLE2022AIP  
TLE2022IP  
55°C  
to  
125°C  
150 µV  
TLE2022BMJG  
300 µV TLE2022AMD  
500 µV TLE2022MD  
TLE2022AMFK TLE2022AMJG TLE2022AMP  
TLE2022MFK TLE2022MJG TLE2022MP  
The D packages are available taped and reeled. To oerder a taped and reeled part, add the suffix R (e.g., TLE2022CDR).  
The DB and PW packages are only available left-end taped and reeled.  
Chip forms are tested at 25°C only.  
TLE2024 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
IO  
AT 25°C  
SMALL  
OUTLINE  
(DW)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
T
A
(J)  
(N)  
500 µV TLE2024BCDW  
750 µV TLE2024ACDW  
1000 µV TLE2024CDW  
TLE2024BCN  
TLE2024ACN  
TLE2024CN  
0°C to 70°C  
40°C to 85°C  
55°C to 125°C  
TLE2024Y  
500 µV TLE2024BIDW  
750 µV TLE2024AIDW  
1000 µV TLE2024IDW  
TLE2024BIN  
TLE2024AIN  
TLE2024IN  
500 µV TLE2024BMDW  
750 µV TLE2024AMDW  
1000 µV TLE2024MDW  
TLE2024BMFK  
TLE2024AMFK  
TLE2024MFK  
TLE2024BMJ  
TLE2024AMJ  
TLE2024MJ  
TLE2024BMN  
TLE2024AMN  
TLE2024MN  
Chip forms are tested at 25°C only.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
description (continued)  
TLE2021  
D, DB, JG, P, OR PW PACKAGE  
(TOP VIEW)  
TLE2021  
FK PACKAGE  
(TOP VIEW)  
OFFSET N1  
IN –  
NC  
V
OUT  
1
2
3
4
8
7
6
5
CC +  
IN +  
V
/GND  
OFFSET N2  
CC –  
3
2
1
20 19  
18  
NC  
V
NC  
IN –  
NC  
4
5
6
7
8
17  
16  
CC +  
NC  
15 OUT  
IN +  
NC  
14  
NC  
9 10 11 12 13  
NC – No internal connection  
D, DB, JG, P, OR PW PACKAGE  
(TOP VIEW)  
FK PACKAGE  
(TOP VIEW)  
1OUT  
1IN –  
1IN +  
/GND  
V
CC +  
1
2
3
4
8
7
6
5
2OUT  
2IN –  
2IN +  
3
2
1
20 19  
18  
V
NC  
NC  
1IN –  
NC  
4
5
6
7
8
CC –  
2OUT  
NC  
17  
16  
15  
2IN –  
1IN +  
NC  
14 NC  
9 10 11 12 13  
NC – No internal connection  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
DW PACKAGE  
(TOP VIEW)  
FK PACKAGE  
(TOP VIEW)  
J OR N PACKAGE  
(TOP VIEW)  
4OUT  
4IN–  
4IN+  
1OUT  
1IN–  
1IN+  
1OUT  
1IN–  
1IN+  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
4OUT  
4IN–  
4IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
3
2
1
20 19  
18  
4IN+  
NC  
1IN+  
NC  
4
5
6
7
8
V
/GND  
V
V
V
/GND  
CC –  
CC+  
CC+  
CC–  
17  
16  
15  
14  
3IN+  
3IN–  
3OUT  
NC  
2IN+  
2IN–  
2OUT  
NC  
2IN+  
2IN–  
2OUT  
3IN+  
3IN–  
3OUT  
V
/GND  
V
CC–  
CC+  
NC  
NC  
8
3IN+  
2IN+  
9 10 11 12 13  
NC – No internal connection  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TLE2021Y chip information  
This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(7)  
(6)  
(5)  
V
CC+  
(7)  
(1)  
(3)  
OFFSET N1  
IN+  
+
(6)  
OUT  
(2)  
(5)  
IN–  
OFFSET N2  
(4)  
V
CC–  
/GND  
78  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T = 150°C  
Jmax  
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
(4)  
(3)  
(1)  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
(2)  
54  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TLE2022Y chip information  
This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(7)  
(6)  
V
CC+  
(8)  
(3)  
(2)  
IN+  
IN–  
+
(1)  
OUT  
(5)  
(6)  
+
IN+  
IN–  
(7)  
OUT  
(8)  
(1)  
(5)  
(4)  
(4)  
80  
V
CC–  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
(2)  
(3)  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
86  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TLE2024Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or  
ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
V
CC+  
(4)  
(3)  
(2)  
1IN+  
1IN–  
+
(1)  
1OUT  
(5)  
(6)  
+
2IN+  
2IN–  
(7)  
2OUT  
2IN+  
3IN–  
(10)  
(9)  
+
100  
(8)  
3OUT  
(12)  
(13)  
+
4IN+  
4IN–  
(14)  
V
4OUT  
(11)  
CC/GND  
140  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (11) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
equivalent schematic (each amplifier)  
V
CC+  
Q13  
Q22  
Q3  
Q17  
Q7  
Q28  
Q29  
Q31 Q35  
Q19  
Q1  
Q32  
Q34  
Q39  
Q24  
Q20  
Q5  
Q8  
Q36  
Q38  
Q11  
D3  
D4  
Q2  
C4  
OUT  
Q40  
IN –  
IN +  
Q4  
Q14  
Q12  
R7  
C3  
Q23 Q25  
C2  
Q10  
D2  
D1  
Q21  
Q27  
R6  
R1  
C1  
Q6  
R2  
R3  
Q9  
R4  
R5  
Q15  
Q37  
Q30 Q33  
Q26  
Q18  
OFFSET N1  
(see Note A)  
Q16  
OFFSET N2  
(see Note A)  
V
CC–  
/GND  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
TLE2021  
TLE2022  
TLE2024  
160  
28  
Transistors  
Resistors  
Diodes  
40  
7
80  
14  
8
4
16  
Capacitors  
4
8
16  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
CC+  
CC–  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.6 V  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
ID  
I
CC  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA  
I
Output current, I (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40 mA  
Total current into V  
Total current out of V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
CC+  
CC–  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range, T  
Case temperature for 60 seconds, T : FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
, and V  
CC+  
.
CC–  
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if a differential input voltage in excess of approximately  
±600 mV is applied between the inputs unless some limiting resistance is used.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
377 mW  
POWER RATING  
145 mW  
A
D–8  
DB–8  
DW–16  
FK  
725 mW  
5.8 mW/°C  
4.2 mW/°C  
8.2 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
9.2 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
464 mW  
525 mW  
336 mW  
1025 mW  
1375 mW  
1375 mW  
1050 mW  
1150 mW  
1000 mW  
525 mW  
656 mW  
533 mW  
715 mW  
715 mW  
546 mW  
598 mW  
520 mW  
205 mW  
275 mW  
275 mW  
210 mW  
230 mW  
200 mW  
880 mW  
J–14  
JG–8  
N–14  
P–8  
880 mW  
672 mW  
736 mW  
640 mW  
PW–8  
336 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
V
MIN  
±2  
0
MAX  
MIN  
±2  
MAX  
±20  
3.2  
MIN  
±2  
MAX  
±20  
3.2  
Supply voltage, V  
±20  
3.5  
CC  
V
V
= ± 5 V  
0
0
CC  
Common-mode input voltage, V  
V
IC  
Operating free-air temperature, T  
= ±15 V  
–15  
0
13.5  
70  
–15  
40  
13.2  
85  
–15  
55  
13.2  
125  
CC±  
°C  
A
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2021 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2021C  
TYP  
TLE2021AC  
TLE2021BC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
600  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
200  
25°C  
120  
100  
80  
V
IO  
Input offset voltage  
µV  
Full range  
850  
600  
300  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
µV/°C  
VIO  
Input offset voltage long-term drift  
(see Note 4)  
25°C  
0.005  
0.2  
0.005  
0.2  
0.005  
0.2  
µV/mo  
V
IC  
= 0, R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
0
to  
– 0.3  
to  
0
to  
– 0.3  
to  
0
to  
– 0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
S
V
0
to  
0
to  
0
to  
Full range  
3.5  
3.5  
3.5  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.9  
3.9  
3.9  
R = 10 kΩ  
L
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.85  
0.85  
0.85  
0.3  
0.3  
85  
1.5  
0.3  
0.3  
85  
1.5  
0.3  
0.3  
85  
1.5  
Large-signal differential  
voltage amplification  
V
R
= 1.4 V to 4 V,  
= 10 kΩ  
O
L
A
VD  
V/µV  
dB  
dB  
Full range  
25°C  
110  
120  
170  
110  
120  
170  
110  
120  
170  
V
R
= V  
= 50 Ω  
min,  
IC  
S
ICR  
CMRR Common-mode rejection ratio  
Full range  
25°C  
80  
80  
80  
105  
100  
105  
100  
105  
100  
Supply-voltage rejection ratio  
k
V = 5 V to 30 V  
CC  
SVR  
(V  
CC  
/V )  
IO  
Full range  
25°C  
230  
230  
230  
230  
230  
230  
I
Supply current  
µA  
µA  
CC  
V
= 2.5 V,  
Full range  
O
No load  
Supply-current change over  
operating temperature range  
I  
CC  
Full range  
5
5
5
Full range is 0°C to 70°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC  
TLE2021C  
TYP  
TLE2021AC  
TLE2021BC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
500  
MIN  
TYP  
MAX  
200  
MIN  
TYP  
MAX  
100  
25°C  
120  
80  
40  
V
IO  
Input offset voltage  
µV  
Full range  
750  
500  
200  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
µV/°C  
VIO  
Input offset voltage long-term drift  
(see Note 4)  
25°C  
0.006  
0.2  
0.006  
0.2  
0.006  
0.2  
µV/mo  
V
IC  
= 0, R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
15  
to  
13.5  
15  
to  
13.5  
15  
to  
13.5  
Full range  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
13.9  
13.9  
13.9  
= 10 kΩ  
L
13.7 14.1  
13.7 14.1  
13.7  
13.7 14.1  
13.7  
Maximum negative peak  
output voltage swing  
OM –  
Full range 13.7  
25°C  
Full range  
25°C  
1
1
6.5  
115  
120  
200  
1
1
6.5  
115  
120  
200  
1
1
6.5  
115  
120  
200  
Large-signal differential  
voltage amplification  
V
R
= ± 10 V,  
= 10 kΩ  
O
L
A
V/µV  
dB  
dB  
VD  
100  
96  
100  
96  
100  
96  
V
R
= V  
= 50 Ω  
min,  
IC  
ICR  
CMRR Common-mode rejection ratio  
