TLIN2441-Q1 [TI]

具有集成电压稳压器和看门狗的汽车本地互联网络收发器;
TLIN2441-Q1
型号: TLIN2441-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电压稳压器和看门狗的汽车本地互联网络收发器

稳压器
文件: 总58页 (文件大小:3424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
TLIN2441-Q1 汽车类、具有集成稳压看门狗的  
1 特性  
2 应用  
AEC-Q100符合汽车应用要求  
车身电子装置和照明  
混合动力、电动和动力总成系统  
汽车信息娱乐系统和仪表组  
电器  
– 温度等140°C 125°C TA  
• 符合本地互连网(LIN) 物理层规ISO/DIS  
17987-4并符合适用LIN SAE J2602 推荐实  
践要求请参SLLA494)  
3 说明  
• 支12V 应用24V 应用  
• 由引脚或串行外设接SPI 配置的集成看门狗监控  
TLIN2441-Q1 是一款本地互连网络 (LIN) 物理层收发  
符合 LIN 2.2A ISO/DIS 179874 标准具有  
集成的低压降 (LDO) 稳压器和看门狗。 TLIN2441-Q1  
看门狗可在窗口模式或超时模式下运行并且可由引脚  
SPI 控制。 引脚或 SPI 在加电时根据 9 号引脚的状  
例如高电平、Z 状态、低电平建立控制。  
• 宽工作范围  
5.5V 36V 的电源电压  
±58V LIN 总线故障保护  
– 支3.3V (TLIN24413-Q1) 5V (TLIN24415-  
Q1) LDO 输出  
– 睡眠模式超低电流消耗  
LIN 是一根单线制双向总线通常用于低速车载网络,  
数据传输速率高达 20kbpsLIN 接收器支持数据传输  
速率高100kbps 的下线编程应用TLIN2441-Q1 将  
TXD 输入上的 LIN 协议数据流转化为 LIN 总线信号。  
接收器将数据流转化为逻辑电平信号此信号通过开漏  
RXD 引脚发送到微处理器。TLIN2441-Q1 通过为功率  
微处理器、传感器或其他器件提供电流高达 70mA 的  
3.3V 5V 电压轨来降低系统的复杂性。TLIN2441-  
Q1 具有经过优化的限流波形整形驱动器可降低电磁  
(EME)。  
允许以下类型的唤醒事件:  
LIN 总线  
• 通EN 引脚的本地唤醒  
• 通WAKE 引脚的本地唤醒  
– 上电和断电无干扰运行  
• 保护特性:  
ESD 保护、VSUP 欠压保护  
TXD 显性超(DTO) 保护、热关断  
– 系统级未供电节点或接地断开失效防护  
VCC 电源85°C 70mA24VSUP  
• 采用无引线VSON (14) 封装具有改善的自动光学  
(AOI) 功能  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TLIN2441-Q1  
VSON (14)  
3.00mm x 4.50mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VSUP  
VBAT  
VBAT  
VSUP  
VSUP  
3 kΩ  
SW  
VDD  
3.3 V  
VSUP  
VDD  
10 nF  
5 V  
3 k  
33 kΩ  
100 nF  
10 µF  
10 µF  
VDD  
VCC VSUP  
WAKE  
100 nF  
33 k  
V
WAKE  
SUP  
VDD  
VCC  
nRST  
nWDR  
CLK  
10 nF  
LIMP  
WDT  
WDI  
SDI  
WDT can be connect to GND,  
VCC or left floating depending  
upon watchdog window timing  
requirements  
LIMP  
SDO  
nCS  
I/O  
MCU  
VSUP  
nINT  
I/O  
nWDR  
EN  
nINT  
EN  
Commander  
MCU  
VSUP  
Node  
Pullup  
MCU w/o  
pullup  
MCU w/o  
pullup  
Commander Node  
Pullup  
PIN/nCS  
LIN  
VDD I/O  
1 k  
LIN Bus  
VDD I/O  
1 k  
LIN  
LIN Controller  
Or  
SCI/UART  
LIN Controller  
RXD  
TXD  
LIN Bus  
RXD  
TXD  
200 pF  
Or  
Responder  
NODE  
RXD  
TXD  
RXD  
TXD  
SCI/UART  
GND  
GND  
GND  
GND  
RESPONDER  
NODE  
200 pF  
简化版原理图SPI 模式  
简化版原理图引脚模式  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF28  
 
 
 
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
9.3 Feature Description...................................................25  
9.4 Device Functional Modes..........................................30  
9.5 Programming............................................................ 35  
9.6 Registers...................................................................38  
10 Application and Implementation................................41  
10.1 Application Information........................................... 41  
10.2 Typical Application.................................................. 41  
11 Power Supply Recommendations..............................45  
12 Layout...........................................................................46  
12.1 Layout Guidelines................................................... 46  
12.2 Layout Example...................................................... 47  
13 Device and Documentation Support..........................48  
13.1 Documentation Support.......................................... 48  
13.2 接收文档更新通知................................................... 48  
13.3 支持资源..................................................................48  
13.4 Trademarks.............................................................48  
13.5 Electrostatic Discharge Caution..............................49  
13.6 术语表..................................................................... 49  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 ESD Ratings, IEC Specification..................................4  
7.4 Recommended Operating Conditions.........................5  
7.5 Thermal Information....................................................5  
7.6 Power Supply Characteristics.....................................5  
7.7 Electrical Characteristics.............................................7  
7.8 AC Switching Characteristics....................................10  
7.9 Typical Characteristics.............................................. 11  
8 Parameter Measurement Information..........................13  
8.1 Test Circuit: Diagrams and Waveforms.....................13  
9 Detailed Description......................................................23  
9.1 Overview...................................................................23  
9.2 Functional Block Diagram.........................................24  
Information.................................................................... 49  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (May 2020) to Revision C (June 2022)  
Page  
• 将提到的所有旧术语实例更改为“指挥官”和“响应者”。.............................................................................. 1  
Changes from Revision B (May 2020) to Revision C (June 2022)  
Page  
• 将提到的所有旧术语实例更改为“指挥官”和“响应者”。.............................................................................. 1  
Changes from Revision A (March 2019) to Revision B (May 2020)  
Page  
• 添加了:(SLLA494)(位于列表................................................................................................. 1  
Added : See errata TLIN1441-Q1 and TLIN2441-Q1 Duty Cycle Over VSUP ....................................................7  
Changed the capacitor value on pin 5 (LIN) From: 220 pF to 200 pF in 10-1 and 10-2 .........................41  
Changed the capacitor value on LIN From: 220 pF to 200 pF in 12-1 ........................................................47  
Changes from Revision * (December 2018) to Revision A (March 2019)  
Page  
• 更改了说明ESD 等级ESD 等级、IEC 以及电源特...................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
5 说明)  
睡眠模式可实现超低电流消耗该模式允许通过 LIN 总线或引脚实现唤醒。LIN 总线有两种状态显性状态电  
压接近接地和隐性状态电压接近电池。在受支配状态下LIN 总线被内部上拉电阻器 (45k) 和串联二极管  
拉高所以响应器应用无需外部上拉组件。按照 LIN 规范控制器应用需要一个外部上拉电阻器 (1k) 加上一个  
串联二极管。  
6 Pin Configuration and Functions  
VSUP  
LIMP  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VCC  
WAKE  
EN/nINT  
GND  
nRST/nWDR  
TXD  
Thermal  
Pad  
LIN  
RXD  
WDT/CLK  
nWDR/SDO  
PIN/nCS  
WDI/SDI  
8
Not to scale  
6-1. DMT Package, 14-Pin (VSON), Top View  
6-1. Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
VSUP  
LIMP  
HV Supply In Device supply voltage (connected to battery in series with external reverse-blocking diode)  
2
HV O  
Used for LIMP home, watchdog event causes this pin to switch VSUP  
Enable Input when in Pin Mode/Processor Interrupt when in SPI Mode (open drain) - when  
EN - Enable input - Setting pin high place device into normal mode and setting low is sleep  
mode  
3
EN/nINT  
D I/O  
4
5
6
7
GND  
GND  
HV I/O  
D I  
Ground  
LIN  
LIN bus single-wire transmitter and receiver  
WDT/CLK  
nWDR/SDO  
Programmable watchdog window set input (3 levels)/SPI Clock input  
Watchdog output trigger when in Pin Mode / SPI Responder Data Output when in SPI Mode  
D O  
Watchdog timer trigger input active on both rising and falling edges when in Pin Mode (Must  
be driven at all times) /SPI Responder Data Input when in SPI Mode  
8
9
WDI/SDI  
PIN/nCS  
D I  
D I  
Watchdog Configuration Control Set at Power Up. When tied to GND at power up device is  
in Pin Mode. When High or in Z-State device is in SPI Mode and this pin becomes Chip  
Select  
10  
11  
12  
13  
14  
RXD  
D O  
D I  
RXD output (open-drain) interface reporting state of LIN bus voltage  
TXD input interface to control state of LIN output  
TXD  
nRST/nWDR  
WAKE  
VCC  
D O  
HV I  
Reset output (active low)/Watchdog output trigger if programmed in SPI Mode (active low)  
High Voltage Local wake up pin active Low  
Supply Out Output voltage from integrated voltage regulator  
(1) HV - High Voltage, D I - Digital Input, D O - Digital Output, HV I/O - High Voltage Input/Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN2441-Q1  
 
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating TA temperature range (unless otherwise noted)(1)  
MIN  
0.3  
58  
MAX  
58  
UNIT  
VSUP  
VLIN  
Supply voltage range (ISO/DIS 17987)  
V
V
V
V
V
LIN Bus input voltage (ISO/DIS 17987)  
Regulated 5 V Output Supply  
58  
VCC50  
VCC33  
VWAKE  
6
0.3  
0.3  
0.3  
Regulated 3.3 V Output Supply  
WAKE pin input voltage range  
4.5  
58  
58 and VO  
VSUP+0.3  
VLIMP  
LIMP pin output voltage range  
V
0.3  
VnRST  
Reset output voltage  
Logic input voltage  
VCC + 0.3  
V
V
0.3  
0.3  
0.3  
VLOGIC_INPUT  
6
6
VLOGIC_OUTPUT  
Logic output voltage  
Digital pin output current  
Reset output current  
Ambient temperature  
Junction temperature  
Storage temperature range  
V
IO  
8
mA  
mA  
°C  
°C  
°C  
IO(nRST)  
5
5  
40  
55  
65  
TA  
125  
150  
165  
TJ  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) classification level H2: VSUP, LIN, and WAKE with  
respect to ground  
±10000  
Human body model (HBM) classification level 3A: all other pins, per AEC  
Q100-002(1)  
V(ESD)  
Electrostatic discharge  
±4000  
±750  
V
Charged device model (CDM) classification level  
All pins  
C5, per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings, IEC Specification  
VALUE  
UNIT  
Electrostatic discharge (1), LIN, VSUP and WAKE  
terminal to GND(2)  
IEC 61000-4-2 contact discharge  
IEC 61000-4-2 air-gap discharge  
SAEJ2962-1 contact discharge  
SAEJ2962-1 air discharge  
Pulse 1  
±15000  
±15000  
±8000  
±15000  
-450  
V
V(ESD)  
Powered electrostatic discharge SAEJ2962-1(4)  
V
V
Pulse 2a  
75  
ISO7637-2 and IEC 62215-3 Transients  
according to IBEE LIN EMC test spec(3)  
Transient  
Pulse 3a  
-225  
Pulse 3b  
225  
(1) IEC 61000-4-2 is a system-level ESD test. Results given here are specific to the IBEE LIN EMC Test specification conditions per IEC  
TS 62228. Different system-level configurations may lead to different results  
(2) Testing performed at 3rd party IBEE Zwickau test house, test report available upon request.  
(3) ISO7637 is a system-level transient test. Results given here are specific to the IBEE LIN EMC Test specification conditions. Different  
system-level configurations may lead to different results.  
(4) SAEJ2962-1 Testing performed at 3rd party US3 approved EMC test facility, test report available upon request.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
 
 
 
 
 
 
 
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
7.4 Recommended Operating Conditions  
over operating TA temperature range (unless otherwise noted)  
MIN  
5.5  
0
NOM  
MAX  
36  
UNIT  
V
VSUP  
Supply voltage  
VLIN  
LIN bus input voltage  
36  
V
VLOGIC5  
VLOGIC33  
IOH(DO)  
IOL(DO)  
IO(LIMP)  
C(VSUP)  
C(VCC)  
C(VCC)  
ESRCO  
Δt/ΔV  
TJ  
Logic pin voltage  
0
5.25  
3.465  
V
Logic pin voltage  
0
V
Digital terminal HIGH level output current  
Digital terminal LOW level output current  
LIMP output current  
-2  
mA  
mA  
mA  
nF  
µF  
µF  
2
1
VSUP supply capacitance  
100  
1
VCC supply capacitance; 500 µA to full load  
VCC supply capacitance; no load to full load  
Output ESR capacitance requirements  
Input transition rise and fall rate (WDI, WDT, WDR)  
Operating junction temperature range  
10  
0.001  
2
100  
150  
Ω
ns/V  
°C  
40  
7.5 Thermal Information  
DMT  
14 PINS  
35.5  
35.3  
11.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
11.8  
ψJB  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Power Supply Characteristics  
Over operating TA temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
45  
UNIT  
V
SUPPLY VOLTAGE AND CURRENT  
Device is operational beyond the LIN  
defined nominal supply voltage range See  
8-1 and 8-2  
Operational supply voltage (ISO/DIS 17987  
Param 10,53)  
VSUP  
5.5  
Normal and Standby Modes Normal Mode:  
Ramp VSUP while LIN signal is a 10 kHz  
square wave with 50 % duty cycle and 18 V  
swing. See 8-1 and 8-2  
5.5  
5.5  
1.8  
36  
V
Nominal supply voltage (ISO/DIS 17987  
Param 10, 53):  
VSUP  
Sleep Mode  
Ramp Up  
36  
4.2  
2.5  
V
V
V
UVSUPR  
UVSUPF  
Under voltage VSUP threshold  
Under voltage VSUP threshold  
3.5  
2.1  
Ramp Down  
Delta hysteresis voltage for VSUP under  
voltage threshold  
UVHYS  
1.5  
V
Transceiver normal mode dominant plus  
LDO output; where LDO load current is 70  
mA  
ISUP  
Transceiver and LDO supply current  
Supply current transceiver only  
80  
5.0  
1.9  
mA  
Normal Mode: EN = VCC, bus dominant:  
total bus load where RLIN 500 and CLIN  
10 nF  
1.2  
1
mA  
mA  
ISUPTRXDOM  
Standby Mode: EN = 0 V, bus dominant:  
total bus load where RLIN 500 and CLIN  
10 nF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN2441-Q1  
 
 
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
7.6 Power Supply Characteristics (continued)  
Over operating TA temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Normal Mode: EN = VCC  
Bus recessive: LIN = VSUP  
,
450  
750  
µA  
,
Standby Mode: EN = 0 V, LIN = recessive =  
VSUP  
45  
70  
55  
ISUPTRXREC  
Supply current transceiver only  
Added Standby Mode current through the  
RXD pull-up resistor with a value of 100 k:  
EN = 0 V, LIN = recessive = VSUP, RXD =  
GND(1)  
µA  
5.5 V < VSUP 24 V, LIN = VSUP, WAKE =  
VSUP, EN = 0 V, TXD and RXD floating  
15  
25  
22  
35  
µA  
µA  
ISUPTRXSLP  
Sleep mode supply current transceiver only  
24 V < VSUP 36 V, LIN = VSUP, WAKE =  
VSUP, EN = 0 V, TXD and RXD floating  
REGULATED OUTPUT VCC  
VCC  
Regulated output  
VSUP = 5.5 to 36 V, ICC = 1 to 70 mA  
VSUP = 5.5 to 36 V, ΔVCC, ICC = 10 mA  
ICC = 1 to 70 mA, VSUP = 28 V, ΔVCC  
2
50  
%
mV  
mV  
mV  
mV  
V
2  
Line regulation  
VCC(VSUP)  
VCC(VSUPL)  
VDROP  
Load regulation  
50  
Dropout voltage (5 V LDO output)  
Dropout voltage (3.3 V LDO output)  
Under voltage 5 V VCC threshold  
Under voltage 5 V VCC threshold  
Under voltage 3.3 V VCC threshold  
Under voltage 3.3 V VCC threshold  
Over voltage 5 V VCC threshold (2)  
Over voltage 5 V VCC threshold (2)  
Over voltage 3.3 V VCC threshold (2)  
Over voltage 3.3 V VCC threshold (2)  
Output current  
300  
350  
4.7  
600  
700  
4.9  
V
SUP VCC, ICC = 70 mA  
SUP VCC, ICC = 70 mA  
VDROP  
V
UVCC5R  
UVCC5F  
Ramp Up  
Ramp Down  
4.1  
2.5  
4.45  
2.9  
V
UVCC33R  
UVCC33F  
OVCC5R  
OVCC5F  
OVCC33R  
OVCC33F  
ICCOUT  
Ramp Up  
3.1  
6.0  
V
Ramp Down  
2.75  
5.6  
V
Ramp Up  
V
Ramp Down  
5.28  
5.5  
V
Ramp Up  
3.79  
3.73  
3.98  
V
Ramp Down  
3.58  
0
V
VCC in regulation with 24 V VSUP; TA = 85°C  
VCC short to ground  
70  
mA  
mA  
ICCOUTL  
Output current limit  
275  
VRIP = 0.5 VPP, Load = 10 mA, ƒ= 100 Hz,  
CO = 10 μF, VSUP = 12 V and temperature  
= 27 ℃  
PSRR  
Power supply rejection ripple rejection (2)  
60  
dB  
TSDR  
Thermal shutdown temperature (2)  
Thermal shutdown temperature (2)  
Thermal shutdown hysteresis (2)  
Internal junction temperature; rising  
Internal junction temperature; falling  
VSUP = 12 V and temperature = 27 ℃  
165  
°C  
°C  
°C  
TSDF  
150  
TSDHYS  
10  
(1) RXD pin is an open drain output. In standby mode RXD is pulled low which has the device pulling current through VSUP through the  
pull-up resisitor to VCC. The value of the pull-up resistor impacts the standby mode current. A 10 kresistor value can add as much  
at 500 µA of current.  
(2) Specified by design  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
7.7 Electrical Characteristics  
over operating TA temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.2  
5
UNIT  
RXD OUTPUT TERMINAL (OPEN DRAIN)  
Based upon a 2 kΩto 10 kΩexternal pull-  
VOL  
Output low voltage  
VCC  
up to VCC  
IOL  
Low level output current, open drain  
Leakage current, high-level  
LIN = 0 V, RXD = 0.4 V  
LIN = VSUP, RXD = VCC  
1.5  
mA  
µA  
ILKG  
0
5  
TXD INPUT TERMINAL  
VIL  
Low level input voltage  
0.8  
5.5  
5
V
V
0.3  
2
VIH  
IIH  
High level input voltage  
High level input leakage current  
Internal pull-up resistor value  
TXD = high  
0
µA  
kΩ  
5  
125  
RTXD  
350  
800  
LIN TERMINAL (REFERENCED TO VSUP  
)
LIN recessive, TXD = high, IO = 0 mA, VSUP  
= 5.5 V to 45 V  
VOH  
HIGH level output voltage  
0.85  
VSUP  
VSUP  
V
LIN dominant, TXD = low, VSUP = 5.5 V to  
45 V  
VOL  
LOW level output voltage  
0.2  
58  
VSUP where impact of recessive LIN bus < 5%  
(ISO/DIS 17987 Param 11, 54/56)  
VSUP_NON_OP  
TXD & RXD open VLIN = 5.5 V to 58 V  
0.3  
TXD = 0 V, VLIN = 45 V, RMEAS = 440 ,  
VSUP = 45 V,  
IBUS_LIM  
Limiting current (ISO/DIS 17987 Param 57)  
40  
120  
200  
mA  
VBUSdom < 4.518 V; 8-6  
VLIN = 0 V, VSUP = 24 V Driver off/recessive;  
8-7  
Receiver leakage current, dominant (ISO/DIS  
17987 Param 58)  
IBUS_PAS_dom  
IBUS_PAS_rec1  
IBUS_PAS_rec2  
IBUS_NO_GND  
IBUS_NO_BAT  
VBUSdom  
mA  
µA  
1  
Receiver leakage current, recessive (ISO/DIS  
17987 Param 59)  
VLIN VSUP, 5.5 V VSUP 45 V Driver  
off; 8-8  
20  
10  
1
Receiver leakage current, recessive (ISO/DIS  
17987 Param 59)  
µA  
VLIN = VSUP, Driver off; 8-8  
10  
1  
Leakage current, loss of ground (ISO/DIS 17987 GND = VSUP, VSUP = 24 V, 0 VLIN 36  
mA  
µA  
Param 60)  
V; 8-9  
Leakage current, loss of supply (ISO/DIS 17987  
Param 61)  
10  
0.4  
0 V VLIN 36 V, VSUP = GND; 8-10  
LIN dominant (including LIN dominant for  
wake up); 8-3, 8-8  
Low level input voltage (ISO/DIS 17987 Param  
62)  
VSUP  
VSUP  
High level input voltage (ISO/DIS 17987 Param  
63)  
VBUSrec  
0.6  
LIN recessive; 8-3, 8-8  
Receiver center threshold (ISO/DIS 17987 Param  
64)  
VBUS_CNT  
VHYS  
0.475  
0.5  
0.525  
0.175  
1.0  
VSUP  
VSUP  
V
VBUS_CNT = (VIL + VIH)/2; 8-3, 8-8  
VHYS = (VIL - VIH); 8-3, 8-8  
By design and characterization  
Hysteresis voltage (ISO/DIS 17987 Param 65)  
Serial diode LIN term pull-up path (ISO/DIS 17987  
Param 21, 66)  
VSERIAL_DIODE  
0.4  
0.7  
45  
Pull-up resistor to VSUP (ISO/DIS 17987 Param  
26, 71)  
RResponder  
Normal and Standby modes  
20  
60  
kΩ  
IRSLEEP  
CLIN,PIN  
Pull-up current source to VSUP  
Capacitance of the LIN pin  
Sleep mode, VSUP = 24 V, LIN = GND  
By design and characterization  
µA  
pF  
20  
2  
45  
EN INPUT TERMINAL  
VIH  
VIL  
High level input voltage  
2
5.5  
0.8  
500  
8
V
V
Low level input voltage  
Hysteresis voltage  
VHYS  
IIL  
By design and characterization  
EN = Low  
30  
8  
125  
mV  
µA  
Low level input current  
Internal pull-down resistor  
REN  
350  
0.5  
800  
kΩ  
LIMP OUTPUT TERMINAL (HIGH VOLTAGE OPEN DRAIN OUTPUT)  
High level voltage drop LIMP with respect to VSUP ILIMP = - 0.5 mA  
Leakage current LIMP = 0 V, Sleep Mode  
1
V
ΔVH  
ILKG(LIMP)  
0.5  
µA  
0.5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
7.7 Electrical Characteristics (continued)  
over operating TA temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
WAKE INPUT TERMINAL  
Selective Wake-up or Standby Mode, WAKE  
pin enabled  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
V
SUP 2  
Selective Wake-up or Standby Mode, WAKE  
pin enabled  
V
SUP 3  
IIH  
IIL  
High-level input leakage current  
Ligh-level input leakage current  
WAKE = VSUP - 1 V  
WAKE = 1 V  
µA  
µA  
25  
5
15  
15  
25  
50  
Wake up time from a wake edge on WAKE;  
Standby or Sleep mode  
tWAKE  
WAKE hold time  
µs  
WDI, SDI, SCK, nCS INPUT TERMINAL  
VIH  
High-level input voltage  
2.19  
V
VIL  
Low-level input voltage  
0.8  
1
V
IIH  
High-level input leakage current  
Low-level input leakage current  
Input Capacitance  
Inputs = VCC  
µA  
µA  
pF  
µA  
1  
IIL  
Inputs = 0 V, VCC = Active  
4 MHz  
-5  
15  
1
50  
CIN  
10  
ILKG(OFF)  
Unpowered leakage current  
Inputs = 5.25/3.465 V, VCC = VSUP = 0 V  
1  
WDT INPUT TERMINAL  
VIH  
High-level input voltage  
Inputs = VCC  
0.8  
VCC  
VCC  
VCC  
µA  
VIL  
Low-level input voltage  
Inputs = VCC  
0.2  
0.6  
VIM(WDT)  
IIH  
WDT Mid-level input voltage(1)  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
Inputs = VCC  
0.4  
2.5  
0.5  
Inputs = VCC  
25  
IIL  
Inputs = 0 V, VCC = Active  
Inputs = 5.25/3.465 V, VCC = VSUP = 0 V  
µA  
25  
1  
2.5  
1
ILKG(OFF)  
µA  
SDO OUTPUT TERMINAL  
VOH  
High level output voltage  
IO = 2 mA, VCC = Active  
0.8  
1  
5  
1.5  
VCC  
VCC  
µA  
VOL  
Low level output voltage  
IO = 2 mA, VCC = Active  
0.2  
1
ILKG(OFF)  
Unpowered leakage current  
Outputs = 5.25/3.465 V, VCC = VSUP = 0 V  
nRST, nWDR (SPI Mode) TERMINAL (OPEN DRAIN OUTPUT)  
ILKG  
VOL  
IOL  
Leakage current, high-level  
Low-level output voltage  
LIN = VSUP, nRST = VCC  
5
µA  
VCC  
mA  
Based upon external pull up to VCC  
LIN = 0 V, nRST = 0.4 V  
0.2  
Low-level output current, open drain  
nINT, nWDR (Pin Mode) TERMINAL (OPEN DRAIN OUTPUT)  
VOL  
IOL  
Low-level output voltage  
0.2  
5
VCC  
mA  
µA  
Low-level output current, open drain  
Leakage current, high-level  
LIN = 0 V, nINT = 0.4 V  
LIN = VSUP, nINT = VCC  
1.5  
ILKG  
5  
WDI, WDT TIMING and SWITCHING CHARACTERISTIC (RL = 1 MΩ, CL = 50 pF and TA = -40°C to 125°C)  
tW  
td  
Filter time to avoid false input  
Time from nWDR low to high  
30  
2
µs  
WDI pulse width; see 8-19  
nWDR pulse width delay time that sets the lower  
window boundry starting point; see 8-19  
4
6
ms  
WDT = GND  
WDT = VCC  
32  
480  
4.8  
16  
40  
600  
6
48  
720  
7.2  
24  
ms  
ms  
s
tWINDOW  
Closed Window + Open Window; See 8-19  
WDT = Floating  
WDT = GND  
WDT = VCC  
20  
300  
3
ms  
ms  
s
Watchdog timeout window (Open Window); See  
8-19  
tWDOUT  
240  
2.4  
360  
3.6  
WDT = Floating  
Propagation delay time high to low level output  
(VCC to nWDR delay)  
tPHL  
VCC = Active  
40  
65  
µs  
DUTY CYCLE CHARACTERISTICS(2)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
7.7 Electrical Characteristics (continued)  
over operating TA temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THREC(MAX) = 0.744 x VSUP  
,
THDOM(MAX) = 0.581 x VSUP  
,
VSUP = 5.5 V to 18 V, tBIT = 50 µs (20 kbps),  
D1 = tBUS_rec(min)/(2 x tBIT) (See 8-11, 图  
8-12)  
D112V  
Duty Cycle 1 (ISO/DIS 17987 Param 27)  
Duty Cycle 2 (ISO/DIS 17987 Param 28)  
0.396  
THREC(MIN) = 0.422 x VSUP  
,
THDOM(MIN) = 0.284 x VSUP, VSUP = 5.5 V to  
18 V,  
D212V  
0.581  
tBIT = 50 µs (20 kbps), D2 = tBUS_rec(MAX)/(2  
x tBIT) (See 8-11, 8-12)  
THREC(MAX) = 0.778 x VSUP, THDOM(MAX)  
0.616 x VSUP  
=
,
VSUP = 5.5 V to 18 V, tBIT = 96 µs (10.4  
kbps),  
D3 = tBUS_rec(min)/(2 x tBIT) (See 8-11, 图  
D312V  
Duty Cycle 3 (ISO/DIS 17987 Param 29)  
Duty Cycle 4 (ISO/DIS 17987 Param 30)  
0.417  
8-12)  
THREC(MIN) = 0.389 x VSUP  
,
THDOM(MIN) = 0.251 x VSUP  
,
VSUP = 5.5 V to 18 V, tBIT = 96 µs (10.4  
kbps),  
D412V  
0.59  
D4 = tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
THREC(MAX) = 0.710 x VSUP, THDOM(MAX)  
=
0.554 x VSUP, VSUP = 15 V to 36 V, tBIT = 50  
µs, D1 = tBUS_rec(MIN)/(2 x tBIT) (See 图  
8-13, 8-14  
D124V  
D224V  
D324V  
D424V  
Duty Cycle 1 (ISO/DIS 17987 Param 72)  
Duty Cycle 2 (ISO/DIS 17987 Param 73)  
Duty Cycle 3 (ISO/DIS 17987 Param 74)  
Duty Cycle 4 (ISO/DIS 17987 Param 75)  
0.330  
THREC(MIN) = 0.446 x VSUP, THDOM(MIN)  
=
0.302 x VSUP, VSUP = 15.6 V to 36 V, tBIT  
=
0.642  
50 µs, D2 = tBUS_rec(MAX)/(2 x tBIT) (See 图  
8-13, 8-14)  
THREC(MAX) = 0.744 x VSUP, THDOM(MAX)  
=
0.581 x VSUP, VSUP = 5.5 V to 36 V, tBIT = 96  
µs, D3 = tBUS_rec(min)/(2 x tBIT) (See 8-13,  
8-14)  
0.386  
THREC(MIN) = 0.442 x VSUP, THDOM(MIN)  
=
0.284 x VSUP, VSUP = 5.5 V to 36 V, tBIT = 96  
µs, D4 = tBUS_rec(MAX)/(2 x tBIT) (See 图  
8-13, 8-14)  
0.591  
(1) This is the measured voltage at the WDT pin when left floating. The WDT pin should be connected directly to VCC, GND or left floating.  
(2) See errata TLIN1441-Q1 and TLIN2441-Q1 Duty Cycle Over VSUP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
7.8 AC Switching Characteristics  
over operating TA temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DEVICE SWITCHING CHARACTERISTICS  
trx_pdr  
trx_pdf  
Receiver rising/falling propagation delay time  
(ISO/DIS 17987 Param 31,76)  
RRXD = 2.4 k, CRXD = 20 pF (See 图  
8-13, 8-14)  
6
µs  
Rising edge with respect to falling edge,  
(trx_sym = trx_pdf trx_pdr), RRXD = 2.4 k,  
CRXD = 20 pF (8-13, 8-14)  
Symmetry of receiver propagation delay time  
Receiver rising propagation delay time (ISO/DIS  
17987 Param 32, 77)  
trs_sym  
2
150  
60  
µs  
µs  
µs  
2  
LIN wakeup time (minimum dominant time on LIN  
bus for wakeup)  
tLINBUS  
25  
100  
45  
See 8-17, 9-5, and 9-6  
See 9-6  
Time to clear false wakeup prevention logic if LIN  
bus had a bus stuck dominant fault (recessive  
time on LIN bus to clear bus stuck dominant fault)  
tCLEAR  
tDST  
10  
20  
Dominant state time out  
Mode change delay time  
80  
15  
ms  
µs  
Time to change from normal mode to sleep  
mode through EN pin: See 8-15  
tMODE_CHANGE  
Time to change from sleep mode to normal  
mode through EN pin and not due to a wake  
event; RXD pulled up to VCC: See 8-15  
Mode change delay time sleep mode to normal  
mode  
800  
45  
µs  
µs  
Time for normal mode to initialize and data  
on RXD pin to be valid, includes  
tMODE_CHANGE for standby mode to normal  
mode See 8-15  
tNOMINT  
Normal mode initialization time  
Timer for inactivity coming out of sleep mode and  
when coming out of failsafe mode to determine if  
caused event has been cleared (1)  
tINACT_FS  
250  
200  
ms  
ms  
Upon power up time it takes for valid data  
on RXD  
tPWR  
Power up time  
1.5  
5
SPI SWITCHING CHARACTERISTICS  
fSCK  
tSCK  
tRSCK  
tFSCK  
tSCKH  
tSCKL  
tACC  
tCSS  
tCSH  
tCSD  
tSISU  
tSIH  
SCK, SPI clock frequency (1)  
SCK, SPI clock period (1)  
SCK rise time (1)  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
See 8-18  
40  
40  
SCK fall time (1)  
SCK, SPI clock high (1)  
SCK, SPI clock low (1)  
First read access time from chip select (1)  
Chip select setup time (1)  
Chip select hold time (1)  
Chip select disable time (1)  
Data in setup time (1)  
Data in hold time (1)  
80  
80  
50  
100  
100  
500  
30  
40  
tSOV  
tRSO  
tFSO  
Data out valid (1)  
80  
40  
40  
SO rise time (1)  
SO fall time (1)  
(1) Specified by design  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
7.9 Typical Characteristics  
130  
125  
120  
115  
110  
105  
100  
95  
72.5  
70  
-40°C  
25°C  
85°C  
105°C  
125°C  
67.5  
65  
62.5  
60  
90  
57.5  
55  
-40°C  
25°C  
85°C  
105°C  
125°C  
85  
80  
75  
52.5  
5
10  
15  
20  
25  
30  
35  
40  
D001  
5
10  
15  
20  
25  
VSUP (V)  
30  
35  
40  
45  
D004  
VSUP (V)  
VCC = 5 V  
ICC Load = 125 mA Normal Mode  
VCC = 5 V  
ICC Load = 70 mA Normal Mode  
7-1. ISUP vs VSUP Across Temperature  
7-2. ISUP vs VSUP Across Temperature  
72.5  
70  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
67.5  
65  
62.5  
60  
57.5  
55  
-40°C  
25°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
52.5  
50  
5
10  
15  
20  
25  
VSUP (V)  
30  
35  
40  
45  
D030  
5
10  
15  
20  
25  
VSUP (V)  
30  
35  
40  
45  
D009  
VCC = 3.3 V  
ICC Load = 70 mA Normal Mode  
VCC = 5 V  
Sleep Mode  
7-3. ISUP vs VSUP Across Temperature  
7-4. ISUP vs VSUP Across Temperature  
20  
18  
16  
14  
12  
10  
8
5.5  
5
4.5  
4
3.5  
3
2.5  
2
-40°C  
27°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
1.5  
1
6
4
0.5  
5
10  
15  
20  
25  
VSUP (V)  
30  
35  
40  
45  
D035  
0
5
10  
15  
20  
25  
VSUP (V)  
30  
35  
40  
45  
50  
D002  
VCC = 3.3 V  
Sleep Mode  
VCC = 5 V  
7-5. ISUP vs VSUP Across Temperature  
7-6. VCC vs VSUP Across Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-40°C  
25°C  
85°C  
105°C  
125°C  
-0.5  
0
5
10  
15  
20  
VSUP (V)  
25  
30  
35  
40  
D038  
VCC = 3.3 V  
7-7. VCC vs VSUP Across Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Test Circuit: Diagrams and Waveforms  
VCC  
3
14  
1
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VPS  
VCC  
EN/nINT  
10  
VSUP  
RXD  
5
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
8
9
WDI/SDI  
PIN/nCS  
LIN  
WAKE  
13  
6
Jitter: < 25 ns  
WDT/CLK  
11 TXD  
nWDR/SDO  
GND  
12 nRST/nWDR  
7
4
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-1. Test System: Operating Voltage Range with RX and TX Access  
Delta t = + 5 µs (tBIT  
= 50 µs)  
Trigger Point  
RX  
2 * tBIT = 100 µs (20 kBaud)  
8-2. RX Response: Operating Voltage Range  
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
8-3. LIN Bus Input Signal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN2441-Q1  
 
 
 
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
VCC  
3
14  
1
VCC  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
EN/nINT  
10  
VPS  
VSUP  
RXD  
5
8
9
LIN  
WAKE  
WDI/SDI  
PIN/nCS  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
13  
6
Jitter: < 25 ns  
11 TXD  
WDT/CLK  
nWDR/SDO  
GND  
12 nRST/nWDR  
7
4
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-4. LIN Receiver Test with RX access  
VCC  
3
VCC  
14  
1
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
EN/nINT  
VSUP  
RXD  
10  
8
VPS1  
5
LIN  
WAKE  
WDI/SDI  
PIN/nCS  
D
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
9
13  
6
11 TXD  
WDT/CLK  
VPS2  
RBUS  
nWDR/SDO  
GND  
7
4
12 nRST/nWDR  
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-5. VSUP_NON_OP Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
VCC  
3
VCC  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
14  
1
EN/nINT  
RXD  
VSUP  
VPS  
10  
8
RMEAS  
5
WDI/SDI  
PIN/nCS  
TXD  
LIN  
9
WAKE 13  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
T = 10 ms  
11  
WDT/CLK  
6
Jitter: < 25 ns  
nWDR/SDO  
GND  
12 nRST/nWDR  
7
4
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-6. Test Circuit for IBUS_LIM at Dominant State (Driver on)  
VCC  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
14  
1
3
VCC  
EN/nINT  
RXD  
10  
VPS  
VSUP  
RMEAS = 499  
5
8
9
LIN  
WDI/SDI  
PIN/nCS  
WAKE  
13  
6
11 TXD  
WDT/CLK  
nWDR/SDO  
GND  
7
4
12 nRST/nWDR  
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-7. Test Circuit for IBUS_PAS_dom; TXD = Recessive State VBUS = 0 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VCC  
3
VPS1  
14  
1
VCC  
EN/nINT  
VSUP  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
RXD  
10  
8
1 k  
5
LIN  
VPS2  
WDI/SDI  
PIN/nCS  
WAKE  
13  
6
9
VPS2 2 V/s ramp  
[8 V 36 V]  
11 TXD  
WDT/CLK  
V Drop across resistor  
< 20 mV  
7
4
nWDR/SDO  
GND  
12 nRST/nWDR  
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-8. Test Circuit for IBUS_PAS_rec  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VCC  
3
VPS1  
14  
1
VCC  
EN/nINT  
10  
VSUP  
RXD  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VPS  
1 k  
5
8
9
LIN  
WAKE  
WDI/SDI  
13  
6
PIN/nCS  
VPS 2 V/s ramp  
[0 V 36 V]  
11 TXD  
WDT/CLK  
V Drop across resistor  
< 1V  
nWDR/SDO  
GND  
12 nRST/nWDR  
7
4
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-9. Test Circuit for IBUS_NO_GND Loss of GND  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
VCC  
3
14  
1
VCC  
EN/nINT  
VSUP  
RXD  
10  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VPS  
10 k  
5
8
LIN  
WAKE  
WDI/SDI  
13  
6
PIN/nCS  
VPS 2 V/s ramp  
[0 V 36 V]  
9
11 TXD  
WDT/CLK  
V Drop across resistor  
< 1V  
nWDR/SDO  
GND  
12 nRST/nWDR  
7
4
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-10. Test Circuit for IBUS_NO_BAT Loss of Battery  
VCC  
3
14  
1
VCC  
EN/nINT  
RXD  
10  
VSUP  
VPS1  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
RMEAS  
5
8
LIN  
WDI/SDI  
WAKE  
13  
6
9
PIN/nCS  
TXD  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
VPS2  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
11  
WDT/CLK  
Jitter: < 25 ns  
7
4
nWDR/SDO  
GND  
12 nRST/nWDR  
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-11. Test Circuit Slope Control and Duty Cycle  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
tBIT  
tBIT  
RECESSIVE  
TXD (Input)  
DOMINANT  
THREC(MAX)  
Thresholds  
RX Node 1  
THDOM(MAX)  
LIN Bus  
Signal  
VSUP  
THREC(MIN)  
Thresholds  
RX Node 2  
THDOM(MIN)  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
D = tBUS_REC(MIN)/(2 x tBIT  
)
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
D = tBUS_REC(MAX)/(2 x tBIT  
)
8-12. Definition of Bus Timing  
VCC  
VCC  
14  
1
3
VCC  
EN/nINT  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
2.4 k  
10  
VSUP  
VPS  
RXD  
5
8
9
LIN  
WAKE  
WDI/SDI  
20 pF  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
13  
6
PIN/nCS  
Jitter: < 25 ns  
11 TXD  
WDT/CLK  
nWDR/SDO  
GND  
12 nRST/nWDR  
7
4
2
LIMP  
Measurement Tools  
O-scope:  
DMM  
8-13. Propagation Delay Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
THREC(MAX)  
Thresholds  
RX Node 1  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
LIN Bus  
Signal  
VSUP  
Thresholds  
RX Node 2  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
trx_pdr(1)  
trx_pdf(1)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
Copyright © 2017, Texas Instruments Incorporated  
8-14. Propagation Delay  
Wake Event  
tMODE_CHANGE  
EN  
tMODE_CHANGE  
tNOMINT  
Transition  
Normal  
Sleep  
Standby  
Transition  
Normal  
MODE  
Wake Request  
RXD = Low  
Mirrors  
Bus  
RXD  
Indeterminate Ignore  
Floating  
Indeterminate Ignore  
Mirrors Bus  
8-15. Mode Transitions  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
EN  
Weak Internal Pullup  
TXD  
Weak Internal Pullup  
VSUP  
LIN  
RXD  
Floating  
tMODE_CHANGE  
+
Sleep  
MODE  
Normal  
tNOMINIT  
8-16. Wakeup Through EN  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
0.6 x VSUP  
LIN  
0.6 x VSUP  
VSUP  
0.4 x VSUP  
0.4 x VSUP  
t < tLINBUS  
tLINBUS  
TXD  
Weak Internal Pullup  
EN  
Floating  
RXD  
MODE  
Sleep  
Standby  
Normal  
8-17. Wakeup through LIN  
tCSD  
nCS  
tCSH  
tFSCK  
tRSCK  
tCSS  
CLK  
SDI  
tSISU  
tSIH  
LSB In  
MSB In  
tSOV  
tACC  
tFSO  
tRSO  
SDO  
MSB Out  
LSB Out  
8-18. SPI AC Characteristic for Read and Write  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
Watchdog Window  
Closed Window  
Open Window  
tWDOUT min  
Watchdog Window  
Closed Window  
Open Window  
tWDOUT max  
tWINDOW min  
tWINDOW max  
Safe Trigger area  
WDI  
Change of state  
tW  
tW is the filter time for the  
input to be recognized to  
avoid false triggers  
WDI Trigger  
Rising or Falling  
Edge  
nWDR  
td  
8-19. Watchdog Window Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TLIN2441-Q1 LIN transceiver is a Local Interconnect Network (LIN) physical layer transceiver, compliant to  
LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A and ISO/DIS 179874 with integrated wake-up and protection features. The  
LIN bus is a single-wire, bidirectional bus that typically is used in low-speed in-vehicle networks with data rates  
that range up to 20 kbps. The LIN receiver works up to 100 kbps supporting in-line programming. The device  
converts the LIN protocol data stream on the TXD input into a LIN bus signal using a current-limited wave-  
shaping driver which reduces electromagnetic emissions (EME). The receiver converts the data stream to logic-  
level signals that are sent to the microprocessor through the open-drain RXD pin. The LIN bus has two states:  
dominant state (voltage near ground) and recessive state (voltage near battery). In the recessive state, the LIN  
bus is pulled high by the internal pull-up resistor (45 k) and a series diode.  
Ultra-low current consumption is possible using the sleep mode. The TLIN2441-Q1 provides three methods to  
wake up from sleep mode: EN pin, WAKE pin and LIN bus. The device integrates a low dropout voltage  
regulator with a wide input from VSUP providing 5 V ±2% or 3.3 V ±2% with up to 70 mA of current depending  
upon system implementation.  
The TLIN2441-Q1 integrates a window based watchdog supervisor which has a programmable delay and  
window ratio determined by pin strapping or SPI communication. The device watchdog is controlled by pin  
configuration or SPI depending upon the state of pin 9 at power up. At power up, if pin 9 is externally pulled to  
ground, the device is configured for pin control of the device. If pin 9 is connected to the nCS pin of the  
processors and not driven at power up, the internal pull up configures the device for 3.3 V SPI control. If the  
processor uses 5 V IO a 500k Ωpull up resistor to VCC is used for the 5 V version of the device. This allows the  
5 V version of the device to work with both 3.3 V SPI or 5 V SPI. SPI communication is used for device  
configuration. In pin configuration nRST is asserted high when VCC increases above UVCC and stays high as  
long as VCC is above this threshold.  
When the watchdog is controlled by the device pins, the state of the WDT pin determines the window time. WDI  
is used as the watchdog input trigger which is expected in the open window. If a watchdog event takes place, the  
nWDR pin goes low to reset the processors. When using SPI writing FFh to register 15h, WD_TRIG, during the  
open window restarts the watchdog timer. The supervised processor must trigger the WDI pin or WD_TRIG  
register within the defined window. When using SPI, the nRST pin becomes the watchdog event output trigger  
for the processor. The watchdog timer does not start until after the first input trigger on WDI or the WD_TRIG  
register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
9.2 Functional Block Diagram  
VCC  
250 kO  
VSUP  
5.0 V or 3.3 V LDO  
nRST/nWDR  
VSUP  
UV  
DET  
CNTL  
POR  
RXD  
LIMP  
VSUP  
VSUP/2  
Comp  
EN_TRX  
VSUP  
45 kQ  
Filter  
Wake Up  
State &  
LIMP CTL  
WAKE  
WAKE  
Fault Detection  
& Protection  
VCC  
LIN  
350 kO  
DR/  
Slope  
CTL  
Dominant  
State  
Timeout  
TXD  
GND  
9-1. Transceiver plus VREG Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
EN_TRX  
EN/nINT  
350 k  
nINT  
VCC  
WDT is a 3 level  
input  
CLK  
WDT/CLK  
WDT  
VCC  
WDI/SDI  
WDI/SDI  
SPI Controller  
VCC  
SDO  
nWDR/SDO  
nWDR  
nCS  
VCC  
PIN/nCS  
VCC  
PIN  
Watchdog Programming Select  
Pin vs SPI decision on power up  
9-2. Input and Output High Level Functional Block Diagram  
9.3 Feature Description  
9.3.1 LIN Pin  
This high-voltage input or output pin is a single-wire LIN bus transmitter and receiver. The LIN pin can survive  
transient voltages up to 58 V. Reverse currents from the LIN to supply (VSUP) are minimized with blocking  
diodes, even in the event of a ground shift or loss of supply (VSUP).  
9.3.1.1 LIN Transmitter Characteristics  
The transmitter meets thresholds and AC parameters according to the LIN specification. The transmitter is a low-  
side transistor with internal current limitation and thermal shutdown. During a thermal shutdown condition, the  
transmitter is disabled to protect the device. There is an internal pull-up resistor with a serial diode structure to  
VSUP, so no external pull-up components are required for the LIN responder node applications. An external pull-  
up resistor and series diode to VSUP must be added when the device is used for a commander node application.  
9.3.1.2 LIN Receiver Characteristics  
The receiver characteristic thresholds are ratio-metric with the device supply pin according to the LIN  
specification.  
The receiver is capable of receiving higher data rates (> 100 kbps) than supported by LIN or SAEJ2602  
specifications. This allows the TLIN2441-Q1 to be used for high-speed downloads at the end-of-line production  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system.  
9.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP, so no external pull-up components are  
required for the LIN responder node applications. An external pull-up resistor (1 k) and a series diode to VSUP  
must be added when the device is used for commander node applications as per the LIN specification.  
9-3 shows a commander node configuration and how the voltage levels are defined  
Voltage drop across the  
Simplified Transceiver  
VLIN_Bus  
diodes in the pullup path  
VSUP  
VSUP  
VSUP/2  
RXD  
VBattery  
VSUP  
VLIN_Recessive  
Receiver  
Filter  
1 k  
45 k  
LIN Bus  
LIN  
VCC  
350 kꢀ  
TXD  
GND  
Transmitter  
with slope control  
VLIN_Dominant  
t
9-3. Commander Node Configuration with Voltage Levels  
9.3.2 TXD (Transmit Input)  
TXD is the interface to the node processors LIN protocol controller that is used to control the state of the LIN  
output. When TXD is low, the LIN output is dominant (near ground). When TXD is high, the LIN output is  
recessive (near VSUP). See 9-3. The TXD input structure is compatible with processors that use 3.3 V and 5 V  
VI and VO. TXD has an internal pull-up resistor. The LIN bus is protected from being stuck dominant through a  
system failure driving TXD low through the dominant state time-out timer.  
9.3.3 RXD (Receive Output)  
RXD is the interface to the processor's LIN protocol controlleror SCI and UART, which reports the state of the  
LIN bus voltage. LIN recessive (near VSUP) is represented by a high level on the RXD and LIN dominant (near  
ground) is represented by a low level on the RXD pin. The RXD output structure is an open-drain output stage.  
This allows the device to be used with 3.3 V and 5 VI/O processors. If the processor's RXD pin does not have an  
integrated pull-up, an external pull-up resistor to the processors I and O supply voltage is required. In standby  
mode, the RXD pin is driven low to indicate a wake-up request from the LIN bus .  
9.3.4 WAKE (High Voltage Local Wake Up Input)  
WAKE pin is used for a high voltage device local wake up (LWU). This function is explained further in docato-  
extra-info-title Local Wake Up (LWU) via WAKE Terminal, see 9.4.5.2 section. The pin is both rising and falling  
edge trigger, meaning it recognizes a LWU on either edge of WAKE pin transition.  
9.3.5 WDT/CLK (Pin Programmable Watchdog Delay Input/SPI Clock)  
When PIN/nCS is connected to ground at power up, this pin becomes the pin programmable watchdog delay  
input. This pin sets the upper boundary of the window watchdog. It can be connected to VCC, GND or left  
floating. When connected directly to VCC or GND or left open, the window frame takes on one of three value  
ranges: GND 32 ms to 48 ms, VCC 480 ms to 720 ms or left open 4.8 s to 7.2 s. The closed versus  
open windows are based upon 50%/50%.  
When PIN/nCS is connected to a high-Z output pin from a processor this pin becomes the SPI input clock.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
9.3.6 WDI/SDI (Watchdog Timer Input/SPI Serial Data In)  
When PIN/nCS is connected to ground at power up, this pin becomes the watchdog timer input trigger. This  
resets the timer with either a positive or negative transition from the processor. A filter time of tW is used to avoid  
false triggers.  
When PIN/nCS is connected to a high-Z output pin from a processor, this pin becomes the SPI serial data input  
pin for programming the device and providing a trigger event for the watchdog same as the WDI.  
9.3.7 PIN/nCS (Pin Watchdog Select/SPI Chip Select)  
This pin determines if the TLIN2441-Q1 watchdog is programmed by pin strapping or by SPI. At power up, the  
device monitors this pin and determine which method is to be used. When tied to GND, the device is pin  
programmable, and when connected to a high-Z processor I/O pin, the device is set up to support SPI. In SPI  
mode if the LDO is being used to power up other circuitry than the processor a mismatch can take place if using  
the 5 V version of the device and the processor supports 3.3 V. All I/O in the device are set up to work with a 3.3  
V processor but if the 5 V LDO is being used for the processor requiring the I/O to be 5 V then an external  
resistor pulled up to VCC. This makes the I/O 5 V.  
备注  
The behavior of the microprocessor used must be understood if connecting to this pin to control  
whether the device is to be pin controlled or SPI controlled. There is an internal pull-up that sets the  
device in SPI control mode. If the processor pin drives low during power up, the device is in pin control  
mode. To specify pin control mode place and external pull-down resister to ground.  
VCC  
(5 V)  
3.3 V  
3.3 V  
3.3 V  
5 V SPI  
PIN Mode  
3.3 V SPI  
PIN/nCS  
PIN/nCS  
PIN/nCS  
GND  
9-4. PIN/nCS Configuration  
9.3.8 LIMP (LIMP Home output High Voltage Open Drain Output)  
This pin is connected to external circuitry for a limp home mode if the watchdog has timed out causing a reset.  
For the Limp pin to be turned off, the watchdog error counter must reach zero from correct input triggers in both  
pin control and SPI control modes. In SPI control Mode, other options can be selected in reg'h0B[4:3]. This  
feature can be disabled in SPI mode by setting reg'h0B[5] = 1. The only two modes that the LIMP pin changes  
state are in normal and failsafe modes. When in normal mode the LIMP pin is off unless there is a watchdog  
failure event that triggers it on. If programmed by SPI any event that trigger the failsafe mode also turns on the  
LIMP pin.  
9.3.9 nWDR/SDO (Watchdog Timeout Reset Output/SPI Serial Data Out)  
When PIN/nCS is connected to ground at power up, this pin becomes the watchdog timeout reset output pin.  
When the watchdog times out, this pin goes low for time of td and then release back to VCC  
.
When PIN/nCS is connected to a high-Z output pin from a processor, this pin becomes the SPI serial data output  
pin.  
9.3.10 VSUP (Supply Voltage)  
VSUP is the power supply pin. VSUP is connected to the battery through an external reverse-battery blocking  
diode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
(see 9-3). The VSUP pin is a high-voltage-tolerant pin. A decoupling capacitor with a value of 100 nF is  
recommended to be connected close to this pin to improve the transient performance. If there is a loss of power  
at the ECU level, the device has ultra low leakage from the LIN pin, which does not load the bus down. This is  
optimal for LIN systems in which some of the nodes are unpowered (ignition supplied) while the rest of the  
network remains powered (battery supplied). When VSUP drops low enough the regulated output drops out of  
regulation. The LIN bus works with a VSUP as low as 5.5 V, but at a lower voltage, the performance is  
indeterminate and not ensured. If VSUP voltage level drops enough, it triggers the UVSUP, and if it keeps  
dropping, at some point it passes the POR threshold.  
9.3.11 GND (Ground)  
GND is the device ground connection. The device can operate with a ground shift as long as the ground shift  
does not reduce the VSUP below the minimum operating voltage. If there is a loss of ground at the ECU level, the  
device has ultra low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN systems  
in which some of the nodes are unpowered (ignition supplied) while the rest of the network remains powered  
(battery supplied).  
9.3.12 EN/nINT (Enable Input/Interrupt Output in SPI Mode)  
When PIN/nCS is connected to ground at power up, this pin becomes the transceiver enable control. EN controls  
the operational modes of the device. When EN is high, the device is in normal operating mode allowing a  
transmission path from TXD to LIN and from LIN to RXD. When EN is low, the device is put into sleep mode and  
there are no transmission paths available. The device can enter normal mode only after wake up. EN has an  
internal pull-down resistor to ensure the device remains in low power mode even if EN floats. EN should be held  
low until VSUP reaches the expected systen voltage level.  
When PIN/nCS is connected to a high-Z output pin from a processor, this pin becomes processor interrupt output  
pin in SPI communication mode. When the TLIN2441-Q1 requires the attention of the processor, this pin is  
pulled low.  
9.3.13 nRST/nWDR (Reset Output/Watchdog Timeout Reset Output)  
The nRST pin serves as a VCC monitor for under voltage events in Pin Control Mode and is the default function  
for SPI mode. This pin is internally pulled up to VCC. When used a nRST and an under voltage event takes  
place, the signal is pulled low. The signal returns to VCC value once the voltage on VCC exceeds the under  
voltage threshold. If a thermal shutdown event takes place, the signal is pulled to ground. When the device is  
configured by SPI, the pin can be programmed to become the watchdog output trigger to reset the processor.  
When the watchdog times out, this signal is pulled low for time of td and then released back to VCC. If both are  
needed for SPI configuration it is recommended to add an external circuit off the LIMP pin to serve as the  
watchdog output trigger to reset the processor. Note the LIMP pin output is a high voltage output based upon  
VSUP and care must be taken when connecting to a lower voltage device.  
9.3.14 VCC (Supply Output)  
The VCC terminal can provide 5 V or 3.3 V with up to 70 mA from 24 VSUP at 85°C to power up external devices  
when using high-k boards and thermal management best practices .  
9.3.15 Protection Features  
The device has several protection features that are described as follows.  
9.3.15.1 TXD Dominant Time Out (DTO)  
During normal mode, if TXD is inadvertently driven permanently low by a hardware or software application  
failure, the LIN bus is protected by the dominant state time-out timer. This timer is triggered by a falling edge on  
the TXD pin. If the low signal remains on TXD for longer than tDST, the transmitter is disabled, thus allowing the  
LIN bus to return to recessive state and communication to resume on the bus. The protection is cleared and the  
tDST timer is reset by a rising edge on TXD. The TXD pin has an internal pull-up to ensure the device fails to a  
known recessive state if TXD is disconnected. During this fault, the transceiver remains in normal mode  
(assuming no change of state request on EN), the RXD pin reflects the LIN bus and the LIN bus pull-up  
termination remains on. The TLIN2441-Q1 can turn off this feature when in SPI mode by using register h0B[0].  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
9.3.15.2 Bus Stuck Dominant System Fault: False Wake Up Lockout  
The device contains logic to detect bus stuck dominant system faults and prevents the device from waking up  
falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus. If the bus  
is dominant, the wake-up logic is locked out until a valid recessive on the bus clearsthe bus stuck dominant,  
preventing excessive current use. 9-5 and 9-6 show the behavior of this protection.  
RXD  
EN  
LIN Bus  
tLINBUS  
< tLINBUS  
< tLINBUS  
9-5. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wakeup  
RXD  
EN  
tLINBUS  
tLINBUS  
tLINBUS  
LIN Bus  
tCLEAR  
< tCLEAR  
9-6. Bus Fault: Entering Sleep Mode with Bus Stuck Dominant Fault, Clearing, and Wakeup  
9.3.15.3 Thermal Shutdown  
The LIN transmitter is protected by limiting the current; however, if the junction temperature of the device  
exceeds the thermal shutdown threshold, the device puts the LIN transmitter into the recessive state and turns  
off the VCC regulator. The nRST pin is pulled to ground during a TSD event. Once the over-temperature fault  
condition has been removed and the junction temperature has cooled beyond the hysteresis temperature, the  
transmitter is re-enabled. During this fault the device enters a TSD off mode. Once the junction temperature  
cools, the device enters standby mode as per the state diagram. In SPI mode the device can be configured to  
support a failsafe mode. If programmed the device enters this mode upon an TSD event which puts the device  
into a sleep mode with LIMP turned on, see 9-7. In SPI mode the device can be configured to support a  
failsafe mode. If programmed the device enters this mode upon an TSD event which puts the device into a sleep  
mode with LIMP turned on, see 9-7.  
9.3.15.4 Under Voltage on VSUP  
The device contains a power-on reset circuit to avoid false bus messages during under voltage conditions when  
VSUP is less than UVSUP  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
9.3.15.5 Unpowered Device and LIN Bus  
In automotive applications, some LIN nodes in a system can be unpowered (ignition supplied) while others in the  
network remain powered by the battery. The device has extremely low unpowered leakage current from the bus,  
so an unpowered node does not affect the network nor load it down.  
9.4 Device Functional Modes  
nRST: Float  
The TLIN2441-Q1 has three functional modes of operation: normal, sleep, and standby. The next sections  
describes these modes as well as how the device moves between the different modes. 9-7 graphically shows  
the relationship while 9-1 shows the state of pins.  
9-1. Operating SPI Mode  
LIN BUS  
Termination  
nRST/  
Mode  
RXD  
Transmitter  
Watchdog SPI Pins  
nINT Pin  
WAKE Pin  
LIMP  
Comment  
nWDR Pin  
nRST is internally connected to the  
LDO output which in sleep mode is  
off  
Weak current  
pull-up  
Sleep  
Floating  
Off  
Off  
Off  
On  
Floating  
On  
Off  
Previous state  
prior to entering  
STBY  
wake-up event detected,  
waiting on processors to set EN  
Standby  
Normal  
TSD Off  
Failsafe  
Low  
Off  
On  
Off  
On  
Off  
Off  
On  
On  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
On  
45 k(typical)  
45 k(typical)  
Floating  
LIN Bus  
Data  
Off but can be  
active  
On  
LIN transmission up to 20 kbps  
nRST is floating but if OVCC is  
reached this value may show up on  
nRST pin  
45 kΩ  
(typical)  
NA  
Floating  
Floating  
Off  
On  
Weak current  
pull-up  
Failsafe mode is sleep mode with  
LIMP on  
Floating  
Off  
9-2. Operating PIN Mode  
LIN BUS  
Termination  
Mode  
EN  
RXD  
Transmitter  
Watchdog  
nRST Pin  
WAKE Pin  
LIMP  
Comment  
nRST is internally  
connected to the LDO  
output which in sleep  
mode is off  
Sleep  
Low  
Floating  
Low  
Weak current pull-up  
Off  
Off  
Floating  
On  
Off  
Previous state  
Wake-up event detected,  
prior to entering waiting on processors to  
Standby  
Normal  
Low  
Off  
On  
Off  
On  
On  
On  
On  
On  
45 k(typical)  
45 k(typical)  
STBY  
set EN  
LIN Bus  
Data  
Off but can be  
active  
LIN transmission up to 20  
kbps  
High  
nRST is floating but if  
OVCC is reached this  
value may show up on  
nRST pin  
TSD Off  
NA  
Floating  
Off  
Off  
Floating  
On  
Off  
45 k(typical)  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
Unpowered System  
VSUP < UVSUP  
WD: Off  
VCC ≤ UVCC  
After timer  
timesout  
250 ms  
timer  
Sleep  
VCC > UVCC  
Does not wait for  
timer to timeout  
Pin Control Mode  
EN Pin State  
SPI Control Mode  
VSUP > UVSUP  
EN = High  
Note  
*
VSUP UVSUP  
Pin 9 = High  
h‘0B[1]  
Fail-Safe Mode  
EN  
To come out of Fail-Safe Mode the fault  
must be cleared and the a wake event  
must take place  
Pin 9 = GND  
WD: Off  
LIMP: Off  
Pin 9 State  
*
If after 250ms all faults are not cleared  
device will re-enter Fail-Safe Mode  
h‘0B[1] = 1 Enables  
VSUP > UVSUP  
EN = Low  
VSUP > UVSUP  
h‘0B[1] = 0 (Disabled)  
Fail Safe Mode  
But does not enter this  
mode  
TSD Event  
Any Non Fail-Safe  
Enabled State  
Tj > TSD  
SOFT_RST  
Tj > TSD  
Standby Mode  
TSD Off Mode  
Fail-Safe Mode h‘0B[1] = 1  
Standby Mode  
Driver: Off  
RXD: Low  
Termination: 45 kΩ  
reg0B[7:6] = 00  
WD: Off  
Driver: Off  
RXD: Floating  
LDO: Off  
Termination: 45 kΩ  
LIMP: Off  
Tj < TSD  
Driver: Off  
RXD: Floating  
Termination: Weak pullup  
WD: Off  
Tj < TSD  
Note *  
Driver: Off  
RXD: Low  
Termination: 45 kΩ  
WD: Off  
LDO: On  
UVCC Events after  
250ms timer expires  
LDO: On  
LIMP: State of the previous mode  
LDO: Off  
LIMP: On  
LIMP: State of the previous mode  
VSUP < UVSUP  
VCC > OVCC  
VSUP < UVSUP  
LIN Bus Wake up  
Or  
WAKE toggled to GND  
or VSUP  
SPI Write  
reg0B[7:6] = 00  
VCC Overvoltage  
Event  
Unpowered State  
Unpowered State  
EN = High >  
tMODE_CHANGE  
LIN Bus Wake up or  
WAKE toggled to GND or  
VSUP  
SPI Write  
reg0B[7:6] = 10  
VSUP < UVSUP  
VSUP < UVSUP  
VSUP < UVSUP  
VSUP < UVSUP  
Failsafe mode disabled  
UVCC Events after  
250ms timer expires  
Normal Mode  
Sleep Mode  
Normal Mode  
Sleep Mode  
Driver: Off  
RXD: Floating  
Termination: Weak pullup  
reg0B[7:6] = 01  
WD: Off  
Driver: On  
RXD: LIN Bus Data  
Termination: 45 kΩ  
WD: On  
LDO: On  
LIMP: Off until first WD failure  
Driver: Off  
RXD: Floating  
Termination: Weak pullup  
WD: Off  
Driver: On  
RXD: LIN Bus Data  
Termination: 45 kΩ  
reg0B[7:6] = 10  
WD: On  
LDO: On  
EN = Low > tMODE_CHANGE  
SPI Write  
reg0B[7:6] = 01  
#
EN = High > tMODE_CHANGE  
LDO: Off  
LIMP: Off  
VCC Overvoltage  
Event  
LDO: Off  
LIMP: Off  
LIMP: Off until first WD failure or  
action forcing Failsafe if selected  
Three consecutive correct  
WD input triggers  
UVCC Events after  
250ms timer expires  
VCC Overvoltage  
Event  
Three consecutive correct  
WD input triggers  
WD Failure Event  
LIMP: On  
Note  
#
After entering Sleep Mode from a UVCC  
event the 250ms timer will restart. After  
it times out the EN pin will be monitored  
and if high the device will enter normal  
mode.  
WD Failure Event  
LIMP: On  
9-7. State Diagram with Failsafe  
9.4.1 Normal Mode  
If the EN pin is high at power up, the device powers up in normal mode and if low powers up in standby mode. In  
normal operational mode, the receiver and transmitter are active and the LIN transmission up to the LIN  
specified maximum of 20 kbps is supported. The receiver detects the data stream on the LIN bus and outputs it  
on RXD for the LIN controller. A recessive signal on the LIN bus is a digital high and a dominant signal on the  
LIN bus is a digital low. The driver transmits input data from TXD to the LIN bus. Normal mode is entered as EN  
transitions high in Pin control mode or if reg0B[7:6] = 10 in SPI communication Mode. While in Pin control the  
device is in sleep or standby mode for > tMODE_CHANGE  
.
9.4.2 Sleep Mode  
Sleep Mode is the power saving mode for the TLIN2441-Q1. Even with extremely low current consumption in  
this mode, the device can still wake up from the LIN bus through a wake-up signal or if EN is set high for >  
tMODE_CHANGE for the device. There is a 250 ms timer, tINACT_FS, that if UVCC is still present after this time the  
device re-enters sleep mode. The LIN bus is filtered to prevent false wake up events. The wake-up events must  
be active for the respective time periods (tLINBUS).  
The sleep mode is entered by setting EN low for longer than tMODE_CHANGE when in pin control mode or by  
setting reg0B[7:6] = 01 in SPI communication mode. In SPI control mode the device enters sleep mode through  
a SPI write to the MODE register 8'h0B[7:6].  
While the device is in sleep mode, the following conditions exist:  
The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if  
LIN is short-circuited to ground). However, the weak current pull-up is active to prevent false wake up events  
in case an external connection to the LIN bus is lost.  
The normal receiver is disabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
EN (in Pin Control Mode) input and LIN wake up receiver are active.  
WAKE pin is active.  
9.4.3 Standby Mode  
This mode is entered whenever a wake up event occurs through LIN bus while the device is in sleep mode. The  
LIN bus responder termination circuit is turned on when standby mode is entered. Standby mode is signaled  
through a low level on RXD. See Standby Mode Application Note for more application information.  
When EN (in Pin Control Mode) is set high for longer than tMODE_CHANGE while the device is in standby mode the  
device returns to normal mode and the normal transmission paths from TXD to LIN bus and LIN bus to RXD are  
enabled.  
During power up, if EN is low the device goes into standby mode, and if EN is high, the device goes into normal  
mode. EN has an internal pull-down resistor ensuring EN is pulled low if the pin is left floating in the system.  
When in SPI communication mode the TLIN2441-Q1 enters standby mode by writing a 00 to reg0B[7:6] from  
normal mode.  
9.4.4 Failsafe Mode  
When the TLIN2441-Q1 has certain fault conditions, the device enters a failsafe mode if this feature is enabled.  
This mode turns on LIMP and brings all other function into lowest power mode state. Fault conditions are over  
voltage on VCC, thermal shutdown, and four consecutive VCC undervoltage events. Once the fault conditions are  
cleared, the device can be put back into standby mode from a wake event. If a fault condition is still in effect, the  
device re-enters failsafe mode after 250 ms, tINACT_FS  
.
9.4.5 Wake-Up Events  
There are three ways to wake-up from sleep mode:  
Remote wake-up initiated by the falling edge of a recessive (high) to dominant (low) state transition on the  
LIN bus where the dominant state is held for the tLINBUS filter time. After this tLINBUS filter time has been met  
and a rising edge on the LIN bus going from dominant state to recessive state initiates a remote wake-up  
event eliminating false wake ups from disturbances on the LIN bus or if the bus is shorted to ground.  
Local wake-up through EN being set high for longer than tMODE_CHANGE  
.
Local wake up through WAKE pin being set high for longer than tMODE_CHANGE  
.
9.4.5.1 Wake-Up Request (RXD)  
When the TLIN2441-Q1 encounters a wake-up event from the LIN bus, RXD goes low and the device transitions  
to standby mode until EN is reasserted high and the device enters normal mode. Once the device enters normal  
mode, the RXD pin releases the wake-up request signal and the RXD pin then reflects the receiver output from  
the LIN bus.  
9.4.5.2 Local Wake Up (LWU) via WAKE Terminal  
The WAKE terminal is a high voltage input terminal which can be used for local wake up (LWU) request via a  
voltage transition. The terminal triggers a LWU event on a high to low or low to high transition. This terminal may  
be used with a switch to ground or VSUP. If the terminal is not used, it should be connected to VSUP to avoid  
unwanted parasitic wake up.  
The LWU circuitry is active in sleep mode and standby mode. If a valid LWU event occurs, the device transitions  
to standby mode. The LWU circuitry is not active in normal mode. To minimize system level current consumption,  
the internal bias voltages of the terminal follows the state on the terminal with a delay of tWAKE(MIN). A constant  
high level on WAKE has an internal pull up to VSUP and a constant low level on WAKE has an internal pull-down  
to ground. On power up, this may look like a LWU event and could be flagged as such.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKE  
No Wake  
UP  
t ≥ tWAKE  
Wake UP  
Wake  
Local Wake Request  
RXD  
*
Mode  
Sleep Mode  
Standby Mode  
9-8. Local Wake Up (LWU) - Rising Edge  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKE  
No Wake  
UP  
t ≥ tWAKE  
Wake UP  
WAKE  
Local Wake Request  
*
RXD  
Mode  
Sleep Mode  
Standby Mode  
9-9. Local Wake Up (LWU) - Falling Edge  
9.4.6 Mode Transitions  
When the device is transitioning between modes, the device needs the time tMODE_CHANGE and tNOMINT to allow  
the change to fully propagate from the EN pin through the device into the new state.  
9.4.7 Voltage Regulator  
The device has an integrated high-voltage LDO that operates over a 5.5 V to 36 V input voltage range for both  
3.3 V and 5 V VCC. The device has an output current capability of 70 and support fixed output voltages of 3.3 V  
(TLIN24413-Q1) or 5 V (TLIN24415-Q1). It features thermal shutdown and short-circuit protection to prevent  
damage during over-temperature and over-current conditions  
9.4.7.1 VCC  
The VCC pin is the regulated output based on the required voltage. The regulated voltage accuracy is ± 2%. The  
output is current limited. In the event that the regulator drops out of regulation, the output tracks the input minus  
a drop based on the load current. When the input voltage drops below the UVSUP threshold, the regulator shuts  
down until the input voltage returns above the UVSUPR level. The device monitors situations where VCC may drop  
below the UVCC level thus causing the nRST pin to be pulled low. If after tINACT_FS timer times out and UVCC is  
still present, the device enters sleep mode. This timer is approximately 250 ms at a minimum. When in PIN  
mode the timer restarts and once times out, determines the state of the EN pin and enter the mode based upon  
this state. In SPI mode and failsafe is turned off, it enters sleep mode. If failsafe is turned on, the device enters  
failsafe mode. An over voltage on VCC, OVCC is also monitored. If the device is in Pin mode, it enters sleep  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
mode. Once in sleep mode, the device waits for 250 ms and then check the status of the EN pin. If high, the  
device enters normal mode. If the OVCC event is still present, the device enters sleep mode and wait for 250 ms  
and check the EN pin status. This continues until either the EN pin is low or the OVCC event is cleared. If the  
device is in SPI mode, the state the device enters depends upon whether failsafe is enabled. If enabled, the  
device enters failsafe mode, if not it enters sleep mode. If the voltage exceeds the absolute max on the VCC pin,  
the device could be damaged.  
9.4.7.2 Output Capacitance Selection  
For stable operation over the full temperature range and with load currents up to 70 mA on VCC a certain  
capacitance is expected and depends upon the minimum load current. To support no load to full load a value of  
10 µF and ESR smaller than 2 Ω is needed. For 500 µA to full load an 1 µF capacitance can be used. The low  
ESR recommendation is to improve the load transient performance.  
9.4.7.3 Low-Voltage Tracking  
At low input voltages, the regulator drops out of regulation and the output voltage tracks input minus a voltage  
based on the load current (IL) and power-switch resistor. This tracking allows for a smaller input capacitance and  
can possibly eliminate the need for a boost converter during cold-crank conditions.  
9.4.7.4 Power Supply Recommendation  
The device is designed to operate from an input-voltage supply range between 5.5 V and 36 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the device. The recommended  
minimum capacitance at the pin is 100 nF . The max voltage range is for the LIN functionality. Exceeding 24V for  
the LDO reduces the effective current sourcing capability due to thermal considerations.  
9.4.8 Watchdog  
The TLIN2441-Q1 has an integrated watchdog function. This can be programmed by pin control or SPI  
communication control based upon the state of the PIN/nCS pin at power up. The device provides a default  
window based watchdog as well as a selectable time-out watchdog using the SPI programming. The watchdog  
timer does not start until the first input trigger event when in normal operation mode. The watchdog timer is only  
operational in normal mode and is off in standby and sleep modes. The LIMP pin provides a limp home  
capability when connected to external circuitry. When in sleep or standby mode, the limp pin is off. When the  
error counter reaches the watchdog trigger event level, the LIMP pin turns on connecting VSUP to the pin as  
described in the LIMP pin section.  
9.4.8.1 Watchdog Error Counter  
The TLIN2441-Q1 has a watchdog error counter. This counter is an up down counter that increments for every  
missed window or incorrect input watchdog trigger event. For every correct input trigger, the counter decrements  
but does not drop below zero. The default trigger for this counter to trigger a nWDR output trigger is for every  
event. On every WD error event, the nWDR pin goes low as a watchdog error output trigger. For Pin control, the  
value is on every event. In SPI communication mode, this counter can be changed to the fifth or ninth  
consecutive incorrect input trigger. The error counter can be read at register 8'14[4:1].  
The error counter is set at four by default. This means that when the watchdog error count is set at five and the  
first input failure is treated as if the fifth event has taken place. When set at nine and no correct inputs, the fifth  
event is treated as the failure event. This allows the system to check the counter after the first input trigger to see  
if a valid input was sent. nINT is pulled low on each incorrect watchdog input while VCC and nWDR behaves  
according to register configuration  
9.4.8.2 Pin Control Mode  
When using pin control for programming the watchdog, the WDT pin is used for this function. WDT sets the total  
window size of the window watchdog. It can be connected to VCC, GND or left open. The electric table provides  
the window values. The ratio between the upper (open window) and lower (closed window) is 50/50. WDI pin is  
used by they controller to trigger the watchdog input. The WDI input is an edge-triggered event and supports  
both rising and falling edges. A filter time of tW is used to avoid noise or glitches causing a false trigger. A pulse  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
would be treated as a two input trigger events and cause the nWDR pin to be pulled low. nWDR pin is connected  
to the controller reset pin and if a watchdog event happens this pin is pulled low.  
9.4.8.3 SPI Control Programming  
When pin 9 (PIN/nCS) is connected to a high-Z processor I/O the device is configured for SPI communication.  
Registers 8h13 through 8h15 control the watchdog function when the device is in SPI communication mode.  
These register are provided in 9-3. The device watchdog can be set as a time-out watchdog or window  
watchdog by setting 8h13[6] to the method of choice. The timer is based upon reg8h13[3:2] WD prescaler  
and reg8h14[7:5] WD timer and is in ms. See 9-3 for the achievable times.  
9-3. Watchdog Window and Time-out Timer Configuration (ms)  
WD_TIMER  
reg13[5:4] WD_PRE  
(ms)  
reg14[7:5]  
000  
00  
4
01  
8
10  
12  
11  
16  
001  
32  
64  
96  
128  
010  
128  
256  
512  
2048  
10240  
RSVD  
256  
384  
512  
011  
384  
512  
768  
100  
1024  
4096  
20240  
RSVD  
1536  
6144  
RSVD  
RSVD  
2048  
8192  
RSVD  
RSVD  
101  
110  
1111  
9.4.8.4 Watchdog Timing  
The TLIN2441-Q1 provides two methods for setting up the watchdog when in SPI communication mode, Window  
or Time-out. If more frequent, < 64 ms, input trigger events are desired it is suggested to us the Time-out timer.  
When using Time-out watchdog the input trigger can occur anywhere before the timeout and is not tied to an  
open window.  
When using the window watchdog it is important to understand the closed and open window aspects. The device  
is set up with a 50%/50% open and closed window and is based on an internal oscillator with a ±10% accuracy  
range. To determine when to provide the input trigger, this variance needs to be taken into account. Using the 64  
ms nominal total window provides a closed and open window that are each 32 ms. Taking the ± 10% internal  
oscillator into account means the total window could be 57.6 ms or 70.4 ms. The closed and open window would  
then be 22.4 ms or 35.2 ms. From the 57.6 ms total window and 35.2 ms closed window the total open window is  
22.4 ms. The trigger event needs to happen at the 46.4 ms ±11.2 ms. The same method is used for the other  
window values. 8-19 provides the above information graphically.  
9.5 Programming  
The TLIN2441-Q1 is 7 bit address access SPI communication port.  
The Addresses for each area of the device are as follows  
Register 8h00 through 0A are Device ID and Revision Registers  
Register 8h0B through 10 are device configuration registers and Interrupt Flags  
Register 8h11 through 12 are for read and write scratch pad  
Register 8'h13 through 15 are for the watchdog read and write scratch pad  
9.5.1 SPI Communication  
The SPI communication uses a standard SPI interface. Physically the digital interface pins are nCS (Chip Select  
Not), SDI (SPI Data In), SDO (SPI Data Out) and CLK (SPI Clock). Each SPI transaction is an 8 bit word  
containing a seven bit address with a R/W bit followed by a data byte. The data shifted out on the SDO pin for  
the transaction always starts with the register h'0C[7:0] which is the interrupt register. This register provides the  
high level interrupt status information about the device. The data byte which are the responseto the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
address and R/W byte are shifted out next. Data bytes shifted out during a write command is content of the  
registers prior to the new data being written and updating the registers. Data bytes shifted out during a read  
command are the content of the registers and the registers are updated.  
The SPI data input data on SDI is sampled on the low to high edge of CLK. The SPI output data on SDO is  
changed on the high to low edge of CLK.  
9.5.1.1 Chip Select Not (nCS)  
This input pin is used to select the device for a SPI transaction. The pin is active low, so while nCS is high the  
SPI Data Output (SDO) pin of the device is high impedance allowing an SPI bus to be designed. When nCS is  
low the SDO driver is activated and communication may be started. The nCS pin is held low for a SPI  
transaction. A special feature on this device allows the SDO pin to immediately show the Global Fault Flag on a  
falling edge of nCS.  
9.5.1.2 Serial Clock Input (CLK)  
This input pin is used to input the clock for the SPI to synchronize the input and output serial data bit streams.  
The SPI Data Input is sampled on the rising edge of CLK and the SPI Data Output is changed on the falling  
edge of the CLK. See 9-10.  
ACTIONs: C = data capture, S = data shift,  
SPI CLOCKING  
MODE 0 (CPOL = 0, CPHA = 0)  
L = load data out, P = process captured data  
nCS  
CLK  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SDI, SDO  
ACTION  
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
P
P
INTERNAL  
CLK  
INTERNAL_CLK = !CS xor CLK  
9-10. SPI Clocking  
9.5.1.3 Serial Data Input (SDI)  
This input pin is used to shift data into the device. Once the SPI is enabled by a low on nCS, the SDI samples  
the input shifted data on each rising edge of the SPI clock (SCK). The data is shifted into an 8 bit shift register.  
After eight (8) clock cycles and shifts, the addressed register is read giving the data to be shifted out on SDO.  
After eight clock cycles, the shift register is full and the SPI transaction is complete. If the command code was a  
writes the new data is written into the addressed register only after exactly 8 bits have been shifted in by CLK  
and the nCS has a rising edge to deselect the device. If there are not exactly 8 bits shifted in to the device the  
during one SPI transaction (nCS low), the SPI command is ignored, the SPIERR flag is set and the data is not  
written into the device preventing any false actions by the device.  
9.5.1.4 Serial Data Output (SDO)  
This pin is high impedance until the SPI output is enabled via nCS. Once the SPI is enabled by a low on nCS,  
the SDO is immediately driven high or low showing the Global Fault Flag status which is also the first bit (bit 7) to  
be shifted out if the SPI is clocked. On the first falling edge of CLK, the shifting out of the data continues with  
each falling edge on CLK until all 8 bits have been shifted out the shift register.  
See 9-11 and 9-12 for read and write method.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
nCS  
CLK  
SDI  
R/W  
= 1  
ADDRESS [6:0]  
DATA [7:0]  
SDO  
Z[0C[7:0]  
Interrupt  
Register  
9-11. SPI Write  
nCS  
CLK  
SDI  
R/W  
= 0  
ADDRESS [6:0]  
SDO  
Z[0C[7:0]  
Interrupt  
Register  
DATA [7:0]  
9-12. SPI Read  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
9.6 Registers  
The following tables contain the registers that the device use during SPI communication  
9-4. Device ID and Revision  
ADDRESS  
h00  
h01  
h02  
h03  
h04  
h05  
h06  
h07  
h08  
h09  
h0A  
REGISTER  
VALUE  
54  
ACCESS  
Reserved  
R
R
R
R
R
R
R
R
R
R
R
Reserved  
43  
Reserved  
41  
Reserved  
4E  
Reserved  
32  
DEVICE_ID[7:0] "4"  
DEVICE_ID[7:0] "4"  
DEVICE_ID[7:0] "1"  
DEVICE_ID[7:0] 3"5"  
Rev_ID Major  
REV_ID Minor  
34  
34  
31  
33,35  
01  
00  
9-5. Device Configuration and Flag Registers  
ADDRESS  
BIT(S)  
DEFAULT  
DESCRIPTION  
ACCESS  
MODE: Modes of Operation  
00 = Standby Mode  
01 = Sleep Mode  
10 = Normal Mode  
11 = Reserved  
7:6  
2'b00  
R/W/U  
LIMP_DIS: LIMP Disable  
0 = LIMP Enabled  
5
1'b0  
R/W/U  
R/W  
1 = LIMP Disabled  
LIMP_SEL_RESET: Selects the method LIMP is reset/  
turned off  
00 = On the third successful input trigger the error counter  
receives  
'h0B  
4:3  
2'b00  
01 = First correct input trigger  
10 = SPI write 1 to h'0B[2]  
11 = Reserved  
2
1
1'b0  
1'b0  
LIMP Reset - Writing a one resets LIMP but then clears  
R/WC  
R/W  
FAILSAFE_EN: Fail safe mode enable  
0 = Disabled  
1 = Enabled  
DTO_DIS: Dominant timeout Disable  
0 = DTO Enabled  
0
1'b0  
R/W  
1 = DTO Disabled  
7
6
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
8'h00  
DTO Interrup  
R/WC  
R/WC  
R/WC  
R/WC  
R/WC  
R/WC  
R/WC  
R/WC  
R
UVCC Interrupt  
TSD Interrupt  
SPIERR Interrupt  
WDERR Interrupt  
OVCC Interrupt  
LWU Interrupt  
WUP Interrupt  
Reserved  
5
4
'h0C  
'h0D  
3
2
1
0
7:0  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
ADDRESS  
9-5. Device Configuration and Flag Registers (continued)  
BIT(S)  
DEFAULT  
DESCRIPTION  
ACCESS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
7
6
1'b1  
DTO Interrupt Mask  
UVCC Interrupt Mask  
TSD Interrupt Mask  
1'b1  
5
1'b1  
4
1'b1  
SPIERR Interrupt Mask  
WDERR Interrupt Mask  
OVCC Interrupt Mask  
LWU Interrupt Mask  
WUP Interrupt Mask  
Reserved  
'h0E  
3
1'b1  
2
1'b1  
1
1'b1  
0
1'b1  
'h0F  
'h10  
7:0  
7:4  
8'h00  
4'b0000  
Reserved  
R
nRST_nWDR_SEL: Pin 12 configuration select when in  
SPI mode.  
00 = nRST (Default)  
01 = nWDR  
3:2  
1'b0  
R/W  
10 = Both nRST for UVCC and nWDR for watchdog failure  
event  
11 = Reserved  
1
0
1'b0  
1'b0  
Reserved  
R
SOFT_RST: Soft reset of device. Writing a 1 resets the  
registers to default values  
R/WC  
9-6. Device Watchdog Registers  
ADDRESS  
'h11  
BIT(S)  
7:0  
DEFAULT  
DESCRIPTION  
ACCESS  
R/W  
8'h00  
Read and Write Capable Scratch Pad  
Read and Write Capable Scratch Pad  
'h12  
7:0  
8'h00  
R/W  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
9-6. Device Watchdog Registers (continued)  
ADDRESS  
BIT(S)  
DEFAULT  
DESCRIPTION  
ACCESS  
WD_DIS - Watchdog Function Disable  
0 = Enabled  
7
1'b0  
R/W  
1 = Disabled  
WD_WINDOW_TIMEOUT_SEL: Configures Watchdog as  
either a Window or Time-out watchdog  
0 = Window  
1 = Timeout  
6
1'b0  
R/W  
R/W  
WD_PRE: Watchdog prescalar  
00 = Factor 1  
01 = Factor 2  
10 = Factor 3  
11 = Factor 4  
5:4  
2'b00  
WD_ERR_CNT_SET Sets the watchdog event error  
counter that upon overflow the watchdog output trigger  
event taked place. Increases with each error and  
decreases with each correct WD trigger. Does not go  
below zero.  
00 = Immediate trigger on each WD event  
01 = 2-Bit: Triggers on the fifth error event  
10 = 3-Bit: Triggers on the ninth error event  
11 = Reserved  
'h13  
3:2  
2'b00  
R/W  
WD_ACTION: Selection Action when Watchdog times out  
or misses a window  
00 = nINT is pulled low  
1:0  
7:5  
2'b10  
R/W  
R/W  
01 = VCC is turned off for 100 ms and turned back on  
10 = nWDR is toggled high low high  
11 = Reserved  
WD_TIMER - Sets the window or timeout times and is  
based upon the WD_PRE setting - See 9-3  
3'b000  
'h14  
'h15  
WD_ERR_CNT: Watchdog error counter: Keeps a running  
count of the errors up to 15 errors  
4:1  
0
4'b0100  
1'b0  
R
R
Reserved  
WD_TRIG: Writes to these bits resets the watchdog timer  
(FF)  
7:0  
8'h00  
WC  
备注  
For WD_ACTION turning off VCC for 100 ms and turning it back on, causes SPI communication to  
stop during the off time.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TLIN2441-Q1 can be used as both a responder device and a commander device in a LIN network. The  
device comes with the ability to support a remote wake-up requestsand local wake up request. It can provide the  
power to the local processoras well as providing watchdog supervision for the processor.  
10.2 Typical Application  
The device comes with an integrated 45 kpull-up resistor and series diode for responder node applications.  
For commander node applications, an external 1 kpull-up resistor with series blocking diode can be used. 图  
10-1 show the device in pin control mode for a responder application. 10-2 shows the device in SPI control  
mode in a responder application.  
SW  
3 k  
VSUP  
GND  
10  
F
10 nF  
33 k  
GND  
10  
F
10  
F
GND  
WAKE  
GND  
GND  
VCC  
VSUP  
100 nF(4)  
VDD  
14  
8
13  
1
WDI  
10 k  
RESPONDER  
NODE(3)  
GND  
I/O  
LIN  
5
2
GND  
EN  
I/O  
I/O  
3
200 pF  
GND  
nRST  
12  
nWDR  
Reset  
7
LIMP  
WDT  
MCU w/o  
pullup(2)  
VDD I/O  
MCU  
6
LIN Controller  
Or  
11  
10  
RXD  
TXD  
SCI/UART(1)  
GND  
GND  
4
9
GND  
GND  
(1) If RXD on MCU or LIN responder has internal pullup; no external pullup resistor is needed.  
(2) If RXD on MCU or LIN responder does not have an internal pullup requires external pullup resistor.  
(3) Commander node applications require and external 1 k pullup resistor and serial diode.  
(4) Decoupling capacitor values are system dependent but usually have 100 nF, 1 µF and 10 µF  
10-1. Typical LIN Controller in Pin Control Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TLIN2441-Q1  
 
 
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
SW  
3 k  
VSUP  
GND  
10  
F
10 nF  
33 k  
GND  
10  
F
10 F  
GND  
WAKE  
GND  
GND  
VCC  
VSUP  
100 nF(4)  
VDD  
14  
13  
1
nCS  
SDI  
9
RESPONDER  
NODE(3)  
8
SDO  
SPI  
GND  
7
6
CLK  
LIN  
5
2
200 pF  
GND  
nINT  
3
I/O  
nWDR  
LIMP  
12  
I/O  
MCU w/o  
MCU  
pullup(2)  
VDD I/O  
LIN Controller  
Or  
11  
10  
RXD  
TXD  
SCI/UART(1)  
GND  
4
GND  
GND  
(1) If RXD on MCU or LIN responder has internal pullup; no external pullup resistor is needed.  
(2) If RXD on MCU or LIN responder does not have an internal pullup requires external pullup resistor.  
(3) Commander node applications require and external 1 k pullup resistor and serial diode.  
(4) Decoupling capacitor values are system dependent but usually have 100 nF, 1 µF and 10 µF  
10-2. Typical LIN Controller in SPI Control Mode  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
10.2.1 Design Requirements  
10.2.1.1 Normal Mode Application Note  
When using the TLIN2441-Q1 in systems which are monitoring the RXD pin for a wake-up request, special care  
should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition period  
between states as the receivers are switched. The application software should not look for an edge on the RXD  
pin indicating a wake-up request until tMODE_CHANGE. This is shown in 8-15 when transitioning to normal mode  
there is an initialization period shown as tNOMINIT  
.
10.2.1.2 Standby Mode Application Note  
If the TLIN2441-Q1 detects an under voltage on VSUP, the RXD pin transitions low and would signal to the  
software that the device is in standby mode and should be returned to sleep mode for the lowest power state.  
10.2.1.3 TXD Dominant State Timeout Application Note  
The maximum dominant TXD time allowed by the TXD dominant state time out limits the minimum possible data  
rate of the device. The LIN protocol has different constraints for commander and responder node applications;  
thus, there are different maximum consecutive dominant bits for each application case and thus different  
minimum data rates.  
10.2.2 Detailed Design Procedures  
For processors or LIN responder nodes with an internal pull-up on RXD, no external pull-up resistor is needed.  
For processors or LIN responder nodes without internal pull-up on RXD, an external pull-up resistor is required.  
Commander node applications require an external 1 kpull-up resistor and serial diode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
10.2.3 Application Curves  
Characteristic curves below show the LDO performance between 0 V and 5.5 V when ramping up and ramping  
down.  
5
4.5  
4
3.6  
3.3  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
3.5  
3
2.5  
2
1.5  
1
-40°C  
25°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
0.5  
0
-0.5  
-0.3  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D013  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D028  
VSUP (V)  
VSUP (V)  
VCC = 5 V  
ICC Load = 70 mA Ramp Up  
VCC = 3.3 V  
ICC Load = 70 mA Ramp Up  
10-3. VCC vs VSUP Across Temperature  
10-4. VCC vs VSUP Across Temperature  
5
4.5  
4
3.6  
3.3  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
3.5  
3
2.5  
2
1.5  
1
-40°C  
25°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
0.5  
0
-0.5  
-0.3  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D014  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D022  
VSUP (V)  
VSUP (V)  
VCC = 5 V  
ICC Load = 70 mA Ramp Down  
VCC = 3.3 V  
ICC Load = 70 mA Ramp Up  
10-5. VCC vs VSUP Across Temperature  
10-6. VCC vs VSUP Across Temperature  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40°C  
25°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
0
0
-5  
-5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D005  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D024  
VSUP (V)  
VSUP (V)  
VCC = 5 V  
ICC Load = 70 mA Ramp Up  
VCC = 3.3 V  
ICC Load = 70 mA Ramp Up  
10-7. ISUP vs VSUP Across Temperature  
10-8. ISUP vs VSUP Across Temperature  
9
7.5  
8.5  
8
7
6.5  
6
7.5  
7
5.5  
5
6.5  
6
4.5  
4
5.5  
5
3.5  
3
4.5  
4
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
-40°C  
25°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D046  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D033  
VSUP (V)  
VSUP (V)  
VCC = 5 V  
Sleep Mode  
Ramp Down  
VCC = 3.3 V  
Sleep Mode  
Ramp Down  
10-9. ISUP vs VSUP Across Temperature  
10-10. ISUP vs VSUP Across Temperature  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
10-11. Recessive to Dominant Propagation  
10-12. Dominant to Recessive Propagation  
Delay  
Delay  
11 Power Supply Recommendations  
The TLIN2441-Q1 was designed to operate directly off a car battery, or any other DC supply ranging from 5.5 V  
to 45 V. A 100 nF decoupling capacitor should be placed as close to the VSUP pin of the device as possible.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TLIN2441-Q1  
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
12 Layout  
PCB design should start with understanding that frequency bandwidth from approximately 3 MHz to 3 GHz is  
needed thus high frequency layout techniques must be applied during PCB design. Placement at the connector  
also prevents these noisy events from propagating further into the PCB and system.  
12.1 Layout Guidelines  
Pin 1 (VSUP): This is the supply pin for the device. A 100 nF decoupling capacitor should be placed as close  
to the device as possible.  
Pin 2 (LIMP): This pin is connected to external circuitry for a limp home mode if the watchdog has timed out  
causing a reset  
Pin 3 (EN/nINT): When in pin control mode, this pin is the EN and is an input pin that is used to place the  
device in a low power sleep mode. If this feature is not used, the pin should be pulled high to the regulated  
voltage supply of the microprocessor through a series resistor, values between 1 kand 10 k. Additionally,  
a series resistor may be placed on the pinto limit current on the digital lines in the event of an over voltage  
fault. When in SPI communication mode, this pin becomes an output interrupt pin that is provided to the  
processor.  
Pin 4 (GND): This is the ground connection for the device. This pin should be tied to the ground plane  
through a short trace with the use of two vias to limit total return inductance.  
Pin 5 (LIN): This pin connects to the LIN bus. For responder node applications, a 200 pF capacitor to ground  
is implemented. For commander node applications, an additional series resistor and blocking diode should be  
placed between the LIN pin and the VSUP pin. See 9-3.  
Pin 6 (WDT/CLK): In pin control mode, this pin can be connected to VCC, GND or left open. In SPI  
communication mode, this pin is connected directly to the processor as the SPI CLK input.  
Pin 7 (nWDR/SDO): In pin control mode. this pin is connected to the processors reset pin. In SPI  
communication mode. this pin is connected directly to the processor as the SPI serial data output from the  
TLIN2441-Q1  
Pin 8 (WDI/SDI): In pin control mode, this input pin is connected to the processor. A 10 kΩresistor should be  
connected to GND to avoid false triggers upon power up. In SPI communication mode, this pin is connected  
directly to the processor as the SPI serial data input into the TLIN2441  
Pin 9 (PIN/nCS): For pin control mode, this pin should be connected directly to ground. For SPI  
communication mode, this pin should be connected directly to the processor.  
Pin 10 (RXD): The pin is an open-drain output and requires and external pull-up resistor in the range of 1 kΩ  
to 10 kto function properly. If the microprocessor paired with the transceiver does not have an integrated  
pull-up, an external resistor should be placed between RXD and the regulated voltage supply for the  
microprocessor. If RXD is connected to the VCC pin a higher pull-up resistor value can be used to reduce  
standby current.  
Pin 11 (TXD): The TXD pin is the transmit input signal to the device from the processors. A series resistor  
can be placed to limit the input current to the device in the event of an over voltage on this pin. A capacitor to  
ground can be placed close to the input pin of the device to filter noise.  
Pin 12 (nRST/nWDR): By default this pin connects to the processors GPIO to function as an interrupt or  
reset pin for an under voltage event. For SPI communication mode, this pin can be programmed as a  
processor reset due to a watchdog failure event.  
Pin 13 (WAKE):This pin connects to VSUP through a resistor divider with the center tap connected to a switch  
to ground or VVSUP and is used as the local wake up pin. A 10 nF capacitor to ground should be placed at  
this center tap as shown in the application drawings.  
Pin 14 (VCC): Output source, either 3.3 V or 5 V depending upon the version of the device and has  
decoupling capacitors to ground.  
备注  
All ground and power connections should be made as short as possible and use at least two vias to  
minimize the total loop inductance.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
12.2 Layout Example  
VSUP  
VSUP  
VCC  
10 µF  
100 nF  
GND  
GND  
To  
WAKE  
Switch  
LIMP  
EN  
33 kΩ  
nRST  
TXD  
GND  
GND  
RXD  
LIN  
WDT  
PIN/nCS  
GND  
GND  
nWDR  
WDI  
VCC  
GND  
GND  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TLIN2441-Q1  
 
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
TLIN1441-Q1 and TLIN2441-Q1 Duty Cycle Over VSUP  
For related documentation see the following:  
LIN Standards:  
ISO/DIS 17987-1: Road vehicles -- Local Interconnect Network (LIN) -- Part 1: General information and  
use case definition  
ISO/DIS 17987-4: Road vehicles -- Local Interconnect Network (LIN) -- Part 4: Electrical Physical Layer  
(EPL) specification 12V/24V  
SAE J2602-1: LIN Network for Vehicle Applications  
LIN2.0, LIN2.1, LIN2.2 and LIN2.2A specification  
EMC requirements:  
SAE J2962-2: TBD  
HW Requirements for CAN, LIN, FR V1.3: German OEM requirements for LIN  
ISO 10605: Road vehicles - Test methods for electrical disturbances from electrostatic discharge  
ISO 11452-4:2011: Road vehicles - Component test methods for electrical disturbances from narrowband  
radiated electromagnetic energy - Part 4: Harness excitation methods  
ISO 7637-1:2015: Road vehicles - Electrical disturbances from conduction and coupling - Part 1:  
Definitions and general considerations  
ISO 7637-3: Road vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical  
transient transmission by capacitive and inductive coupling via lines other than supply lines  
IEC 62132-4:2006: Integrated circuits - Measurement of electromagnetic immunity 150 kHz to 1 GHz -  
Part 4: Direct RF power injection method  
IEC 61967-4  
CISPR25  
Conformance Test requirements:  
ISO/DIS 17987-7: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer  
(EPL) conformance test specification  
SAE J2602-2: LIN Network for Vehicle Applications Conformance Test  
TLINx441 LDO Performance, SLLA427  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TLIN2441-Q1  
 
 
 
 
 
TLIN2441-Q1  
ZHCSJ75C DECEMBER 2018 REVISED JUNE 2022  
www.ti.com.cn  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TLIN2441-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN24413DMTRQ1  
TLIN24413DMTTQ1  
TLIN24415DMTRQ1  
TLIN24415DMTTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
DMT  
DMT  
DMT  
DMT  
14  
14  
14  
14  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TL413  
SN  
SN  
SN  
TL413  
TL415  
TL415  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLIN24413DMTRQ1  
TLIN24413DMTTQ1  
TLIN24415DMTRQ1  
TLIN24415DMTTQ1  
VSON  
VSON  
VSON  
VSON  
DMT  
DMT  
DMT  
DMT  
14  
14  
14  
14  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.2  
3.2  
3.2  
3.2  
4.7  
4.7  
4.7  
4.7  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLIN24413DMTRQ1  
TLIN24413DMTTQ1  
TLIN24415DMTRQ1  
TLIN24415DMTTQ1  
VSON  
VSON  
VSON  
VSON  
DMT  
DMT  
DMT  
DMT  
14  
14  
14  
14  
3000  
250  
367.0  
213.0  
367.0  
213.0  
367.0  
191.0  
367.0  
191.0  
38.0  
35.0  
38.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DMT 14  
3 x 4.5, 0.65 mm pitch  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225088/A  
www.ti.com  
PACKAGE OUTLINE  
DMT0014A  
VSON - 0.9 mm max height  
SCALE 3.200  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
7
8
A
A
2X  
3.9  
15  
SYMM  
4.2 0.1  
14  
1
12X 0.65  
0.35  
0.25  
14X  
0.45  
0.35  
14X  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
4223033/B 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMT0014A  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
14X (0.6)  
14X (0.3)  
SYMM  
1
14  
2X  
(1.85)  
12X (0.65)  
SYMM  
15  
(4.2)  
(0.69)  
TYP  
(
0.2) VIA  
TYP  
8
7
(R0.05) TYP  
(0.55) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223033/B 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMT0014A  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.47)  
15  
14X (0.6)  
1
14  
14X (0.3)  
(1.18)  
12X (0.65)  
SYMM  
(1.38)  
(R0.05) TYP  
METAL  
TYP  
8
7
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15  
77.4% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4223033/B 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLIN24413DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN24413DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN24415DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN24415DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIU04C1

TLIU04C1 Quad T1/E1 Line Interface
AGERE

TLJA107M0040500

Tantalum Solid Electrolytic Chip Capacitors High CV Consumer Series
KYOCERA AVX

TLJA107M004A0500

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 4V, 20% +Tol, 20% -Tol, 100uF, Surface Mount, 1206, CHIP, ROHS COMPLIANT
KYOCERA AVX

TLJA107M004B0500

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 4V, 20% +Tol, 20% -Tol, 100uF, Surface Mount, 1206, CHIP, ROHS COMPLIANT
KYOCERA AVX

TLJA107M004R0500

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 4V, 20% +Tol, 20% -Tol, 100uF, Surface Mount, 1206, CHIP
KYOCERA AVX

TLJA107M004S0500

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 4V, 20% +Tol, 20% -Tol, 100uF, Surface Mount, 1206, CHIP, ROHS COMPLIANT
KYOCERA AVX

TLJA107M0060500

Tantalum Solid Electrolytic Chip Capacitors High CV Consumer Series
KYOCERA AVX

TLJA107M0060800

Tantalum Solid Electrolytic Chip Capacitors High CV Consumer Series
KYOCERA AVX