TLE2024ACDWRG4 [TI]

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS; 神剑高速低功耗精密运算放大器
TLE2024ACDWRG4
型号: TLE2024ACDWRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
神剑高速低功耗精密运算放大器

运算放大器 放大器电路 光电二极管
文件: 总72页 (文件大小:1491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
D
D
D
D
D
D
Supply Current . . . 300 µA Max  
High Unity-Gain Bandwidth . . . 2 MHz Typ  
High Slew Rate . . . 0.45 V/µs Min  
D
High Open-Loop Gain . . . 6.5 V/µV  
(136 dB) Typ  
D
Low Offset Voltage . . . 100 µV Max  
Offset Voltage Drift With Time  
0.005 µV/mo Typ  
Low Input Bias Current . . . 50 nA Max  
D
Supply-Current Change Over Military Temp  
Range . . . 10 µA Typ at V  
=
15 V  
CC  
D
D
Specified for Both 5-V Single-Supply and  
15-V Operation  
Low Noise Voltage . . . 19 nV/Hz Typ  
Phase-Reversal Protection  
description  
The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers  
using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with  
highly improved slew rate and unity-gain bandwidth.  
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic  
improvement in unity-gain bandwidth and slew rate over similar devices.  
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both  
time and temperature. This means that a precision device remains a precision device even with changes in  
temperature and over years of use.  
This combination of excellent dc performance with a common-mode input voltage range that includes the  
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either  
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry  
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply  
rail.  
A variety of available options includes small-outline and chip-carrier versions for high-density systems  
applications.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of 55°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢦ  
Copyright 1997−2007, Texas Instruments Incorporated  
ꢢ ꢦ ꢣ ꢢꢛ ꢜꢯ ꢞꢝ ꢡ ꢩꢩ ꢧꢡ ꢟ ꢡ ꢠ ꢦ ꢢ ꢦ ꢟ ꢣ ꢫ  
ꢤꢦ  
ꢡꢟ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢓꢂ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TLE2021 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
CHIP  
FORM  
(Y)  
V
max  
IO  
SMALL  
OUTLINE  
(D)  
§
T
A
CERAMIC DIP PLASTIC DIP  
TSSOP  
(PW)  
SSOP  
(DB)  
AT 25°C  
CARRIER  
(FK)  
(JG)  
(P)  
0°C to  
70°C  
200 µV  
500 µV  
TLE2021ACD  
TLE2021CD  
TLE2021ACP  
TLE2021CP  
TLE2021CDBLE  
TLE2021CPWLE TLE2021Y  
40°C  
to  
85°C  
200 µV  
500 µV  
TLE2021AID  
TLE2021ID  
TLE2021AIP  
TLE2021IP  
55°C  
to  
125°C  
100 µV  
200 µV  
500 µV  
TLE2021BMFK TLE2021BMJG  
TLE2021AMD  
TLE2021MD  
TLE2021AMFK TLE2021AMJG TLE2021AMP  
TLE2021MFK TLE2021MJG TLE2021MP  
§
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).  
The DB and PW packages are only available left-end taped and reeled.  
Chip forms are tested at 25°C only.  
TLE2022 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
IO  
AT 25°C  
SMALL  
OUTLINE  
(D)  
§
T
A
TSSOP  
(PW)  
SSOP  
(DB)  
(JG)  
(P)  
0°C  
to  
70°C  
150 µV TLE2022BCD  
300 µV TLE2022ACD  
500 µV TLE2022CD  
TLE2022ACP  
TLE2022CP  
TLE2022CPWLE TLE2022Y  
TLE2022CDBLE  
40°C  
to  
85°C  
150 µV TLE2022BID  
300 µV TLE2022AID  
500 µV TLE2022ID  
TLE2022AIP  
TLE2022IP  
55°C  
to  
125°C  
150 µV  
TLE2022BMJG  
300 µV TLE2022AMD  
500 µV TLE2022MD  
TLE2022AMFK TLE2022AMJG TLE2022AMP  
TLE2022MFK TLE2022MJG TLE2022MP  
§
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2022CDR).  
The DB and PW packages are only available left-end taped and reeled.  
Chip forms are tested at 25°C only.  
TLE2024 AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
max  
SMALL  
OUTLINE  
(DW)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
IO  
AT 25°C  
§
T
A
(J)  
(N)  
500 µV TLE2024BCDW  
750 µV TLE2024ACDW  
1000 µV TLE2024CDW  
TLE2024BCN  
TLE2024ACN  
TLE2024CN  
0°C to 70°C  
40°C to 85°C  
55°C to 125°C  
TLE2024Y  
500 µV TLE2024BIDW  
750 µV TLE2024AIDW  
1000 µV TLE2024IDW  
TLE2024BIN  
TLE2024AIN  
TLE2024IN  
500 µV TLE2024BMDW  
750 µV TLE2024AMDW  
1000 µV TLE2024MDW  
TLE2024BMFK  
TLE2024AMFK  
TLE2024MFK  
TLE2024BMJ  
TLE2024AMJ  
TLE2024MJ  
TLE2024BMN  
TLE2024AMN  
TLE2024MN  
§
Chip forms are tested at 25°C only.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TLE2021  
D, DB, JG, P, OR PW PACKAGE  
(TOP VIEW)  
TLE2021  
FK PACKAGE  
(TOP VIEW)  
OFFSET N1  
IN−  
NC  
V
OUT  
1
2
3
4
8
7
6
5
CC+  
IN+  
V
/GND  
OFFSET N2  
CC −  
3
2
1
20 19  
18  
NC  
V
NC  
4
5
6
7
8
IN−  
NC  
IN+  
NC  
17  
16  
CC+  
NC − No internal connection  
NC  
15 OUT  
14  
NC  
9 10 11 12 13  
D, DB, JG, P, OR PW PACKAGE  
(TOP VIEW)  
FK PACKAGE  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
V
CC+  
1
2
3
4
8
7
6
5
2OUT  
2IN−  
2IN+  
3
2
1
20 19  
18  
NC  
NC  
4
5
6
7
8
V
/GND  
CC −  
2OUT  
NC  
1IN −  
NC  
17  
16  
15 2IN −  
14  
1IN +  
NC  
NC − No internal connection  
NC  
9 10 11 12 13  
DW PACKAGE  
(TOP VIEW)  
FK PACKAGE  
(TOP VIEW)  
J OR N PACKAGE  
(TOP VIEW)  
4OUT  
4IN−  
4IN+  
1OUT  
1IN−  
1IN+  
1OUT  
1IN−  
1IN+  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
4OUT  
4IN−  
4IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
3
2
1
20 19  
18  
4IN+  
NC  
1IN+  
NC  
4
5
6
7
8
V
/GND  
V
V
V
/GND  
CC −  
CC+  
CC+  
CC−  
17  
16  
15  
14  
3IN+  
3IN−  
3OUT  
NC  
2IN+  
2IN−  
2OUT  
NC  
2IN+  
2IN−  
2OUT  
3IN+  
3IN−  
3OUT  
V
/GND  
V
CC−  
CC+  
NC  
NC  
8
3IN+  
2IN+  
9 10 11 12 13  
NC − No internal connection  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢊꢋ  
ꢓꢂ  
ꢖꢑ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TLE2021Y chip information  
This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(7)  
(6)  
(5)  
V
CC+  
(7)  
(1)  
(3)  
OFFSET N1  
IN+  
+
(6)  
OUT  
(2)  
(5)  
IN−  
OFFSET N2  
(4)  
V
CC−  
/GND  
78  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T = 150°C  
Jmax  
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
(4)  
(3)  
(1)  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
(2)  
54  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TLE2022Y chip information  
This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(7)  
(6)  
V
CC+  
(8)  
(3)  
(2)  
IN+  
IN−  
+
(1)  
OUT  
(5)  
(6)  
+
IN+  
IN−  
(7)  
OUT  
(8)  
(1)  
(5)  
(4)  
(4)  
80  
V
CC−  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
(2)  
(3)  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
86  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TLE2024Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or  
ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
V
CC+  
(4)  
(3)  
(2)  
1IN+  
1IN−  
+
(1)  
1OUT  
(5)  
(6)  
+
2IN+  
2IN−  
(7)  
2OUT  
2IN+  
3IN−  
(10)  
(9)  
+
100  
(8)  
3OUT  
(12)  
(13)  
+
4IN+  
4IN−  
(14)  
V
4OUT  
(11)  
CC/GND  
140  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (11) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
equivalent schematic (each amplifier)  
V
CC+  
Q13  
Q22  
Q3  
Q17  
Q7  
Q28  
Q29  
Q31 Q35  
Q19  
Q1  
Q32  
Q34  
Q39  
Q24  
Q20  
Q5  
Q8  
Q36  
Q38  
Q11  
D3  
D4  
Q2  
C4  
OUT  
Q40  
IN −  
IN +  
Q4  
Q14  
Q12  
R7  
C3  
Q23 Q25  
C2  
Q10  
D2  
D1  
Q21  
Q27  
R6  
R1  
C1  
Q6  
R2  
R3  
Q9  
R4  
R5  
Q15  
Q37  
Q30 Q33  
Q26  
Q18  
OFFSET N1  
OFFSET N2  
Q16  
V
CC−  
/GND  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
TLE2021  
TLE2022  
TLE2024  
160  
28  
Transistors  
Resistors  
Diodes  
40  
7
80  
14  
8
4
16  
Capacitors  
4
8
16  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 V  
CC+  
CC−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ID  
V
I
CC  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mA  
I
Output current, I (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
O
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
Total current into V  
Total current out of V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
CC+  
CC−  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Case temperature for 60 seconds, T : FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
stg  
C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
, and V .  
CC+  
CC−  
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if a differential input voltage in excess of approximately  
600 mV is applied between the inputs unless some limiting resistance is used.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
377 mW  
POWER RATING  
145 mW  
A
D−8  
DB−8  
DW−16  
FK  
725 mW  
5.8 mW/°C  
4.2 mW/°C  
8.2 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
9.2 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
464 mW  
525 mW  
336 mW  
1025 mW  
1375 mW  
1375 mW  
1050 mW  
1150 mW  
1000 mW  
525 mW  
656 mW  
533 mW  
715 mW  
715 mW  
546 mW  
598 mW  
520 mW  
205 mW  
275 mW  
275 mW  
210 mW  
230 mW  
200 mW  
880 mW  
J−14  
JG−8  
N−14  
P−8  
880 mW  
672 mW  
736 mW  
640 mW  
PW−8  
336 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN  
2
MAX  
MIN  
2
MAX  
20  
MIN  
2
MAX  
20  
Supply voltage, V  
CC  
20  
3.5  
V
V
V
=
5 V  
0
0
3.2  
0
3.2  
CC  
Common-mode input voltage, V  
IC  
V
=
15 V  
−15  
0
13.5  
70  
−15  
40  
13.2  
85  
−15  
55  
13.2  
125  
CC  
Operating free-air temperature, T  
°C  
A
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢃꢅ ꢆ ꢰ ꢀ ꢁ ꢂꢃꢄ ꢃ ꢅꢇ ꢆꢰ ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢉ  
ꢂ ꢊꢋ ꢇ ꢁꢌ ꢈ ꢍ ꢎ ꢰ ꢏ ꢌ ꢐꢏ ꢑꢒꢓ ꢂ ꢂꢔ ꢰꢁ ꢕ ꢖꢑꢓ ꢕꢖ ꢂ ꢎꢰ ꢓꢎꢂ ꢋꢌ ꢒꢌꢕ ꢗ  
ꢕꢓ ꢂꢎ ꢇꢀ ꢌ ꢕꢗ ꢇ ꢁꢰꢇꢘ ꢓꢁ ꢌ ꢙꢌ ꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢰ ꢀꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢇꢆꢰ ꢀꢁ ꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢰꢀ ꢁꢂ ꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎꢰꢏ ꢌꢐ ꢏꢑꢒꢓ ꢂꢂꢔꢰ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎꢰ ꢓꢎ ꢂꢋ ꢌ ꢒꢌ ꢕ ꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁꢰꢇꢘꢓ ꢁꢌ ꢙ ꢌꢂ ꢎꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TLE2021Y electrical characteristics at V  
= 5 V, T = 25°C (unless otherwise noted)  
CC  
A
TLE2021Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
150  
0.005  
0.5  
MAX  
V
IO  
Input offset voltage  
µV  
µV/mo  
nA  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
V
IC  
= 0,  
R
= 50 Ω  
S
I
I
IO  
Input bias current  
35  
nA  
IB  
− 0.3  
to  
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
L
4
V
V
Maximum high-level output voltage  
Maximum low-level output voltage  
4.3  
0.7  
V
V
OH  
= 10 kΩ  
OL  
A
Large-signal differential voltage amplification  
V
V
V
V
= 1.4 to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
1.5  
V/µV  
dB  
dB  
µA  
VD  
O
L
CMRR Common-mode rejection ratio  
= V  
min,  
= 5 V to 30 V  
100  
115  
400  
IC  
CC  
ICR  
S
k
Supply-voltage rejection ratio (V  
/V )  
IO  
SVR  
CC  
I
Supply current  
= 2.5 V,  
No load  
CC  
O
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2021Y operating characteristics at V  
= 5 V, T = 25°C  
A
CC  
TLE2021Y  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
= 1 V to 3 V  
UNIT  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
V/µs  
O
f = 10 Hz  
21  
nV/Hz  
µV  
V
Equivalent input noise voltage  
n
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
I
Peak-to-peak equivalent input noise voltage  
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TLE2022Y electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
CC  
A
TLE2022Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
150  
0.005  
0.5  
MAX  
V
IO  
Input offset voltage  
600  
µV  
µV/mo  
nA  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
V
IC  
= 0,  
R = 50 Ω  
S
I
I
IO  
Input bias current  
35  
nA  
IB  
− 0.3  
to  
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
L
4
V
V
Maximum high-level output voltage  
Maximum low-level output voltage  
4.3  
0.7  
V
V
OH  
= 10 kΩ  
OL  
A
Large-signal differential voltage amplification  
V
V
V
V
= 1.4 to 4 V,  
R = 10 kΩ  
1.5  
V/µV  
dB  
dB  
µA  
VD  
O
L
CMRR Common-mode rejection ratio  
= V  
min,  
= 5 V to 30 V  
R
= 50 Ω  
S
100  
115  
450  
IC  
CC  
ICR  
k
Supply-voltage rejection ratio (V  
/V )  
IO  
SVR  
CC  
I
Supply current  
= 2.5 V,  
No load  
CC  
O
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2022Y operating characteristics, V  
= 5 V, T = 25°C  
A
CC  
TLE2022Y  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
V/µs  
f = 10 Hz  
21  
V
Equivalent input noise voltage (see Figure 2)  
nV/Hz  
µV  
n
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
I
Peak-to-peak equivalent input noise voltage  
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
See Figure 3  
See Figure 3  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TLE2024Y electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
A
CC  
TLE2024Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
0.005  
0.6  
MAX  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
µV/mo  
nA  
I
I
V
IC  
= 0,  
R
= 50 Ω  
IO  
S
Input bias current  
45  
nA  
IB  
0.3  
to  
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
L
4
V
V
High-level output voltage  
Low-level output voltage  
4.2  
0.7  
V
V
OH  
= 10 kΩ  
OL  
Large-signal differential  
voltage amplification  
A
V
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
1.5  
90  
V/µV  
dB  
VD  
O
L
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min,  
ICR  
IC  
S
k
= 5 V to 30 V  
112  
800  
dB  
SVR  
CC  
(V  
CC  
/V )  
IO  
I
Supply current  
= 2.5 V,  
O
No load  
µA  
CC  
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
TLE2024Y operating characteristics, V  
= 5 V, T = 25°C  
A
CC  
TLE2024Y  
TYP  
0.5  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
V/µs  
f = 10 Hz  
21  
nV/Hz  
µV  
V
Equivalent input noise voltage (see Figure 2)  
n
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
V
Peak-to-peak equivalent input noise voltage  
N(PP)  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
1.7  
MHz  
φ
m
Phase margin at unity gain  
47°  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
PARAMETER MEASUREMENT INFORMATION  
20 kΩ  
20 kΩ  
5 V  
15 V  
V
O
V
O
+
+
V
I
V
I
15 V  
30 pF  
(see Note A)  
20 kΩ  
30 pF  
(see Note A)  
20 kΩ  
(a) SINGLE SUPPLY  
NOTE A: C includes fixture capacitance.  
(b) SPLIT SUPPLY  
L
Figure 1. Slew-Rate Test Circuit  
2 kΩ  
2 kΩ  
15 V  
5 V  
20 Ω  
20 Ω  
V
O
+
V
O
2.5 V  
+
15 V  
20Ω  
20 Ω  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Voltage Test Circuit  
10 kΩ  
10 kΩ  
15 V  
5 V  
100 Ω  
+
V
I
V
I
V
O
100Ω  
V
O
+
2.5 V  
15 V  
30 pF  
(see Note A)  
10 kΩ  
30 pF  
(see Note A)  
10 kΩ  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
NOTE A: C includes fixture capacitance.  
L
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
PARAMETER MEASUREMENT INFORMATION  
5 V  
15 V  
+
0.1 µF  
10 kΩ  
V
O
V
O
+
V
I
V
I
10 kΩ  
− 15 V  
30 pF  
10 kΩ  
10 kΩ  
30 pF  
(see Note A)  
(see Note A)  
(a) SINGLE SUPPLY  
NOTE A: C includes fixture capacitance.  
(b) SPLIT SUPPLY  
L
Figure 4. Small-Signal Pulse-Response Test Circuit  
typical values  
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
Input current  
Distribution  
5, 6, 7  
IO  
vs Common-mode input voltage  
8, 9, 10  
11, 12, 13  
I
I
IB  
vs Free-air temperature  
vs Differential input voltage  
vs Output current  
14  
I
15, 16, 17  
18  
V
V
Maximum peak output voltage  
High-level output voltage  
OM  
vs Free-air temperature  
vs High-level output current  
vs Free-air temperature  
19, 20  
21  
OH  
vs Low-level output current  
vs Free-air temperature  
22  
23  
V
V
Low-level output voltage  
OL  
Maximum peak-to-peak output voltage  
Large-signal differential voltage amplification  
vs Frequency  
24, 25  
O(PP)  
vs Frequency  
vs Free-air temperature  
26  
27, 28, 29  
A
VD  
OS  
CC  
vs Supply voltage  
vs Free-air temperature  
30 − 33  
34 − 37  
I
I
Short-circuit output current  
Supply current  
vs Supply voltage  
vs Free-air temperature  
38, 39, 40  
41, 42, 43  
CMRR Common-mode rejection ratio  
vs Frequency  
44, 45, 46  
47, 48, 49  
50, 51  
SR  
Slew rate  
vs Free-air temperature  
Voltage-follower small-signal pulse response  
Voltage-follower large-signal pulse response  
52 − 57  
0.1 to 1 Hz  
0.1 to 10 Hz  
58  
59  
V
V
B
Peak-to-peak equivalent input noise voltage  
Equivalent input noise voltage  
Unity-gain bandwidth  
N(PP)  
vs Frequency  
60  
n
1
vs Supply voltage  
vs Free-air temperature  
61, 62  
63, 64  
vs Supply voltage  
vs Load capacitance  
vs Free-air temperature  
65, 66  
67, 68  
69, 70  
φ
m
Phase margin  
Phase shift  
vs Frequency  
26  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLE2022  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLE2021  
INPUT OFFSET VOLTAGE  
20  
16  
12  
8
20  
16  
12  
8
231 Units Tested From 1 Wafer Lot  
398 Amplifiers Tested From 1 Wafer Lot  
V
=
15 V  
V
=
15 V  
CC  
= 25°C  
CC  
= 25°C  
T
A
T
A
P Package  
P Package  
4
4
0
0
600 450 300 150  
0
150 300  
450 600  
600 400  
200  
0
200  
400  
600  
V
IO  
− Input Offset Voltage − µV  
V
IO  
− Input Offset Voltage − µV  
Figure 5  
Figure 6  
TLE2021  
INPUT BIAS CURRENT  
vs  
DISTRIBUTION OF TLE2024  
INPUT OFFSET VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
16  
12  
8
40  
35  
30  
25  
20  
15  
10  
−5  
V
T
=
15 V  
CC  
796 Amplifiers Tested From 1 Wafer Lot  
15 V  
= 25°C  
V
=
A
CC  
= 25°C  
T
A
N Package  
4
0
0
15  
−1  
0.5  
0
0.5  
1
10  
−5  
0
5
10  
15  
V
IO  
− Input Offset Voltage − mV  
V
IC  
− Common-Mode Input Voltage − V  
Figure 7  
Figure 8  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2022  
INPUT BIAS CURRENT  
vs  
TLE2024  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
50  
45  
60  
50  
V
=
15 V  
CC  
= 25°C  
V
=
15 V  
CC  
T
A
T
A
= 25°C  
40  
40  
30  
20  
35  
30  
25  
20  
15  
10  
−5  
0
5
10  
15  
15  
10  
−5  
0
5
10  
15  
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 9  
Figure 10  
TLE2022  
INPUT BIAS CURRENT  
TLE2021  
INPUT BIAS CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
−5  
V
V
V
=
15 V  
V
V
V
=
= 0  
= 0  
15 V  
CC  
= 0  
CC  
O
IC  
O
IC  
= 0  
35  
30  
25  
20  
0
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2024  
INPUT BIAS CURRENT  
vs  
INPUT CURRENT  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
T
A
=
15 V  
60  
50  
40  
CC  
= 0  
V
V
V
= 15 V  
CC  
O
IC  
IC  
= 25°C  
= 0  
= 0  
30  
20  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
125  
75 50 25  
0
25  
50  
75 100  
|V | − Differential Input Voltage − V  
ID  
T
A
− Free-Air Temperature − °C  
Figure 13  
Figure 14  
TLE2022  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
TLE2021  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
16  
16  
14  
12  
10  
8
V
T
=
15 V  
V
T
=
15 V  
CC  
= 25°C  
CC  
A
= 25°C  
14  
12  
10  
8
A
V
V
OM+  
OM+  
V
OM−  
V
OM−  
6
6
4
4
2
2
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
12  
14  
I
O
− Output Current − mA  
|I | − Output Current − mA  
O
Figure 15  
Figure 16  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2024  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
OUTPUT CURRENT  
15  
14.5  
14  
16  
14  
12  
10  
8
V
CC  
= 15 V  
T
A
= 25°C  
V
OM+  
V
OM+  
V
OM−  
V
OM−  
13.5  
13  
6
4
V
R
=
15 V  
CC  
12.5  
= 10 kΩ  
= 25°C  
L
2
T
A
0
12  
14  
0
2
4
6
8
10  
12  
75 50 25  
0
25  
50  
75  
100 125  
I
O
− Output Current − mA  
T
A
− Free-Air Temperature − °C  
Figure 17  
Figure 18  
TLE2021  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
TLE2022 AND TLE2024  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
5
V
T
A
= 5 V  
= 25°C  
CC  
V
T
A
= 5 V  
= 25°C  
CC  
4
3
2
1
0
1
0
0
−2  
−4  
−6  
−8  
10  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OH  
OH  
Figure 19  
Figure 20  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
LOW-LEVEL OUTPUT CURRENT  
5
4.8  
4.6  
4.4  
5
4
3
2
1
0
V
T
A
= 5 V  
= 25°C  
V
CC  
= 5 V  
CC  
No Load  
R
= 10 kΩ  
L
4.2  
4
75 50 25  
0
25  
50  
75  
100 125  
0
0.5  
1
1.5  
2
2.5  
3
T
A
− Free-Air Temperature − °C  
I
− Low-Level Output Current − mA  
OL  
Figure 21  
Figure 22  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
5
1
0.75  
0.5  
I
= 1 mA  
OL  
4
3
2
1
0
I
= 0  
OL  
0.25  
0
V
= 5 V  
= 10 kΩ  
= 25°C  
CC  
R
T
A
L
V
CC  
= 5 V  
1 M  
75 50 25  
0
25  
50  
75 100 125  
100  
1 k  
10 k  
100 k  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 23  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
30  
25  
20  
15  
10  
5
V
CC  
=
15 V  
R
T
A
= 10 kΩ  
= 25°C  
L
0
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
Figure 25  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
120  
100  
80  
60°  
80°  
Phase Shift  
100°  
120°  
140°  
160°  
180°  
200°  
V
CC  
=
15 V  
A
VD  
60  
V
CC  
= 5 V  
40  
20  
R
C
T
A
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
0
20  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 26  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2022  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
10  
8
6
5
R
= 10 kΩ  
L
R
= 10 kΩ  
L
V
CC  
=
15 V  
V
CC  
= 15 V  
4
6
3
2
4
2
1
0
V
= 5 V  
V
= 5 V  
75  
CC  
CC  
0
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 27  
Figure 28  
TLE2024  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
TLE2021  
AMPLIFICATION  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10  
8
10  
8
R
= 10 kΩ  
L
V
T
A
= 0  
= 25°C  
O
6
V
CC  
=
15 V  
V
ID  
= −100 mV  
4
6
2
0
4
−2  
−4  
−6  
−8  
10  
2
V
= 100 mV  
12  
ID  
V
0
=
5 V  
50  
CC  
0
75 50 25  
25  
75 100 125  
0
2
4
6
8
10  
14  
16  
T
A
− Free-Air Temperature − °C  
|V | − Supply Voltage − V  
CC  
Figure 29  
Figure 30  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
15  
12  
8
V
T
A
= 0  
= 25°C  
O
T
A
= 25°C  
10  
5
V
ID  
V
O
= −100 mV  
= V  
CC  
V
ID  
= −100 mV  
4
0
−5  
0
−4  
−8  
− 12  
V
= 100 mV  
= 0  
ID  
O
V
= 100 mV  
ID  
V
10  
15  
0
2
4
6
8
10  
12  
14  
16  
0
5
10  
15  
20  
25  
30  
|V  
CC  
| − Supply Voltage − V  
V
− Supply Voltage − V  
CC  
Figure 31  
Figure 32  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
15  
10  
8
6
V
CC  
= 5 V  
T
A
= 25°C  
V
ID  
V
O
= 100 mV  
V
V
= −100 mV  
= 5 V  
ID  
O
= V  
CC  
4
5
2
0
0
− 2  
− 4  
− 6  
− 8  
−5  
10  
15  
V
V
= 100 mV  
= 0  
ID  
O
V
ID  
V
O
= 100 mV  
= 0  
0
5
10  
15  
20  
25  
30  
− 75 − 50 − 25  
0
25  
50  
75 100 125  
V
CC  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 33  
Figure 34  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
6
4
12  
8
V
CC  
= 5 V  
V
= −100 mV  
= 5 V  
V
V
= 15 V  
ID  
CC  
= 0  
V
O
O
2
V
ID  
= −100 mV  
4
0
−2  
−4  
−6  
−8  
10  
0
−4  
−8  
12  
V
ID  
V
O
= 100 mV  
= 0  
V
ID  
= 100 mV  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature −°C  
T
A
− Free-Air Temperature − °C  
Figure 35  
Figure 36  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
250  
200  
150  
100  
50  
15  
10  
5
V
= 0  
O
V
V
= 15 V  
CC  
= 0  
No Load  
O
V
= 100 mV  
ID  
T
A
= 125°C  
0
T
A
= 25°C  
−5  
10  
15  
T
= 55°C  
A
V
ID  
= 100 mV  
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
|V | − Supply Voltage − V  
CC  
Figure 37  
Figure 38  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2022  
SUPPLY CURRENT  
vs  
TLE2024  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
500  
400  
1000  
V
= 0  
O
V
= 0  
O
No Load  
T
A
= 125°C  
No Load  
800  
600  
T
= 25°C  
T
A
= 25°C  
A
300  
T
A
= 55°C  
T
A
= 125°C  
T
A
= 55°C  
200  
100  
400  
200  
0
0
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
| − Supply Voltage − V  
|V  
CC  
| − Supply Voltage − V  
Figure 39  
Figure 40  
TLE2022  
SUPPLY CURRENT  
vs  
TLE2021  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
225  
200  
175  
150  
125  
100  
75  
500  
400  
V
= 15 V  
CC  
V
= 15 V  
CC  
V
CC  
= 2.5 V  
V
CC  
=
2.5 V  
300  
200  
100  
50  
V
= 0  
V
= 0  
O
O
25  
No Load  
No Load  
0
0
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 41  
Figure 42  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2024  
SUPPLY CURRENT  
vs  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
1000  
120  
100  
80  
60  
40  
20  
0
V
=
15 V  
CC  
800  
600  
V
=
15 V  
CC  
V
= 2.5 V  
CC  
V
CC  
= 5 V  
400  
200  
V
= 0  
O
No Load  
T
A
= 25°C  
0
75 50 25  
0
25  
50  
75 100 125  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 43  
Figure 44  
TLE2024  
TLE2022  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
V
= 15 V  
CC  
T
A
= 25°C  
V
= 15 V  
CC  
V
= 5 V  
CC  
V
CC  
= 5 V  
T
A
= 25°C  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 45  
Figure 46  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2022  
SLEW RATE  
TLE2021  
SLEW RATE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
V
=
15 V  
CC  
V
=
15 V  
CC  
V
CC  
= 5 V  
V
= 5 V  
CC  
R
C
= 20 kΩ  
= 30 pF  
R
C
= 20 kΩ  
= 30 pF  
L
L
L
L
See Figure 1  
See Figure 1  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 47  
Figure 48  
TLE2024  
SLEW RATE  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
vs  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
0.4  
0.2  
0
100  
50  
V
R
C
=
15 V  
CC  
L
L
= 10 kΩ  
= 30 pF  
= 25°C  
T
A
V
= 15 V  
CC  
See Figure 4  
0
V
= 5 V  
CC  
50  
100  
R
C
= 20 kΩ  
L
L
= 30 pF  
See Figure 1  
75 50 25  
0
25  
50  
75  
100 125  
0
20  
40  
60  
80  
T
A
− Free-Air Temperature − °C  
t − Time − µs  
Figure 49  
Figure 50  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
TLE2021  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
2.6  
2.55  
2.5  
4
3
2
1
0
V
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
V
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
R
C
L
L
R
C
L
L
T
A
T
A
See Figure 4  
See Figure 1  
2.45  
2.4  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t − Time − µs  
t − Time − µs  
Figure 51  
Figure 52  
TLE2024  
TLE2022  
VOLTAGE-FOLLOWER LARGE-SCALE  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
4
3
2
1
0
4
3
2
1
0
V
R
C
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
L
L
V
R
C
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
L
L
T
A
T
A
See Figure 1  
See Figure 1  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t − Time − µs  
t − Time − µs  
Figure 53  
Figure 54  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2022  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
15  
10  
V
R
C
=
15 V  
CC  
L
L
V
=
15 V  
CC  
= 10 kΩ  
= 30 pF  
= 25°C  
R
C
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
T
A
T
A
See Figure 1  
See Figure 1  
5
5
0
0
− 5  
10  
15  
−5  
10  
15  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t − Time − µs  
t − Time − µs  
Figure 55  
Figure 56  
TLE2024  
PEAK-TO-PEAK EQUIVALENT  
INPUT NOISE VOLTAGE  
0.1 TO 1 Hz  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
5
0.5  
0.4  
V
R
C
= 15 V  
CC  
L
L
V
=
15 V  
CC  
= 25°C  
= 10 kΩ  
= 30 pF  
= 25°C  
T
A
T
A
0.3  
See Figure 1  
0.2  
0.1  
0
0
− 0.1  
− 0.2  
− 0.3  
− 0.4  
− 0.5  
−5  
−10  
−15  
0
20  
40  
60  
80  
0
1
2
3
4
5
6
7
8
9
10  
t − Time − µs  
t − Time − s  
Figure 57  
Figure 58  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
PEAK-TO-PEAK EQUIVALENT  
EQUIVALENT INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE  
0.1 TO 10 Hz  
vs  
FREQUENCY  
0.5  
0.4  
200  
160  
120  
80  
V
T
=
15 V  
CC  
V
R
=
15 V  
CC  
S
= 25°C  
= 20 Ω  
= 25°C  
A
T
A
0.3  
See Figure 2  
0.2  
0.1  
0
− 0.1  
− 0.2  
− 0.3  
− 0.4  
− 0.5  
40  
0
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1 k  
10 k  
t − Time − s  
f − Frequency − Hz  
Figure 59  
Figure 60  
TLE2022 AND TLE2024  
UNITY-GAIN BANDWIDTH  
vs  
TLE2021  
UNITY-GAIN BANDWIDTH  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
4
3
2
1
0
4
3
2
1
0
R
C
= 10 kΩ  
= 30 pF  
L
L
R
C
= 10 kΩ  
L
L
= 30 pF  
T
= 25°C  
A
T
= 25°C  
A
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
| − Supply Voltage − V  
|V  
CC  
| − Supply Voltage − V  
Figure 61  
Figure 62  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2021  
UNITY-GAIN BANDWIDTH  
vs  
TLE2022 AND TLE2024  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3
2
1
0
4
3
2
1
0
R
C
= 10 kΩ  
L
L
R
C
= 10 kΩ  
L
L
= 30 pF  
= 30 pF  
See Figure 3  
See Figure 3  
V
= 15 V  
CC  
V
=
15 V  
CC  
V
= 5 V  
CC  
V
CC  
= 5 V  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 63  
Figure 64  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
TLE2021  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
55°  
53°  
51°  
49°  
47°  
45°  
50°  
48°  
46°  
44°  
42°  
40°  
R
C
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
R
C
T
A
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
T
A
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
| − Supply Voltage − V  
|V  
CC  
| − Supply Voltage − V  
Figure 65  
Figure 66  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
TLE2021  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
70°  
60°  
50°  
40°  
30°  
20°  
10°  
0°  
60°  
50°  
40°  
30°  
20°  
10°  
0
R
= 10 kΩ  
= 30 pF  
L
R
= 10 kΩ  
= 25°C  
L
T
A
T
A
See Figure 3  
See Figure 3  
V
=
15 V  
CC  
V
=
15 V  
CC  
V
= 5 V  
CC  
V
CC  
= 5 V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
C
− Load Capacitance − pF  
C
− Load Capacitance − pF  
L
L
Figure 67  
Figure 68  
TLE2021  
PHASE MARGIN  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
50°  
48°  
46°  
44°  
42°  
40°  
38°  
36°  
54°  
52°  
R
C
= 10 kΩ  
= 30 pF  
L
L
See Figure 3  
V
=
15 V  
CC  
V
=
15 V  
CC  
50°  
48°  
V
CC  
= 5 V  
46°  
44°  
V
= 5 V  
CC  
R
C
= 10 kΩ  
= 30 pF  
L
L
42°  
40°  
See Figure 3  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 69  
Figure 70  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
APPLICATION INFORMATION  
voltage-follower applications  
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,  
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur  
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It  
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent  
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For  
feedback resistor values greater than 10 k, this pole degrades the amplifier phase margin. This problem can  
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).  
C
= 20 pF to 50 pF  
F
I
F
1 mA  
R
F
V
CC+  
CC−  
+
V
O
V
I
V
Figure 71. Voltage Follower  
Input offset voltage nulling  
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in  
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null  
pins may be left disconnected.  
IN −  
OFFSET N2  
+
IN +  
5 kΩ  
OFFSET N1  
V
− (split supply)  
CC  
1 kGND (single supply)  
Figure 72. Input Offset Voltage Null Circuit  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢃꢅ  
ꢃꢅ  
ꢀꢁ  
ꢊꢋ  
ꢈꢍ  
ꢓꢂ  
ꢖꢑ  
ꢕꢖ  
ꢙꢌ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and Figure  
75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this  
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
3
V
CC+  
egnd  
+
din  
91  
ree  
cee  
Iee  
92  
9
fb  
+
rp  
1
90  
ro2  
hlim  
+
+
vb  
dip  
vip  
vin  
re1  
re2  
+
+
vc  
IN−  
IN+  
r2  
13  
Q1  
14  
Q2  
C2  
7
6
53  
+
2
vlim  
dc  
de  
ga  
gcm  
dp  
C1  
8
11  
12  
ro1  
rc1  
rc2  
54  
5
V
CC−  
4
+
ve  
OUT  
Figure 73. Boyle Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢃ ꢅꢉ  
ꢂꢊ ꢋꢇꢁ ꢌꢈꢍ ꢎ ꢏꢌ ꢐꢏ ꢑꢒꢓꢂ ꢂꢔ ꢁ ꢕ ꢖꢑꢓꢕ ꢖ ꢂꢎ ꢓ ꢎꢂ ꢋ ꢌꢒ ꢌ ꢕꢗ  
ꢕ ꢓꢂꢎ ꢇꢀ ꢌꢕ ꢗꢇꢁ ꢇꢘ ꢓ ꢁꢌ ꢙꢌ ꢂꢎ ꢒ  
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007  
.SUBCKT TLE2021 1 2 3 4 5  
*
hcmr 80  
1
4
poly(2) vcm+ vcm− 0 1E2 1E2  
185E−6  
irp  
iee  
iio  
3
3
2
88  
c1  
c2  
c3  
11 12 6.244E−12  
10 dc 15.67E−6  
0
0
6
7
0
13.4E−12  
10.64E−9  
2E−9  
1E−21  
87  
i1  
cpsr 85 86 15.9E−9  
dcm+ 81 82 dx  
dcm− 83 81 dx  
q1  
q2  
R2  
11 89 13 qx  
12 80 14 qx  
6
9
100.0E3  
dc  
5
54  
53 dx  
5 dx  
rcm 84 81 1K  
ree 10 99 14.76E6  
rn1 87  
rn2 87 88 11.67E3  
de  
dlp  
dln  
dp  
90 91 dx  
92 90 dx  
4
0
2.55E8  
3 dx  
ro1  
ro2  
8
7
5
62  
ecmr 84 99 (2 99) 1  
99 63  
egnd 99  
epsr 85  
ense 89  
0
0
2
poly(2) (3,0) (4,0) 0 .5 .5  
poly(1) (3,4) −60E−6 2.0E−6  
poly(1) (88,0) 120E−6 1  
vcm+ 82 99 13.3  
vcm− 83 99 −14.6  
vb  
vc  
9
3
0
dc 0  
fb  
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6  
53 dc 1.300  
+ −50E7 50E7 50E7 −50E7 547E6  
ve  
54  
7
91  
0
0
4
8
0
dc 1.500  
dc 0  
dc 3.600  
ga  
gcm  
6
0
0
6
11 12 188.5E−6  
10 99 335.2E−12  
vlim  
vlp  
vln  
vpsr  
gpsr 85 86 (85,86) 100E−6  
92 dc 3.600  
86 dc 0  
grc1  
grc2  
4
4
11 (4,11) 1.885E−4  
12 (4,12) 1.885E−4  
.model dx d(is=800.0E−18)  
.model qx pnp(is=800.0E−18 bf=270)  
.ends  
gre1 13 10 (13,10) 6.82E−4  
gre2 14 10 (14,10) 6.82E−4  
hlim  
90  
0 vlim 1k  
Figure 74. Boyle Macromodel for the TLE2021  
.SUBCKT TLE2022 1 2 3 4 5  
*
rc1  
rc2  
4
4
11 2.842E3  
12 2.842E3  
c1  
11 12 6.814E−12  
ge1 13 10 (10,13) 31.299E−3  
ge2 14 10 (10,14) 31.299E−3  
ree 10 99 11.07E6  
ro1  
ro2  
rp  
c2  
6
7
20.00E−12  
dc  
de  
dlp  
dln  
dp  
5
53 dx  
54 5 dx  
90 91 dx  
92 90 dx  
8
7
3
9
3
5 250  
99 250  
4 137.2E3  
0 dc 0  
53 dc 1.300  
4
3 dx  
vb  
vc  
egnd 99  
0
poly(2) (3,0) (4,0) 0 .5 .5  
fb  
7
99poly(5) vb vc ve vlp vln 0  
ve  
54 4 dc 1.500  
8 dc 0  
vlp 91 0 dc 3  
vln 92 dc 3  
+ 45.47E6 −50E6 50E6 50E6 −50E6  
vlim 7  
ga 6  
gcm 06  
iee  
0
11 12 377.9E−6  
10 99 7.84E−10  
10 DC 18.07E−6  
0
3
.model dx d(is=800.0E−18)  
.model qx pnp(is=800.0E−18 bf=257.1)  
.ends  
hlim 90 0 vlim 1k  
q1  
q2  
r2  
11 2 13 qx  
12 1 14 qx  
6
9 100.0E3  
Figure 75. Boyle Macromodel for the TLE2022  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
SOIC  
Drawing  
FK  
JG  
FK  
JG  
FK  
JG  
FK  
JG  
FK  
J
5962-9088101M2A  
5962-9088101MPA  
5962-9088102M2A  
5962-9088102MPA  
5962-9088104Q2A  
5962-9088104QPA  
5962-9088105Q2A  
5962-9088105QPA  
5962-9088106Q2A  
5962-9088106QCA  
5962-9088107Q2A  
5962-9088107QPA  
5962-9088108Q2A  
5962-9088108QPA  
TLE2021ACD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
20  
8
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
1
1
1
1
1
1
1
1
1
1
1
1
1
A42 SNPB  
N / A for Pkg Type  
20  
8
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
20  
8
20  
8
20  
14  
20  
8
FK  
JG  
FK  
JG  
D
20  
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2021ACDG4  
TLE2021ACDR  
TLE2021ACDRG4  
TLE2021ACP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
P
P
D
D
P
P
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2021ACPE4  
TLE2021AID  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2021AIDG4  
TLE2021AIP  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
TLE2021AIPE4  
50  
Pb-Free  
(RoHS)  
TLE2021AMFKB  
TLE2021AMJGB  
TLE2021BMFKB  
TLE2021BMJG  
TLE2021BMJGB  
TLE2021CD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
LCCC  
CDIP  
CDIP  
SOIC  
FK  
JG  
FK  
JG  
JG  
D
20  
8
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
A42 SNPB  
N / A for Pkg Type  
20  
8
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2021CDG4  
TLE2021CDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2021CDRG4  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
TLE2021CP  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
P
P
8
8
50  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
TLE2021CPE4  
Pb-Free  
(RoHS)  
TLE2021CPWLE  
TLE2021CPWR  
OBSOLETE TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2021CPWRG4  
TLE2021ID  
PW  
D
8
8
8
8
8
8
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2021IDG4  
TLE2021IDR  
TLE2021IDRG4  
TLE2021IP  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
50  
75  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-220C-UNLIM  
TLE2021IPE4  
PDIP  
P
Pb-Free  
(RoHS)  
TLE2021MD  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
TBD  
TLE2021MDG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2021MFKB  
TLE2021MJG  
TLE2021MJGB  
TLE2022ACD  
OBSOLETE  
ACTIVE  
LCCC  
CDIP  
CDIP  
SOIC  
FK  
JG  
JG  
D
20  
8
TBD  
TBD  
TBD  
Call TI  
Call TI  
1
1
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
ACTIVE  
8
ACTIVE  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2022ACDG4  
TLE2022ACDR  
TLE2022ACDRG4  
TLE2022ACP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
D
D
D
P
P
D
D
D
D
P
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2022ACPE4  
TLE2022AID  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2022AIDG4  
TLE2022AIDR  
TLE2022AIDRG4  
TLE2022AIP  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TLE2022AIPE4  
ACTIVE  
PDIP  
P
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2022AMD  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
TLE2022AMDG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2022AMDR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
2500  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
TLE2022AMDRG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2022AMFKB  
TLE2022AMJG  
TLE2022AMJGB  
TLE2022BCDR  
TLE2022BMFKB  
TLE2022BMJG  
TLE2022BMJGB  
TLE2022CD  
ACTIVE  
OBSOLETE  
ACTIVE  
LCCC  
CDIP  
CDIP  
SOIC  
LCCC  
CDIP  
CDIP  
SOIC  
FK  
JG  
JG  
D
20  
8
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
Call TI  
A42 SNPB  
Call TI  
Call TI  
8
N / A for Pkg Type  
Call TI  
OBSOLETE  
ACTIVE  
8
FK  
JG  
JG  
D
20  
8
POST-PLATE N / A for Pkg Type  
OBSOLETE  
ACTIVE  
Call TI  
Call TI  
8
A42 SNPB  
N / A for Pkg Type  
ACTIVE  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2022CDG4  
TLE2022CDR  
TLE2022CDRG4  
TLE2022CP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
P
P
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2022CPE4  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2022CPSR  
TLE2022ID  
OBSOLETE  
ACTIVE  
SO  
PS  
D
8
8
TBD  
Call TI  
Call TI  
SOIC  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2022IDG4  
TLE2022IDR  
TLE2022IDRG4  
TLE2022IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
P
P
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
50  
75  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-220C-UNLIM  
TLE2022IPE4  
Pb-Free  
(RoHS)  
TLE2022MD  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
TBD  
TLE2022MDG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2022MDR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
2500  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
TLE2022MDRG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2022MFKB  
TLE2022MJG  
TLE2022MJGB  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CDIP  
FK  
JG  
JG  
20  
8
1
1
1
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
8
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2007  
Orderable Device  
TLE2024ACDW  
TLE2024ACDWG4  
TLE2024ACDWR  
TLE2024ACDWRG4  
TLE2024ACN  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
16  
16  
16  
16  
14  
14  
16  
16  
14  
14  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
PDIP  
PDIP  
DW  
DW  
DW  
N
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2024ACNE4  
TLE2024AIDW  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
DW  
DW  
N
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2024AIDWG4  
TLE2024AIN  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2024AINE4  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2024AMFK  
TLE2024AMFKB  
TLE2024AMJ  
TLE2024AMJB  
TLE2024BCDW  
TLE2024BCN  
TLE2024BIDW  
TLE2024BIN  
ACTIVE  
ACTIVE  
LCCC  
LCCC  
CDIP  
CDIP  
SOIC  
PDIP  
SOIC  
PDIP  
SOIC  
FK  
FK  
J
20  
20  
14  
14  
16  
14  
16  
14  
16  
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
ACTIVE  
A42 SNPB  
A42 SNPB  
Call TI  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
ACTIVE  
J
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
DW  
N
Call TI  
Call TI  
DW  
N
Call TI  
Call TI  
Call TI  
Call TI  
TLE2024CDW  
DW  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2024CDWG4  
TLE2024CDWR  
TLE2024CDWRG4  
TLE2024CN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
DW  
DW  
DW  
N
16  
16  
16  
14  
14  
16  
16  
14  
14  
16  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLE2024CNE4  
TLE2024IDW  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
DW  
DW  
N
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLE2024IDWG4  
TLE2024IN  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25  
25  
40  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-220C-UNLIM  
TLE2024INE4  
TLE2024MDW  
N
Pb-Free  
(RoHS)  
DW  
TBD  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Oct-2007  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
(mm)  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
16  
16  
TLE2021ACDR  
TLE2021CDR  
TLE2021CPWR  
TLE2021IDR  
D
D
8
8
SITE 60  
SITE 60  
SITE 41  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 60  
SITE 60  
6.4  
6.4  
5.2  
5.2  
3.6  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
10.7  
10.7  
2.1  
2.1  
1.6  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.7  
2.7  
8
8
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
16  
16  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
PW  
D
8
7.0  
8
8
6.4  
8
TLE2022ACDR  
TLE2022ACDR  
TLE2022AIDR  
TLE2022AIDR  
TLE2022CDR  
TLE2022CDR  
TLE2022IDR  
D
8
6.4  
8
D
8
6.4  
8
D
8
6.4  
8
D
8
6.4  
8
D
8
6.4  
8
D
8
6.4  
8
D
8
6.4  
8
TLE2022IDR  
D
8
6.4  
8
TLE2024ACDWR  
TLE2024CDWR  
DW  
DW  
16  
16  
10.75  
10.75  
12  
12  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2007  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TLE2021ACDR  
TLE2021CDR  
TLE2021CPWR  
TLE2021IDR  
D
D
8
8
SITE 60  
SITE 60  
SITE 41  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 60  
SITE 60  
346.0  
346.0  
346.0  
346.0  
342.9  
346.0  
342.9  
346.0  
342.9  
346.0  
342.9  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
336.6  
346.0  
336.6  
346.0  
336.6  
346.0  
336.6  
346.0  
346.0  
346.0  
29.0  
29.0  
29.0  
29.0  
20.64  
29.0  
20.64  
29.0  
20.64  
29.0  
20.64  
29.0  
33.0  
33.0  
PW  
D
8
8
TLE2022ACDR  
TLE2022ACDR  
TLE2022AIDR  
TLE2022AIDR  
TLE2022CDR  
TLE2022CDR  
TLE2022IDR  
D
8
D
8
D
8
D
8
D
8
D
8
D
8
TLE2022IDR  
D
8
TLE2024ACDWR  
TLE2024CDWR  
DW  
DW  
16  
16  
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TLE2024ACN

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACNE4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDW

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDWG4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDWR

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, SOIC-16
ROCHESTER

TLE2024AIJ

IC,OP-AMP,QUAD,BIPOLAR,DIP,16PIN,CERAMIC
TI

TLE2024AIN

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIN

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDIP14, ROHS COMPLIANT, PLASTIC, DIP-14
ROCHESTER

TLE2024AINE4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AM

高速低功耗精密四路运算放大器
TI

TLE2024AMDW

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AMDW

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16
ROCHESTER