Full range  
25°C  
S
105  
100  
105  
100  
105  
100  
Supply-voltage rejection ratio  
V
CC ±  
= ± 2.5 V  
k
SVR  
(V  
CC  
/V  
IO  
)
to ± 15 V  
Full range  
25°C  
300  
300  
300  
300  
300  
300  
I
Supply current  
µA  
µA  
CC  
Full range  
V
O
= 0, No load  
Supply-current change over  
operating temperature range  
I  
CC  
Full range  
6
6
6
Full range is 0°C to 70°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2022C  
TYP  
TLE2022AC  
TLE2022BC  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
µV  
A
MIN  
MAX  
600  
MIN  
TYP  
MAX  
400  
MIN  
TYP  
MAX  
250  
25°C  
V
IO  
Input offset voltage  
Full range  
800  
550  
400  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
µV/°C  
µV/mo  
nA  
VIO  
Input offset voltage long-term  
drift (see Note 4)  
V
IC  
= 0,  
R
= 50 Ω  
25°C  
0.005  
0.5  
0.005  
0.4  
0.005  
0.3  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.5  
0
to  
3.5  
0
to  
3.5  
Full range  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.9  
3.9  
3.9  
= 10 kΩ  
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.85  
0.85  
0.85  
0.3  
0.3  
85  
1.5  
0.4  
0.4  
87  
1.5  
0.5  
0.5  
90  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
O
L
Full range  
25°C  
100  
115  
450  
102  
118  
450  
105  
120  
450  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
CC  
S
Full range  
25°C  
80  
82  
85  
100  
95  
103  
98  
105  
100  
Supply-voltage rejection ratio  
k
= 5 V to 30 V  
SVR  
(V  
CC ±  
/V )  
IO  
Full range  
25°C  
600  
600  
600  
600  
600  
600  
I
Supply current  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
I  
CC  
Full range  
7
7
7
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius  
A
A
equation and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC  
TLE2022C  
TYP  
TLE2022AC  
TLE2022BC  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
µV  
A
MIN  
MAX  
500  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
150  
25°C  
150  
120  
70  
V
IO  
Input offset voltage  
Full range  
700  
450  
300  
Temperature coefficient of  
input offset voltage  
Full range  
2
2
2
µV/°C  
µV/mo  
nA  
α
VIO  
Input offset voltage long-term  
drift (see Note 4)  
V
IC  
= 0,  
R
= 50 Ω  
25°C  
0.006  
0.5  
0.006  
0.4  
0.006  
0.3  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
25°C  
to  
to  
to  
to  
to  
to  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
15  
to  
13.5  
15  
to  
13.5  
15  
to  
13.5  
Full range  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
13.9  
13.9  
13.9  
= 10 kΩ  
= ±10 V,  
13.7 14.1  
13.7 14.1  
13.7  
13.7 14.1  
13.7  
Maximum negative peak  
output voltage swing  
OM–  
Full range 13.7  
25°C  
Full range  
25°C  
0.8  
0.8  
95  
4
106  
115  
550  
1
1
7
109  
118  
550  
1.5  
1.5  
100  
96  
10  
112  
120  
550  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
O
L
97  
93  
103  
98  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
S
Full range  
25°C  
91  
100  
95  
105  
100  
Supply-voltage rejection ratio  
k
= ±2.5 V to ±15 V  
CC±  
SVR  
(V  
/V )  
IO  
Full range  
25°C  
CC±  
700  
700  
700  
700  
700  
700  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
CC  
Full range  
9
9
9
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius  
A
A
equation and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2024C  
TYP  
TLE2024AC  
TLE2024BC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
1100  
1300  
MIN  
TYP  
MAX  
850  
MIN  
TYP  
MAX  
600  
25°C  
V
IO  
Input offset voltage  
µV  
Full range  
1050  
800  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
µV/°C  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.6  
0.005  
0.5  
0.005  
0.4  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
45  
40  
35  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
Common-mode input voltage  
range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.5  
0
to  
3.5  
0
to  
3.5  
Full range  
25°C  
Full range  
25°C  
3.9  
3.7  
4.2  
0.7  
1.5  
90  
3.9  
3.7  
4.2  
0.7  
1.5  
92  
4
4.3  
0.7  
1.5  
95  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.8  
= 10 kΩ  
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.95  
0.95  
0.95  
0.2  
0.1  
80  
80  
98  
93  
0.3  
0.1  
82  
0.4  
0.1  
85  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
O
L
Full range  
25°C  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
CC  
S
Full range  
25°C  
82  
85  
112  
800  
100  
95  
115  
800  
103  
98  
117  
800  
Supply-voltage rejection ratio  
k
= 5 V to 30 V  
SVR  
(V  
CC  
/V )  
IO  
Full range  
25°C  
1200  
1200  
1200  
1200  
1200  
1200  
I
Supply current  
µA  
µA  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
I  
Full range  
15  
15  
15  
CC  
Full range is 0°C to 70°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC  
TLE2024C  
TYP  
TLE2024AC  
TLE2024BC  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
1000  
1200  
MIN  
TYP  
MAX  
750  
MIN  
TYP  
MAX  
500  
25°C  
V
IO  
Input offset voltage  
µV  
Full range  
950  
700  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
µV/°C  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.6  
0.006  
0.5  
0.006  
0.4  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
50  
45  
40  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
25°C  
to  
to  
to  
to  
to  
to  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input voltage  
range  
V
R
R
= 50 Ω  
V
ICR  
S
L
15  
to  
13.5  
15  
to  
13.5  
15  
to  
13.5  
Full range  
25°C  
Full range  
25°C  
13.8  
13.7  
14.1  
13.9  
13.8  
14.2  
14  
14.3  
Maximum positive peak output  
voltage swing  
V
V
V
V
OM+  
13.9  
= 10 kΩ  
= ±10 V,  
13.7 14.1  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak output  
voltage swing  
OM–  
Full range 13.6  
25°C  
Full range  
25°C  
0.4  
0.4  
92  
88  
98  
93  
2
102  
0.8  
0.8  
94  
4
1
1
7
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
O
L
105  
97  
93  
103  
98  
108  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
S
Full range  
25°C  
90  
112  
100  
95  
115  
117  
Supply-voltage rejection ratio  
k
= ± 2.5 V to ±15 V  
SVR  
CC±  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
1050  
1400  
1400  
1050  
1400  
1400  
1050  
1400  
1400  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
Full range  
20  
20  
20  
CC  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2021I  
TYP  
TLE2021AI  
TLE2021BI  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
MAX  
600  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
200  
25°C  
120  
100  
80  
V
IO  
Input offset voltage  
µV  
Full range  
950  
600  
300  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
µV/°C  
VIO  
Input offset voltage long-term drift  
(see Note 4)  
25°C  
0.005  
0.2  
0.005  
0.2  
0.005  
0.2  
µV/mo  
V
IC  
= 0, R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
– 0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
15  
to  
3.2  
15  
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.9  
3.9  
3.9  
= 10 kΩ  
L
0.8  
0.9  
0.8  
0.9  
0.8  
0.9  
OL  
Full range  
25°C  
0.3  
0.25  
85  
1.5  
0.3  
0.25  
85  
1.5  
0.3  
0.25  
85  
1.5  
Large-signal differential  
voltage amplification  
V
R
= 1.4 V to 4 V,  
= 10 kΩ  
O
A
VD  
V/µV  
dB  
dB  
Full range  
25°C  
L
110  
120  
170  
110  
120  
170  
110  
120  
170  
V
R
= V  
= 50 Ω  
min,  
IC  
ICR  
CMRR Common-mode rejection ratio  
Full range  
25°C  
80  
80  
80  
S
105  
100  
105  
100  
105  
100  
Supply-voltage rejection ratio  
k
V = 5 V to 30 V  
CC  
SVR  
(V  
CC  
/V )  
IO  
Full range  
25°C  
230  
230  
230  
230  
230  
230  
I
Supply current  
µA  
µA  
CC  
V
O
= 2.5 V,  
Full range  
No load  
Supply-current change over  
operating temperature range  
I  
CC  
Full range  
6
6
6
Full range is – 40°C to 85°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, V  
= ± 15 V (unless otherwise noted)  
CC  
TLE2021I  
TYP  
TLE2021AI  
TLE2021BI  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
MAX  
500  
MIN  
TYP  
MAX  
200  
MIN  
TYP  
MAX  
100  
25°C  
120  
80  
40  
V
IO  
Input offset voltage  
µV  
Full range  
850  
500  
200  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
µV/°C  
VIO  
Input offset voltage long-term drift  
(see Note 4)  
25°C  
0.006  
0.2  
0.006  
0.2  
0.006  
0.2  
µV/mo  
V
IC  
= 0, R = 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
15  
to  
3.2  
15  
to  
3.2  
15  
to  
3.2  
Full range  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak output  
voltage swing  
V
V
V
V
OM +  
13.9  
13.9  
13.9  
= 10 kΩ  
L
13.7 14.1  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak output  
voltage swing  
OM –  
Full range 13.6  
25°C  
Full range  
25°C  
1
0.75  
100  
96  
6.5  
115  
120  
200  
1
0.75  
100  
96  
6.5  
115  
120  
200  
1
0.75  
100  
96  
6.5  
115  
120  
200  
Large-signal differential  
voltage amplification  
V
R
= 10 V,  
= 10 kΩ  
O
L
A
V/µV  
dB  
dB  
VD  
V
R
= V  
= 50 Ω  
min,  
IC  
ICR  
CMRR Common-mode rejection ratio  
Full range  
25°C  
S
105  
100  
105  
100  
105  
100  
Supply-voltage rejection ratio  
V
CC ±  
= ± 2. 5 V  
k
SVR  
(V  
CC  
/V  
IO  
)
to ± 15 V  
Full range  
25°C  
300  
300  
300  
300  
300  
300  
I
Supply current  
µA  
µA  
CC  
Full range  
V
O
= 0 V, No load  
Supply-current change over  
operating temperature range  
I  
CC  
Full range  
7
7
7
Full range is – 40°C to 85°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2022I  
TYP  
TLE2022AI  
TLE2022BI  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
µV  
A
MIN  
MAX  
600  
MIN  
TYP  
MAX  
400  
MIN  
TYP  
MAX  
250  
25°C  
V
IO  
Input offset voltage  
Full range  
800  
550  
400  
Temperature coefficient of  
input offset voltage  
Full range  
2
2
2
µV/°C  
µV/mo  
nA  
α
VIO  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.5  
0.005  
0.4  
0.005  
0.3  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.2  
0
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.9  
3.9  
3.9  
= 10 kΩ  
0.8  
0.9  
0.8  
0.9  
0.8  
0.9  
OL  
Full range  
25°C  
0.3  
0.2  
85  
1.5  
0.4  
0.2  
87  
1.5  
0.5  
0.2  
90  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
O
L
Full range  
25°C  
100  
115  
450  
102  
118  
450  
105  
120  
450  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
CC  
S
Full range  
25°C  
80  
82  
85  
100  
95  
103  
98  
105  
100  
Supply-voltage rejection ratio  
k
= 5 V to 30 V  
SVR  
(V  
/V )  
IO  
Full range  
25°C  
CC±  
600  
600  
600  
600  
600  
600  
I
Supply current  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
I  
CC  
Full range  
15  
15  
15  
Full range is 40°C to 85°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, V  
= ± 15 V (unless otherwise noted)  
CC  
TLE2022I  
TYP  
TLE2022AI  
TLE2022BI  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
µV  
A
MIN  
MAX  
500  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
150  
25°C  
150  
120  
70  
V
IO  
Input offset voltage  
Full range  
700  
450  
300  
Temperature coefficient of  
input offset voltage  
Full range  
2
2
2
µV/°C  
µV/mo  
nA  
α
VIO  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.5  
0.006  
0.4  
0.006  
0.3  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
– 15 15.3  
– 15 15.3  
– 15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
– 15  
to  
13.2  
– 15  
to  
13.2  
– 15  
to  
13.2  
Full range  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
13.9  
13.9  
13.9  
= 10 kΩ  
– 13.7 – 14.1  
– 13.7 – 14.1  
– 13.6  
– 13.7 – 14.1  
– 13.6  
Maximum negative peak  
output voltage swing  
OM –  
Full range – 13.6  
25°C  
Full range  
25°C  
0.8  
0.8  
95  
4
106  
115  
550  
1
1
7
109  
118  
550  
1.5  
1.5  
10  
112  
120  
550  
Large-signal differential  
voltage amplification  
A
V
V
V
= ± 10 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
VD  
O
L
97  
93  
103  
98  
100  
96  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
CC  
S
Full range  
25°C  
91  
100  
95  
105  
100  
Supply-voltage rejection ratio  
k
= ±2.5 V to ±15 V  
SVR  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
700  
700  
700  
700  
700  
700  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
CC  
Full range  
30  
30  
30  
Full range is 40°C to 85°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius  
A
A
equation and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2024I  
TYP  
TLE2024AI  
TLE2024BI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
1100  
1300  
MIN  
TYP  
MAX  
850  
MIN  
TYP  
MAX  
600  
25°C  
V
IO  
Input offset voltage  
µV  
Full range  
1050  
800  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
µV/°C  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.6  
0.005  
0.5  
0.005  
0.4  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
45  
40  
35  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
Common-mode input voltage  
range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.2  
0
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
3.9  
3.7  
4.2  
0.7  
1.5  
90  
3.9  
3.7  
4.2  
0.7  
1.5  
92  
4
4.3  
0.7  
1.5  
95  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
3.8  
= 10 kΩ  
0.8  
0.8  
0.8  
Maximum negative peak  
output voltage swing  
OM–  
Full range  
25°C  
0.95  
0.95  
0.95  
0.2  
0.1  
80  
80  
98  
93  
0.3  
0.1  
82  
0.4  
0.1  
85  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
O
L
Full range  
25°C  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
S
Full range  
25°C  
82  
85  
112  
800  
100  
95  
115  
800  
103  
98  
117  
800  
Supply-voltage rejection ratio  
k
= ±2.5 V to ±15 V  
SVR  
CC±  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
1200  
1200  
1200  
1200  
1200  
1200  
I
Supply current  
µA  
µA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
Full range  
30  
30  
30  
CC  
Full range is 40°C to 85°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC  
TLE2024I  
TYP  
TLE2024AI  
TLE2024BI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
1000  
1200  
MIN  
TYP  
MAX  
750  
MIN  
TYP  
MAX  
500  
25°C  
V
IO  
Input offset voltage  
µV  
Full range  
950  
700  
Temperature coefficient of input  
offset voltage  
α
VIO  
Full range  
2
2
2
µV/°C  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.6  
0.006  
0.5  
0.006  
0.4  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
50  
45  
40  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
25°C  
to  
to  
to  
to  
to  
to  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input voltage  
range  
V
R
R
= 50 Ω  
V
ICR  
S
L
15  
to  
13.2  
15  
to  
13.2  
15  
to  
13.2  
Full range  
25°C  
Full range  
25°C  
13.8  
13.7  
14.1  
13.9  
13.7  
14.2  
14  
14.3  
Maximum positive peak output  
voltage swing  
V
V
V
V
OM+  
13.8  
= 10 kΩ  
= ±10 V,  
13.7 14.1  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak output  
voltage swing  
OM–  
Full range 13.6  
25°C  
Full range  
25°C  
0.4  
0.4  
92  
88  
98  
93  
2
102  
0.8  
0.8  
94  
4
1
1
7
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
O
L
105  
97  
93  
103  
98  
108  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
S
Full range  
25°C  
90  
112  
100  
95  
115  
117  
Supply-voltage rejection ratio  
k
= ± 2.5 V to ±15 V  
SVR  
CC±  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
1050  
1400  
1400  
1050  
1400  
1400  
1050  
1400  
1400  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
Full range  
50  
50  
50  
CC  
Full range is 40°C to 85°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2021M  
TLE2021AM  
TLE2021BM  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
600  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
200  
25°C  
120  
100  
80  
V
IO  
Input offset voltage  
µV  
Full range  
1100  
600  
300  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
µV/°C  
VIO  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.2  
0.005  
0.2  
0.005  
0.2  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.2  
0
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.8  
3.8  
3.8  
= 10 kΩ  
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.95  
0.95  
0.95  
0.3  
0.1  
85  
1.5  
0.3  
0.1  
85  
1.5  
0.3  
0.1  
85  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
O
L
Full range  
25°C  
110  
120  
170  
110  
120  
170  
110  
120  
170  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
CC  
S
Full range  
25°C  
80  
80  
80  
105  
100  
105  
100  
105  
100  
Supply-voltage rejection ratio  
k
= 5 V to 30 V  
SVR  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
230  
230  
230  
230  
230  
230  
I
Supply current  
µA  
µA  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
I  
CC  
Full range  
9
9
9
Full range is 55°C to 125°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC  
TLE2021M  
TLE2021AM  
TLE2021BM  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
500  
MIN  
TYP  
MAX  
200  
MIN  
TYP  
MAX  
100  
25°C  
120  
80  
40  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
500  
200  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
µV/°C  
VIO  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.2  
0.006  
0.2  
0.006  
0.2  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
25  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
15  
to  
13.2  
15  
to  
13.2  
0
to  
13.2  
Full range  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
13.8  
13.8  
13.8  
= 10 kΩ  
= ±10 V,  
13.7 14.1  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak  
output voltage swing  
OM –  
Full range 13.6  
25°C  
Full range  
25°C  
1
0.5  
100  
96  
6.5  
115  
120  
200  
1
0.5  
100  
96  
6.5  
115  
120  
200  
1
0.5  
100  
96  
6.5  
115  
120  
200  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
O
L
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V  
min,  
ICR  
IC  
S
Full range  
25°C  
105  
100  
105  
100  
105  
100  
k
= ± 2.5 V to ±15 V  
SVR  
CC±  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
300  
300  
300  
300  
300  
300  
I
Supply current  
µA  
µA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
CC  
Full range  
10  
10  
10  
Full range is 55°C to 125°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2022M  
TLE2022AM  
TLE2022BM  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
µV  
A
MIN  
TYP  
MAX  
600  
MIN  
TYP  
MAX  
400  
MIN  
TYP MAX  
25°C  
250  
400  
V
IO  
Input offset voltage  
Full range  
800  
550  
Temperature coefficient of  
input offset voltage  
Full range  
2
2
2
µV/°C  
µV/mo  
nA  
α
VIO  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.5  
0.005  
0.4  
0.005  
0.3  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.2  
0
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.8  
3.8  
3.8  
= 10 kΩ  
0.8  
0.8  
0.8  
OL  
Full range  
25°C  
0.95  
0.95  
0.95  
0.3  
0.1  
85  
1.5  
0.4  
0.1  
87  
1.5  
0.5  
0.1  
90  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
O
L
Full range  
25°C  
100  
115  
450  
102  
118  
450  
105  
120  
450  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
CC  
S
Full range  
25°C  
80  
82  
85  
100  
95  
103  
98  
105  
100  
Supply-voltage rejection ratio  
k
= 5 V to 30 V  
SVR  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
600  
600  
600  
600  
600  
600  
I
Supply current  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature range  
I  
CC  
Full range  
37  
37  
37  
Full range is 55°C to 125°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2022 electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC  
TLE2022M  
TLE2022AM  
TLE2022BM  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
µV  
A
MIN  
TYP  
MAX  
500  
MIN  
TYP  
MAX  
300  
MIN  
TYP  
MAX  
150  
25°C  
150  
120  
70  
V
IO  
Input offset voltage  
Full range  
700  
450  
300  
Temperature coefficient of  
input offset voltage  
α
Full range  
2
2
2
µV/°C  
µV/mo  
nA  
VIO  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.5  
0.006  
0.4  
0.006  
0.3  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
33  
30  
nA  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
to  
to  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
15  
to  
13.2  
15  
to  
13.2  
15  
to  
13.2  
Full range  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
13.9  
13.9  
13.9  
= 10 kΩ  
= ±10 V,  
13.7 14.1  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak  
output voltage swing  
OM–  
Full range 13.6  
25°C  
Full range  
25°C  
0.8  
0.8  
95  
4
106  
115  
550  
1
1
7
109  
118  
550  
1.5  
1.5  
100  
96  
10  
112  
120  
550  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
O
L
97  
93  
103  
98  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
S
Full range  
25°C  
91  
100  
95  
105  
100  
Supply-voltage rejection ratio  
k
= ±2.5 V to ±15 V  
SVR  
CC±  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
700  
700  
700  
700  
700  
700  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
CC  
Full range  
60  
60  
60  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius  
A
A
equation and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
CC  
TLE2024M  
TLE2024AM  
TLE2024BM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
1100  
1300  
MIN  
TYP  
MAX  
850  
MIN  
TYP  
MAX  
600  
25°C  
V
IO  
Input offset voltage  
µV  
Full range  
1050  
800  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
µV/°C  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.005  
0.6  
0.005  
0.5  
0.005  
0.4  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
45  
40  
35  
IB  
Full range  
0
to  
0.3  
to  
0
to  
0.3  
to  
0
to  
0.3  
to  
25°C  
3.5  
4
3.5  
4
3.5  
4
Common-mode input voltage  
range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.2  
0
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
3.9  
3.7  
4.2  
0.7  
1.5  
90  
3.9  
3.7  
4.2  
0.7  
1.5  
92  
4
4.3  
0.7  
1.5  
95  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
3.8  
= 10 kΩ  
0.8  
0.8  
0.8  
Maximum negative peak  
output voltage swing  
OM–  
Full range  
25°C  
0.95  
0.95  
0.95  
0.2  
0.1  
80  
80  
98  
93  
0.3  
0.1  
82  
0.4  
0.1  
85  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
O
L
Full range  
25°C  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
S
Full range  
25°C  
82  
85  
112  
800  
100  
95  
115  
800  
103  
98  
117  
800  
Supply-voltage rejection ratio  
k
= ±2.5 V to ±15 V  
SVR  
CC±  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
1200  
1200  
1200  
1200  
1200  
1200  
I
Supply current  
µA  
µA  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
Full range  
50  
50  
50  
CC  
Full range is 55°C to 125°C.  
NOTE 4: Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT =150°CextrapolatedtoT =25°CusingtheArrheniusequation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2024 electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC  
TLE2024M  
TLE2024AM  
TLE2024BM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
1000  
1200  
MIN  
TYP  
MAX  
750  
MIN  
TYP  
MAX  
500  
25°C  
V
IO  
Input offset voltage  
µV  
Full range  
950  
700  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
2
µV/°C  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.006  
0.6  
0.006  
0.5  
0.006  
0.4  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
50  
45  
40  
IB  
Full range  
15 15.3  
15 15.3  
15 15.3  
25°C  
to  
to  
to  
to  
to  
to  
13.5  
14  
13.5  
14  
13.5  
14  
Common-mode input voltage  
range  
V
R
R
= 50 Ω  
V
ICR  
S
L
15  
to  
13.2  
15  
to  
13.2  
15  
to  
13.2  
Full range  
25°C  
Full range  
25°C  
13.8  
13.7  
14.1  
13.9  
13.7  
14.2  
14  
14.3  
Maximum positive peak output  
voltage swing  
V
V
V
V
OM+  
13.8  
= 10 kΩ  
= ±10 V,  
13.7 14.1  
13.7 14.1  
13.6  
13.7 14.1  
13.6  
Maximum negative peak output  
voltage swing  
OM–  
Full range 13.6  
25°C  
Full range  
25°C  
0.4  
0.4  
92  
88  
98  
93  
2
102  
0.8  
0.8  
94  
4
1
1
7
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
µA  
O
L
105  
97  
93  
103  
98  
108  
CMRR Common-mode rejection ratio  
= V  
min,  
ICR  
IC  
S
Full range  
25°C  
90  
112  
100  
95  
115  
117  
Supply-voltage rejection ratio  
k
= ± 2.5 V to ±15 V  
SVR  
CC±  
(V  
CC±  
/V )  
IO  
Full range  
25°C  
1050  
1400  
1400  
1050  
1400  
1400  
1050  
1400  
1400  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change over  
operating temperature range  
I  
Full range  
85  
85  
85  
CC  
Full range is 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to T = 25°C using the Arrhenius equation  
A
A
and assuming an activation energy of 0.96 eV.  
TLE2021 operating characteristics, V  
= 5 V, T = 25°C  
A
CC  
C SUFFIX  
TYP  
0.5  
I SUFFIX  
TYP  
0.5  
M SUFFIX  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
V/µs  
A
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
f = 10 Hz  
21  
50  
30  
21  
50  
30  
21  
Equivalent input noise voltage  
(see Figure 2)  
V
n
nV/Hz  
f = 1 kHz  
17  
17  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.09  
1.2  
0.16  
0.47  
0.09  
1.2  
0.16  
0.47  
0.9  
Peak-to-peak equivalent input  
noise voltage  
V
µV  
N(PP)  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
MHz  
B
1
See Figure 3  
See Figure 3  
1.2  
φ
m
Phase margin at unity gain  
42°  
42°  
42°  
TLE2021 operating characteristics at specified free-air temperature, V  
= ±15 V  
CC  
C SUFFIX  
TYP  
I SUFFIX  
TYP  
M SUFFIX  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
nV/Hz  
µV  
T
A
MIN  
0.45  
0.45  
MAX  
MIN  
0.45  
0.42  
MAX  
MIN  
0.45  
0.45  
25°C  
Full range  
25°C  
0.65  
0.65  
0.65  
SR  
Slew rate at unity gain  
V
O
= 1V to 3 V, See Figure 1  
f = 10 Hz  
19  
15  
50  
30  
19  
15  
50  
30  
19  
15  
Equivalent input noise voltage  
(see Figure 2)  
V
V
n
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.09  
2
0.16  
0.47  
0.09  
2
0.16  
0.47  
0.09  
2
Peak-to-peak equivalent input  
noise voltage  
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
MHz  
B
1
See Figure 3  
See Figure 3  
25°C  
φ
m
Phase margin at unity gain  
25°C  
46°  
46°  
46°  
Full range is 0°C to 70°C for the C-suffix devices, 40°C to 85°C for the I-suffix devices, and 55°C to 125°C for the M-suffix devices.  
TLE2022 operating characteristics, V  
= 5 V, T = 25°C  
CC  
A
C SUFFIX  
TYP  
0.5  
I SUFFIX  
TYP  
0.5  
M SUFFIX  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
f = 10 Hz  
21  
50  
30  
21  
50  
30  
21  
Equivalent input noise voltage  
(see Figure 2)  
V
n
nV/Hz  
f = 1 kHz  
17  
17  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
V
I
Peak-to-peak equivalent input noise voltage  
µV  
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
See Figure 3  
See Figure 3  
1.7  
1.7  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
47°  
47°  
TLE2022 operating characteristics at specified free-air temperature, V  
= ±15 V  
CC  
C SUFFIX  
TYP  
I SUFFIX  
TYP  
M SUFFIX  
TYP MAX  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
0.45  
0.45  
MAX  
MIN  
0.45  
0.42  
MAX  
MIN  
0.45  
0.4  
25°C  
Full range  
25°C  
0.65  
0.65  
0.65  
SR  
Slew rate at unity gain  
V
O
= ±10 V,  
See Figure 1  
V/µs  
f = 10 Hz  
19  
15  
50  
30  
19  
15  
50  
30  
19  
15  
Equivalent input noise  
voltage (see Figure 2)  
V
n
nV/Hz  
µV  
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
Peak-to-peak equivalent  
input noise voltage  
V
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
25°C  
2.8  
2.8  
2.8  
MHz  
φ
m
Phase margin at unity gain  
25°C  
52°  
52°  
52°  
Full range is 0°C to 70°C.  
TLE2024 operating characteristics, V  
= 5 V, T = 25°C  
CC  
A
C SUFFIX  
TYP  
0.5  
I SUFFIX  
TYP  
0.5  
M SUFFIX  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
f = 10 Hz  
21  
50  
30  
21  
50  
30  
21  
V
n
Equivalent input noise voltage (see Figure 2)  
Peak-to-peak equivalent input noise voltage  
nV/Hz  
f = 1 kHz  
17  
17  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
V
µV  
N(PP)  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
1.7  
1.7  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
47°  
47°  
TLE2024 operating characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC  
C SUFFIX  
TYP  
I SUFFIX  
TYP  
M SUFFIX  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
0.45  
0.45  
MAX  
MIN  
0.45  
0.42  
MAX  
MIN  
0.45  
0.4  
25°C  
Full range  
25°C  
0.7  
0.7  
0.7  
SR  
Slew rate at unity gain  
V
O
= ±10 V, See Figure 1  
V/µs  
f = 10 Hz  
19  
15  
50  
30  
19  
15  
50  
30  
19  
15  
Equivalent input noise voltage  
(see Figure 2)  
V
n
nV/Hz  
µV  
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
0.16  
0.47  
0.1  
Peak-to-peak equivalent input noise  
voltage  
V
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
25°C  
2.8  
2.8  
2.8  
MHz  
φ
m
Phase margin at unity gain  
25°C  
52°  
52°  
52°  
Full range is 0°C to 70°C.  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TLE2021Y electrical characteristics at V  
= 5 V, T = 25°C (unless otherwise noted)  
CC  
A
TLE2021Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
150  
0.005  
0.5  
MAX  
V
IO  
Input offset voltage  
µV  
µV/mo  
nA  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
V
IC  
= 0,  
R
= 50 Ω  
S
I
I
IO  
Input bias current  
35  
nA  
IB  
– 0.3  
to  
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
L
4
V
V
Maximum high-level output voltage  
Maximum low-level output voltage  
4.3  
0.7  
V
V
OH  
= 10 kΩ  
OL  
A
Large-signal differential voltage amplification  
V
V
V
V
= 1.4 to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
1.5  
V/µV  
dB  
dB  
µA  
VD  
O
L
CMRR Common-mode rejection ratio  
= V  
min,  
100  
115  
400  
IC  
CC  
ICR  
= 5 V to 30 V  
S
k
Supply-voltage rejection ratio (V  
/V )  
IO  
SVR  
CC±  
I
Supply current  
= 2.5 V,  
No load  
CC  
O
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2021Y operating characteristics at V  
= 5 V, T = 25°C  
A
CC  
TLE2021Y  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
= 1 V to 3 V  
UNIT  
V/µs  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
f = 10 Hz  
21  
V
n
Equivalent input noise voltage  
nV/Hz  
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
I
Peak-to-peak equivalent input noise voltage  
µV  
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TLE2022Y electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
CC  
A
TLE2022Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
150  
0.005  
0.5  
MAX  
V
IO  
Input offset voltage  
600  
µV  
µV/mo  
nA  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
V
IC  
= 0,  
R = 50 Ω  
S
I
I
IO  
Input bias current  
35  
nA  
IB  
– 0.3  
to  
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
L
4
V
V
Maximum high-level output voltage  
Maximum low-level output voltage  
4.3  
0.7  
V
V
OH  
= 10 kΩ  
OL  
A
Large-signal differential voltage amplification  
V
V
V
V
= 1.4 to 4 V,  
R = 10 kΩ  
1.5  
V/µV  
dB  
dB  
µA  
VD  
O
L
CMRR Common-mode rejection ratio  
= V  
min,  
R = 50 Ω  
S
100  
115  
450  
IC  
ICR  
= 5 V to 30 V  
k
Supply-voltage rejection ratio (V  
/V )  
IO  
SVR  
CC±  
CC  
I
Supply current  
= 2.5 V,  
No load  
CC  
O
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2022Y operating characteristics, V  
= 5 V, T = 25°C  
A
CC  
TLE2022Y  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
f = 10 Hz  
21  
V
n
Equivalent input noise voltage (see Figure 2)  
nV/Hz  
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
I
Peak-to-peak equivalent input noise voltage  
µV  
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
See Figure 3  
See Figure 3  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TLE2024Y electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
A
CC  
TLE2024Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
0.005  
0.6  
MAX  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
µV/mo  
nA  
I
I
V
IC  
= 0,  
R
= 50 Ω  
IO  
S
Input bias current  
45  
nA  
IB  
0.3  
to  
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
L
4
V
V
High-level output voltage  
Low-level output voltage  
4.2  
0.7  
V
V
OH  
= 10 kΩ  
OL  
Large-signal differential  
voltage amplification  
A
V
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
1.5  
90  
V/µV  
dB  
VD  
O
L
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V  
min,  
IC  
ICR  
S
k
= 5 V to 30 V  
112  
800  
dB  
SVR  
CC  
(V  
CC  
/V )  
IO  
I
Supply current  
= 2.5 V,  
O
No load  
µA  
CC  
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2024Y operating characteristics, V  
= 5 V, T = 25°C  
A
CC  
TLE2024Y  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
f = 10 Hz  
21  
V
n
Equivalent input noise voltage (see Figure 2)  
nV/Hz  
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
Peak-to-peak equivalent input noise voltage  
µV  
N(PP)  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
20 kΩ  
20 kΩ  
5 V  
15 V  
V
O
V
O
+
+
V
I
V
I
15 V  
20 kΩ  
30 pF  
(see Note A)  
30 pF  
(see Note A)  
20 kΩ  
(a) SINGLE SUPPLY  
NOTE A: C includes fixture capacitance.  
(b) SPLIT SUPPLY  
L
Figure 1. Slew-Rate Test Circuit  
2 kΩ  
2 kΩ  
15 V  
5 V  
20 Ω  
20 Ω  
V
O
+
V
O
2.5 V  
+
15 V  
20Ω  
20 Ω  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Voltage Test Circuit  
10 kΩ  
10 kΩ  
15 V  
5 V  
100 Ω  
+
V
I
V
I
V
O
100Ω  
V
O
+
2.5 V  
15 V  
30 pF  
(see Note A)  
10 kΩ  
30 pF  
(see Note A)  
10 kΩ  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
NOTE A: C includes fixture capacitance.  
L
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
5 V  
15 V  
0.1 µF  
10 kΩ  
V
O
V
O
+
+
V
I
V
I
10 kΩ  
– 15 V  
30 pF  
10 kΩ  
10 kΩ  
30 pF  
(see Note A)  
(see Note A)  
(a) SINGLE SUPPLY  
NOTE A: C includes fixture capacitance.  
(b) SPLIT SUPPLY  
L
Figure 4. Small-Signal Pulse-Response Test Circuit  
typical values  
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
Distribution  
5, 6, 7  
IO  
vs Common-mode input voltage  
vs Free-air temperature  
8, 9, 10  
11, 12, 13  
I
I
IB  
Input current  
vs Differential input voltage  
14  
I
vs Output current  
vs Free-air temperature  
15, 16, 17  
18  
V
V
Maximum peak output voltage  
OM  
vs High-level output current  
vs Free-air temperature  
19, 20  
21  
High-level output voltage  
OH  
vs Low-level output current  
vs Free-air temperature  
22  
23  
V
V
Low-level output voltage  
OL  
Maximum peak-to-peak output voltage  
Large-signal differential voltage amplification  
vs Frequency  
24, 25  
O(PP)  
vs Frequency  
vs Free-air temperature  
26  
27, 28, 29  
A
VD  
OS  
CC  
vs Supply voltage  
vs Free-air temperature  
30 – 33  
34 – 37  
I
I
Short-circuit output current  
Supply current  
vs Supply voltage  
vs Free-air temperature  
38, 39, 40  
41, 42, 43  
CMRR Common-mode rejection ratio  
SR Slew rate  
vs Frequency  
44, 45, 46  
47, 48, 49  
50, 51  
vs Free-air temperature  
Voltage-follower small-signal pulse response vs Time  
Voltage-follower large-signal pulse response vs Time  
52 – 57  
0.1 to 1 Hz  
0.1 to 10 Hz  
58  
59  
V
V
B
Peak-to-peak equivalent input noise voltage  
Equivalent input noise voltage  
Unity-gain bandwidth  
N(PP)  
vs Frequency  
60  
n
1
vs Supply voltage  
vs Free-air temperature  
61, 62  
63, 64  
vs Supply voltage  
vs Load capacitance  
vs Free-air temperature  
65, 66  
67, 68  
69, 70  
φ
m
Phase margin  
Phase shift  
vs Frequency  
26  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLE2022  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLE2021  
INPUT OFFSET VOLTAGE  
20  
16  
12  
8
20  
16  
12  
8
231 Units Tested From 1 Wafer Lot  
= ±15 V  
CC±  
= 25°C  
398 Amplifiers Tested From 1 Wafer Lot  
= ±15 V  
CC±  
= 25°C  
V
V
T
A
T
A
P Package  
P Package  
4
4
0
0
600 450 300 150  
0
150 300  
450 600  
600 400  
200  
0
200  
400  
600  
V
IO  
– Input Offset Voltage – µV  
V
IO  
– Input Offset Voltage – µV  
Figure 5  
Figure 6  
TLE2021  
INPUT BIAS CURRENT  
vs  
DISTRIBUTION OF TLE2024  
INPUT OFFSET VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
16  
12  
8
40  
35  
30  
25  
20  
15  
10  
–5  
V
T
= ±15 V  
CC±  
= 25°C  
796 Amplifiers Tested From 1 Wafer Lot  
= ±15 V  
V
A
CC±  
= 25°C  
T
A
N Package  
4
0
0
15  
–1  
0.5  
0
0.5  
1
10  
–5  
0
5
10  
15  
V
IO  
– Input Offset Voltage – mV  
V
IC  
– Common-Mode Input Voltage – V  
Figure 7  
Figure 8  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2022  
INPUT BIAS CURRENT  
vs  
TLE2024  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
50  
45  
60  
50  
V
= ±15 V  
CC±  
V
= ±15 V  
CC±  
= 25°C  
T
A
= 25°C  
T
A
40  
40  
30  
20  
35  
30  
25  
20  
15  
10  
–5  
0
5
10  
15  
15  
10  
–5  
0
5
10  
15  
V
IC  
– Common-Mode Input Voltage – V  
V
IC  
– Common-Mode Input Voltage – V  
Figure 9  
Figure 10  
TLE2022  
INPUT BIAS CURRENT  
TLE2021  
INPUT BIAS CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE–AIR TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
–5  
V
V
V
= ±15 V  
V
V
V
= ±15 V  
= 0  
= 0  
IC  
CC±  
= 0  
= 0  
IC  
CC±  
O
O
35  
30  
25  
20  
0
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2024  
INPUT BIAS CURRENT  
vs  
INPUT CURRENT  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
T
A
= ±15 V  
60  
50  
40  
CC±  
= 0  
V
V
V
= ±15 V  
CC±  
IC  
= 25°C  
= 0  
O
= 0  
IC  
30  
20  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
125  
75 50 25  
0
25  
50  
75 100  
|V | – Differential Input Voltage – V  
ID  
T
A
– Free-Air Temperature – °C  
Figure 13  
Figure 14  
TLE2022  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
TLE2021  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
16  
16  
14  
12  
10  
8
V
T
= ±15 V  
V
T
= ±15 V  
= 25°C  
CC±  
= 25°C  
CC±  
A
14  
12  
10  
8
A
V
V
OM+  
OM+  
V
OM–  
V
OM–  
6
6
4
4
2
2
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
12  
14  
I
O
– Output Current – mA  
|I | – Output Current – mA  
O
Figure 15  
Figure 16  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2024  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
OUTPUT CURRENT  
15  
14.5  
14  
16  
14  
12  
10  
8
V
= ±5 V  
CC±  
= 25°C  
T
A
V
OM+  
V
OM+  
V
OM–  
V
OM–  
13.5  
13  
6
4
V
= ±15 V  
CC±  
= 10 kΩ  
12.5  
R
L
2
T
A
= 25°C  
0
12  
14  
0
2
4
6
8
10  
12  
75 50 25  
0
25  
50  
75  
100 125  
I
O
– Output Current – mA  
T
A
– Free-Air Temperature – °C  
Figure 17  
Figure 18  
TLE2021  
HIGH–LEVEL OUTPUT VOLTAGE  
vs  
TLE2022 AND TLE2024  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH–LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
5
V
T
A
= 5 V  
= 25°C  
CC  
V
T
A
= 5 V  
= 25°C  
CC  
4
3
2
1
0
1
0
0
–2  
–4  
–6  
–8  
10  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
I
– High-Level Output Current – mA  
I
– High-Level Output Current – mA  
OH  
OH  
Figure 19  
Figure 20  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
LOW-LEVEL OUTPUT CURRENT  
5
4.8  
4.6  
4.4  
5
4
3
2
1
0
V
T
A
= 5 V  
= 25°C  
V
CC  
= 5 V  
CC  
No Load  
R
= 10 kΩ  
L
4.2  
4
75 50 25  
0
25  
50  
75  
100 125  
0
0.5  
1
1.5  
2
2.5  
3
T
A
– Free-Air Temperature – °C  
I
– Low-Level Output Current – mA  
OL  
Figure 21  
Figure 22  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
5
1
0.75  
0.5  
I
= 1 mA  
OL  
4
3
2
1
0
I
= 0  
OL  
0.25  
0
V
= 5 V  
= 10 kΩ  
= 25°C  
CC  
R
T
A
L
V
CC±  
= ±5 V  
1 M  
75 50 25  
0
25  
50  
75 100 125  
100  
1 k  
10 k  
100 k  
T
A
– Free-Air Temperature – °C  
f – Frequency – Hz  
Figure 23  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
30  
25  
20  
15  
10  
5
V
= ± 15 V  
CC ±  
= 10 kΩ  
R
T
A
L
= 25°C  
0
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 25  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
120  
100  
80  
60°  
80°  
Phase Shift  
100°  
120°  
140°  
160°  
180°  
200°  
V
CC±  
= ±15 V  
A
VD  
60  
V
CC  
= 5 V  
40  
20  
R
C
T
A
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
0
20  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f – Frequency – Hz  
Figure 26  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2022  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION  
AMPLIFICATION  
vs  
vs  
FREE–AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
10  
8
6
5
R
= 10 kΩ  
L
R
= 10 kΩ  
L
V
CC±  
= ±15 V  
V
CC±  
= ±15 V  
4
6
3
2
4
2
1
0
V
= 5 V  
V
= 5 V  
75  
CC  
CC  
0
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 27  
Figure 28  
TLE2024  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
TLE2021  
AMPLIFICATION  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10  
8
10  
8
R
= 10 kΩ  
L
V
T
A
= 0  
= 25°C  
O
6
V
CC±  
= ±15 V  
V
ID  
= –100 mV  
4
6
2
0
4
–2  
–4  
–6  
–8  
10  
2
V
= 100 mV  
12  
ID  
V
0
= ±5 V  
CC±  
0
75 50 25  
25  
50  
75 100 125  
0
2
4
6
8
10  
14  
16  
T
A
– Free-Air Temperature – °C  
|V | – Supply Voltage – V  
CC±  
Figure 29  
Figure 30  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
15  
12  
8
V
T
A
= 0  
= 25°C  
O
T
A
= 25°C  
10  
5
V
ID  
V
O
= –100 mV  
= V  
CC  
V
ID  
= –100 mV  
4
0
–5  
0
–4  
–8  
– 12  
V
= 100 mV  
= 0  
ID  
O
V
= 100 mV  
ID  
V
10  
15  
0
2
4
6
8
10  
12  
14  
16  
0
5
10  
15  
20  
25  
30  
|V | – Supply Voltage – V  
CC±  
V
– Supply Voltage – V  
CC  
Figure 31  
Figure 32  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
15  
10  
8
6
V
CC  
= 5 V  
T
A
= 25°C  
V
ID  
V
O
= 100 mV  
V
V
= –100 mV  
= 5 V  
ID  
O
= V  
CC  
4
5
2
0
0
– 2  
– 4  
– 6  
– 8  
–5  
10  
15  
V
V
= 100 mV  
= 0  
ID  
O
V
ID  
V
O
= 100 mV  
= 0  
0
5
10  
15  
20  
25  
30  
– 75 – 50 – 25  
0
25  
50  
75 100 125  
V
CC  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 33  
Figure 34  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
6
4
12  
8
V
CC  
= 5 V  
V
= –100 mV  
= 5 V  
V
= ±15 V  
CC±  
ID  
V
V = 0  
O
O
2
V
ID  
= –100 mV  
4
0
–2  
–4  
–6  
–8  
10  
0
–4  
–8  
12  
V
ID  
V
O
= 100 mV  
= 0  
V
ID  
= 100 mV  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature –°C  
T
A
– Free-Air Temperature – °C  
Figure 35  
Figure 36  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
250  
200  
150  
100  
50  
15  
10  
V
= 0  
O
V
V
= ±15 V  
CC±  
= 0  
No Load  
O
5
V
= 100 mV  
ID  
T
A
= 125°C  
0
T
A
= 25°C  
–5  
10  
15  
T
= 55°C  
A
V
ID  
= 100 mV  
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
– Free-Air Temperature – °C  
|V | – Supply Voltage – V  
CC±  
Figure 37  
Figure 38  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2022  
SUPPLY CURRENT  
vs  
TLE2024  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
500  
400  
1000  
800  
V
= 0  
O
V
= 0  
O
No Load  
T
A
= 125°C  
No Load  
T
A
= 25°C  
T
A
= 25°C  
300  
600  
T
A
= 55°C  
T
A
= 125°C  
T
A
= 55°C  
200  
100  
400  
200  
0
0
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V | – Supply Voltage – V  
CC±  
|V  
CC±  
| – Supply Voltage – V  
Figure 39  
Figure 40  
TLE2022  
SUPPLY CURRENT  
vs  
TLE2021  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
225  
200  
175  
150  
125  
100  
75  
500  
400  
V
= ±15 V  
CC±  
V
= ±15 V  
CC±  
V
= ±2.5 V  
CC±  
V
CC±  
= ± 2.5 V  
300  
200  
100  
50  
V
= 0  
V
= 0  
O
O
25  
No Load  
No Load  
0
0
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 41  
Figure 42  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2024  
SUPPLY CURRENT  
vs  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
1000  
800  
120  
100  
80  
60  
40  
20  
0
V
CC±  
= ±15 V  
V
= ±15 V  
CC±  
V
CC±  
= ±2.5 V  
600  
V
CC  
= 5 V  
400  
200  
V
O
= 0  
No Load  
T
A
= 25°C  
0
75 50 25  
0
25  
50  
75 100 125  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
T
A
– Free-Air Temperature – °C  
f – Frequency – Hz  
Figure 43  
Figure 44  
TLE2024  
TLE2022  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
V
= ±15 V  
CC±  
T
A
= 25°C  
V
= ±15 V  
CC±  
V
= 5 V  
CC  
V
CC  
= 5 V  
T
A
= 25°C  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 45  
Figure 46  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2022  
SLEW RATE  
vs  
TLE2021  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
V
= ±15 V  
CC±  
V
= ±15 V  
CC±  
V
CC  
= 5 V  
V
= 5 V  
CC  
R
C
= 20 kΩ  
= 30 pF  
R
C
= 20 kΩ  
= 30 pF  
L
L
L
L
See Figure 1  
See Figure 1  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 47  
Figure 48  
TLE2024  
SLEW RATE  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
vs  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
0.4  
0.2  
0
100  
50  
V
R
C
= ±15 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC±  
L
L
T
A
V
= ±15 V  
CC±  
See Figure 4  
0
V
= 5 V  
CC  
50  
100  
R
C
= 20 kΩ  
= 30 pF  
L
L
See Figure 1  
75 50 25  
0
25  
50  
75  
100 125  
0
20  
40  
60  
80  
T
A
– Free-Air Temperature – °C  
t – Time – µs  
Figure 49  
Figure 50  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
TLE2021  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
2.6  
2.55  
2.5  
4
3
2
1
0
V
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
V
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
R
C
L
L
R
C
L
L
T
A
T
A
See Figure 4  
See Figure 1  
2.45  
2.4  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t – Time – µs  
t – Time – µs  
Figure 51  
Figure 52  
TLE2024  
TLE2022  
VOLTAGE-FOLLOWER LARGE-SCALE  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
4
3
2
1
0
4
3
2
1
0
V
R
C
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC±  
L
L
V
R
C
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
L
L
T
A
T
A
See Figure 1  
See Figure 1  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t – Time – µs  
t – Time – µs  
Figure 53  
Figure 54  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2022  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
15  
10  
V
R
C
= ±15 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC±  
L
L
V
= ±15 V  
CC±  
R
C
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
T
A
T
A
See Figure 1  
See Figure 1  
5
5
0
0
– 5  
10  
15  
–5  
10  
15  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t – Time – µs  
t – Time – µs  
Figure 55  
Figure 56  
TLE2024  
PEAK-TO-PEAK EQUIVALENT  
INPUT NOISE VOLTAGE  
0.1 TO 1 Hz  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
5
0.5  
V
R
C
= ±15 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC±  
L
L
V
= ±15 V  
CC±  
= 25°C  
0.4  
0.3  
T
A
T
A
See Figure 1  
0.2  
0.1  
0
0
– 0.1  
– 0.2  
– 0.3  
– 0.4  
– 0.5  
–5  
–10  
–15  
0
20  
40  
60  
80  
0
1
2
3
4
5
6
7
8
9
10  
t – Time – µs  
t – Time – s  
Figure 57  
Figure 58  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
PEAK-TO-PEAK EQUIVALENT  
INPUT NOISE VOLTAGE  
0.1 TO 10 Hz  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
0.5  
0.4  
200  
160  
120  
80  
V
T
= ±15 V  
CC±  
= 25°C  
V
R
= ±15 V  
CC±  
= 20 Ω  
A
S
T
= 25°C  
A
0.3  
See Figure 2  
0.2  
0.1  
0
– 0.1  
– 0.2  
– 0.3  
– 0.4  
– 0.5  
40  
0
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1 k  
10 k  
t – Time – s  
f – Frequency – Hz  
Figure 59  
Figure 60  
TLE2022 AND TLE2024  
UNITY-GAIN BANDWIDTH  
vs  
TLE2021  
UNITY-GAIN BANDWIDTH  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
4
3
2
1
0
4
3
2
1
0
R
C
= 10 kΩ  
L
L
R
C
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
= 30 pF  
T
= 25°C  
A
T
A
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
|V  
6
8
10  
| – Supply Voltage – V  
CC±  
12  
14  
16  
|V  
| – Supply Voltage – V  
CC±  
Figure 61  
Figure 62  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2021  
UNITY-GAIN BANDWIDTH  
vs  
TLE2022 AND TLE2024  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3
2
1
0
4
3
2
1
0
R
C
= 10 kΩ  
L
L
R
C
= 10 kΩ  
= 30 pF  
L
L
= 30 pF  
See Figure 3  
See Figure 3  
V
= ±15 V  
CC±  
V
= ±15 V  
CC±  
V
= 5 V  
CC  
V
CC  
= 5 V  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 63  
Figure 64  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
TLE2021  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
55°  
53°  
51°  
49°  
47°  
45°  
50°  
48°  
46°  
44°  
42°  
40°  
R
C
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
R
C
T
A
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
T
A
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V | – Supply Voltage – V  
CC±  
|V | – Supply Voltage – V  
CC±  
Figure 65  
Figure 66  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
TLE2021  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
70°  
60°  
50°  
40°  
30°  
20°  
10°  
0°  
60°  
50°  
40°  
30°  
20°  
10°  
0
R
= 10 kΩ  
= 30 pF  
L
R
= 10 kΩ  
= 25°C  
L
T
A
T
A
See Figure 3  
See Figure 3  
V
= ±15 V  
CC±  
V
= ±15 V  
CC±  
V
= 5 V  
CC  
V
CC  
= 5 V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
C
– Load Capacitance – pF  
C
– Load Capacitance – pF  
L
L
Figure 67  
Figure 68  
TLE2021  
PHASE MARGIN  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
50°  
48°  
46°  
44°  
42°  
40°  
38°  
36°  
54°  
52°  
R
C
= 10 kΩ  
L
L
= 30 pF  
See Figure 3  
V
= ±15 V  
CC±  
V
= ±15 V  
CC±  
50°  
48°  
V
CC  
= 5 V  
46°  
44°  
V
= 5 V  
CC  
R
C
= 10 kΩ  
= 30 pF  
L
L
42°  
40°  
See Figure 3  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 69  
Figure 70  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
APPLICATION INFORMATION  
voltage-follower applications  
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,  
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur  
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It  
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent  
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For  
feedback resistor values greater than 10 k, this pole degrades the amplifier phase margin. This problem can  
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).  
C
= 20 pF to 50 pF  
F
I
F
1 mA  
R
F
V
CC+  
CC–  
+
V
O
V
I
V
Figure 71. Voltage Follower  
Input offset voltage nulling  
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in  
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null  
pins may be left disconnected.  
IN –  
OFFSET N2  
+
IN +  
5 kΩ  
OFFSET N1  
V
– (split supply)  
CC  
1 kGND (single supply)  
Figure 72. Input Offset Voltage Null Circuit  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts , the model generation software used  
with MicrosimPSpice . The Boyle macromodel (see Note 5) and subcircuit in73, Figure 74, and Figure 75 were  
generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this information,  
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, andJ. E. Solomon, “MacromodelingofIntegratedCircuitOperationalAmplifiers”, IEEEJournal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
din  
3
egnd  
+
V
CC+  
92  
9
fb  
+
91  
90  
rss  
iss  
ro2  
hlim  
+
+
vb  
dip  
rp  
vip  
vin  
+
2
10  
+
vc  
IN–  
IN+  
r2  
C2  
j1  
j2  
7
dp  
6
53  
+
1
vlim  
11  
dc  
12  
ga  
gcm  
8
5
C1  
ro1  
rd1  
rd2  
de  
54  
4
V
CC–  
+
ve  
OUT  
Figure 73. Boyle Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
.SUBCKT TLE2021 1 2 3 4 5  
hcmr 80  
1
4
poly(2) vcm+ vcm– 0 1E2 1E2  
185E–6  
*
irp  
iee  
iio  
3
3
2
88  
c1  
c2  
c3  
11 12 6.244E–12  
10 dc 15.67E–6  
0
0
6
7
0
13.4E–12  
10.64E–9  
2E–9  
1E–21  
87  
i1  
cpsr 85 86 15.9E–9  
dcm+ 81 82 dx  
dcm– 83 81 dx  
q1  
q2  
R2  
11 89 13 qx  
12 80 14 qx  
6
9
100.0E3  
dc  
5
54  
53 dx  
5 dx  
rcm 84 81 1K  
ree 10 99 14.76E6  
rn1 87  
rn2 87 88 11.67E3  
de  
dlp  
dln  
dp  
90 91 dx  
92 90 dx  
4
0
2.55E8  
3 dx  
ro1  
ro2  
8
7
5
62  
ecmr 84 99 (2 99) 1  
99 63  
egnd 99  
epsr 85  
ense 89  
0
0
2
poly(2) (3,0) (4,0) 0 .5 .5  
poly(1) (3,4) –60E–6 2.0E–6  
poly(1) (88,0) 120E–6 1  
vcm+ 82 99 13.3  
vcm– 83 99 –14.6  
vb  
vc  
9
3
0
dc 0  
fb  
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6  
53 dc 1.300  
+ –50E7 50E7 50E7 –50E7 547E6  
ve  
54  
7
91  
0
0
4
8
0
dc 1.500  
dc 0  
dc 3.600  
ga  
gcm  
6
0
0
6
11 12 188.5E–6  
10 99 335.2E–12  
vlim  
vlp  
vln  
vpsr  
gpsr 85 86 (85,86) 100E–6  
92 dc 3.600  
86 dc 0  
grc1  
grc2  
4
4
11 (4,11) 1.885E–4  
12 (4,12) 1.885E–4  
.model dx d(is=800.0E–18)  
.model qx pnp(is=800.0E–18 bf=270)  
.ends  
gre1 13 10 (13,10) 6.82E–4  
gre2 14 10 (14,10) 6.82E–4  
hlim  
90  
0 vlim 1k  
Figure 74. Boyle Macromodel for the TLE2021  
.SUBCKT TLE2022 1 2 3 4 5  
*
rc1  
rc2  
4
4
11 2.842E3  
12 2.842E3  
c1  
c2  
dc  
11 12 6.814E–12  
ge1 13 10 (10,13) 31.299E–3  
ge2 14 10 (10,14) 31.299E–3  
ree 10 99 11.07E6  
ro1  
ro2  
rp  
6
5
7
20.00E–12  
53 dx  
de  
54 5 dx  
90 91 dx  
92 90 dx  
8
7
3
9
3
5 250  
99 250  
4 137.2E3  
0 dc 0  
53 dc 1.300  
dlp  
dln  
dp  
4
3 dx  
vb  
vc  
egnd 99  
fb  
0
poly(2) (3,0) (4,0) 0 .5 .5  
7
99poly(5) vb vc ve vlp vln 0  
ve  
54 4 dc 1.500  
8 dc 0  
vlp 91 0 dc 3  
vln 92 dc 3  
+ 45.47E6 –50E6 50E6 50E6 –50E6  
vlim 7  
ga 6  
gcm 06  
iee  
0
11 12 377.9E–6  
10 99 7.84E–10  
10 DC 18.07E–6  
0
3
.model dx d(is=800.0E–18)  
.model qx pnp(is=800.0E–18 bf=257.1)  
.ends  
hlim 90 0 vlim 1k  
q1  
q2  
r2  
11 2 13 qx  
12 1 14 qx  
6
9 100.0E3  
Figure 75. Boyle Macromodel for the TLE2022  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
PINS **  
0.050 (1,27)  
8
14  
16  
DIM  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
M
A MAX  
14  
8
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
7
A
0.010 (0,25)  
0°8°  
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
4040047/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Four center pins are connected to die mount pad.  
E. Falls within JEDEC MS-012  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
28 PIN SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°8°  
1,03  
0,63  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
8
14  
16  
20  
24  
28  
30  
38  
DIM  
3,30  
2,70  
6,50  
5,90  
6,50  
5,90  
7,50  
6,90  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
9,90  
12,30  
4040065 /C 10/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PIN SHOWN  
PINS **  
0.050 (1,27)  
16  
20  
24  
28  
DIM  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
0.410  
0.510  
0.610  
0.710  
A MAX  
(10,41) (12,95) (15,49) (18,03)  
16  
9
0.400  
0.500  
0.600  
0.700  
A MIN  
(10,16) (12,70) (15,24) (17,78)  
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
4040000/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
J (R-GDIP-T**)  
CERAMIC DUAL-IN-LINE PACKAGE  
14 PIN SHOWN  
PINS **  
14  
16  
18  
20  
22  
DIM  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
0.410  
(10,41)  
A MAX  
B
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
0.390  
(9,91)  
A MIN  
B MAX  
B MIN  
C MAX  
C MIN  
14  
8
0.785  
0.785  
0.910  
0.975  
1.100  
(19,94) (19,94) (23,10) (24,77) (28,00)  
C
0.755  
(19,18) (19,18)  
0.755  
0.930  
(23,62)  
0.280  
(7,11)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.388  
(9,65)  
1
7
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.065 (1,65)  
0.045 (1,14)  
0.100 (2,54)  
0.070 (1,78)  
0.020 (0,51) MIN  
A
0.200 (5,08) MAX  
Seating Plane  
0.130 (3,30) MIN  
0°15°  
0.100 (2,54)  
0.023 (0,58)  
0.015 (0,38)  
0.014 (0,36)  
0.008 (0,20)  
4040083/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22  
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE PACKAGE  
0.400 (10,20)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.130 (3,30) MIN  
0°–15°  
0.063 (1,60)  
0.015 (0,38)  
0.023 (0,58)  
0.015 (0,38)  
0.015 (0,38)  
0.008 (0,20)  
0.100 (2,54)  
4040107/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only  
E. Falls within MIL-STD-1835 GDIP1-T8  
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23.37)  
0.975  
(24,77)  
A MAX  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21.59)  
0.940  
(23,88)  
A MIN  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.020 (0,51) MIN  
0.310 (7,87)  
0.290 (7,37)  
0.035 (0,89) MAX  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
14/18 PIN ONLY  
4040049/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE202x, TLE202xA, TLE202xB, TLE202xY  
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION  
OPERATIONAL AMPLIFIERS  
SLOS191 – FEBRUARY 1997  
MECHANICAL INFORMATION  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,32  
0,19  
0,65  
M
0,13  
14  
8
0,15 NOM  
4,50  
4,30  
6,70  
6,10  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
A
0,50  
Seating Plane  
0,10  
1,20 MAX  
0,10 MIN  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/D 10/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
65  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLE2021AMFKB

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021AMJG

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021AMJGB

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021AMLB

Operational Amplifier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TLE2021AMP

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021AQDREP

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021AQDRG4Q1

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION POERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021AQDRQ1

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION POERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021AQPWRQ1

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION POERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021B

Excalibur 高速低功耗精密运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021BCJG

IC,OP-AMP,SINGLE,BIPOLAR,DIP,8PIN,CERAMIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2021BMFK

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI