TLE2142QDRQ1 [TI]

Excalibur™ LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIER;
TLE2142QDRQ1
型号: TLE2142QDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Excalibur™ LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIER

放大器 光电二极管
文件: 总23页 (文件大小:473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
Excalibur™ LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIER  
1
FEATURES  
D PACKAGE  
(TOP VIEW)  
2
Qualified for Automotive Applications  
Low Noise  
1OUT  
1IN-  
V
CC+  
1
2
3
4
8
7
6
5
10 Hz: 15 nV/Hz  
2OUT  
2IN-  
1 kHz: 10.5 nV/Hz  
1IN+  
10000-pF Load Capability  
V
CC-  
2IN+  
20-mA Short-Circuit Output Current (Min)  
27-V/µs Slew Rate (Min)  
High Gain-Bandwidth Product: 5.9 MHz  
Single or Split Supply: 4 V to 44 V  
Fast Settling Time  
340 ns to 0.1%  
400 ns to 0.01%  
Large Output Swing:  
VCC– + 0.1 V to VCC+ – 1 V  
DESCRIPTION/ORDERING INFORMATION  
The TLE2142 device is a high-performance, internally compensated operational amplifier built using the Texas  
Instruments complementary bipolar Excalibur™ process. It is a pin-compatible upgrade to standard industry  
products.  
The design incorporates an input stage that simultaneously achieves low audio-band noise of 10.5 nV/Hz with a  
10-Hz 1/f corner and symmetrical 40-V/µs slew rate typically with loads up to 800 pF. The resulting low distortion  
and high power bandwidth are important in high-fidelity audio applications. A fast settling time of 340 ns to 0.1%  
of a 10-V step with a 2-k/100-pF load is useful in fast actuator/positioning drivers. Under similar test conditions,  
settling time to 0.01% is 400 ns.  
The device is stable with capacitive loads up to 10 nF, although the 6-MHz bandwidth decreases to 1.8 MHz at  
this high loading level. As such, the TLE2142 is useful for low-droop sample-and-holds and direct buffering of  
long cables, including 4-mA to 20-mA current loops.  
The special design also exhibits an improved insensitivity to inherent integrated circuit component mismatches as  
is evidenced by a 500-µV maximum offset voltage and 1.7-µV/°C typical drift. Minimum common-mode rejection  
ratio and supply-voltage rejection ratio are 85 dB and 90 dB, respectively.  
Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can operate  
between VCC– – 0.3 V to VCC+ – 1.8 V without inducing phase reversal, although excessive input current may flow  
out of each input exceeding the lower common-mode input range. The all-npn output stage provides a nearly  
rail-to-rail output swing of VCC– + 0.1 V to VCC+ – 1 V under light current-loading conditions. The device can  
sustain shorts to either supply, because output current is internally limited, but care must be taken to ensure that  
maximum package power dissipation is not exceeded.  
The TLE2142 can also be used as a comparator. Differential inputs of VCC± can be maintained without damage  
to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a good  
indication as to output stage saturation recovery when the device is driven beyond the limits of recommended  
output swing.  
The TLE2142 device is available in industry-standard 8-pin small-outline (D) packages. The device is  
characterized for operation from –40°C to 125°C.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
Excalibur is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
SYMBOL (EACH AMPLIFIER)  
+
IN+  
OUT  
-
IN-  
ORDERING INFORMATION(1)  
TA  
PACKAGE(2)  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
2142Q  
–40°C to 125°C  
SOIC – D  
Reel of 2500  
TLE2142QDRQ1  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
EQUIVALENT SCHEMATIC  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VCC+  
VCC–  
VID  
VI  
Supply voltage(2)  
22 V  
–22 V  
Supply voltage  
Differential input voltage(3)  
±44 V  
Input voltage range (any input)  
Input current (each input)  
VCC+ to (VCC– – 0.3) V  
±1 mA  
II  
IO  
Output current  
±80 mA  
Total current into VCC+  
80 mA  
Total current out of VCC–  
80 mA  
Duration of short-circuit current at (or below) 25°C(4)  
Package thermal impedance(5)(6)  
Operating free-air temperature range  
Storage temperature range  
Unlimited  
97.1°C/W  
–40°C to 125°C  
–65°C to 150°C  
260°C  
θJA  
TA  
Tstg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
Electrostatic discharge rating, Human-body model  
ESD  
500 V  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC–  
.
(3) Differential voltages are at IN+ with respect to IN–. Excessive current flows, if input, are brought below VCC– – 0.3 V.  
(4) The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation  
rating is not exceeded.  
(5) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.  
(6) The package thermal impedance is calculated in accordance with JESD 51-7.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
±2  
MAX  
±22  
2.7  
UNIT  
VCC±  
VIC  
Supply voltage  
V
VCC = 5 V  
0
Common-mode input voltage  
Operating free-air temperature  
V
VCC± = ±15 V  
–15  
–40  
12.7  
125  
TA  
°C  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
ELECTRICAL CHARACTERISTICS  
VCC = 5 V, at specified free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
220  
1900  
µV  
VIO  
αVIO  
IIO  
Input offset voltage  
VO = 2.5 V, RS = 50 , VIC = 2.5 V  
Full range  
2600  
Temperature coefficient of  
input offset voltage  
VO = 2.5 V, RS = 50 , VIC = 2.5 V  
VO = 2.5 V, RS = 50 , VIC = 2.5 V  
Full range  
1.7  
8
µV/°C  
25°C  
Full range  
25°C  
100  
nA  
Input offset current  
Input bias current  
200  
–0.8  
–2  
µA  
IIB  
VO = 2.5 V, RS = 50 , VIC = 2.5 V  
Full range  
–2.3  
–0.3 to  
3.2  
25°C  
0 to 3  
Common-mode input  
voltage range  
VICR  
RS = 50 Ω  
V
V
–0.3 to  
2.9  
Full range  
0 to 2.7  
IOH = –150 µA  
IOH = –1.5 mA  
IOH = –15 mA  
IOH = –100 µA  
IOH = –1 mA  
IOH = –10 mA  
IOL = 150 µA  
IOL = 1.5 mA  
IOL = 15 mA  
IOL = 100 µA  
IOL = 1 mA  
3.9  
3.8  
4.1  
4
25°C  
Full range  
25°C  
3.4  
3.7  
VOH  
High-level output voltage  
3.75  
3.65  
3.45  
75  
150  
1.2  
125  
mV  
225  
1.4  
200  
250  
1.25  
V
mV  
V
VOL  
Low-level output voltage  
Full range  
IOL = 10 mA  
25°C  
Full range  
25°C  
50  
5
220  
Large-signal differential  
voltage amplification  
VIC = ±2.5 V, RL = 2 k,  
VO = 1 V to -1.5 V  
AVD  
V/mV  
ri  
Input resistance  
70  
2.5  
30  
MΩ  
pF  
ci  
zo  
Input capacitance  
25°C  
Open-loop output impedance  
f = 1 MHz  
25°C  
25°C  
85  
80  
90  
85  
118  
CMRR Common-mode rejection ratio  
VIC = VICR(min), RS = 50 Ω  
dB  
dB  
Full range  
25°C  
106  
6.6  
Supply-voltage rejection ratio  
kSVR  
VCC± = ±2.5 V to ±15 V, RS = 50 Ω  
(ΔVCC±/ΔVIO  
)
Full range  
25°C  
8.8  
9.2  
ICC  
Supply current  
VO = 2.5 V, No load, VIC = 2.5 V  
mA  
Full range  
(1) Full range is –40°C to 125°C.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
OPERATING CHARACTERISTICS  
VCC = 5 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
Positive slew rate  
TEST CONDITIONS  
AVD = –1, RL = 2 k(1), CL = 500 pF  
AVD = –1, RL = 2 k(1), CL = 500 pF  
MIN  
TYP  
45  
MAX UNIT  
V/µs  
SR+  
SR–  
Negative slew rate  
42  
V/µs  
To 0.1%  
0.16  
0.22  
15  
ts  
Settling time  
AVD = –1, 2.5-V step  
µs  
nV/Hz  
µV  
To 0.01%  
f = 10 Hz  
f = 1 kHz  
Vn  
Equivalent input noise voltage  
RS = 20 Ω  
10.5  
0.48  
0.51  
1.92  
0.5  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
Peak-to-peak equivalent input  
noise voltage  
Vn(PP)  
In  
Equivalent input noise current  
pA/Hz  
f = 1 kHz  
VO = 1 V to 3 V, RL = 2 k(1), AVD = 2,  
f = 10 kHz  
THD+N Total harmonic distortion plus noise  
0.0052  
%
B1  
Unity-gain bandwidth  
RL = 2 k(1), CL = 100 pF  
5.9  
5.8  
660  
57  
MHz  
MHz  
kHz  
°
Gain-bandwidth product  
RL = 2 k(1), CL = 100 pF, f = 100 kHz  
VO(PP) = 2 V, RL = 2 k(1), AVD = 1, CL = 100 pF  
RL = 2 k(1), CL = 100 pF  
BOM  
Maximum output-swing bandwidth  
Phase margin at unity gain  
φm  
(1) RL terminated at 2.5 V.  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
ELECTRICAL CHARACTERISTICS  
VCC = ±15 V, at specified free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
290  
1200  
µV  
VIO  
αVIO  
IIO  
Input offset voltage  
VIC = 0, RS = 50 Ω  
Full range  
2000  
Temperature coefficient of  
input offset voltage  
VIC = 0, RS = 50 Ω  
VIC = 0, RS = 50 Ω  
Full range  
1.7  
7
µV/°C  
25°C  
Full range  
25°C  
100  
nA  
Input offset current  
Input bias current  
250  
–0.7  
–1.5  
µA  
IIB  
VIC = 0, RS = 50 Ω  
RS = 50 Ω  
Full range  
–1.8  
–15 to –15.3 to  
13 13.2  
25°C  
Common-mode input  
voltage range  
VICR  
V
V
–15 to –15.3 to  
Full range  
12.7  
13.8  
13.7  
13.3  
13.7  
13.6  
13.3  
–14.7  
–14.5  
–13.4  
–14.6  
–14.5  
–13.4  
100  
12.9  
14.1  
14  
IO = –150 µA  
IO = –1.5 mA  
IO = –15 mA  
IO = –100 µA  
IO = –1 mA  
IO = –10 mA  
IO = 150 µA  
IO = 1.5 mA  
IO = 15 mA  
IO = 100 µA  
IO = 1 mA  
25°C  
Full range  
25°C  
13.7  
Maximum positive peak  
output voltage swing  
VOM+  
–14.9  
–14.8  
–13.8  
Maximum negative peak  
output voltage swing  
VOM–  
V
Full range  
IO = 10 mA  
25°C  
Full range  
25°C  
450  
Large-signal differential  
voltage amplification  
AVD  
VO = ±10 V, RL = 2 kΩ  
V/mV  
20  
ri  
Input resistance  
65  
2.5  
30  
MΩ  
pF  
ci  
zo  
Input capacitance  
25°C  
Open-loop output impedance  
f = 1 MHz  
25°C  
25°C  
85  
80  
108  
CMRR Common-mode rejection ratio  
VIC = VICR(min), RS = 50 Ω  
dB  
dB  
Full range  
25°C  
90  
106  
Supply-voltage rejection ratio  
kSVR  
VCC± = ±2.5 V to ±15 V, RS = 50 Ω  
(ΔVCC±/ΔVIO  
)
Full range  
85  
VID = 1 V  
–25  
20  
–50  
31  
IOS  
Short-circuit output current  
Supply current  
VO = 0  
25°C  
mA  
VID = –1 V  
25°C  
6.9  
9
mA  
9.4  
ICC  
VO = 0, No load, VIC = 2.5 V  
Full range  
(1) Full range is –40°C to 125°C.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
OPERATING CHARACTERISTICS  
VCC = ±15 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
Positive slew rate  
TEST CONDITIONS  
AVD = –1, RL = 2 k, CL = 100 pF  
AVD = –1, RL = 2 k, CL = 100 pF  
MIN  
27  
TYP  
45  
MAX UNIT  
V/µs  
SR+  
SR–  
Negative slew rate  
27  
42  
V/µs  
To 0.1%  
0.34  
0.4  
ts  
Settling time  
AVD = –1, 10-V step  
µs  
To 0.01%  
f = 10 Hz  
f = 1 kHz  
15  
Vn  
Equivalent input noise voltage  
RS = 20 Ω  
nV/Hz  
µV  
10.5  
0.48  
0.51  
1.89  
0.47  
0.01  
6
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
Peak-to-peak equivalent input  
noise voltage  
Vn(PP)  
In  
Equivalent input noise current  
pA/Hz  
f = 1 kHz  
THD+N Total harmonic distortion plus noise  
VO(PP) = 20 V, RL = 2 k, AVD = 10, f = 10 kHz  
RL = 2 k, CL = 100 pF  
%
MHz  
MHz  
kHz  
°
B1  
Unity-gain bandwidth  
Gain-bandwidth product  
RL = 2 k, CL = 100 pF, f = 100 kHz  
VO(PP) = 20 V, AVD = 1, RL = 2 k, CL = 100 pF  
RL = 2 k, CL = 100 pF  
5.9  
BOM  
Maximum output-swing bandwidth  
Phase margin at unity gain  
668  
58  
φm  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
TYPICAL CHARACTERISTICS  
Table of Graphs  
VIO  
IIO  
Input offset voltage  
Input offset current  
Distribution  
Figure 1  
Figure 2  
vs Free-air temperature  
vs Common-mode input voltage  
vs Free-air temperature  
vs Supply voltage  
vs Free-air temperature  
vs Output current  
vs Settling time  
Figure 3  
IIB  
Input bias current  
Figure 4  
Figure 5  
Figure 6  
VOM+  
Maximum positive peak output voltage  
Figure 7  
Figure 9  
vs Supply voltage  
vs Free-air temperature  
vs Output current  
vs Settling time  
Figure 5  
Figure 6  
VOM–  
Maximum negative peak output voltage  
Figure 8  
Figure 9  
VO(PP)  
VOH  
Maximum peak-to-peak output voltage  
High-level output voltage  
Low-level output voltage  
Phase shift  
vs Frequency  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
vs Output current  
vs Output current  
vs Frequency  
VOL  
vs Frequency  
AVD  
Large-signal differential voltage amplification  
vs Free-air temperature  
vs Frequency  
zo  
Closed-loop output impedance  
Short-circuit output current  
IOS  
vs Free-air temperature  
vs Frequency  
CMRR  
kSVR  
ICC  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
Supply current  
vs Free-air temperature  
vs Frequency  
vs Free-air temperature  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
Vn  
Equivalent input noise voltage  
Input noise voltage  
Vn  
Over a 10-second period  
vs Frequency  
In  
Noise current  
THD+N  
Total harmonic distortion plus noise  
vs Frequency  
vs Free-air temperature  
vs Load capacitance  
vs Time  
SR  
Slew rate  
Noninverting large signal  
Pulse response  
Inverting large signal  
Small signal  
vs Time  
vs Time  
B1  
Unity-gain bandwidth  
Gain margin  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
φm  
Phase margin  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
INPUT OFFSET CURRENT  
vs  
TLE2142  
DISTRIBUTION OF  
FREE-AIR TEMPERATURE  
INPUT OFFSET VOLTAGE  
20  
18  
16  
14  
12  
10  
8
24  
20  
16  
12  
8
236 Units Tested From 1 Wafer Lot  
V
V
= 0  
= 0  
O
V
CC  
= ±15 V  
±
IC  
T
A
= 25°C  
P Package  
V
CC  
= ±2.5 V  
±
6
V
CC  
= ±15 V  
±
4
2
0
4
0
0
200 400 600 800  
−800 −600 −400 −200  
−75 −50 −25  
0
25  
50  
75 100 125 150  
V
IO  
− Input Offset Voltage − µV  
T
A
− Free-Air Temperature − °C  
Figure 1.  
Figure 2.  
INPUT BIAS CURRENT  
vs  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
COMMON-MODE INPUT VOLTAGE  
−1000  
−900  
−800  
−700  
0
−0.2  
−0.4  
V
CC  
= ±2.5 V  
V
V
= 0  
= 0  
±
O
IC  
V
= ±2.5 V  
±
CC  
−0.6  
T
= 125°C  
A
−0.8  
−1  
T
A
= 25°C  
V
CC  
= ±15 V  
±
−600  
−500  
T
A
= 55°C  
−1.2  
−1.4  
−3 −2.5 −2  
−1.5 −1 −0.5  
0
0.5  
1
−75 −50 −25  
0
25  
50 75 100 125 150  
V
IC  
− Common-Mode Input Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 3.  
Figure 4.  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
24  
18  
12  
6
15  
14.6  
14.2  
R
T
A
= 2 k  
= 25°C  
L
V
CC  
= ±15 V  
±
R
= ∞  
L
V
OM+  
V
OM+  
13.8  
R
L
= 2 kΩ  
0
−13.8  
− 6  
V
OM−  
−14.2  
−14.6  
−15  
R
= 2 kΩ  
L
−12  
−18  
− 24  
V
OM−  
R
L
= ∞  
0
3
6
9
12  
15  
18  
21  
24  
−75 −50 −25  
0
25  
50 75 100 125 150  
T − Free-Air Temperature − °C  
A
V
CC  
− Supply Voltage − V  
±
Figure 5.  
Figure 6.  
MAXIMUM POSITIVE PEAK  
OUTPUT VOLTAGE  
vs  
MAXIMUM NEGATIVE PEAK  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
14.6  
14.4  
−13.4  
−13.6  
V
CC  
= ±15 V  
V
CC  
= ±15 V  
±
±
−13.8  
−14  
T
A
= 125°C  
14.2  
14  
T
A
= 125°C  
−14.2  
−14.4  
−14.6  
−14.8  
− 15  
T
A
= 55°C  
T
A
= 25°C  
T
A
= 25°C  
T
A
= 55°C  
13.8  
13.6  
−0.1  
−0.4  
−1  
−4  
−10  
− 40  
−100  
0.1  
0.4  
1
4
10  
40  
100  
I
O
− Output Current − mA  
I
O
− Output Current − mA  
Figure 7.  
Figure 8.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
vs  
SETTLING TIME  
FREQUENCY  
12.5  
10  
A
= −1  
VD  
30  
25  
20  
15  
10  
5
V
CC  
= ±15 V  
±
V
R
= ±15 V  
= 2 kΩ  
±
CC  
T
A
= 25°C  
L
7.5  
5
0.1%  
0.01%  
T
A
= 25°C  
2.5  
0
Rising  
Falling  
T
A
= 125°C  
−2.5  
0.01%  
−5  
0.1%  
T
A
= 55°C  
−7.5  
−10  
−12.5  
0
100  
200  
300  
400  
500  
0
100 k  
400 k  
1 M  
4 M  
10 M  
t − Settling Time − ns  
s
f − Frequency − Hz  
Figure 9.  
Figure 10.  
HIGH-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
4.6  
4.4  
4.2  
1400  
V
CC  
= 5 V  
V
CC  
= 5 V  
1200  
1000  
800  
600  
400  
200  
0
T
A
= 125°C  
T
A
= 125°C  
T
= 25°C  
A
T
A
= 55°C  
4
3.8  
3.6  
T
A
= 25°C  
T
= 55°C  
A
3.4  
−0.1  
−1  
−10  
−100  
0.1  
1
10  
100  
I
O
− Output Current − mA  
I
O
− Output Current − mA  
Figure 11.  
Figure 12.  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
120  
110  
100  
90  
0°  
140  
120  
100  
80  
V
V
= ±15 V  
= ±10 V  
20°  
±
CC  
O
40°  
60°  
R = 10 kΩ  
L
80  
80°  
Phase Shift  
70  
100°  
120°  
140°  
160°  
180°  
200°  
220°  
240°  
260°  
60  
A
VD  
50  
40  
R
L
= 2 kΩ  
30  
V
CC  
= ±15 V  
±
20  
R
C
T
A
= 2 kΩ  
= 100 pF  
= 25°C  
L
L
10  
0
− 10  
1
10  
100  
1 k  
10 k 100 k 1 M 10 M  
f − Frequency − Hz  
−75 −50 −25  
0
25  
50  
75 100 125 150  
T
A
− Free-Air Temperature − °C  
Figure 13.  
Figure 14.  
SHORT-CIRCUIT OUTPUT CURRENT  
CLOSED-LOOP OUTPUT IMPEDANCE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
60  
50  
40  
30  
100  
V
V
= ±15 V  
= 0  
30  
±
CC  
O
10  
1
V
ID  
= 1  
A
= 100  
VD  
0.1  
A
VD  
= 10  
= 1  
A
VD  
0.01  
V
= 1  
25  
ID  
0.001  
20  
1 k  
10 k  
100 k  
1 M  
10 M  
−75 −50 −25  
T
0
50  
75 100 125 150  
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 15.  
A
Figure 16.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
140  
120  
100  
80  
120  
116  
112  
108  
V
T
= ±15 V  
= 25°C  
±
V
IC  
= V min  
ICR  
CC  
V
CC  
= 5 V  
A
60  
40  
V
CC  
= ±15 V  
±
104  
100  
20  
0
100  
1 k  
10 k  
100 k  
1 M  
−75 −50 −25  
0
25  
50  
75 100 125 150  
f − Frequency − Hz  
T
A
− Free-Air Temperature − °C  
Figure 17.  
Figure 18.  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
160  
110  
108  
106  
V
CC  
= ±2.5 V to ±15 V  
±
140  
120  
100  
k
SVR+  
k
SVR−  
80  
60  
104  
102  
100  
40  
20  
0
V
T
A
= ±2.5 V to ±15 V  
= 25°C  
±
CC  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
−75 −50 −25  
0
25  
50  
75 100 125 150  
f − Frequency − Hz  
T
A
− Free-Air Temperature − °C  
Figure 19.  
Figure 20.  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
4
3.5  
3
3.8  
3.6  
V
= 0  
O
T
= 125°C  
= 25°C  
A
No Load  
V
= ±15 V  
±
CC  
T
A
3.4  
3.2  
V
CC  
= ±2.5 V  
±
T
= 55°C  
A
2.5  
2
3
V
= 0  
O
No Load  
2.8  
0
4
8
12  
16  
20  
24  
−75 −50 −25  
T
0
25  
50  
75 100 125 150  
|V  
CC  
| − Supply Voltage − V  
− Free-Air Temperature − °C  
±
A
Figure 21.  
Figure 22.  
INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
OVER A 10-SECOND PERIOD  
vs  
FREQUENCY  
750  
250  
200  
150  
100  
50  
V
= ±15 V  
±
CC  
V
R
= ±15 V  
= 20Ω  
±
CC  
f = 0.1 to 10 Hz  
T
A
S
= 25°C  
500  
250  
T
A
= 55°C  
0
T
A
= 125°C  
−250  
−500  
−750  
T
= 25°C  
A
0
0
2
4
6
8
10  
1
100  
1 k  
10 k  
10  
t − Time − s  
f − Frequency − Hz  
Figure 23.  
Figure 24.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
NOISE CURRENT  
vs  
FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE  
vs  
8
FREQUENCY  
1%  
V
V
T
= 20 V  
= ±15 V  
= 25°C  
O(PP)  
A = 100  
V
±
CC  
R = 600 Ω  
L
A
6
4
0.1%  
T
A
= 55°C  
A = 100  
V
A = 10  
V
R
L
= 2 kΩ  
R = 600 Ω  
L
T
A
= 25°C  
0.01%  
2
0
A = 10  
V
R = 2 kΩ  
L
T
A
= 125°C  
1
10  
100  
1 k  
10 k  
0.001%  
10  
100  
1 k  
10 k  
100 k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 25.  
Figure 26.  
SLEW RATE  
vs  
SLEW RATE  
vs  
LOAD CAPACITANCE  
FREE-AIR TEMPERATURE  
60  
50  
40  
30  
50  
40  
30  
20  
SR +  
SR+  
SR −  
20  
10  
0
SR−  
V
= ±15 V  
= − 1  
= 2 kΩ  
= 500 pF  
V
= ±15 V  
±
= − 1  
= 25°C  
±
CC  
CC  
10  
A
A
VD  
VD  
R
C
T
A
L
L
0
0.01  
0.1  
1
10  
−75 −50 −25  
T
0
25  
50  
75 100 125 150  
C − Load Capacitance − nF  
L
− Free-Air Temperature − °C  
A
Figure 27.  
Figure 28.  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
www.ti.com....................................................................................................................................................................................................... SLOS628JULY 2009  
NONINVERTING  
LARGE-SIGNAL  
PULSE RESPONSE  
INVERTING  
LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
5
15  
10  
5
T
A
= 125°C  
T
A
= 25°C  
T
= 25°C  
T
= 55°C  
A
A
T
= 125°C  
A
T
= 55°C  
= 25°C  
A
T
= 55°C  
A
0
0
T
= 55°C  
A
T
A
= 125°C  
T
−5  
−10  
−15  
−5  
−10  
−15  
A
T
A
= 25°C  
V
= ±15 V  
V
A
= ±15 V  
= −1  
±
= 1  
= 2 kΩ  
= 300 pF  
CC  
±
CC  
A
R
C
VD  
VD  
R
L
C
L
= 2 kΩ  
= 300 pF  
L
L
T
= 125°C  
A
0
1
2
3
4
5
0
1
2
3
4
5
t − Time − µs  
t − Time − µs  
Figure 29.  
Figure 30.  
SMALL-SIGNAL  
PULSE RESPONSE  
UNITY-GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
100  
50  
0
7
6
5
4
3
2
1
V = ±15 V  
±
CC  
T
A
= 55°C  
R
L
= 2 kΩ  
T
A
= 25°C  
T
A
= 125°C  
V
= ±15 V  
= −1  
= 2 kΩ  
= 300 pF  
= 25°C  
±
CC  
−50  
A
VD  
R
C
T
A
L
L
−100  
0
400  
800  
1200  
1600  
10  
100  
1000  
10000  
t − Time − ns  
C − Load Capacitance − pF  
L
Figure 31.  
Figure 32.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TLE2142-Q1  
TLE2142-Q1  
SLOS628JULY 2009....................................................................................................................................................................................................... www.ti.com  
PHASE MARGIN  
vs  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
14  
12  
10  
8
70°  
T
= 55°C  
A
V
= ±15 V  
= 1  
= 2 kto ∞  
= 10 V to 10 V  
±
CC  
A
R
VD  
60°  
50°  
L
T
A
= 25°C  
V
O
T
= 55°C  
A
T
= 125°C  
A
40°  
30°  
20°  
10°  
0°  
6
T
A
= 125°C  
4
2
V
R
= ±15 V  
±
CC  
T
A
= 25°C  
= 2 kΩ  
L
0
10  
10  
100  
1000  
10000  
100  
1000  
10000  
C − Load Capacitance − pF  
L
C − Load Capacitance − pF  
L
Figure 33.  
Figure 34.  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TLE2142-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Aug-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TLE2142QDRQ1  
ACTIVE  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLE2142-Q1 :  
Catalog: TLE2142  
Military: TLE2142M  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Military - QML certified for Military and Defense Applications  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Dec-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLE2142QDRQ1  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Dec-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
340.5 338.1 20.6  
TLE2142QDRQ1  
D
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

TLE2142X

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2142Y

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS
TI

TLE2144

EXCALIBUR LOW NOISE HIGH SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2144-EP

Excalibur™ LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIER
TI

TLE2144A

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2144ACN

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2144ACNE4

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2144AIN

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2144AINE4

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2144AM

高速高驱动精密四路运算放大器
TI

TLE2144AMFKB

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2144AMJB

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI