TLE2682IDW [TI]

High-Speed JFET-Input Dual Operational Amplifier w/Switched-Capacitor Voltage Converter 16-SOIC;
TLE2682IDW
型号: TLE2682IDW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

High-Speed JFET-Input Dual Operational Amplifier w/Switched-Capacitor Voltage Converter 16-SOIC

转换器 开关 运算放大器 输入元件
文件: 总49页 (文件大小:712K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
DW PACKAGE  
(TOP VIEW)  
D
Single-Supply Operation With Rail-to-Rail  
Inputs  
D
D
D
D
D
D
D
30-mA Min Short-Circuit Output Current  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1 OUT  
1 IN−  
1 IN+  
V
CC+  
Wide V  
Range . . . 3.5 V to 15 V  
CC  
2 OUT  
2 IN−  
2 IN+  
CAP−  
GND  
V
Supplies up to 100 mA for External  
OUT  
Loads  
V
V
CC−  
OUT  
Shutdown Mode  
V
External 2.5-V Voltage Reference Available  
40-V/µs Slew Rate Typ  
REF  
OSC  
CAP+  
FB/SD  
V
IN  
High Gain-Bandwidth Product . . . 10 MHz  
description  
The TLE2682 offers the advantages of JFET-input operational amplifiers and rail-to-rail common-mode input  
voltage range with the convenience of single-supply operation. By combining a switched-capacitor voltage  
converter with a dual operational amplifier in a single package, Texas Instruments now gives circuit designers  
new options for conditioning low-level signals in single-supply systems.  
The TLE2682 features two high-speed, high-output drive JFET-input operational amplifiers with a switched-  
capacitor building block. Using two external capacitors, the switched-capacitor network can be configured as  
a voltage inverter generating a negative supply voltage capable of sourcing up to 100 mA. This supply functions  
not only as the amplifier’s negative rail but is also available to drive external circuitry. In this configuration, the  
amplifier common-mode input voltage range extends from the positive rail to below ground, thus providing true  
rail-to-rail inputs from a single supply. Furthermore, the outputs can swing to and below ground while sinking  
over 25 mA. This feature was previously unavailable in operational amplifier circuits. The TLE2682 operational  
amplifier section has output stages that can drive 20-mA loads to 2.3 V with a 5-V rail. With a 2-mA load, the  
output swing extends to 3.9 V.  
This amplifier design features a 25-V/µs minimum slew rate, which results in a high-power bandwidth. Settling  
time to 0.1% of a 10-V step (1-k/100-pF load) is approximately 400 ns. Gain-bandwidth product is typically  
10 MHz with an 8-MHz minimum. The TLE2682 offers significant speed and noise advantages at a low 1.5-mA  
typical supply current per channel.  
The TLE2682 features a shutdown pin (FB/SD), which can be used to disable the switched-capacitor section.  
When disabled, the switched-capacitor voltage converter block draws less then 150 µA from the power supply,  
V .  
IN  
The switched-capacitor voltage converter block also provides an on-board regulator; with the addition of an  
external divider, a well-regulated output voltage is easily obtained. The internal oscillator runs at a nominal  
frequency of 25 kHz. This can be synchronized to an external clock signal or can be varied using an external  
capacitor. A 2.5-V reference is brought out to V  
Additional filtering can be added to minimize switching noise.  
for use with the on-board regulator or external circuitry.  
REF  
The TLE2682 is characterized for operation over the industrial temperature range of 40°C to 85°C. This device  
is available in a 16-pin wide-body surface-mount package.  
AVAILABLE OPTION  
PACKAGE  
T
A
SMALL OUTLINE  
(DW)  
40°C to 85°C  
TLE2682IDW  
The DW package is available taped and reeled. Add  
the suffix R to the device type, (i.e., TLE2682IDWR).  
ꢀꢣ  
Copyright 1993, Texas Instruments Incorporated  
ꢟ ꢣ ꢠ ꢟꢘ ꢙꢭ ꢛꢚ ꢞ ꢦꢦ ꢤꢞ ꢜ ꢞ ꢝ ꢣ ꢟ ꢣ ꢜ ꢠ ꢨ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
functional block diagram  
Amplifier Block  
1
16  
15  
14  
13  
12  
11  
10  
9
1 OUT  
V
CC  
+
2
_
+
1 IN−  
2 OUT  
2 IN−  
2 IN+  
CAP−  
GND  
_
+
3
1 IN+  
4
V
CC−  
5
6
7
8
V
OUT  
V
REF  
Switched-  
Capacitor  
Block  
OSC  
CAP+  
FB/SD  
V
IN  
ACTUAL DEVICE  
COMPONENT COUNT  
AMPLIFIER  
BLOCK  
SWITCHED-  
CAPACITOR BLOCK  
Transistors  
Resistors  
Diodes  
57  
37  
5
Transistors  
Resistors  
Diodes  
71  
44  
2
Capacitors  
11  
Capacitors  
5
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
IN  
Supply voltage, V  
Supply voltage, V  
(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −16 V  
CC+  
CC−  
Differential input voltage, V (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 V  
Input voltage, V (any input of amplifier) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Input voltage range, V (FB/SD) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to V  
Input voltage range, V (OSC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to V  
ID  
I
CC  
I
IN  
I
REF  
Input current, I (each input of amplifier) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mA  
I
Output current, I (each output of amplifier) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
O
Total current into V  
Total current out of V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA  
CC+  
CC−  
Duration of short-circuit current at (or below) T = 25°C (see Note 4) (each amplifier) . . . . . . . . . . . unlimited  
A
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Junction temperature (see Note 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
A
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Voltage values are with respect to the switched-capacitor block GND pin.  
2. Voltage values, except differential voltages, are with respect to the midpoint between V  
3. Differential voltages are at IN+ with respect to IN.  
and V  
CC−  
.
CC+  
4. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
5. The devices are functional up to the absolute maximum junction temperature.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
POWER RATING  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
DW  
1025 mW  
8.2 mW/°C  
656 mW  
533 mW  
recommended operating conditions  
MIN  
3.5  
−1  
MAX  
15  
UNIT  
Supply voltage, V  
/V  
V
CC+ IN  
V
V
=
5 V  
5
CC  
Common-mode input voltage, V  
IC  
V
=
15 V  
11  
0
15  
CC  
Output current at V  
, I  
Operating free-air temperature, T  
100  
85  
mA  
OUT O  
40  
°C  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
OPERATIONAL AMPLIFIER SECTION  
electrical characteristics at specified free-air temperature, V = 5 V (unless otherwise noted)  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
7.5  
9
UNIT  
T
A
25°C  
Full range  
Full range  
25°C  
0.9  
V
IO  
Input offset voltage  
mV  
V
R
= 0,  
V
= 0,  
IC  
S
O
O
= 50 Ω  
α
VIO  
Temperature coefficient of input offset voltage  
Input offset current  
2.4  
5
25 µV/°C  
100  
I
IO  
pA  
Full range  
25°C  
950  
175  
2
V
IC  
= 0,  
V
= 0,  
See Figure 4  
pA  
nA  
15  
I
IB  
Input bias current  
Full range  
5
to  
5
to  
25°C  
1.9  
−1  
R
= 50 Ω  
V
Common-mode input voltage range  
V
V
S
ICR  
5
to  
0.8  
Full range  
25°C  
Full range  
25°C  
3.8  
3.7  
4.1  
3.9  
I
O
I
O
I
O
I
O
I
O
I
O
= 200 µA  
= 2 mA  
= 20 mA  
= 200 µA  
= 2 mA  
3.5  
V
OM+  
Maximum positive peak output voltage swing  
Maximum negative peak output voltage swing  
Large-signal differential voltage amplification  
Full range  
25°C  
3.4  
1.5  
2.3  
Full range  
25°C  
1.5  
3.8  
3.7  
3.5  
3.4  
1.5  
1.5  
75  
4.2  
4.1  
2.4  
91  
Full range  
25°C  
V
OM−  
V
Full range  
25°C  
= 20 mA  
Full range  
25°C  
R
R
R
= 600 Ω  
= 2 kΩ  
L
L
L
Full range  
25°C  
74  
85  
100  
106  
A
VD  
V
O
=
2.3 V  
dB  
Full range  
25°C  
84  
90  
= 10 kΩ  
Full range  
25°C  
89  
12  
10  
r
Input resistance  
V
V
= 0  
i
IC  
Common mode  
Differential  
25°C  
11  
2.5  
80  
= 0,  
IC  
c
z
Input capacitance  
pF  
i
See Figure 5  
25°C  
Open-loop output impedance  
f = 1 MHz  
25°C  
o
25°C  
70  
89  
V
= 0,  
V
R
= V min,  
ICR  
O
IC  
S
CMRR Common-mode rejection ratio  
dB  
dB  
= 50 Ω  
Full range  
68  
82  
25°C  
99  
V
V
=
= 0  
5 V to 15 V,  
= 50 Ω  
CC  
k
Supply-voltage rejection ratio (V  
/V )  
IO  
SVR  
CC  
R
S
Full range  
25°C  
80  
O
O
IC  
2.7  
2.9  
3.6  
3.6  
I
Supply current (both channels)  
Crosstalk attenuation  
V
V
= 0,  
No load  
mA  
dB  
CC  
Full range  
= 0,  
= 0  
a
25°C  
120  
35  
45  
R
= 2 kΩ  
x
L
V
ID  
V
ID  
= 1 V  
I
Short-circuit output current  
V
O
25°C  
mA  
OS  
= 1 V  
Full range is 40°C to 85°C.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
operating characteristics at specified free-air temperature, V  
= 5 V  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
20  
TYP  
MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
35  
SR+  
SR−  
Positive slew rate  
V/µs  
V
A
C
= 2.3 V,  
O(PP)  
= 1,  
R = 2 k,  
L
See Figure 1  
VD  
= 100 pF,  
38  
L
Negative slew rate  
Settling time  
V/µs  
µs  
Full range  
20  
A
= 1,  
VD  
2-V step,  
To 10 mV  
To 1 mV  
0.25  
0.4  
25°C  
25°C  
R
C
= 1 k,  
= 100 pF  
L
L
f = 10 Hz  
28  
nV/Hz  
V
n
Equivalent input noise voltage  
f = 10 kHz  
11.6  
R
= 20 ,  
f = 10 Hz to  
10 kHz  
S
6
See Figure 3  
V
I
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
25°C  
µV  
N(PP)  
f = 0.1 Hz to  
10 Hz  
0.6  
2.8  
V
V
= 0,  
f = 10 kHz  
25°C  
25°C  
fA/Hz  
n
IC  
A
R
= 10,  
= 2 kΩ,  
= 5 V,  
VD  
L
O(PP)  
f = 1 k Hz,  
= 25Ω  
THD + N Total harmonic distortion plus noise  
0.013%  
R
S
V = 10 mV,  
R
= 2 k,  
I
L
B
B
Unity-gain bandwidth  
25°C  
25°C  
25°C  
9.4  
2.8  
56°  
MHz  
MHz  
1
C
= 25 pF,  
See Figure 2  
L
V
R
= 4 V,  
A
= 1,  
= 25 pF  
O(PP)  
= 2 k,  
VD  
Maximum output-swing bandwidth  
Phase margin at unity gain  
OM  
C
L
L
L
V = 10 mV,  
R
= 2 k,  
I
L
φ
m
C
= 25 pF,  
See Figure 2  
Full range is 40°C to 85°C.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
electrical characteristics at specified free-air temperature, V  
= 15 V (unless otherwise noted)  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
7.5  
9
UNIT  
T
A
25°C  
Full range  
Full range  
25°C  
1.1  
V
IO  
Input offset voltage  
mV  
V
R
= 0,  
V
= 0,  
IC  
S
O
O
= 50 Ω  
α
VIO  
Temperature coefficient of input offset voltage  
Input offset current  
2.4  
6
25 µV/°C  
100  
I
IO  
pA  
Full range  
25°C  
950  
175  
2.5  
V
IC  
= 0,  
V
= 0,  
See Figure 4  
20  
pA  
nA  
I
IB  
Input bias current  
Full range  
15 to  
11 11.9  
15 to  
25°C  
V
Common-mode input voltage range  
R
= 50 Ω  
V
V
ICR  
S
15 to  
Full range  
10.8  
13.8  
13.7  
13.5  
13.4  
11.5  
11.5  
25°C  
Full range  
25°C  
14.1  
13.9  
12.3  
I
O
I
O
I
O
I
O
I
O
I
O
= 200 µA  
= 2 mA  
= 20 mA  
= 200 µA  
= 2 mA  
V
OM+  
Maximum positive peak output voltage swing  
Full range  
25°C  
Full range  
25°C  
13.8 14.2  
Full range 13.7  
25°C 13.5  
Full range 13.4  
25°C 11.5 12.4  
Full range 11.5  
14  
V
OM−  
Maximum negative peak output voltage swing  
V
= 20 mA  
25°C  
Full range  
25°C  
75  
74  
90  
89  
90  
89  
96  
R
R
R
= 600 Ω  
= 2 kΩ  
L
L
L
109  
A
VD  
Large-signal differential voltage amplification  
Input resistance  
V
=
10 V  
dB  
O
Full range  
25°C  
118  
12  
= 10 kΩ  
Full range  
25°C  
r
V
V
= 0  
10  
i
IC  
Common mode  
Differential  
25°C  
7.5  
2.5  
80  
= 0,  
IC  
c
z
Input capacitance  
pF  
i
See Figure 5  
25°C  
Open-loop output impedance  
f = 1 MHz  
25°C  
o
25°C  
80  
98  
V
= 0,  
V
R
= V min,  
ICR  
O
IC  
S
CMRR Common-mode rejection ratio  
dB  
dB  
= 50 Ω  
Full range  
25°C  
79  
82  
99  
V
V
=
= 0,  
5 V to 15 V,  
= 50 Ω  
CC  
O
k
Supply-voltage rejection ratio (V  
/V )  
IO  
SVR  
CC  
R
S
Full range  
25°C  
80  
2.7  
3.1  
3.6  
3.6  
I
Supply current (both channels)  
Crosstalk attenuation  
V
V
= 0,  
No load  
mA  
dB  
CC  
O
Full range  
= 0,  
= 0  
a
25°C  
120  
45  
48  
R
= 2 kΩ  
IC  
x
L
V
V
= 1 V  
30  
30  
ID  
I
Short-circuit output current  
V
O
25°C  
mA  
OS  
= 1 V  
ID  
Full range is 40°C to 85°C.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
operating characteristics at specified free-air temperature, V  
= 15 V  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
25  
TYP MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
40  
SR+  
SR−  
Positive slew rate  
V/µs  
V
A
C
= 10 V,  
O(PP)  
= 1,  
20  
R = 2 k,  
L
See Figure 1  
VD  
= 100 pF,  
25  
45  
L
Negative slew rate  
Settling time  
V/µs  
µs  
Full range  
20  
A
= 1,  
VD  
10-V step,  
To 10 mV  
To 1 mV  
0.4  
1.5  
25°C  
25°C  
R
C
= 1k,  
= 100 pF  
L
L
f = 10 Hz  
28  
nV/Hz  
V
n
Equivalent input noise voltage  
f = 10 kHz  
11.6  
R
= 20 ,  
f = 10 Hz to  
10 kHz  
S
6
See Figure 3  
V
I
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
25°C  
µV  
N(PP)  
f = 0.1 Hz to  
10 Hz  
0.6  
2.8  
V
V
= 0,  
f = 10 kHz  
25°C  
25°C  
fA/Hz  
n
IC  
A
R
= 10,  
= 2 k,  
= 20 V,  
VD  
L
O(PP)  
f = 1 kHz,  
= 25Ω  
THD + N Total harmonic distortion plus noise  
0.008%  
R
S
V = 10 mV,  
R
= 2 k,  
I
L
B
B
Unity-gain bandwidth  
25°C  
25°C  
25°C  
8
10  
637  
57°  
MHz  
kHz  
1
C
= 25 pF,  
See Figure 2  
L
V
R
= 20 V,  
A
= 1,  
= 25 pF  
O(PP)  
= 2 k,  
VD  
Maximum output-swing bandwidth  
Phase margin at unity gain  
478  
OM  
C
L
L
L
V = 10 mV,  
R
= 2 k,  
I
L
φ
m
C
= 25 pF,  
See Figure 2  
Full range is 40°C to 85°C.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
SWITCHED-CAPACITOR SECTION  
electrical characteristics over recommended supply voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
3.75  
4.7  
TYP  
MAX  
UNIT  
V
V
V
V
V
V
= 5 V, T =25°C, R (V  
) = 500 , See Note 6  
) = 500 , See Note 7  
) = 500 , See Note 6  
) = 500 , See Note 7  
) = 100 to 500 Ω  
25°C  
−4 −4.25  
Regulated output voltage,  
CC  
CC  
CC  
CC  
CC  
CC  
J
L
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
OUT  
= 7 V, T =25°C, R (V  
25°C  
−5  
7
5.2  
27  
J
L
= 5 V to 15 V,  
R (V  
L
Full range  
Full range  
Full range  
Full range  
Full range  
Input regulation  
mV  
mV  
V
= 7 V to 12 V,  
= 5 V,  
R (V  
L
5
25  
R (V  
L
20  
140  
70  
Output regulation  
= 7 V,  
R (V  
L
) = 100 to 500 Ω  
20  
I
= 10 mA  
0.35  
1.1  
10  
0.55  
1.8  
Voltage loss, V  
(see Note 8)  
V  
OUT  
V
C
= 7 V,  
O
O
CC  
CC  
= C = 100-µF tantalum  
IN OUT  
I = 10 mA to 100 mA,  
I
= 100 mA Full range  
Output resistance  
See Note 9  
Full range  
Full range  
25°C  
15  
O
Oscillator frequency  
15  
2.35  
2.25  
2.35  
2.25  
25  
35  
kHz  
2.5  
2.65  
2.75  
2.65  
2.75  
V
V
= 5 V,  
= 7 V,  
I
I
= 50 µA  
= 60 µA  
CC  
ref  
Full range  
25°C  
Reference voltage, V  
V
ref  
2.5  
CC  
ref  
Full range  
25°C  
Maximum switch current  
300  
mA  
Data applies for the switched-capacitor block only. Amplifier block is not connected.  
Full range is 40°C to 85°C.  
NOTES: 6. Regulation specifications are for the switched-capacitor section connected as a positive to negative converter/regulator  
(see Figure 105) with R1 = 23.7 k, R2 = 102.2 k, C = 10 µF (tantalum), C = 100 µF (tantalum), and C1 = 0.002 µF.  
IN OUT  
7. Regulation specifications are for the switched-capacitor section connected as a positive to negative converter/regulator  
(see Figure 105) with R1 = 20 k, R2 = 102.5 k, C = 10 µF (tantalum), C = 100 µF (tantalum) and C1 = 0.002 µF.  
IN OUT  
8. For voltage-loss tests, the switched-capacitor section is connected as a voltage inverter, with V  
and 9) unconnected. The voltage losses may be higher in other configurations.  
, OSC, and FB/SD (pins 6, 7,  
REF  
9. Output resistance is defined as the slope of the curve (V vs I ) for output currents of 10 mA to 100 mA. This represents the linear  
O
O
portion of the curve. The incremental slope of the curve are higher at currents less than 10 mA due to the characteristics of the switch  
transistors.  
AMPLIFIER AND SWITCHED-CAPACITOR SECTIONS CONNECTED  
electrical characteristics, V = V  
IN  
= 5 V, T = 25°C (see Figure 6)  
CC+  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4.1  
MAX  
UNIT  
R
R
R
R
R
R
= 10 kΩ  
= 600 Ω  
= 100 Ω  
= 10 kΩ  
= 600 Ω  
= 100 Ω  
L
L
L
L
L
L
3.6  
V
Maximum positive peak output voltage swing  
V
OM+  
OM−  
2.3  
3.9  
3.3  
1.9  
0.55  
0.65  
0.9  
V
Maximum negative peak output voltage swing  
V
V
R
R
R
= 10 kΩ  
= 600 Ω  
= 100 Ω  
L
L
L
V
ID  
= 100 mV,  
= C = 100-µF tantalum  
Voltage loss, V |V  
IN OUT  
| (see Note 8)  
C
IN  
OUT  
NOTE 8: For voltage-loss tests, the switched-capacitor section is connected as a voltage inverter, with V  
and 9) unconnected. The voltage losses may be higher in other configurations.  
, OSC, and FB/SD (pins 6, 7,  
REF  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
supply current (no load), T = 25°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
8.9  
MAX  
UNIT  
mA  
Supply current  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V,  
= 5 V,  
V
V
= 2.5 V,  
= 0 V  
V
O
= 0  
CC+  
IN  
FB/SD  
Supply current in shutdown  
2.5  
mA  
CC+  
IN  
FB/SD  
PARAMETER MEASUREMENT INFORMATION  
10 kΩ  
2 kΩ  
V
CC+  
V
CC+  
V
O
2 kΩ  
100Ω  
V
I
V
I
+
+
V
O
C
L
V
CC−  
V
CC−  
R
C
L
L
R
L
Includes fixture capacitance  
Includes fixture capacitance  
Figure 2. Unity-Gain Bandwidth  
and Phase-Margin Test Circuit  
Figure 1. Slew-Rate Test Circuit  
2 kΩ  
V
CC+  
Ground Shield  
V
CC+  
V
O
+
V
O
+
V
CC−  
Picoammeters  
R
R
S
V
CC−  
S
Figure 4. Input-Bias and  
Offset-Current Test Circuit  
Figure 3. Noise-Voltage Test Circuit  
V
CC+  
IN−  
IN+  
C
V
O
id  
+
C
C
V
CC−  
ic  
ic  
Figure 5. Internal Input Capacitance  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
PARAMETER MEASUREMENT INFORMATION  
typical values  
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.  
input bias and offset current  
At the picoampere bias-current level typical of the TLE2682, accurate measurement of the bias currents  
becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily  
exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses  
a two-step process. The socket leakage is measured using picoammeters with bias voltages applied, but with  
no device in the socket. The device is then inserted in the socket, and a second test is performed that measures  
both the socket leakage and the device input bias current (see Figure 6). The two measurements are then  
subtracted algebraically to determine the bias current of the device.  
R
L
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1 OUT  
1 IN−  
1 IN+  
V
+
5 V  
2 µF  
CC  
+
0.1 µF  
2 OUT  
2 IN−  
2 IN+  
CAP−  
GND  
R
L
V
CC−  
V
OUT  
V
REF  
TLE2682  
C
OUT  
0.1 µF  
+
C
IN  
1N4933  
+
OSC  
CAP+  
FB/SD  
V
IN  
Figure 6. Bias-Current Test Circuit  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
Table of Graphs for Operational Amplifier Section  
FIGURE  
V
Input offset voltage  
Distribution  
7
8
IO  
α
VIO  
Temperature coefficient of input offset voltage  
Input offset current  
Distribution  
I
IO  
vs Free-air temperature  
9, 10  
vs Free-air temperature  
vs Supply voltage  
9, 10  
11  
I
IB  
Input bias current  
V
V
Common-mode input voltage range  
Differential input voltage  
vs Free-air temperature  
vs Output voltage  
12  
IC  
13, 14  
ID  
vs Output current  
vs Free-air temperature  
vs Supply voltage  
15  
17, 18  
19  
V
Maximum positive peak output voltage  
Maximum negative peak output voltage  
OM+  
OM−  
vs Output current  
vs Free-air temperature  
vs Supply voltage  
16  
17, 18  
19  
V
V
V
Maximum peak-to-peak output voltage  
Output voltage  
vs Frequency  
20  
21  
O(PP)  
vs Settling time  
O
vs Load resistance  
vs Free-air temperature  
vs Frequency  
22  
23, 24  
25, 26  
A
VD  
Large-signal differential voltage amplification  
vs Frequency  
vs Free-air temperature  
27  
28  
CMRR  
Common-mode rejection ratio  
Supply voltage rejection ratio  
vs Frequency  
vs Free-air temperature  
29  
30  
k
SVR  
vs Supply voltage  
vs Free-air temperature  
vs Differential input voltage  
31  
32  
33, 34  
I
Supply current  
CC  
vs Supply voltage  
vs Time  
vs Free-air temperature  
35  
36  
37  
I
Short-circuit output current  
OS  
vs Free-air temperature  
vs Load resistance  
vs Differential input voltage  
38, 39  
40  
41  
SR  
Slew rate  
V
V
Equivalent input noise voltage  
vs Frequency  
42  
n
vs Noise bandwidth  
Over a 10-second time interval  
43  
44  
Input-referred noise voltage  
n
Third-octave spectral noise density  
vs Frequency  
45  
46, 47  
48  
THD +N Total harmonic distortion plus noise  
vs Frequency  
B
1
Unity-gain bandwidth  
vs Load capacitance  
vs Free-air temperature  
vs Supply voltage  
49  
50  
Gain-bandwidth product  
Gain margin  
A
vs Load capacitance  
51  
m
m
vs Free-air temperature  
vs Supply voltage  
vs Load capacitance  
52  
53  
54  
φ
Phase margin  
Phase shift  
vs Frequency  
25, 26  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
Table of Graphs for Operational Amplifier Section (Continued)  
FIGURE  
Large-signal pulse response, noninverting  
Small-signal pulse response  
Output impedance  
vs Time  
55  
56  
57  
58  
vs Time  
z
vs Frequency  
vs Frequency  
o
a
Crosstalk attenuation  
x
Table of Graphs for Switched-Capacitor Section  
FIGURE  
59  
Shutdown threshold voltage  
vs Free-air temperature  
vs Input voltage  
I
f
Supply current  
60  
CC  
Oscillator frequency  
Supply current in shutdown  
Average supply current  
Output voltage loss  
Output voltage loss  
Regulated output voltage  
Reference voltage change  
Voltage loss  
vs Free-air temperature  
vs Input voltage  
61  
osc  
62  
I
vs Output current  
63  
avg  
vs Input capacitance  
vs Oscillator frequency  
vs Free-air temperature  
vs Free-air temperature  
vs Output current  
64  
65, 66  
67  
V
O
V  
REF  
68  
69  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
DISTRIBUTION OF TLE2682 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLE2682  
INPUT OFFSET VOLTAGE  
30  
27  
24  
21  
18  
15  
12  
9
20  
18  
16  
14  
12  
10  
8
310 Amplifiers  
600 Units Tested From One Wafer Lot  
V
T
=
15 V  
CC  
V
CC  
= 15 V  
= − 40 to 85°C  
A
T
A
= 25°C  
6
6
3
0
4
2
0
− 24 −18 −12 − 6  
0
6
12 18  
24 30  
− 4  
− 2.4  
− 0.8  
0.8  
2.4  
4
− Input Offset Voltage − mV  
α
VIO  
− Temperature Coefficient − µV/°C  
V
IO  
Figure 7  
Figure 8  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT  
vs  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
100  
100  
10  
V
V
V
= 15 V  
= 0  
= 0  
V
= 5 V  
CC  
IC  
O
CC  
V
IC  
V
O
= 0  
= 0  
10  
1
1
I
IB  
0.1  
0.01  
0.1  
I
IB  
I
IO  
I
IO  
0.01  
0.001  
0.001  
25  
45  
65  
85  
55 35 15  
5
25  
45  
65  
85  
55 35  
15  
A
5
T
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 9  
Figure 10  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE RANGE  
vs  
SUPPLY VOLTAGE  
TEMPERATURE  
6
10  
V
+0.5  
CC+  
0.5  
CC+  
V
IC  
max = V  
CC+  
R
= 50 Ω  
S
T
A
= 85°C  
V
5
4
10  
10  
V min  
IC  
V
IC  
max  
V
V
CC+  
3
2
10  
10  
+3.5  
+3  
CC−  
V
IC  
min  
V
CC−  
T
A
= 25°C  
10  
1
V
+2.5  
CC−  
T
= 40°C  
A
V
+2  
CC−  
25  
45  
65  
85  
55  
35  
T
15  
5
0
5
10  
15  
20  
25  
30  
35  
− Free-Air Temperature − °C  
V
− Total Supply Voltage (Referred to V  
) − V  
A
CC  
CC−  
Figure 11  
Figure 12  
DIFFERENTIAL INPUT VOLTAGE  
DIFFERENTIAL INPUT VOLTAGE  
vs  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
400  
300  
400  
300  
V
= 5 V  
V
=
= 0  
= 50 Ω  
= 25°C  
15 V  
CC  
= 0  
CC  
V
R
T
V
R
T
IC  
IC  
= 50 Ω  
= 25°C  
S
S
A
A
R
= 600 Ω  
R = 600 Ω  
L
L
200  
200  
100  
0
100  
0
R = 2 kΩ  
L
R
= 2 kΩ  
L
R
L
= 10 kΩ  
R
= 10 kΩ  
L
R
= 10 kΩ  
L
R
= 10 kΩ  
L
− 100  
− 200  
− 300  
− 400  
− 100  
− 200  
− 300  
− 400  
R
= 2 kΩ  
L
R
= 2 kΩ  
L
R
= 600 Ω  
L
R
= 600 Ω  
L
− 5 − 4 − 3 − 2 − 1  
0
1
2
3
4
5
− 15  
− 10  
− 5  
0
5
10  
15  
V
O
− Output Voltage − V  
V
O
− Output Voltage − V  
Figure 13  
Figure 14  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE  
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
− 15  
15  
− 13.5  
− 12  
− 10.5  
− 9  
13.5  
12  
T
= 40°C  
= 25°C  
A
T
A
= 40°C  
10.5  
9
T
A
− 7.5  
− 6  
7.5  
6
T
= 25°C  
= 85°C  
A
T
A
= 85°C  
− 4.5  
4.5  
T
A
− 3  
− 1.5  
0
3
1.5  
0
V =  
15 V  
10 15 20 25 30 35 40 45 50  
V
CC  
=
15 V  
CC  
0
5
0
− 5 −10 −15 − 20 − 25 − 30 − 35 − 40 − 45 − 50  
I − Output Current − mA  
O
I
O
− Output Current − mA  
Figure 15  
Figure 16  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5
4
15  
14.5  
14  
I
= 200 µA  
O
I
O
= 200 µA  
I
O
= 200 µA  
I
= 2 mA  
O
3
I
= 2 mA  
2
O
13.5  
13  
I
O
= 20 mA  
I
= 2 mA  
O
1
I
= 20 mA  
O
V
CC  
= 5 V  
0
12.5  
12  
I
O
= 20 mA  
− 1  
− 2  
I
= 20 mA  
O
11.5  
− 3  
− 4  
− 5  
11  
10.5  
10  
I
O
= 2 mA  
25  
V
CC  
=
15 V  
I
= 200 µA  
O
45  
65  
85  
55  
35  
15  
5
25  
45  
65  
85  
− 55 − 35 − 15  
5
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 17  
Figure 18  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
30  
25  
20  
15  
10  
5
V
= 15 V  
CC  
T
= 25°C  
R
= 2 kΩ  
A
L
T
A
= 25°C,  
85°C  
I
O
= 200 µA  
25  
20  
15  
10  
I
O
= 2 mA  
T
A
= 40°C  
I
O
= 20 mA  
0
I
O
= 20 mA  
− 5  
−10  
T
= 25°C,  
85°C  
5 V  
A
I
= 200 µA  
O
V
CC  
=
I
O
= 2 mA  
−15  
− 20  
− 25  
5
0
T
A
= 40°C  
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
100 k 200 k 400 k  
1 M  
2 M  
4 M  
10 M  
|V  
CC  
| − Supply Voltage − V  
f − Frequency − Hz  
Figure 19  
Figure 20  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
OUTPUT VOLTAGE  
vs  
SETTLING TIME  
LOAD RESISTANCE  
125  
12.5  
10  
V
= 0  
IC  
S
R = 50 Ω  
T = 25°C  
A
10 mV  
120  
115  
7.5  
5
1mV  
V
=
15 V  
V
CC  
= 15 V  
CC  
2.5  
0
Rising  
Falling  
R
C
= 1 kΩ  
= 100 pF  
= 1  
110  
L
L
A
V
A
105  
100  
T
= 25°C  
− 2.5  
V
CC  
= 5 V  
− 5  
− 7.5  
− 10  
1mV  
10 mV  
95  
90  
− 12.5  
0.1  
1
10  
100  
0
0.5  
1
1.5  
2
Settling Time − µs  
R
− Load Resistance − kΩ  
L
Figure 21  
Figure 22  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
110  
107  
104  
101  
98  
125  
121  
117  
113  
109  
105  
101  
97  
V
V
=
10 V  
15 V  
CC  
O
=
R
= 10 kΩ  
L
R
= 10 kΩ  
L
R
= 2 kΩ  
L
R
= 2 kΩ  
L
95  
92  
R
= 600 Ω  
R
= 600 Ω  
L
L
89  
86  
83  
80  
93  
89  
85  
V
V
=
2.3 V  
5 V  
CC  
O
=
− 55 − 35  
−15  
5
25  
45  
65  
− 55 − 35  
−15  
5
25  
45  
65  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 23  
Figure 24  
SMALL-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
140  
120  
0°  
V
=
15 V  
CC  
20°  
40°  
60°  
R
C
= 2 kΩ  
L
L
Gain  
= 100 pF  
= 25°C  
100  
80  
60  
40  
20  
0
T
A
Phase Shift  
80°  
100°  
120°  
140°  
− 20  
− 40  
160°  
180°  
1
10 100 1 k 10 k 100 k 1 M 10 M 100 M  
f − Frequency − Hz  
Figure 25  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
SMALL-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
30  
20  
10  
0
80°  
100°  
120°  
140°  
C
= 100 pF  
L
Phase Shift  
= 25 pF  
C
L
Gain  
= 100 pF  
C
L
V
V
R
= 15 V  
CC  
= 0  
C
= 25 pF  
L
− 10  
− 20  
160°  
180°  
IC  
= 2 kΩ  
= 25°C  
C
T
A
1
2
4
10  
20  
40  
100  
f − Frequency − MHz  
Figure 26  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
100  
90  
80  
70  
60  
50  
40  
30  
100  
V
CC  
= 15 V  
97  
94  
91  
88  
85  
82  
79  
V
=
15 V  
5 V  
CC  
V
CC  
= 5 V  
V
CC  
=
V
V
= 0  
= 0  
= 50 Ω  
= 25°C  
IC  
O
S
20  
10  
0
76  
73  
70  
V
V
R
= V  
= 0  
= 50 Ω  
min  
−15  
IC  
O
S
ICR  
R
T
A
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
− 55 − 35  
5
25  
45  
65  
85  
f − Frequency − Hz  
T
A
− Free-Air Temperature − °C  
Figure 27  
Figure 28  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
120  
100  
80  
120  
114  
108  
102  
96  
k
SVR+  
k
SVR+  
60  
40  
k
SVR−  
90  
k
SVR−  
84  
78  
20  
0
V  
CC  
=
5 V to 15 V  
V
= 0  
= 0  
= 50 Ω  
= 25°C  
IC  
72  
66  
60  
V
R
O
V
V
R
= 0  
= 0  
= 50 Ω  
IC  
O
S
S
T
A
− 20  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
− 55 − 35  
−15  
5
25  
45  
65  
85  
f − Frequency − Hz  
T
A
− Free-Air Temperature − °C  
Figure 29  
Figure 30  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
4
3.8  
3.6  
3.4  
3.2  
3
3.5  
3.4  
3.3  
3.2  
3.1  
V
V
= 0  
= 0  
V
V
= 0  
= 0  
IC  
O
IC  
O
No Load  
No Load  
T
A
= 85°C  
V
=
15 V  
5 V  
CC  
3
2.9  
2.8  
T
A
= 25°C  
V
=
CC  
2.8  
2.6  
T
= 40°C  
A
2.4  
2.2  
2
2.7  
2.6  
2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
− 55 − 35 − 15  
5
25  
45  
65  
85  
|V  
CC  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 31  
Figure 32  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
DIFFERENTIAL INPUT VOLTAGE  
DIFFERENTIAL INPUT VOLTAGE  
14  
12  
25  
20  
15  
10  
V
V
V
T
= 5 V  
= 0  
= +4.5 V  
IC  
= 25°C  
V
= 15 V  
CC+  
CC−  
CC  
= 0  
V
T
IC  
= 25°C  
A
Open Loop  
No Load  
A
Open Loop  
No Load  
10  
8
6
4
2
5
0
0
− 1.5  
− 1  
V
− 0.5  
0
0.5  
1
1.5  
− 0.5  
− 0.25  
0
0.25  
0.5  
− Differential Input Voltage − V  
V
− Differential Input Voltage − V  
ID  
ID  
Figure 33  
Figure 34  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
TIME  
SUPPLY VOLTAGE  
60  
50  
V
ID  
= 1 V  
48  
36  
40  
30  
20  
V
ID  
= 1 V  
24  
12  
10  
V
V
T
A
=
= 0  
= 25°C  
15 V  
CC  
O
V
T
A
= 0  
= 25°C  
O
0
0
−12  
− 24  
−10  
− 20  
− 30  
V
ID  
= 1 V  
12.5  
− 36  
− 48  
− 60  
V
ID  
= 1 V  
− 40  
− 50  
0
2.5  
5
7.5  
10  
15  
17.5  
0
60  
120  
180  
|V  
CC  
| − Supply Voltage − V  
t − Elapsed Time − s  
Figure 35  
Figure 36  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
SHORT-CIRCUIT OUTPUT CURRENT  
SLEW RATE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
45  
43  
41  
39  
37  
35  
33  
31  
80  
64  
48  
32  
16  
V
R
C
= 5 V  
= 2 kΩ  
= 100 pF  
CC  
L
L
V
= 1 V  
ID  
V
=
15 V  
5 V  
CC  
SR−  
SR+  
V
=
CC  
− 16  
− 32  
V
V
=
=
5 V  
CC  
V
= 1 V  
ID  
29  
27  
25  
− 48  
− 64  
− 80  
15 V  
CC  
V
O
= 0  
− 55 − 35  
−15  
5
25  
45  
65  
85  
− 55 − 35  
−15  
5
25  
45  
65  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 37  
Figure 38  
SLEW RATE  
vs  
SLEW RATE  
vs  
LOAD RESISTANCE  
FREE-AIR TEMPERATURE  
50  
40  
70  
Rising Edge  
V
R
C
=
15 V  
CC  
L
L
66  
62  
= 2 kΩ  
= 100 pF  
30  
20  
10  
0
58  
54  
50  
46  
42  
38  
34  
30  
V
CC  
V
O
=
15 V  
10 V  
V
CC  
=
5 V  
2.5 V  
=
V
O
=
SR−  
−10  
A
C
T
A
= 1  
= 100 pF  
= 25°C  
V
L
− 20  
− 30  
SR+  
− 40  
− 50  
Falling Edge  
100  
1 k  
10 k  
100 k  
− 55 − 35  
−15  
5
25  
45  
65  
85  
T
A
− Free-Air Temperature − °C  
R
− Load Resistance − Ω  
L
Figure 39  
Figure 40  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
SLEW RATE  
vs  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREQUENCY  
50  
45  
40  
35  
30  
25  
50  
40  
A
= 1  
V
V
V
=
= 0  
= 20 Ω  
= 25°C  
15 V  
CC  
IC  
S
R
T
30  
A
V
= 1  
A
Rising Edge  
20  
V
V
C
=
15 V  
10 V (10% − 90%)  
10  
CC  
O
L
=
0
= 100 pF  
= 25°C  
T
A
20  
15  
10  
5
−10  
− 20  
− 30  
− 40  
− 50  
Falling Edge  
A
V
= 1  
A
V
= 1  
0
10  
100  
1 k  
10 k  
0.1  
0.4  
1
4
10  
f − Frequency − Hz  
V
ID  
− Differential Input Voltage − V  
Figure 41  
Figure 42  
INPUT-REFERRED NOISE VOLTAGE  
INPUT-REFERRED NOISE VOLTAGE  
OVER A 10-SECOND TIME INTERVAL  
vs  
NOISE BANDWIDTH  
1.2  
100  
10  
V
V
R
=
= 0  
= 20 Ω  
= 25°C  
15 V  
CC  
IC  
S
V
=
15 V  
CC  
f = 0.1 to 10 Hz  
0.9  
0.6  
T
A
= 25°C  
T
A
Peak-to-Peak  
0.3  
1
0.1  
RMS  
0
− 0.3  
− 0.6  
0.01  
0
1
2
3
4
5
6
7
8
9
10  
100 k  
1
10  
100  
1 k  
10 k  
t − Time − s  
f − Frequency − Hz  
Figure 43  
Figure 44  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
TOTAL HARMONIC DISTORTION PLUS  
THIRD-OCTAVE SPECTRAL NOISE DENSITY  
NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
− 75  
− 80  
− 85  
1
Start Frequency: 12.5 Hz  
Stop Frequency: 20 kHz  
V
V
T
= 15 V  
CC  
= 0  
IC  
= 25°C  
A
V
= 100, R = 600 Ω  
L
A
0.1  
− 90  
− 95  
A
V
= 100, R = 2 kΩ  
L
A
V
= 10, R = 600 Ω  
L
− 100  
− 105  
A
= 10, R = 2 kΩ  
L
V
0.01  
0.001  
V
V
T
= 5 V  
CC  
= 5 V  
PP  
= 25°C  
O
A
− 110  
− 115  
Filter: 10 Hz to 500-kHz Band Pass  
10  
100  
1 k  
10 k  
100 k  
10  
15  
20  
25  
30  
35  
40  
45  
f − Frequency − Hz  
Frequency Bands  
Figure 45  
Figure 46  
UNITY GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
FREQUENCY  
13  
1
Filter: 10 Hz to 500-kHz Band Pass  
V
V
=
= 0  
= 0  
= 2 kΩ  
= 25°C  
15 V  
CC  
IC  
V
V
T
A
=
15 V  
CC  
O
= 20 V  
= 25°C  
V
R
12  
11  
10  
9
O
PP  
L
T
A
0.1  
0.01  
A
V
= 100, R = 600 Ω  
L
A
V
= 100, R = 2 kΩ  
L
A
V
= 10, R = 600 Ω  
L
A
V
= 10, R = 2 kΩ  
L
8
7
0.001  
0
20  
C
40  
60  
80  
100  
10  
100  
1 k  
10 k  
100 k  
− Load Capacitance − pF  
f − Frequency − Hz  
L
Figure 47  
Figure 48  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
GAIN-BANDWIDTH PRODUCT  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
vs  
SUPPLY VOLTAGE  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
f = 100 kHz  
f = 100 kHz  
V
IC  
V
O
= 0  
= 0  
V
IC  
V
O
= 0  
= 0  
R
C
= 2 kΩ  
= 100 pF  
L
L
R
C
T
= 2 kΩ  
= 100 pF  
= 25°C  
L
L
A
V
CC  
=
15 V  
V
CC  
=
5 V  
8
8
7
7
0
5
10  
15  
20  
− 55 − 35  
−15  
5
25  
45  
65  
85  
|V| − Supply Voltage − V  
CC  
T
A
− Free-Air Temperature − °C  
Figure 49  
Figure 50  
PHASE MARGIN  
vs  
TEMPERATURE  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
90°  
10  
V
V
R
= 0  
= 0  
= 2 kΩ  
V
V
V
R
= 15 V  
IC  
O
L
CC  
IC  
O
= 0  
80°  
70°  
60°  
50°  
= 0  
= 2 kΩ  
= 25°C  
8
6
4
2
0
L
V
=
15 V  
CC  
T
A
C
= 25 pF  
L
V
CC  
= 5 V  
V
= 15 V  
CC  
40°  
30°  
C
= 100 pF  
L
V
= 5 V  
CC  
20°  
10°  
0°  
− 55 − 35  
−15  
5
25  
45  
65  
85  
0
20  
40  
60  
80  
100  
T
A
− Free-Air Temperature − °C  
C
− Load Capacitance − pF  
L
Figure 51  
Figure 52  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
90°  
80°  
70°  
60°  
50°  
90°  
80°  
70°  
60°  
50°  
C
= 25 pF  
L
V
CC  
=
15 V  
V
CC  
= 5 V  
C
= 100 pF  
L
40°  
30°  
20°  
10°  
0°  
40°  
30°  
20°  
10°  
0°  
V
V
= 0  
= 0  
= 2 kΩ  
= 25°C  
V
V
R
= 0  
= 0  
= 2 kΩ  
= 25°C  
IC  
O
IC  
O
L
R
L
T
T
A
A
0
20  
40  
60  
80  
100  
0
4
8
12  
16  
C
− Load Capacitance − pF  
L
|V  
CC  
| − Supply Voltage − V  
Figure 53  
Figure 54  
NONINVERTING LARGE-SIGNAL  
PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
15  
10  
100  
50  
0
T
A
= 25°C,  
85°C  
T
= 40°C  
A
5
T
A
= 40°C  
0
T
= 25°C,  
85°C  
A
− 5  
− 10  
− 15  
V
=
= 1  
= 2 kΩ  
= 100 pF  
15 V  
CC  
V
A
R
C
= 15 V  
CC  
− 50  
A
V
= 1  
V
R
C
L
L
= 2 kΩ  
= 100 pF  
L
L
T
A
= 25°C  
− 100  
0
1
2
3
4
5
0
0.4  
0.8  
1.2  
1.6  
t − Time − µs  
t − Time − µs  
Figure 55  
Figure 56  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
supply.  
CC−  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
OPERATIONAL AMPLIFIER SECTION  
CLOSED-LOOP OUTPUT IMPEDANCE  
CROSSTALK ATTENUATION  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
10  
1
140  
120  
100  
80  
V
T
A
=
15 V  
CC  
= 25°C  
A
V
= 100  
= 10  
A
V
0.1  
60  
V
V
R
=
= 0  
= 2 kΩ  
= 25°C  
15 V  
CC  
IC  
L
A
V
= 1  
0.01  
40  
20  
T
A
0.001  
10  
100  
1 k  
10 k  
100 k  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 57  
Figure 58  
Data applies to the operational amplifier block only. Switched-capacitor block is not supplying V  
CC−  
supply.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
SWITCHED-CAPACITOR SECTION  
SHUTDOWN THRESHOLD VOLTAGE  
SUPPLY CURRENT  
vs  
INPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4
3
2
I
O
= 0  
V
FB/SD  
1
0
0
25  
50  
75  
100  
− 50  
− 25  
0
2.5  
5
7.5  
10  
12.5  
15  
T
A
− Free-Air Temperature − °C  
V
CC  
− Input Voltage − V  
Figure 59  
Figure 60  
SUPPLY CURRENT IN SHUTDOWN  
OSCILLATOR FREQUENCY  
vs  
FREE-AIR TEMPERATURE  
vs  
INPUT VOLTAGE  
120  
100  
80  
60  
40  
20  
0
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
V
= 0  
FB/SD  
V
= 15 V  
CC  
V
= 3.5 V  
CC  
15  
− 50  
0
2.5  
5
7.5  
10  
12.5  
15  
0
25  
50  
75  
100  
25  
V
CC  
− Input Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 61  
Figure 62  
Data applies to the switched-capacitor block only. Amplifier block is not connected.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
SWITCHED-CAPACITOR SECTION  
OUTPUT VOLTAGE LOSS  
vs  
INPUT CAPACITANCE  
AVERAGE SUPPLY CURRENT  
vs  
OUTPUT CURRENT  
1.4  
1.2  
1.0  
140  
120  
100  
I
O
= 100 mA  
0.8  
0.6  
80  
60  
I
I
= 50 mA  
= 10 mA  
O
O
0.4  
40  
Inverter Configuration  
= 100-µF Tantalum  
osc  
0.2  
0
20  
0
C
f
OUT  
= 25 kHz  
0
10 20 30 40 50 60 70 80 90 100  
0
20  
40  
60  
80  
100  
C
− Input Capacitance − µF  
IN  
I
O
− Output Current − mA  
Figure 63  
Figure 64  
OUTPUT VOLTAGE LOSS  
vs  
OUTPUT VOLTAGE LOSS  
vs  
OSCILLATOR FREQUENCY  
OSCILLATOR FREQUENCY  
2.5  
2.25  
2
2.5  
Inverter Configuration  
Inverter Configuration  
C
C
= 100-µF Tantalum  
OUT  
2.25  
2
C
C
= 10-µF Tantalum  
OUT  
IN  
IN  
= 100-µF Tantalum  
= 100-µF Tantalum  
1.75  
1.5  
1.25  
1
1.75  
1.5  
1.25  
1
I
= 100 mA  
= 50 mA  
O
I
= 100 mA  
= 50 mA  
O
I
O
I
O
0.75  
0.5  
0.75  
0.5  
I
= 10 mA  
O
0.25  
0
0.25  
0
I
= 10 mA  
20  
O
1
2
f
4
10  
40  
100  
1
2
f
4
7 10  
20  
40  
100  
− Oscillator Frequency − kHz  
− Oscillator Frequency − kHz  
osc  
osc  
Figure 65  
Figure 66  
Data applies to the switched-capacitor block only. Amplifier block is not connected.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
TYPICAL CHARACTERISTICS  
SWITCHED-CAPACITOR SECTION  
REGULATED OUTPUT VOLTAGE  
vs  
REFERENCE VOLTAGE CHANGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
− 4.7  
− 4.8  
100  
80  
− 4.9  
− 5  
60  
40  
V
CC =  
7 V  
− 5.1  
11.6  
20  
0
11.8  
−12  
− 20  
− 40  
− 60  
V
REF  
@ 25°C = 2.5 V  
V
CC =  
15 V  
−12.2  
−12.4  
−12.6  
− 80  
− 100  
0
25  
50  
75  
100  
− 50  
− 25  
0
25  
50  
75  
100  
− 50  
− 25  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 67  
Figure 68  
VOLTAGE LOSS  
vs  
OUTPUT CURRENT  
2
3.5 V V  
15 V  
= 100 µF  
CC  
1.8  
C
= C  
IN  
OUT  
1.6  
1.4  
1.2  
1
T
A
= 85°C  
0.8  
0.6  
0.4  
T
A
= 25°C  
0.2  
0
0
10 20 30 40 50 60 70  
Output Current − mA  
80 90 100  
Figure 69  
Data applies to the switched-capacitor block only. Amplifier block is not connected.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
amplifier section  
input characteristics  
The TLE2682 is specified with a minimum and a maximum input voltage that if exceeded at either input could  
cause the device to malfunction.  
Because of the extremely high input impedance and resulting low bias-current requirements, the TLE2682  
operational amplifier section is well suited for low-level signal processing; however, leakage currents on printed  
circuit boards and sockets can easily exceed bias-current requirements and cause degradation in system  
performance. It is a good practice to include guard rings around inputs (see Figure 70). These guards should  
be driven from a low-impedance source at the same voltage level as the common-mode input.  
Unused amplifiers should be connected as grounded voltage followers to avoid potential oscillation.  
V
I
+
+
V
I
+
V
O
V
O
V
O
V
I
Figure 70. Use of Guard Rings  
switched-capacitor section  
Figure 71 shows the functional block diagram for the switched-capacitor block only.  
V
CC  
V
REF  
2.5 V  
REF  
R
R
Drive  
CAP +  
+
C
FB/SD  
OSC  
IN  
Q
Q
OSC  
CAP −  
Drive  
Drive  
GND  
C
OUT  
V
OUT  
Drive  
External capacitors  
Figure 71. Functional Block Diagram for Switched-Capacitor Block Only  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
The TLE2682 high-speed JFET-input amplifiers are ideal for conditioning fast signals from high-impedance sources.  
When interfacing with ADCs in single-supply 5-V systems, its on board charge pump provides the negative rail  
necessary for reliable operation of the JFET inputs and delivers a common-mode input voltage range that includes  
ground and the positive rail. The amplifiers can also drive resistive loads to 0.000 V while sinking 25 mA.  
Figure 72 shows the switched-capacitor section configured as a voltage inverter generating approximately 5-V  
supply voltage from the single 5-V supply available. Three external components are necessary: the storage  
capacitors, C and C  
because the amplifiers present a load referenced to the positive rail and tend to pull V  
prevent the switched-capacitor section from starting (see section on pin functions). The amplifiers use the 5-V supply  
, and a fast recovery Schottky diode to clamp V  
during start-up. The diode is necessary  
IN  
OUT  
OUT  
above ground, which may  
OUT  
for V  
(pin 16) and the derived 5-V supply for V  
(pin 4). One amplifier is shown driving an ADC; the other is  
CC+  
CC−  
driving a resistive load (see Figure 73).  
R
L
5 V  
To ADC  
R
F
1
2
3
4
5
6
7
8
16  
1 OUT  
1 IN−  
1 IN+  
V
CC+  
R
R
Signal  
From  
F
F
15  
14  
13  
12  
11  
10  
9
2 OUT  
2 IN−  
2 IN+  
Preamplifier  
R
IN  
Signal  
From  
Transducer  
V
CC−  
V
OUT  
V
REF  
Filter  
CAP−  
GND  
C
IN  
1N4933  
+
C
OUT  
OSC  
CAP+  
FB/SD  
+
V
IN  
Shutdown  
Figure 72. Switched-Capacitor Block Supplying Negative Rail for Amplifiers  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
5 V  
R
R
F
F
R
R
IN  
IN  
Signal  
From  
Preamplifier  
Signal  
From  
Transducer  
To ADC  
+
+
AMP2  
AMP1  
R
L
V
IN  
V
OUT  
Voltage  
Converter  
FB/SD  
Shutdown  
V
REF  
Figure 73. Equivalent Schematic: Amplifier 1 Driving Resistive Load,  
Amplifier 2 Interfacing to an ADC  
Using the switched-capacitor network to generate the negative rail for the amplifiers (or other circuitry) requires  
special design considerations to minimize the effects of ripple and switching noise. Using larger values for C and  
OUT  
selecting low-ESR capacitors reduces the ripple and noise present on V  
, the − 5-V rail (refer to the capacitor  
OUT  
section and the output ripple discussion in the switched-capacitor section). Figure 74 and Figure 75 show the  
smoothing effect of changing C from 10 µF to 100 µF when V is supplying 1 mA. Figure 76 and Figure 77  
OUT  
OUT  
demonstrate that at heavier loads the ripple and noise are more pronounced and while increasing the size of C  
helps, other steps may be necessary.  
OUT  
RIPPLE AND SWITCHING NOISE ON  
RIPPLE AND SWITCHING NOISE ON  
SWITCHED-CAPACITOR OUTPUT  
SWITCHED-CAPACITOR OUTPUT  
vs  
vs  
TIME  
TIME  
80  
60  
40  
20  
20  
15  
10  
5
V
= 5 V  
CC+  
V
I
C
C
= 5 V  
CC+  
= 1 mA  
I
L
= 1 mA  
L
C
C
= 100 µF  
= 100 µF  
= 10 µF  
IN  
OUT  
IN  
OUT  
= 100 µF  
0
0
20  
−5  
40  
10  
15  
20  
60  
80  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 74  
Figure 75  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
RIPPLE AND SWITCHING NOISE ON  
RIPPLE AND SWITCHING NOISE ON  
SWITCHED-CAPACITOR OUTPUT  
SWITCHED-CAPACITOR OUTPUT  
vs  
vs  
TIME  
TIME  
200  
150  
100  
50  
80  
60  
40  
V
= 5 V  
CC+  
= 10 mA  
I
L
C
C
= 100 µF  
= 100 µF  
IN  
OUT  
20  
0
0
50  
20  
100  
40  
60  
80  
V
= 5 V  
CC+  
= 10 mA  
I
L
150  
200  
C
C
= 100 µF  
= 10 µF  
IN  
OUT  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 76  
Figure 77  
L
H
V
OUT  
V
CC  
C
0.1 µF  
OUT  
C
F
+
1
f =  
r
LC  
2 π  
Filter  
Figure 78. LC Filter Used to Reduce Ripple and Switching Noise,  
f = 1/2πLC, A = 40 dB per Decade  
r
A low-pass LC filter can be added to the circuit to further reduce ripple and noise. For example, adding a filter as shown  
in Figure 78, implemented using a 50-µH inductor and 200-µF capacitor (available in surface mount), achieves the  
following results (see Figure 79 through Figure 82).  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
RIPPLE AND SWITCHING NOISE ON  
RIPPLE AND SWITCHING NOISE ON  
SWITCHED-CAPACITOR OUTPUT  
SWITCHED-CAPACITOR OUTPUT  
vs  
vs  
TIME  
TIME  
20  
15  
10  
5
20  
15  
10  
5
V
= 5 V  
CC+  
V
I
C
C
= 5 V  
= 1 mA  
= 100 µF  
= 10 µF  
CC+  
L
IN  
OUT  
I
L
= 1 mA  
C
C
= 100 µF  
= 10 µF  
IN  
OUT  
Without Filter  
0
0
−5  
−5  
10  
10  
Filter:  
L
C
= 50 µH  
= 220 µF  
F
F
15  
20  
15  
20  
See Figure 78  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 79  
Figure 80  
RIPPLE AND SWITCHING NOISE ON  
RIPPLE AND SWITCHING NOISE ON  
SWITCHED-CAPACITOR OUTPUT  
SWITCHED-CAPACITOR OUTPUT  
vs  
vs  
TIME  
TIME  
20  
15  
10  
5
20  
15  
10  
5
V
= 5 V  
CC+  
V
I
C
C
= 5 V  
CC+  
= 1 mA  
I
L
= 1 mA  
L
C
C
= 100 µF  
= 100 µF  
= 100 µF  
IN  
OUT  
IN  
OUT  
= 100 µF  
Without Filter  
0
0
−5  
−5  
10  
10  
Filter:  
L
C
= 50 µH  
= 220 µF  
F
F
15  
20  
15  
20  
See Figure 78  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 81  
Figure 82  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
As the load increases, filtering is still effective, but noise and ripple become more prominent (see Figure 83 through  
Figure 86):  
RIPPLE AND SWITCHING NOISE ON  
RIPPLE AND SWITCHING NOISE ON  
SWITCHED-CAPACITOR OUTPUT  
SWITCHED-CAPACITOR OUTPUT  
vs  
vs  
TIME  
TIME  
20  
15  
10  
5
200  
150  
100  
50  
V
= 5 V  
CC+  
= 10 mA  
I
L
C
C
= 100 µF  
= 10 µF  
IN  
OUT  
0
0
−5  
50  
V
= 5 V  
= 10 mA  
= 100 µF  
= 10 µF  
CC+  
10  
100  
I
C
C
Filter:  
L
L
C
= 50 µH  
= 220 µF  
IN  
OUT  
F
F
15  
20  
150  
200  
Without Filter  
See Figure 78  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 83  
Figure 84  
RIPPLE AND SWITCHING NOISE ON  
RIPPLE AND SWITCHING NOISE ON  
SWITCHED-CAPACITOR OUTPUT  
SWITCHED-CAPACITOR OUTPUT  
vs  
vs  
TIME  
TIME  
80  
20  
15  
10  
5
V
= 5 V  
CC+  
V
I
C
C
= 5 V  
= 10 mA  
= 100 µF  
= 100 µF  
CC+  
L
IN  
OUT  
I
L
= 10 mA  
60  
40  
20  
C
C
= 100 µF  
= 10 µF  
IN  
OUT  
Without Filter  
0
0
20  
−5  
40  
10  
Filter:  
L
C
= 50 µH  
= 220 µF  
F
F
60  
80  
15  
20  
See Figure 78  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 85  
Figure 86  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
Even with filtering, switching noise is coupled into the amplifier’s signal path through ground. An example of this is  
shown in Figure 87 and Figure 88. This cannot be avoided. In systems where high-precision measurement is  
necessary, the shutdown pin, FB/SD, can be used to temporarily disable the switched-capacitor section while a  
measurement is being taken.  
RIPPLE AND SWITCHING NOISE ON  
RIPPLE AND SWITCHING NOISE ON  
AMPLIFIER OUTPUT  
AMPLIFIER OUTPUT  
vs  
vs  
TIME  
TIME  
V
V
V
+20  
+15  
+10  
+5  
V
V
V
+20  
+15  
+10  
+5  
OL  
OL  
OL  
OL  
OL  
OL  
V
= 5 V  
= 600 Ω  
= 100 µF  
= 100 µF  
V
= 5 V  
= 600 Ω  
= 100 µF  
= 100 µF  
Filter:  
= 50 µH  
CC+  
L
IN  
OUT  
CC+  
L
IN  
OUT  
R
C
C
R
C
C
L
C
F
= 220 µF  
F
See Figure 78  
Without Filter  
V
V
OL  
OL  
V
OL  
V
OL  
V 5  
OL  
V 5  
OL  
V 10  
OL  
V 10  
OL  
V
15  
V
15  
OL  
OL  
OL  
OL  
V
20  
V
20  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 87  
Figure 88  
By applying a voltage of less than 0.45 V to FB/SD, the internal switches are set to dump any remaining charge onto  
. The voltage at V decays to zero at a rate dependent on both the size of C and loading. During this time,  
C
OUT  
OUT  
OUT  
the amplifier’s outputs are free of any switching-induced ripple and noise. Figure 89 and Figure 90 show the decay  
and charge times of the negative supply when the amplifier is driving a 100-load.  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
OFF-STATE VOLTAGE DECAY  
TURN-ON VOLTAGE RISE  
AT SWITCHED-CAPACITOR OUTPUT  
AT SWITCHED-CAPACITOR OUTPUT  
vs  
vs  
TIME  
TIME  
3
2
3
2
V
V
C
R
V
= 5 V  
= V  
OUT  
= 100 µF  
= 100 Ω  
= 100 mV  
CC+  
CC−  
IN  
V
V
C
R
= 5 V  
= V  
OUT  
= 100 µF  
= 100 Ω  
= 100 mV  
CC+  
CC−  
IN  
L
L
1
1
ID  
V
C
ID  
C
= 22 µF  
OUT  
= 22 µF  
OUT  
0
0
− 1  
− 2  
− 3  
− 4  
− 5  
− 1  
− 2  
− 3  
− 4  
− 5  
0
1
2
3
4
5
6
7
8
0
10  
20  
30  
40  
50  
60  
70  
80  
t − Time − ms  
t − Time − ms  
Figure 89  
Figure 90  
It is important to remember that the amplifier’s negative common-mode input voltage limit (V  
) is specified as an  
ICR−  
offset from the negative rail. Care should be taken to ensure that the input signal does not violate this limit as V  
decays. The negative output voltage swing is similarly affected by the gradual loss of the negative rail.  
OUT  
This application takes advantage of the otherwise unused V  
output of the switched-capacitor block to bias one  
REF  
amplifier to 2.5 V. This is especially useful when the amplifier is followed by an ADC, keeping the signal centered in  
the middle of the converter’s dynamic range. Other biasing methods may be necessary in precision systems.  
In Figure 91, V  
voltage, fed into FB/SD, is used to regulate the voltage at V  
this way, there is a higher voltage loss (V |V  
, R1, and R2 are used to generate a feedback voltage to the TLE2682’s error amplifier. This  
REF  
, thereby further reducing output ripple. When used  
OUT  
|) associated with the regulation. For example, the inverter  
IN  
OUT  
generates an unregulated voltage of approximately 4.5 V from a positive 5-V source; it can achieve a regulated  
output voltage of only about −3.5 V. Though this reduces the amplifier’s input and output dynamic range, both V  
ICR−  
and V still extends to below ground.  
OL  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
R
L
5 V  
To ADC  
R
F
1
2
3
4
5
6
7
8
16  
1 OUT  
1 IN −  
1 IN+  
V
CC+  
R
R
IN  
F
15  
14  
13  
12  
11  
10  
9
2 OUT  
2 IN −  
2 IN+  
CAP−  
GND  
R
IN  
C
OUT  
+
V
CC−  
V
OUT  
V
REF  
+
C1  
R2  
C
IN  
R1  
+
1N4933  
OSC  
CAP+  
FB/SD  
V
IN  
Restart  
R3  
R4  
Shutdown  
V
OUT  
R2 = R1  
+1  
V
REF  
− 40 mV  
2
Where: V  
= 2.5 V Nominal  
REF  
Figure 91. Switched Capacitor Configured as Regulated Inverter  
The reference voltage, though being used as part of the regulation circuitry, is still available for other uses if total  
current drawn from it is limited to under 60 µA. The shutdown feature remains available, though a restart pulse may  
be necessary to start the switched capacitor if the voltage on C  
is not fully discharged. This restart pulse is isolated  
OUT  
from the feedback loop using a blocking diode. A more detailed discussion of this configuration can be found in the  
switched-capacitor section.  
The TLE2682s switched-capacitor building block can also be configured as a positive doubler, extending the range  
of single-supply systems. This configuration is shown in Figure 92. As with the inverting configuration, noise and  
ripple components show up at the doubled output voltage and vary in magnitude with load. As before, filtering can  
be used to improve the output waveform; but unlike the voltage inverter, changing the size of C  
Figure 93 through Figure 98 illustrate the effects of loading and filtering.  
has little effect.  
OUT  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
1
2
3
4
5
6
7
8
16  
1 OUT  
1 IN−  
1 IN+  
V
+
CC  
R
F
15  
14  
13  
12  
11  
10  
9
R
R
2 OUT  
2 IN−  
2 IN+  
CAP−  
GND  
R
IN  
Input  
Signal  
V
CC−  
V
OUT  
V
REF  
OSC  
CAP+  
FB/SD  
10 µF  
5 V  
V
IN  
+
V
O
+
1N4001  
1N4001  
+
2 µF  
0.1 µF  
C
OUT  
V
+ 3.5 V through 15 V  
IN  
ǒVL  
DiodeǓ  
V
[ 2 V  
) 2 V  
O
IN  
V
+ voltage loss switched-capacitor voltage converter  
L
Figure 92. Voltage Converter Configured as Positive Doubler  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
RIPPLE AND SWITCHING NOISE  
RIPPLE AND SWITCHING NOISE  
AT DOUBLER OUTPUT  
AT DOUBLER OUTPUT  
vs  
vs  
TIME  
TIME  
40  
30  
20  
10  
40  
30  
20  
10  
V
= 5 V  
CC+  
= 6 mA  
V
= 5 V  
CC+  
= 6 mA  
I
L
I
C
C
L
C
C
= 10 µF  
= 100 µF  
IN  
OUT  
= 10 µF  
= 100 µF  
IN  
OUT  
Without Filter  
0
0
− 10  
− 10  
− 20  
− 20  
Filter:  
L
C
= 50 µH  
= 220 µF  
F
F
− 30  
− 40  
− 30  
− 40  
See Figure 78  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 93  
Figure 94  
RIPPLE AND SWITCHING NOISE  
RIPPLE AND SWITCHING NOISE  
AT DOUBLER OUTPUT  
AT DOUBLER OUTPUT  
vs  
vs  
TIME  
TIME  
40  
30  
20  
10  
40  
30  
20  
10  
V
= 5 V  
CC+  
V
I
C
C
= 5 V  
= 15 mA  
= 10 µF  
= 100 µF  
CC+  
L
IN  
OUT  
I
L
= 15 mA  
C
C
= 10 µF  
IN  
OUT  
= 100 µF  
Without Filter  
0
0
− 10  
− 10  
− 20  
− 30  
− 40  
− 20  
Filter:  
= 50 µH  
L
C
F
− 30  
− 40  
= 220 µF  
See Figure 78  
F
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 95  
Figure 96  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
RIPPLE AND SWITCHING NOISE  
RIPPLE AND SWITCHING NOISE  
AT DOUBLER OUTPUT  
AT DOUBLER OUTPUT  
vs  
vs  
TIME  
TIME  
40  
30  
20  
10  
40  
30  
20  
10  
V
I
C
C
= 5 V  
= 25 mA  
= 10 µF  
= 100 µF  
V
I
C
C
= 5 V  
= 25 mA  
= 10 µF  
= 100 µF  
CC+  
L
IN  
OUT  
CC+  
L
IN  
OUT  
Without Filter  
0
0
− 10  
− 10  
− 20  
− 20  
Filter:  
L
C
= 50 µH  
= 220 µF  
F
F
− 30  
− 40  
− 30  
− 40  
See Figure 78  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 97  
Figure 98  
As with the inverter configuration, when the operational amplifiers are supplied using the voltage converter block,  
switching noise are coupled into the signal path through ground. Using the shutdown pin allows precision measurement  
of the output signal by an ADC by temporarily disabling the switching mechanism. Figure 99 and Figure 100 show  
the decay and charge times at the doubler output with the amplifier connected as shown.  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
TURN-ON VOLTAGE RISE  
OFF-STATE VOLTAGE DECAY  
AT DOUBLER OUTPUT  
AT DOUBLER OUTPUT  
vs  
vs  
TIME  
TIME  
9
8
7
6
5
9
8
7
6
5
4
3
2
1
C
= 22 µF  
OUT  
C
= 220 µF  
OUT  
C
= 100 µF  
OUT  
C
= 100 µF  
OUT  
C
= 220 µF  
OUT  
C
= 22 µF  
OUT  
4
3
2
1
V
= 5 V  
= 10 µF  
IN  
= 100 Ω  
V
C
R
= 5 V  
= 10 µF  
= 100 Ω  
= 100 mV  
IN  
IN  
IN  
L
C
R
V
L
= 100 mV  
V
ID  
ID  
0
5
10  
15  
20  
25  
30  
35  
40  
0
50 100 150 200 250 300 350 400  
t − Time − ms  
t − Time − ms  
Figure 99  
Figure 100  
The circuit designer should be aware that the TLE2682 amplifier and switched-capacitor sections are tested and  
specified separately. Performance may differ from that shown in the Typical Characteristics section of this data sheet  
when they are used together. This is evident, for example, in the dependence of V  
and V on V  
as previously  
ICR−  
OL  
CC−  
discussed. The impact of supplying the amplifier’s negative rail using the switched-capacitor block in each design  
should be considered and carefully evaluated.  
The more esoteric features of the switched-capacitor building block, including external synchronization of the internal  
oscillator and power dissipation considerations, are covered in detail in the following switched-capacitor building  
block application information section.  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
switched-capacitor section  
A review of a basic switched-capacitor building block is helpful in understanding the operation of the TLE2682.  
When the switch shown in Figure 101 is in the left position, capacitor C1 charges to the voltage at V1. The total  
charge on C1 is q1 = C1 × V1. When the switch is moved to the right, C1 is discharged to the voltage at V2. After  
this discharge time, the charge on C1 is q2 = C1 × V2. The charge has been transferred from the source V1  
to the output V2. The amount of charge transferred is as shown in equation 1.  
q = q1 − q2 = C1(V1 − V2)  
(1)  
If the switch is cycled f times per second, the charge transfer per unit time (i.e., current) is as shown in equation 2.  
(2)  
I = f x q = f x C1(V1 − V2)  
To obtain an equivalent resistance for a switched-capacitor network, this equation can be rewritten in terms of  
voltage and impedance equivalence as shown in equation 3.  
V1 * V2  
(1ńf   C1)  
V1 * V2  
I +  
+
(3)  
R
EQUIV  
V1  
V2  
f
R
L
C1  
C2  
Figure 101. Switched-Capacitor Block  
, is defined as R = 1 ÷ f × C1. The equivalent circuit for the switched-capacitor  
A new variable, R  
EQUIV  
EQUIV  
network is as shown in Figure 102. The TLE2682 has the same switching action as the basic switched-capacitor  
voltage converter. Even though this simplification does not include finite switch-on resistance and  
output-voltage ripple, it provides an insight into how the device operates.  
These simplified circuits explain voltage loss as a function of oscillator frequency (see Figure 66). As oscillator  
frequency is decreased, the output impedance is eventually dominated by the 1/f × C1 term and voltage losses  
rise.  
Voltage losses also rise as oscillator frequency increases. This is caused by internal switching losses that occur  
due to some finite charge being lost on each switching cycle. This charge loss per unit cycle when multiplied  
by the switching frequency becomes a current loss. At high frequency, this loss becomes significant and voltage  
losses again rise.  
The oscillator of the TLE2682 switched-capacitor section is designed to run in the frequency band where voltage  
losses are at a minimum.  
R
EQUIV  
V1  
V2  
C2  
R
L
1
R
=
EQUIV  
f×C1  
Figure 102. Switched-Capacitor Equivalent Circuit  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
pin functions (see functional block diagram − converter)  
Supply voltage (V ) alternately charges C to the input voltage when C is switched in parallel with the input  
IN  
IN  
IN  
supply and then transfers charge to C  
when C is switched in parallel with C  
. Switching occurs at the  
OUT  
IN  
OUT  
oscillator frequency. During the time that C is charging, the peak supply current is approximately 2.2 times  
the output current. During the time that C is delivering a charge to C  
IN  
IN  
, the supply current drops to  
OUT  
approximately 0.2 times the output current. An input supply bypass capacitor supplies part of the peak input  
current drawn by the TLE2682 switched-capacitor section and averages out the current drawn from the supply.  
A minimum input supply bypass capacitor of 2 µF, preferably tantalum or some other low-ESR type, is  
recommended. A larger capacitor is desirable in some cases. An example is when the actual input supply is  
connected to the TLE2682 through long leads or when the pulse currents drawn by the TLE2682 might affect  
other circuits through supply coupling.  
In addition to being the output pin, V  
is tied to the substrate of the device. Special care must be taken in  
positive with respect to any of the other pins. For circuits with the output  
OUT  
TLE2682 circuits to avoid making V  
OUT  
load connected from V  
to V  
or from some external positive supply voltage to V  
, an external  
CC+  
OUT  
OUT  
Schottky diode must be added (see Figure 103). This diode prevents V  
from being pulled above the GND  
OUT  
during start up. A fast recovery diode such as IN4933 with low forward voltage (V 0.2 V) can be used.  
f
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1 OUT  
1 IN−  
1 IN+  
V
+
CC  
2 OUT  
2 IN−  
2 IN+  
CAP−  
GND  
V
CC−  
V
OUT  
V
REF  
V
OUT  
C
OUT  
IN4933  
C
IN  
+
+
OSC  
CAP+  
FB/SD  
V
IN  
Load  
V
CC+  
or External Supply Voltage  
Figure 103. Circuit With Load Connected From V  
to V  
OUT  
CC  
The voltage reference (V  
) output provides a 2.5-V reference point for use in TLE2682-based regulator  
REF  
circuits. The temperature coefficient (TC) of the reference voltage has been adjusted so that the TC of the  
regulated output voltage is near zero. As seen in the typical performance curves, this requires the reference  
output to have a positive TC. This nonzero drift is necessary to offset a drift term inherent in the internal reference  
divider and comparator network tied to the feedback pin. The overall result of these drift terms is a regulated  
output that has a slight positive TC at output voltages below 5 V and a slight negative TC at output voltages  
above 5 V. For regulator feedback networks, reference output current should be limited to approximately 60 µA.  
V
draws approximately 100 µA when shorted to ground and does not affect the internal reference/regulator.  
REF  
This pin can also be used as a pullup for TLE2682 circuits that require synchronization.  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
pin functions (continued)  
CAP+ is the positive side of input capacitor C and is alternately driven between V  
and ground. When driven  
IN  
CC  
to V , CAP+ sources current from V . When driven to ground, CAP+ sinks current to ground. CAPis the  
CC  
CC  
negative side of the input capacitor and is driven alternately between ground and V  
. When driven to ground,  
OUT  
CAP− sinks current to ground. When driven to V  
in the switches is unidirectional as should be expected when using bipolar switches.  
, CAP− sources current from C  
. In all cases, current flow  
OUT  
OUT  
OSC can be used to raise or lower the oscillator frequency or to synchronize the device to an external clock.  
Internally, OSC is connected to the oscillator timing capacitor (C 150 pF), which is alternately charged and  
t
discharged by current sources of 7 µA so that the duty cycle is approximately 50%. The TLE2682  
switched-capacitor section oscillator is designed to run in the frequency band where switching losses are  
minimized. However, the frequency can be raised, lowered, or synchronized to an external system clock if  
necessary.  
The frequency can be increased by adding an external capacitor (C2 in Figure 104) in the range of  
5 pF−20 pF from CAP+ to OSC. This capacitor couples a charge into C as the switch transitions. This shortens  
t
the charge and discharge time and raises the oscillator frequency. Synchronization can be accomplished by  
adding an external pullup resistor from OSC to V  
open-collector gate or an npn transistor can then be used to drive OSC at the external clock frequency as shown  
in Figure 104.  
. A 20-kpullup resistor is recommended. An  
REF  
The frequency can be lowered by adding an external capacitor (C1 in Figure 104) from OSC to ground. This  
increases the charge and discharge times, which lowers the oscillator frequency.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1 OUT  
1 IN−  
1 IN+  
V
+
CC  
2 OUT  
2 IN−  
2 IN+  
CAP−  
GND  
V
CC−  
V
OUT  
V
REF  
C
OUT  
C1  
+
C
IN  
+
OSC  
CAP+  
FB/SD  
V
V
IN  
IN  
C2  
Figure 104. External Clock System  
The feedback/shutdown (FB/SD) pin has two functions. Pulling FB/SD below the shutdown threshold ( 0.45 V)  
puts the device into shutdown. In shutdown, the reference/regulator is turned off and switching stops. The  
switches are set such that both C and C  
are discharged through the output load. Quiescent current in  
IN  
OUT  
shutdown drops to approximately 100 µA. Any open-collector gate can be used to put the TLE2682 into  
shutdown. For normal (unregulated) operation, the device restarts when the external gate is shut off. In  
TLE2682 circuits that use the regulation feature, the external resistor divider can provide enough pulldown to  
keep the device in shutdown until the output capacitor (C  
) has fully discharged. For most applications where  
OUT  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
the TLE2682 is run intermittently, this does not present a problem because the discharge time of the output  
capacitor is short compared to the off time of the device. In applications where the device has to start up before  
the output capacitor (C  
) has fully discharged, a restart pulse must be applied to FB/SD of the TLE2682.  
OUT  
Using the circuit shown in Figure 105, the restart signal can be either a pulse (t > 100 µs) or a logic high. Diode  
p
coupling the restart signal into FB/SD allows the output voltage to rise and regulate without overshoot. The  
resistor divider R3/R4 shown in Figure 105 should be chosen to provide a signal level at FB/SD of  
0.7 V−1.1 V. FB/SD is also the inverting input of the TLE2682 switched-capacitor section error amplifier and,  
as such, can be used to obtain a regulated output voltage.  
C
OUT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1 OUT  
1 IN−  
1 IN+  
V
+
100 µF Tantalum  
CC  
+
2 OUT  
2 IN−  
2 IN+  
CAP−  
GND  
C1  
+
V
OUT  
V
CC−  
V
OUT  
V
REF  
R2  
C
IN  
R1  
10 µF  
Tantalum  
+
OSC  
CAP+  
FB/SD  
V
IN  
V
IN  
R3  
R4  
+
2.2 µF  
V
OUT  
R2 = R1  
+1  
V
REF  
− 40 mV  
Shutdown  
Restart  
2
Where: V  
= 2.5 V Nominal  
REF  
Figure 105. Basic Regulation Configuration  
regulation  
The error amplifier of the TLE2682 switched-capacitor section drives the npn switch to control the voltage across  
the input capacitor (C ), which determines the output voltage. When the reference and error amplifier of the  
IN  
TLE2682 is used, an external resistive divider is all that is needed to set the regulated output voltage. Figure 105  
shows the basic regulator configuration and the formula for calculating the appropriate resistor values. R1  
should be 20 kor greater because the reference current is limited to 100 µA. R2 should be in the range of  
100 kto 300 k. Frequency compensation is accomplished by adjusting the ratio of C to C  
For best  
IN  
OUT.  
results, this ratio should be approximately 1 to 10. Capacitor C1, required for good load regulation, should be  
0.002 µF for all output voltages.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃ  
ꢆꢇ ꢈꢆ ꢉꢊꢋꢂ ꢂꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋꢐꢀ ꢌꢐꢑ ꢁ ꢒ ꢋꢂꢓ ꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋ ꢁꢇ ꢎꢇ ꢂꢓ  
ꢕ ꢇꢀ ꢆ ꢊꢕ ꢇ ꢀꢖ ꢆꢂꢌꢉꢖꢑ ꢋꢑꢖꢇ ꢀꢒ ꢓ ꢗꢒ ꢁꢀꢑꢈ ꢂ ꢖꢒꢏ ꢗ ꢂꢓ ꢀꢂ ꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
regulation (continued)  
The functional block diagram shows that the maximum regulated output voltage is limited by the supply voltage.  
For the basic configuration, V  
referenced to GND of the TLE2682 must be less than the total of the supply  
OUT  
voltage minus the voltage loss due to the switches. The voltage loss versus output current due to the switches  
can be found in the typical performance curves.  
capacitor selection  
While the exact values of C and C  
are necessary to minimize voltage losses at high currents. For C , the effect of the equivalent series resistance  
(ESR) of the capacitor is multiplied by four since switch currents are approximately two times higher than output  
are noncritical, good-quality low-ESR capacitors such as solid tantalum  
IN  
OUT  
IN  
current. Losses occur on both the charge and discharge cycle, which means that a capacitor with 1 of ESR  
for C has the same effect as increasing the output impedance of the switched-capacitor section by 4 . This  
IN  
represents a significant increase in the voltage losses. C  
is alternately charged and discharged at a current  
OUT  
approximately equal to the output current. The ESR of the capacitor causes a step function to occur in the output  
ripple at the switch transitions. This step function degrades the output regulation for changes in output load  
current and should be avoided. A smaller tantalum capacitor can be connected in parallel with a large aluminum  
electrolytic capacitor to gain both low ESR and reasonable cost.  
output ripple  
The peak-to-peak output ripple is determined by the output capacitor and the output current values.  
Peak-to-peak output ripple is approximated as shown in equation 4:  
I
OUT  
DV +  
(4)  
2 f   C  
OUT  
where:  
V = peak-to-peak ripple  
= oscillator frequency  
f
OSC  
For output capacitors with significant ESR, a second term must be added to account for the voltage step at the  
switch transitions. This step is approximately equal to:  
(2I  
) (ESR of C  
)
(5)  
OUT  
OUT  
power dissipation (switched-capacitor section only)  
The power dissipation of any TLE2682 circuit must be limited so that the junction temperature of the device does  
not exceed the maximum junction temperature ratings. The total power dissipation is calculated from two  
components: the power loss due to voltage drops in the switches and the power loss due to drive current losses.  
The total power dissipated by the TLE2682 is calculated as shown in equation 6:  
Ť
Ť ) I  
P [ (V  
* V  
) (V ) (I  
) (0.2)  
refer to GND. The power dissipation is equivalent to that of a linear  
OUT  
(6)  
CC  
and V  
OUT  
OUT  
CC OUT  
where both V  
CC  
regulator. Due to limitations of the DW package, steps must be taken to dissipate power externally for large input  
or output differentials. This is accomplished by placing a resistor in series with C as shown in Figure 106. A  
IN  
portion of the input voltage is dropped across this resistor without affecting the output regulation. Since switch  
current is approximately 2.2 times the output current and the resistor causes a voltage drop when C is both  
IN  
charging and discharging, the resistor value is calculated as follows:  
R
+ V ń(4.4 I  
)
X
X
OUT  
where:  
V
Ť
OUT  
Ť
ƫ
ƪ
[ V  
* (TLE2682 voltage loss) (1.3) ) V  
(7)  
X
CC  
I
= maximum required output current  
OUT  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢃ  
ꢆ ꢇꢈ ꢆꢉꢊ ꢋꢂꢂ ꢌ ꢍ ꢎ ꢂꢀꢉꢇ ꢏꢋ ꢐꢀ ꢌꢐ ꢑꢁ ꢒ ꢋꢂ ꢓꢑꢀ ꢇꢒ ꢏꢑꢁ ꢑꢔ ꢋꢁ ꢇꢎ ꢇꢂ ꢓ  
ꢕꢇ ꢀ ꢆ ꢊꢕ ꢇ ꢀ ꢖꢆ ꢂ ꢌꢉꢖꢑ ꢋꢑꢖ ꢇ ꢀꢒ ꢓ ꢗ ꢒꢁꢀꢑꢈꢂ ꢖꢒ ꢏꢗꢂ ꢓꢀ ꢂꢓ  
SLOS127 − JUNE 1993  
APPLICATION INFORMATION  
power dissipation (continued)  
The factor of 1.3 allows some operating margin for the TLE2682.  
When using a 12-V to 5-V converter at 100-mA output current, calculate the power dissipation without an  
external resistor:  
|
|
P + (12 V * * 5 V ) (100 mA) ) (12 V) (100 mA) (0.2)  
(8)  
P + 700 mW ) 240 mW + 940 mW  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1 OUT  
1 IN−  
1 IN+  
V
+
CC  
C
OUT  
+
2 OUT  
2 IN−  
2 IN+  
CAP−  
GND  
C1  
+
V
OUT  
V
CC−  
V
OUT  
V
REF  
R2  
R1  
C
IN  
+
OSC  
CAP+  
FB/SD  
Rx  
V
IN  
+
V
IN  
Figure 106. Power-Dissipation-Limiting Resistor in Series With C  
IN  
At θ of 130°C/W for a commercial plastic device, a junction temperature rise of 122°C is seen. The device  
JA  
exceeds the maximum junction temperature at an ambient temperature of 25°C. To calculate the power  
dissipation with an external resistor (R ), determine how much voltage can be dropped across R . The  
X
X
maximum voltage loss of the TLE2682 in the standard regulator configuration at 100 mA output current is 1.6 V.  
[
|
| ]  
+ 4.9 V  
V
R
+ 12 V * (1.6 V) (1.3) ) * 5 V  
and  
(9)  
X
X
+ 4.9 Vń(4.4) (100 mA) + 11 W  
The resistor reduces the power dissipated by the TLE2682 by (4.9 V) (100 mA) = 490 mW. The total power  
dissipated by the TLE2682 is equal to (940 mW − 490 mW) = 450 mW. The junction temperature rise is 58°C.  
Although commercial devices are functional up to a junction temperature of 125°C, the specifications are tested  
to a junction temperature of 100°C. In this example, this means limiting the ambient temperature to 42°C. To  
allow higher ambient temperatures, the thermal resistance numbers for the TLE2682 packages represent  
worst-case numbers with no heat-sinking and still air. Small clip-on heat sinks can be used to lower the thermal  
resistance of the TLE2682 package. Airflow in some systems helps to lower the thermal resistance. Wide PC  
board traces from the TLE2682 leads help to remove heat from the device. This is especially true for plastic  
packages.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TLE2682IDWR

HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIER WITH SWITCHED-CAPACITOR VOLTAGE CONVERTER
TI

TLE3101

BIPOLAR IC
INFINEON

TLE3102

BIPOLAR IC
INFINEON

TLE3103

BIPOLAR IC
INFINEON

TLE3104

BIPOLAR IC
INFINEON

TLE3303AF100QG

TACT SWITCHES SMT - 6mm x 6mm
E-SWITCH

TLE3303AF160QG

TACT SWITCHES SMT - 6mm x 6mm
E-SWITCH

TLE3303AF260QG

TACT SWITCHES SMT - 6mm x 6mm
E-SWITCH

TLE4117

Voltage Regulator
INFINEON

TLE4117DV

Voltage Regulator
INFINEON

TLE4117DV18

Voltage Regulator
INFINEON

TLE4117DV25

Voltage Regulator
INFINEON